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Abstract

Due to the surge of data storage techniques, the need for the development of appropri-
ate techniques to identify patterns and to extract knowledge from the resulting enormous
data sets, which can be viewed as collections of dependent functional data, is of increasing
interest in many scientific areas. We develop a similarity measure for spectral density oper-
ators of a collection of functional time series, which is based on the aggregation of Hilbert-
Schmidt differences of the individual time-varying spectral density operators. Under fairly
general conditions, the asymptotic properties of the corresponding estimator are derived
and asymptotic normality is established. The introduced statistic lends itself naturally to
quantify (dis)-similarity between functional time series, which we subsequently exploit in
order to build a spectral clustering algorithm. Our algorithm is the first of its kind in the
analysis of non-stationary (functional) time series and enables to discover particular pat-
terns by grouping together ‘similar’ series into clusters, thereby reducing the complexity of
the analysis considerably. The algorithm is simple to implement and computationally fea-
sible. As a further application we provide a simple test for the hypothesis that the second
order properties of two non-stationary functional time series coincide.

Keywords: time series, functional data, clustering, spectral analysis, local stationarity
AMS Subject classification: Primary: 62M15; 62H15, Secondary: 62M10, 62M15

1 Introduction

The surge in data storage techniques over the past two decades has led to more and more data
sets that are almost continuously recorded from their domain of definition. The development
of tools to model these type of data is the main focus of functional data analysis. In functional
data analysis, the variables of interest are perceived as random smooth functions that vary on a
continuum D , i.e., X (τ),τ ∈ D . While the intrinsically infinite variation of such random functions
can be considered a rich source of information, extracting relevant information and to identify
patterns becomes more and more a challenge. Especially when the data is collected sequentially
over time and the curves exhibit serial dependence, i.e., when the data set consists of a collection
of d functional time series, {Xi ,t (τ) : τ ∈ D}t∈Z,i∈1,...,d . This type of data arises naturally in a wide
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range of scientific disciplines such as astronomy, biology, finance, meteorology, medicine or yet
engineering. In addition, in most real-world applications, the second order characteristics of
time series change gradually over time. In meteorology, the distribution of the daily records
of temperature, precipitation and cloud cover for a region, viewed as three related functional
surfaces, may change over time due to global climate changes. Other relevant examples appear
in the study of cognitive functions such as high-resolution recordings from local field potentials,
EEG and MEG or from the financial industry where implied volatility of an option as a function
of moneyness changes over time. The development of appropriate exploratory techniques that
allow to discover patterns or anomalies is therefore of foremost interest for this type of data.

The most widely used technique for this preliminary step of data exploration is known as
cluster analysis. Clustering is concerned with partitioning a data-set into a set of disjoint homo-
geneous groups (clusters) of realizations. Unlike supervised learning, clustering does not rely on
prior knowledge of the groups or on building classifiers based upon a training set. It is therefore
especially meaningful when little is known about the nature of the process and the data set is
large.

A large body of literature on clustering (and related learning techniques) of Euclidean-valued
time series has been published. Depending on the goal of the application, clustering algorithms
can differ in a variety of aspects such as the representation of the data, how similarities are mea-
sured and the way clusters are constructed. The first two aspects are known to be crucial in terms
of efficiency and accuracy of the solution and this is where most research focuses on(see section
5 of Aghabozorgi et al., 2015, for a full taxonomy of the different aspects of clustering time series).
For instance, in parametric approaches, clusters are usually built based upon similarity of their
estimated parameters (see e.g., Kalpakis et al., 2001; Corduas and Piccolo, 2008) some of which
take a Bayesian approach (Bauwens and Rombouts, 2007; Frühwirth-Schnatter and Kaufman,
2008; Juárez and Steel, 2010). Nonparametric methods are often based upon comparing simi-
larity of the estimated power spectra, which is a research topic on its own (see e.g., Coates and
Diggle, 1986; Eichler, 2008; Dette and Paparoditis, 2009; Dette and Hildebrandt, 2012; Jentsch
and Pauly, 2015). This approach is taken in, i.a., Kakizawa et al. (1998); Savvides et al. (2008);
Fokianos and Promponas (2011); Holan and Ravishanker (2018). A wavelet-based approach can
be found in Vlachos et al. (2003).

Clustering and classification methods have also been extended to non-stationary time series.
For example, Sakiyamaa and Taniguchi (2004) use the framework of locally stationary time se-
ries (Dahlhaus, 1997) for clustering while Chandler and Polonik (2006) use it to develop a shape-
based approach discriminant analysis. Another branch of literature focuses on piecewise sta-
tionary processes using Smooth Localized Complex EXponentials (SLEX) transforms, which were
introduced by Ombao et al. (2001), or variations thereof (see e.g., Huang et al., 2004; Harvill et al.,
2017) for clustering approaches and Böhm et al. (2010) for classification of multivariate series.

In contrast to the Euclidean case, the literature on cluster analysis for functional data is not
that rich. Some methods have been developed for clustering of i.i.d. functional data (Jacques and
Preda, 2014, and references therein). A popular technique is to first reduce dimension by pro-
jecting the curves onto a basis of finite dimension and then apply a standard classical clustering
algorithm such as k-means (see Peng and Müller, 2008; Abraham et al., 2003). Alternatively, non-
parametric methods have been proposed that use specific distances for functional data (Ferraty
and Vieu, 2006; Ieva et al., 2013) and parametric (Bayesian) approaches assuming a particular
probability distribution for multivariate functional data (see Jacques and Preda, 2014; Heard et
al., 2006, among others).

Despite of the vast amount of literature available on various data structures, existing meth-
ods are inappropriate to cluster possibly non-stationary functional time series. A clustering tech-
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nique for functional time series requires to take into account its infinite variation and hence a
clustering approach must be able to capture the complex within-curves dynamics as well as the
between-curve dynamics. At the same time, it needs to be efficient to apply because of the high
dimensionality of the data. In this article, we address this problem from several perspectives.
We develop a new measure to compare the second order properties of non-stationary functional
time series. This measure is based on the aggregation of Hilbert-Schmidt differences of the indi-
vidual time-varying spectral density operators. Under fairly general conditions, the asymptotic
properties of the corresponding estimator are derived and asymptotic normality is established.
We then use this methodology for two purposes. Firstly, we consider this measure and its esti-
mate to develop a new spectral clustering algorithm for functional time series, which are allowed
to be non-stationary and nonlinear. Our algorithm is novel in the sense that not only is it the
first of its kind for exploratory analysis of functional time series but moreover because, to our
knowledge, spectral clustering has also not yet been considered for Euclidean time series. The
underlying principle of spectral clustering is to reformulate the problem into a graph partition-
ing problem (see Figure 3.1) Geometrical properties of graphs can be conveniently described
by the spectral properties of the corresponding graph Laplacian (see e.g., Chung, 1997; Chung
and Radcliffe, 2011; Von Luxburg, 2007). Using these properties, we can detect clusters in non-
convex regions, which classical clustering techniques may not be able to find. Furthermore, it
can be solved efficiently via classical linear algebra operations. We will show that our introduced
measure of similarity provides a meaningful basis for the adjacency matrix underlying the graph
Laplacian. Secondly, we use this measure to develop a particularly simple level α-test for the
hypothesis of equality of two time-varying spectral density operators, which uses the quantiles
of the standard normal distribution.

The structure of this paper is as follows. We first introduce necessary notation and back-
ground on the type of processes considered in this paper. We then define a measure of similarity
for a pair of functional time series and derive a consistent estimator to construct an empirical
adjacency matrix. In Section 3, the spectral clustering algorithm is discussed in detail and it
is shown that the algorithm based upon an empirical graph Laplacian, a transformation of the
estimated adjacency matrix, is consistent. In Section 4, we discuss the application of hypothe-
sis testing, whereas in Section 5 we study the properties of our algorithm in finite samples. In
Section 6, the clustering method is illustrated by means of an application to high-resolution me-
teorological data. All proofs and technical assumptions for the main statements are relegated to
the Appendix.

2 A measure of similarity

In this section we introduce a measure of similarity for functional time series, which is appropri-
ate to use as a basis for a similarity matrix to cluster functional time series.

Example. We have generated 90 functional time series uniformly from models I, II, III (described
in detail in Section 4), which should be clustered according to their second order properties. To
visualize the difficulties of this task we exemplary depict 9 series in Figure 2.1, where we took
three from each distribution. As can be seen, the high dimensionality of the data makes a visual
assessment of their second order properties almost impossible for 6 of them, while 3 of them
appear more obvious to distinguish from the other 6.
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Figure 2.1: Functional time series from 3 different distributions, T = 512.

2.1 Notation

First, let us introduce some necessary notation. For a separable Hilbert space H , we denote the
inner product as 〈·, ·〉 : H ×H →C and its induced norm by ‖ · ‖. The Banach space of bounded
linear operators A : H → H with operator norm |||A|||∞ = sup‖x‖≤1 ‖Ax‖ shall be denoted by
L (H ), the adjoint of A ∈ L (H ) by A† . A ∈ L (H ) is called self-adjoint if A = A† and non-
negative definite if 〈Ax, x〉 ≥ 0 for each x ∈ H . If well-defined we denote the trace of A ∈ L (H )
by Tr(A). A compact operator A ∈ L (H ) belongs to the Schatten class of order 1 ≤ p <∞, de-
noted by A ∈ Sp (H ), if |||A|||pp = ∑

j≥1 sp
j (A) < ∞, where {s j (A) : j ≥ 1} are the singular values of

A. Operators that belong to the Banach spaces (S1(H ), |||·|||1) or (S2(H ), |||·|||2) will be referred
to as trace-class operators and Hilbert-schmidt operators, respectively. We remark in particu-
lar that (S2(H ), |||·|||2) is a Hilbert space with the inner product given by 〈A,B〉HS = Tr(AB †) =∑

j≥1〈Ae j ,Be j 〉 for each A,B ∈ S2(H ) and {e j } j∈N an orthonormal basis of H . For f , g ∈ H , we
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define the tensor product f ⊗ g : H ⊗H →H as the bounded linear operator defined by

( f ⊗ g )v = 〈v, g 〉 f ∀v ∈H .

Without loss of generality, we consider the Hilbert space H = Ł2
C

([0,1]) of equivalence classes

of square integrable measurable functions f : [0,1] →Cwith inner product
∫ 1

0 f (τ)g (τ)dτ, where
the complex conjugate of x ∈C is denoted as usual by x. Since the mapping T : H ⊗H → S2(H )
defined by the linear extension of T ( f ⊗ g ) = f ⊗ g is an isometric isomorphism, it defines a
Hilbert-Schmidt operator with the kernel in H given by ( f ⊗ g )(τ,σ) = f (τ)g (σ) for each τ,σ ∈
[0,1] in an L2-sense. We refer to Appendix A for further details and background.

2.2 A measure of similarity for functional time series

The main object of this paper are d zero-mean stochastic processes Xi = {Xi ,t ,T }t=1,...,T ;T∈N i =
1, . . . ,d that take values in the Hilbert space L2

R
([0,1]). The second order dynamics are assumed

to be finite but allowed to change over time. Processes of this type fit the framework of locally
stationary functional time series as defined in van Delft and Eichler (2018) –which extends the
concept of local stationarity (Dahlhaus, 1997) to the function space– and contain weakly sta-
tionary functional processes as a subclass. Asymptotic properties can be described by so-called
infill-asymptotics, such that, as T →∞, we obtain more and more observations at a local level.
Formally, a process {X t ,T }t=1,...,T ;T∈N is called functional locally stationary if, for all rescaled times
u ∈ [0,1], there exists an L2

R
([0,1])-valued strictly stationary process {X (u)

t : t ∈Z} such that∥∥∥X t ,T −X (u)
t

∥∥∥
2
≤ (| t

T −u|+ 1
T

)
P (u)

t ,T a.s. (2.1)

for all 1 ≤ t ≤ T , where {P (u)
t ,T }t=1,...,T ;T∈N is a positive real-valued process such that for some ρ > 0

and C <∞ the process satisfies E
(|P (u)

t ,T |ρ
)<C for all t and T and uniformly in u ∈ [0,1]. We refer

to van Delft and Eichler (2018) for further details.
What we will exploit throughout this paper is that the full second order dynamics of the the

triangular array {X t ,T }t=1,...,T ;T∈N are completely and uniquely characterized by the time-varying
spectral density operator

Fu,ω = 1

2π

∑
h∈Z

E
(
X (u)

t+h ⊗X (u)
t

)
e−iωh (2.2)

for each u ∈ [0,1] and {X (u)
t : t ∈Z}. In particular, for weakly stationary functional time series we

can drop the dependence on local time and thus Fu,ω ≡Fω. This uniquely characterizing object
of a functional time series lends itself naturally as a basis for a measure of similarity.

More specifically, let, F
(i1)
u,ω and F

(i2)
u,ω denote the time-varying spectral density operator of

processes {Xi1,t ,T }t=1,...,T ;T∈N and {Xi2,t ,T }t=1,...,T ;T∈N, respectively. As a measure of pairwise sim-
ilarity between two functional time series, we consider

Ai1,i2 =
∫ 1

0

∫ π
−π|||F (i1)

u,ω−F
(i2)
u,ω|||22dudω∫ 1

0

∫ π
−π|||F (i1)

u,ω|||22+|||F (i2)
u,ω|||22dudω

. (2.3)

Clearly, if this distance is zero, then processes {Xi1,t ,T }t=1,...,T ;T∈N and {Xi2,t ,T }t=1,...,T ;T∈N must
have the same second order properties and hence must belong to the same cluster. Note that
(2.3) takes values in the interval [0,1). The local scaling via the denominator is an essential aspect
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for its usage in a spectral clustering procedure. Differences in scales can lead spectral clustering
to fail. While most similarity graphs are based upon a global scaling parameter of which the
optimal value is difficult to determine and can highly affect the clustering performance [see Von
Luxburg (2007)], we find that making the measure scale-invariant by accounting for local scales
avoids this issue. We discuss this further in Section 5.

Since F
(i1)
u,ω and F

(i2)
u,ω are unknown, we will have to estimate (2.3). Similar to van Delft et al.

(2018), we shall do this using integrated periodogram tensors. That is, we split the sample into M
blocks with N elements inside each of these blocks so that T = M N = M(T )N (T ) for each T ∈N,
where M ∈N and N is an even number. M and N will correspond to the number of terms used
in a Riemann sum approximating the integrals in (2.3) with respect to du and dω and therefore
they have to be reasonable large. The functional discrete Fourier transform (fDFT) at time point
u, is a random function with values in L2([0,1],C) defined by

Du,ω
i := 1p

2πN

N−1∑
s=0

Xi ,buT c−N /2+s+1,T e−iωs . (2.4)

The local periodogram tensor for the i -th time series can be given as

I u,ω
i := Du,ω

i ⊗Du,ω
i , (2.5)

for i = 1, . . . ,d . We base our estimator upon a linear combination of the following Hilbert-Schmidt
inner products

Fi1i2 =
1

T

M∑
j=1

bN /2c∑
k=1

〈I
u j ,ωk

i1
, I

u j ,ωk−1

i2
〉HS . (2.6)

In particular, a suitable and (symmetric) estimator for the distance (2.3) is given by

Âi1,i2 := Fi1i1 +Fi2i2 −Fi1i2 −Fi2i1

(Fi1i1 +Fi2i2 )
, (2.7)

To ease notation, we provide empirical quantities with ·̂. The dependence of these quantities
on T is therefore implicit. We find under suitable regularity conditions, which are postponed to
section B,

Theorem 2.1 (consistency). Under Assumption B.1 with m = 8 and Assumption B.2, we find that

Âi1,i2 −Ai1,i2 =Op (T −1/2).

We remark that, under suitable moment conditions, it is moreover asymptotically multivari-
ate normal and therefore lends itself for other statistical applications such as a test for equality
of time-varying spectral density operators. We shall briefly discuss this application together with
more details on the statistic Âi1,i2 in Section 4. In the next section, we define a similarity graph
based upon the measure (2.7) and introduce a spectral clustering algorithm to cluster the func-
tional time series.

Example (continued). For 6 of the 9 functional time series depicted in Figure 2.1 it is difficult to
visually distinguish the second order properties. This becomes even more difficult for all 90 se-
ries. However, we can use the measure Â to identify similarities. A heat map of the correspond-
ing estimates for all 90 time series are displayed in Figure 2.2(a). As can be seen the empirical
measure gives the pairs of time series different weights ranging from 0 to 1, but it is difficult to
identify any structure. For the sake comparison, we ordered the times series assuming knowl-
edge of the clusters in the right part of Figure 2.2(b). We observe that the similarity measure Â

make the clusters visible.
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(a) without information on the clusters (b) with information on the clusters

Figure 2.2: Heat map of the value of the estimates Âi , j of Ai , j plotted for all pairs i , j = 1, . . . ,90 in random
order (left); and ordererd by cluster (right).

.

3 Spectral clustering of functional time series

In this section, we develop a spectral clustering algorithm, which consists of a several steps. We
start by translating the problem of clustering d functional time series into k clusters into a graph
partitioning problem using the previously defined similarity measure. Secondly, we construct a
spectral embedding using an empirical graph Laplacian, which is shown to have spectral proper-
ties that converge to those of the population graph Laplacian. We then use the embedded points
to cluster the data using k-means and show that we can bound the number of points that are
clustered converges to zero as T →∞.

3.1 Construction of the graph

We construct an undirected similarity graph G = (V ,E), where V denotes the set of vertices and
E denotes the set of edges. To each family of random curves {Xi }, i ∈ [d ] we relate a node vi ∈ V
and describe the similarity between node vi and v j via non-negative weights on the edges. These
weighs are given by the empirical adjacency matrix which is defined as the following transforma-
tion of the matrix Â = {Âi1,i2 : i1, i2 = 1, . . . ,d} as defined in (2.7)

Ŵ = e−Â ∈Rd×d . (3.1)

This is illustrated in Figure 3.1 for the first 6 processes depicted in Figure 2.1. The clustering
problem then becomes equivalent to partitioning the similarity graph into connected compo-
nents such that points with pairwise high weight belong to the same component while points
with low weight are put into different components.

3.2 The spectral embedding

The main ingredient to our algorithm is the empirical graph Laplacian

L̂ = I − D̂−1/2Ŵ D̂−1/2, (3.2)
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v4

v5

v6

0.40

1.00.41

0.42

0.40

0.39

0.87

0.85

1.0

0.42

0.42

0.40

1.0

0.94
0.85

G(V ,E)

Figure 3.1: Illustration of the map from the space of functional time series (left) into a graph par-
titioning problem (right).

where D̂ = diag
(
{D̂i }d

i=1

)
denotes the degree matrix of Ŵ which carries the degree of vertex vi

as its i -th diagonal element, i.e., D̂i = ∑d
j=1 Ŵi , j . This Laplacian can be viewed as a perturbed

version of the unknown population Laplacian

L = I −D−1/2W D−1/2, (3.3)

where W = e−A is the population adjacency matrix and D its corresponding degree matrix. Note
that we use a Normalized Laplacian as it shows a better performance if d is large (Von Luxburg
et al., 2008) and can also be applied to irregular graphs, i.e., graphs of which the vertices have
different degrees.

It is straightforward to show that (3.3) is symmetric and positive-definite and therefore has an
eigendecomposition, say L =U>ΛU with Λ = diag

(
{λi }d

i=1) ∈ Rd×d
≥0 . In he case where G = (V ,E)

is an undirected weighted graph with non-negative weights, its spectrum provides information
on the connectivity of the graph. More specifically, the multiplicity k of the eigenvalue 0 of L
equals the number of connected components G1, . . . ,Gk in the graph G , and the eigenspace of the
eigenvalue 0 is spanned by the vectors D1/21Gi i = 1, . . . ,k, where 1Gi ∈ Rd denotes the indicator
vector on component Gi (see e.g., Chung, 1997).

To understand the usefulness of these properties, suppose for a moment that our graph has
exactly k disconnected components where the nodes belonging to different components are in-
finitely far apart, i.e. have zero weight. The above implies that if we collect the k eigenvectors
that belong to the k smallest eigenvectors of L and we row-normalize this matrix, we obtain a
matrix of indicator vectors

U := [1G1 , . . . ,1Gk ] ∈Rd×k . (3.4)

Per row of U there will be exactly one nonzero element, indicating the component to which it
belongs to. In practice, one never encounters the ideal situation that the nullspace of the em-
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pirical graph Laplacian is perfectly spanned by (scaled) indicator vectors because the empirical
similarity graph, by construction, consists of only one connected component. Nevertheless, the
information about the structure of k clusters is still completely contained in the eigenvectors that
belong to the smallest k eigenvalues of L. In particular, these eigenvectors provide a relaxation
solution to the Normalized minimal cut problem (Ncut) (Shi and Malik, 2000), which has the ob-
jective to partition the graph into k disjoint components by ‘cutting’ it at the edges of which the
total sum of normalized weights (relative to the volume of the partitioning component) is mini-
mized. In order to exploit this information, we embed the infinite-dimensional processes Xi into
the space spanned by the k eigenvectors that belong to the k smallest eigenvalues by represent-
ing the i -th process by the i -th row of U . The embedded points then provide a representation of
Xi in Rk of which the clustering properties are enhanced. As a result, a simple algorithm such as
k-means can be applied to the embedded points to identify the clusters.

To be precise, let Û·,1, . . . ,Û·,k ∈ Rd denote the row-normalized k eigenvectors of the empir-
ical graph Laplacian L̂ defined in (3.2) corresponding to the smallest k eigenvalues. Note that
the eigenvectors of L̂ can only be identified up to an orthogonal rotation. The row normalization
avoids this additional source of unidentifiability as will become clear below. It is by no means
guaranteed that the embedding of our data as the rows of the matrix

Û := [Û·,1, . . . ,Û·,k ] ∈Rd×k , (3.5)

provides a meaningful spectral embedding for clustering. For this purpose we need to show that
L̂ is ‘close’ to L measured by a suitable norm such that their spectral properties converge to their
population counterparts. The approach that we take to establish consistency of the empirical
Laplacian as T tends to infinity is based on perturbation theory comparing the matrices L̂ and L
(see also Ng et al., 2002; Rohe et al., 2011). The proofs are technical and rely on several auxiliary
results which are relegated to the Appendix. Using consistency of Â and the symmetry of L, we
can show that the distance in operator norm between L̂ and L converges to zero in probability.

Lemma 3.1. Under the conditions of Theorem 2.1

∀ε> 0, lim
T→∞

P
(|||L̂−L|||∞ > ε)= 0.

To analyze the concentration of Û , we use a slight modification of the classical Davis-Kahan
Sin Θ theorem (Stewart and Sun, 1990). While this theorem provides an upper bound on the si-
nus of the principal angles between the eigenspaces ÛO, for some orthonormal rotation matrix
O ∈ Rk×k , and U , in terms of the spectral grap δ, the dimension of the space k and on the size
of the perturbation |||H |||∞, Lemma C.1 in the Appendix can be used to bound the Euclidean dis-
tance between the non-normalized empirical eigenvectors Û and their population counterparts
U up to rotation. For the row-normalized matrix Û , we avoid the additional source of unidenti-
fiability caused by the rotation matrix. We derive the following result.

Lemma 3.2. The matrix Û defined in (3.5) satisfies

‖Û −U ‖2 ≤ 4
p

k√
mini ‖Ui ,·‖2

2

|||L̂−L|||∞
λk+1

≤ 4
p

k

√
Cmax

mini Di

|||L̂−L|||∞
λk+1

where λk+1 is the (k+1)-th smallest eigenvalue of L and where Cmax = maxi
∑

i1,i2∈Gi
Wi1,i2 . Hence,

Under the conditions of Lemma 3.1,

∀ε> 0, lim
T→∞

P
(‖Û −U ‖2 > ε

)= 0.
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These results thus justify to use the rows Û1,·, . . . ,Ûd ,· of (3.5) to embed the d functional time
series. Each embedded point Ûi ,· then represents a process Xi (or node) in k dimensions, where
these k dimensions can be seen as the features. Based on this representation we can cluster our
data using k-means. This step is analyzed next. We remark that our treatment of the spectral em-
bedding by means of row-normalized eigenvectors of the graph Laplacian is therefore similar to
Ng et al. (2002) who first investigated the use of a symmetric Laplacian in the context of spectral
clustering.

Example (continued). For our example, the eigenvalues in Figure 3.2(a) indicate the empirical
graph Laplacian has one connected component. This is not surprising as we have a fully con-
nected graph. The first eigenvector is therefore approximately constant, which can be seen in
Figure 3.2(b), while the second and third are approximately constant on the clusters. The sec-
ond eigenvector (Figure 3.2(c)) allows to separate the first 3 observations from the rest, while the
third eigenvector indicates to separate the last three from the first 6 observations (Figure 3.2(d)).

(a) eigenvalues of L̂ (b) eigenvector Û·,1 (c) eigenvector Û·,2 (d) eigenvector Û·,3

Figure 3.2: The spectrum of L̂ and the three row-normalized eigenvectors belonging to the eigenvalues that
belong to the three smallest eigenvalues λ̂1 ≤ λ̂2 ≤ λ̂3.

3.3 Clustering the embedded points using k-means

In this section, we analyze the final step where k-means is applied to the embedded points
Û1,·, . . ., Ûd ,· ∈ Rk . We show that the k-means algorithm, clusters, with high probability, the data
correctly. More specifically, we derive a non-asymptotic bound on the number of points that are
misclustered and show, under regularity conditions, that this converges to zero as T →∞.

The k-means objective aims to partition the d embedded points Û1,·, . . . ,Ûd ,· ∈ Rk into k
clusters {C1, . . . ,Ck } in such a way that the pairwise squared deviations of points within the same
cluster is minimized. The algorithm thus returns the centroids {c?1 , . . . ,c?k } from the objective
function,

min
{c1,...,ck }⊂Rk

∑
i

min
j

‖Ûi ,·− c j‖2
2.

The data points Ûi ,· and Û j ,· are then put in the same cluster if c?i = c?j . More formally but

equivalently, for Û defined in (3.5), the k means algorihm should return a matrix C? ∈Rd×k with
at most k unique rows such that

C? = argmin
C∈M (d ,k)

‖Û −C‖2
2. (3.6)

where M (d ,k) = {M ∈Rd×k : M has at most k distinct rows}.
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Figure 3.3: The embedded points Û[1,·], . . . ,Û[90,·] (left) and the result of applying k-means to these points
where the color indicate the cluster the point belongs to (right).

To analyze the algorithm, we need to define what we mean with a point being correctly clus-
tered. Let C? as in (3.6), i.e., the matrix returned from applying the k-means algorithm to Û .
Intuitively, a point Ûi ,· is correctly clustered if there is no other row of the population matrix
U defined in (3.4) that is closer to C?

i ,· than the i -th row. Using this intuition, we can provide a
meaningful definition of the set of correctly clustered point (Lemma C.2) and hence of its com-
plement set. The next theorem gives a nonasymptotic bound on the number of misclustered
points.

Theorem 3.1. Assume the graph has k components. Then the cardinality of the set of misclustered
points, denoted by |Σ|, satisfies

|Σ| ≤ ιk 1

mini ‖Ui ,·‖2
2

|||L̂−L|||2∞
λ2

k+1

≤ ιk Cmax

mini Di

|||L̂−L|||2∞
λ2

k+1

. (3.7)

for some constant ι > 0 and where Cmax = maxi
∑

i1∈Gi

∑
i2∈Gi

Wi1,i2 . If the conditions underlying
Theorem 2.1 hold, then |Σ| converges to zero in probability as T →∞.

This upper bound implies that the probability of misclustering is affected by various proper-
ties of the (data-induced) graph. Firstly, one can see it is an increasing function of the number of
clusters k. Secondly, it is a decreasing function of the minimum degree. In particular, the second
inequality implies that for an unbalanced graph as measured by the maximal sum of all entries of
any of the groups relative to the minimal degree mini Di the probability to miscluster has a less
tight upper bound. In other words, if the graph contains isolated vertices and or many points
that are highly concentrated, we can expect a higher probability to miscluster. Thirdly, it is a de-
creasing function of the distance between the zero eigenvalues and the first nonzero eigenvalue
λk+1. Finally, it is affected by how well L̂ estimates L.

Example (continued). For our example, the embedded points are shown in the left graph of
Figure 3.3. Applying k-means identifies all clusters exactly where the colors indicate the cluster
the respective data points belong to.

3.4 The choice of k

So far we have considered the case where the number of clusters k is known. In the remaining
part of this section we briefly discuss a data driven choice of k. This problem has received much
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attention within the clustering literature and a wide range of methods has been developed (see
Gordon, 1999; Theodoridis and Koutroumbas, 2008, for overviews) and compared (see Milligan
and Cooper, 1985; Tibshirani et al., 2001, and references therein). Most methods to pick k are
formulated in terms of optimizing a relative criteria. For different choices of k, the quality of the
clustering structure is evaluated according to some measure, such as the intra-cluster dispersion,
and the number of clusters chosen that optimizes this criteria.

There is however no universally optimal method because the definition of ‘optimal’ number
of clusters can highly depend on the application and on the method used to cluster to data. If the
data is well-separated and there are clear pronounced clusters then there are several successful
methods that will correctly detect the underlying clusters. However, in noisy datasets with over-
lapping of clusters, different methods will detect different number of clusters. In the case of
spectral clustering, an intuitive alternative would be to pick the number of clusters k such that
the first λ1, . . . ,λk eigenvalues of L̂ are small but λk+1 is ‘relatively’ large. This ‘eigengap’ heuristic
can be justified through spectral properties of the population graph Laplacian and Lemma 3.1. In
practice it is however also known to be very sensitive to the construction of the similarity graph
and can quickly fail unless the data is well separated. Deemed therefore an unsolvable prob-
lem, it is not uncommon to apply multiple criteria and pick the criteria that works best for the
particular problem at hand (see Charrad et al., 2014, for an implementation of various criteria).

A thorough development of a new method would be beyond the scope of this paper. In our
empirical study in 5 we investigate the performance of available methods to choose k for our
particular algorithm. Additionally, we consider two variations of the eigengap heuristic each
with a different interpretation of a “relatively large” eigengap.

4 Testing for equality

Besides from the application of the similarity measure as a basis for spectral clustering of func-
tional time series, a well-defined limiting distribution allows it to be meaningful in a variety of
statistical applications and in particular for the construction of hypothesis tests. The problem to
detect similarities or to compare time series is of interest in a wide range of scientific fields and
for classical time series a variety of methods have been proposed (see references in the intro-
duction and examples therein). In case of functional data, the literature is less well-developed.
Horvàth et al. (2013) proposed a procedure to test the hypothesis that two sets of functional data
are identical and independently distributed using the sum of L2-distances of the sequence of cor-
relation functions. Panaretos and Tavakoli (2016) instead proposed a test between two station-
ary functional time series based upon the Hilbert-Schmidt norm of the difference of the sample
spectral density operators, restricted to a Hilbert-Schmid space of finite dimension. Bootstrap-
based methods to test for equality of mean functions or covariance operators are proposed in
Paporoditis and Sapatinas (2016) and, more recently, Leucht et al. (2018) disucssed a test for the
equality of spectral density operators.

To our knowledge, no procedure is available that allows to test for similarity of functional
time series of which the second order structure is allowed to be time-dependent. In this section,
we develop such a test using the previously defined similarity measure Ai1,i2 in (2.3). For the sake
of brevity we restrict ourselves to the case of two functional series and consider the hypothesis

H0 : F (i1)
u,ω ≡F

(i2)
ω a.e. on [−π,π]× [0,1] (5.1)

versus
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Ha : F (i1)
u,ω 6=F

(i2)
ω on a subset of [−π,π]× [0,1] of positive Lebesgue measure (5.2)

The similarity measure in (2.3) lends itself quite naturally to test this hypothesis, i.e., we can
equivalently formulate the hypothesis as

H0 : Ai1,i2 = 0 versus Ha : Ai1,i2 > 0. (5.3)

By Theorem 2.1, the statistic Âi1,i2 defined in (2.7) is a consistent estimator of the normalized
distance Ai1,i2 . Therefore it is reasonable to reject the null hypothesis for large values of the
estimator Âi1,i2 . Using the set of reqularity conditions provided in Appendix B the following
result gives the asymptotic distribution of Âi1,i2 .

Theorem 4.1. Suppose that Assumption B.1 with m ≥ 1 and Assumption B.2 hold. Then,{p
T

(
Âi1,i2 −Ai1,i2

)}
{i1,i2∈[d ]}

→N (0,Γ) as T →∞,

where 0 ∈Rd and Γ is a positive definite element of Rd×d .

Under the null hypothesis, the asymptotic variance reduces to a very succinct form in case
the processes are moreover independent.

Theorem 4.2. Suppose that Assumption B.1 with m ≥ 1 and Assumption B.2 hold and suppose
{Xi1,t ,T } and {Xi2,t ,T } are independent. Then, under the null hypothesis H0 : F i1

u,ω ≡F
i2
u,ω, we have

p
T Âi1,i2 ∼N

(
0,σ2

H0

)
,

where the asymptotic variance is given by

σ2
H0

= 4π

∫ π
−π

∫ 1
0 |||F i1

u,ω|||42dudω(∫ π
−π

∫ 1
0 |||F i1

u,ω|||22dudω
)2 . (5.4)

Let I
u j ,ωk
p = (I

u j ,ωk

i1
+ I

u j ,ωk

i2
)/2 be the pooled periodogram operator evaluated at u j and ωk .

The asymptotic variance under the null can be estimated by

σ̂2
H0

= 2

3T

M∑
j=1

bN /2c∑
k=1

(〈I
u j ,ωk
p , I

u j ,ωk−1
p 〉HS

)2
/( 2

T

M∑
j=1

bN /2c∑
k=1

〈I
u j ,ωk
p , I

u j ,ωk−1
p 〉HS

)2
. (5.5)

Lemma 4.1. Under the conditions of Theorem 4.2, the estimator defined in (5.5) satisfies

σ̂2
H0

p→σ2
H0

as T →∞.

Consequently, a test for the hypotheses (5.1) and (5.2) can be based upon rejecting the null if

Âi1,i2 >
σ̂2

H0p
T

z1−α , (5.6)

where z1−α denotes the (1−α)-quantile of the standard normal distribution. The finite sample
performance of this test is studied in a simulation study which is provided at the end of Section 5.

Remark 4.1. We emphasize that Theorem 4.2 still holds in case the series are dependent but the
expression of the asymptotic variance is slightly more involved. It can however still be estimated
similar in spirit to (5.5). See Appendix B for more details.
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5 Simulation study

To study the performance in finite samples, we apply the algorithm to a mixture of stationary and
non-stationary models in a variety of settings. We vary the number of clusters k and the number
of observations per cluster n as well as the included models. The algorithm is moreover consid-
ered both in the case were the number of true clusters are known and when this is unknown. In
the latter case, we obtain an additional source of variability as the number of clusters needs to be
estimated from the data. Finally, we consider the effect on the simulations of applying a scaling
factor η to our similarity matrix. Before we discuss how to determine k, we start by introducing
the simulation setting and data-generating processes.

5.1 Simulation setting

We simulate functional autoregressive and functional moving average via their bais representa-
tion as follows. A p-th order (time varying) functional autoregressive process (tvFAR(p)), (X t , t ∈
Z) can be defined as

X t =
p∑

t ′=1
At ,t ′(X t−t ′)+εt , (4.1)

where At ,1, . . . , At ,p are time-varying autoregressive operators on L2([0,1]) and {εt (τ)}t∈Z is a se-
quence of mean zero innovations taking values in L2([0,1]). To generate such processes, let
{ψl }∞l=1 be a Fourier basis of L2([0,1]). By means of a basis expansion, one can show that (see
e.g., Aue and van Delft, 2017) the first Lmax coefficients of (4.1) are generated using the p-th
order vector autoregressive, VAR(p), process

X̃ t =
p∑

t ′=1
Ãt ,t ′ X̃ t−t ′ + ε̃t ,

where X̃ t := (〈X t ,ψ1〉, . . . ,〈X t ,ψLmax 〉
)> is the vector of basis coefficients and the (l , l ′)-th entry of

Ãt , j is given by 〈At , j (ψl ),ψl ′〉 and ε̃t := (〈εt ,ψ1〉, . . . ,〈εt ,ψLmax 〉
)T . The entries of the matrix Ãt , j

are generated as N
(
0,ν(t , j )

l ,l ′
)

with ν
(t , j )
l ,l ′ specified below. To ensure stationarity or existence of a

causal solution the norms κt , j of At , j are required to satisfy certain conditions (see Bosq (2000)
for stationary and van Delft and Eichler (2018) for local stationary time series, respectively). We
also consider the following time varying functional moving-average process or order 1:

X t ,T = B1(εt )− 1

2

(
1+b cos

(
2π

t

T

))
B2(εt−1) (4.2)

where B1 and B2 are bounded linear operators on L2([0,1]) and b ∈R. Similarly as above, we use
a basis expansion and generate data from the model

X̃ t ,T = B̃1ε̃t − 1

2

(
1+b cos

(
2π

t

T

))
B̃2ε̃t−1

where X̃ t ,T = (〈X t ,T ,ψ1〉, . . . ,〈X t ,T ,ψLmax 〉
)T is the vector of basis coefficients, the (l , l ′)-th entry

of B̃1 and B̃2 are given by 〈B1(ψl ),ψl ′〉 and 〈B2(ψl ),ψl ′〉 respectively and ε̃t is as above.
we consider the following data generating processes:

(I) The functional white noise variables ε1, . . . ,εT i.i.d. with coefficient variances Var(〈εt ,ψl 〉) =
exp(−(l −1)/10).
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(II) A FAR(2) variables X1, . . . , XT with operators specified by variances ν(1)
l ,l ′ = exp(−l − l ′) and

ν(2)
l ,l ′ = 1/(l + l ′3/2) with norms κ1 = 0.75 and κ2 =−0.4 and the innovations ε1, . . . ,εT are as

in (I).

(III) A MA(1) with b = 0 and operators specified by variances ν(1)
l ,l ′ = exp(−l − l ′).

(IV) A tvFAR(1) with operator specified by variances ν(t ,1)
l ,l ′ = ν(1)

l ,l ′ = exp(−l − l ′) and norm κ1 =
0.8, and innovations are as in (I) but with a multiplicative time-varying variance

σ2(t ) = cos
(1

2
+cos

(2πt

T

)+0.3sin
(2πt

T

))
.

(V) A tvFAR(2) with operators as in (IV), but with time-varying norm

κ1,t = 1.8cos

(
1.5−cos

(
4πt

T

))
and constant norm κ2 =−0.81 and innovations are as in (I).

(VI) A FAR(2) with structural break;

– for t ≤ 3T /8, the operators are as in (II) with norms κ1 = 0.7 and κ2 = 0.2, with inno-
vations as in (I).

– for t > 3T /8, the operators are as in (II) with norms κ1 = 0 and κ2 =−0.2, with inno-
vations as in (I) but with coefficient variances Var(〈εt ,ψl 〉) = 2exp((l −1)/10).

Our simulation consists of the following settings:

Setting 1: k = 3 with models I, II and III, where the replications per cluster are taken n = 10
and n = 30

Setting 2: k = 3 with models IV, V and VI, where the replications per cluster are taken n = 10
and n = 30

Setting 3: k = 6 with models I-VI, where the replications per cluster are taken n = 10 and
n = 30 and n = 50.

Per set-up, we run 500 simulations for both T = 256 wit M = 8 and T = 512 with M = 16.
For the choice of k we investigated a subset of well-known classical criteria that have been

demonstrated to work well in aforementioned comparison studies on classical clustering: the
Silhouette Index (Kaufman and Rousseeuw, 1990), the CH Index(Calinski and Harabasz, 1974),
the Hartigan Index (Hartigan, 1975) and the KL Index (Krzanowski and Lai, 1988). We respectively
refer to these in the tables as ‘sil’ ,‘ch’, ‘hartigan’ and ‘kl’. Because these cannot be applied to the
spectral embedding directly, the respective criteria were constructed using the similarity graph
Ŵ .

Additionally, we considered two variations of the eigengap heuristic each with a different
interpretation of ‘relatively large’ eigengap. Let 0 = λ̂1 ≤ . . . ≤ λ̂d be the estimated eigenvalues of
L̂ in ascending order

1. ‘Relgap’: define the relative contribution of the k-th eigenvalue as

ρk =
(
λ̂k − λ̂k−1

)
λ̂k

.
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Then the rule is to pick k? as the largest k for which the k-th contribution is still larger
than a threshold value that is allowed to depend on the scaling parameter η of the graph
(see (4.3) below).

k? = max
k

{
k ∈ {1, . . . ,kmax} : ρk ≤ 0.01η

}
2. ‘sd1gap’: let

σ(λ̂[−1:k]) =
1

d −k

d∑
j=k+1

(
λ̂ j − 1

d −k

d∑
j=k+1

λ̂ j
)2

be the squared deviation from the mean excluding the first k eigenvalues. Then the rule is
to pick k? as the largest k for which the k-th gap is still larger than σ(λ̂[−1:k]), i.e.,

k? = max
k

{
k ∈ {1, . . . ,kmax} : λ̂k+1 − λ̂k ≥σ(λ̂[−1:k])

}
For all criteria, the maximum numbers of clusters to consider was set to kmax = 15.

5.2 Simulation results

Table 1 provides the average k chosen according to the different criteria in each setting, while the
corresponding percentage of misclustered points averaged over simulations are given in Table 2.

From the first row for T = 256 and T = 512 of Table 2, we find that our algorithm does very well
if the true k is known as it has a very low percentage of misclustered points across the different
settings. Based upon the percentage of misclustered points, the most difficult model is clearly
setting 2 with T = 256. This finding is in accordance with the upper bound in (3.7), which is less
tight for larger k and lower estimation precision on L̂.

If the true k is not known we obtain higher percentages of misclustered points, where the
percentages appear to be directly caused by the way k was selected. As can be seen from Table 1,
the CH Index does best in determining the true number of clusters, while the KL index does worst
when the number of true clusters increases. Both the Silhouette Index and the Hartigan Index
tend to pick k more conservatively. The two rules based upon the estimated eigenvalues of the
graph Laplacian –‘Relgap’ and ‘sd1gap’– appear competitive with the CH index, except in setting
2 for n = 10. What is in particular clear is the overall improvement as both n and T increase. It
appears that in particular the eigenvalue-based methods suffer from more variation when n and
T are small. This is intuitive, since the choice of k directly depends upon the estimation precision
of the spectral properties, which can be expected to be more sensitive to estimation error for
small T and n (see also Theorem 3.1) . From the results in table Table 2, we find the CH index to
work best in combination with our algorithm. It is most stable across the different settings and
has the lowest percentage of misclustered points, which appears to be a direct consequence of
the fact that this index estimated the true number of clusters best and that our algorithm suffers
from low error conditionally upon knowing the correct number of clusters.

As explained in Section 2, we apply a local scaling to avoid sensitivity on a global scaling
parameter. To investigate the robustness with respect to scaling, we consider our clustering al-
gorithm as explained in Section 3 but with an additional scaling parameter η in the construction
of the adjacency matrix. That is, we consider the simulations but with

Ŵ = e−ηÂ ∈Rd×d . (4.3)

where η= {0.5,2.5,5,10}. The results in Table 2 correspond to the choice η= 1 and in Table 3 we
present the four alternative choices. Because of space constraints, we only report them for the
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Table 1: chosen k per method averaged over simulations (standard deviation in brackets)

Setting 1 Setting 2 Setting 3

method n = 10 n = 30 n = 10 n = 30 n = 10 n = 30 n = 50
T = 256

true k 3 3 3 3 6 6 6
sil 2 (0) 2 (0) 3 (0.1) 3 (0) 5.34 (0.8) 5.24 (0.5) 5.17 (0.4)
ch 3 (0.5) 2.96 (0.2) 3.05 (0.2) 3 (0) 6.37 (0.6) 6.08 (0.3) 6.03 (0.2)
kl 2.19 (1.4) 2.04 (0.7) 3.09 (1) 3.22 (1.4) 10.4 (3.1) 11.13 (3.5) 10.79 (3.6)
hart 3.04 (0.2) 3 (0) 3 (0) 3 (0) 4.86 (0.9) 4.87 (0.7) 4.87 (0.6)
Relgap 3.04 (0.2) 3 (0) 3.92 (1.1) 3.09 (0.3) 5.14 (0.4) 5.15 (0.4) 5.19 (0.4)
sd1gap 3.09 (0.3) 3.03 (0.2) 3.83 (1.2) 3.55 (1) 5.65 (0.9) 6.23 (0.7) 6.41 (0.9)

T = 512
true k 3 3 3 3 6 6 6
sil 2 (0) 2 (0) 3 (0) 3 (0) 5.92 (0.4) 5.95 (0.2) 5.98 (0.1)
ch 3.13 (0.4) 3 (0) 3 (0) 3 (0) 6.52 (0.7) 6.16 (0.4) 6.08 (0.3)
kl 2.44 (1.7) 2.18 (1) 3.05 (0.7) 3.43 (2.1) 9.87 (3.3) 10.45 (3.5) 9.47 (3.5)
hart 3 (0) 3 (0) 3 (0) 3 (0) 5.28 (0.7) 5.4 (0.6) 5.43 (0.5)
Relgap 3 (0) 3 (0) 3.57 (0.8) 3.03 (0.2) 5.53 (0.6) 5.88 (0.3) 5.99 (0.1)
sd1gap 3.09 (0.4) 3.01 (0.1) 3.92 (1.2) 3.4 (0.8) 6.38 (0.9) 6.3 (0.6) 6.2 (0.5)

Table 2: percentage of misclustered points of the spectral clustering algorithm averaged over sim-
ulations (standard deviation in brackets

Setting 1 Setting 2 Setting 3

method n = 10 n = 30 n = 10 n = 30 n = 10 n = 30 n = 50
T = 256

true 0.11 (0.6) 0.05 (0.2) 0.01 (0.1) 0 (0) 3.22 (6.6) 0.3 (1.1) 0.13 (0.2)
sil 33.33 (0) 33.33 (0) 0.03 (0.4) 0 (0) 13.16 (10.2) 12.97 (8.2) 13.87 (6.9)
ch 4.65 (10.4) 1.41 (6.6) 0.49 (2.6) 0 (0) 5.11 (6.8) 0.82 (2.2) 0.31 (1.1)
kl 33.3 (6.4) 33.48 (2.4) 0.55 (6) 1.45 (9.4) 25.6 (14.7) 25.93 (15.6) 22.59 (14.4)
hart 0.61 (2.6) 0.05 (0.2) 0.01 (0.1) 0 (0) 19.76 (14.6) 18.93 (12.5) 19.02 (10.7)
Relgap 0.57 (2.4) 0.05 (0.2) 10.78 (11.9) 1.27 (4.2) 15.75 (5.6) 14.49 (6.3) 13.68 (6.7)
sd1gap 1.33 (4) 0.46 (2.3) 9.11 (12.5) 6.55 (10.9) 12.33 (7.5) 3.02 (5.5) 2.79 (5.2)

T = 512
true 0 (0) 0 (0) 0 (0) 0 (0) 0.23 (1.7) 0.01 (0.1) 0 (0)
sil 33.33 (0) 33.33 (0) 0.03 (0.4) 0 (0) 2.68 (5.8) 0.77 (3.5) 0.37 (2.4)
ch 1.67 (4.6) 0 (0) 0.44 (2.1) 0 (0) 3.42 (4.4) 1.14 (2.6) 0.61 (2)
kl 27.97 (14.5) 30.63 (10.2) 1.68 (10.3) 2.59 (12.5) 20.93 (16.8) 21.37 (16.3) 15.56 (14.4)
hart 0 (0) 0 (0) 0 (0) 0 (0) 12.25 (12.1) 9.98 (9.4) 9.57 (8.7)
Relgap 0.02 (0.4) 0 (0) 6.92 (9.7) 0.39 (2.2) 8.73 (8.4) 2 (5.4) 0.17 (1.7)
sd1gap 1.13 (4.4) 0.14 (1.4) 10.16 (12.6) 4.99 (9.7) 4.15 (6) 1.92 (3.9) 1.42 (3.4)

specification T = 512 and n = 30. The results for the other cases show a very similar picture and
are available upon request. It can be observed from the first row for each of the settings that the
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outcomes are fairly similar when k is known. Variation again therefore seems mostly caused by
the way k is chosen, where we find the Silhouette index is sensitive as well as the KL index, but
also the eigengap heuristics show some sensitivity for η= 10. Overall, we may conclude that our
method seems capable to detect the correct number of clusters, despite the highly complicated
nature of the data. The numerical study moreover suggests that the CH index should be used to
find the numbers of clusters if these are unknown.

Table 3: Percentage of misclustered points and specified k for various values of η averaged over
simulations (standard deviation in brackets) for T = 512, n = 30

meth. % of misclustered points average chosen k
η= 0.5 η= 2.5 η= 5 η= 10 η= 0.5 η= 2.5 η= 5 η= 10

Setting 1: T = 512,n = 30
true 0(0) 0(0) 0(0) 0(0) 3(0) 3(0) 3(0) 3(0)
sil 33.33(0) 33.33(0) 2.13(8.2) 0(0) 2(0) 2(0) 2(0) 2.94(0.2)
ch 0.03(0.6) 0(0) 0(0) 0(0) 3(0) 3(0) 3(0) 3(0)
kl 33.02(5.1) 2.8(9.3) 0(0) 0.27(4.3) 2.08(0.9) 2.18(1) 2.92(0.3) 3(0)
hart 0(0) 0(0) 0(0) 0(0) 3(0) 3(0) 3(0) 3(0)
Relgap 0(0) 0.02(0.5) 0.02(0.5) 0.03(0.5) 3(0) 3(0) 3(0) 3(0)
sd1gap 0.05(0.8) 0.88(3.5) 1.08(3.9) 0.6(2.7) 3(0.1) 3.01(0.1) 3.07(0.3) 3.09(0.3)

Setting 2: T = 512,n = 30
true 0(0) 0(0) 0(0) 0(0) 3(0) 3(0) 3(0) 3(0)
sil 0(0) 0(0) 0(0) 0(0) 3(0) 3(0) 3(0) 3(0)
ch 0(0) 0(0) 0(0) 0(0) 3(0) 3(0) 3(0) 3(0)
kl 0.35(4.6) 2.44(11.2) 1.58(9.4) 0.36(4.6) 3.05(0.7) 3.43(2.1) 3.43(2) 3.29(1.7)
hart 0(0) 0(0) 0(0) 0(0) 3(0) 3(0) 3(0) 3(0)
Relgap 0.1(1.2) 2.28(5.8) 6.66(9.3) 7.14(8.5) 3.01(0.1) 3.03(0.2) 3.18(0.5) 3.59(0.9)
sd1gap 4.75(9.5) 5.48(9.7) 4.58(8.7) 2.89(5.9) 3.38(0.8) 3.4(0.8) 3.45(0.9) 3.42(0.8)

Setting 3: T = 512,n = 30
true 0.01(0.1) 0(0) 0.04(0.9) 0.06(0.9) 6(0) 6(0) 6(0) 6(0)
sil 1.03(3.9) 0.03(0.7) 0.04(0.9) 0.06(0.9) 5.95(0.2) 5.95(0.2) 6(0) 6(0)
ch 1.65(3.2) 0.29(1.4) 0.04(0.9) 0.06(0.9) 6.23(0.5) 6.16(0.4) 6.04(0.2) 6(0)
kl 22.72(16.4) 13.94(15.5) 7.4(12.2) 4.56(10.5) 10.54(3.4) 10.45(3.5) 9.2(3.6) 7.84(3.1)
hart 11.48(8) 7.17(13.5) 0.04(0.9) 0.06(0.9) 5.31(0.5) 5.4(0.6) 5.57(0.8) 6(0)
Relgap 7.17(8.3) 0.57(2.2) 3.18(3.9) 3.93(4.4) 5.57(0.5) 5.88(0.3) 6.06(0.3) 6.57(0.8)
sd1gap 1.39(3.4) 4.5(5.1) 6.02(5.6) 4.18(5.1) 6.21(0.5) 6.3(0.6) 6.77(1) 7.2(1.3)

5.3 Testing for equality

We conclude this section with a small investigation of the proposed asymptotic α-level test in
(5.6) for the hypothesis of equality of (possibly) time-varying spectral density operators. To in-
vestigate the finite samples properties of the test, we performed a simulation study which in-
cludes the previously defined stationary models I and II and nonstationary models V and VI with
parameter specification T = 512 and M = 16. The pairwise rejection probabilities at the 5% and
10% over 1000 replications are provided in Table 4, where the diagonal elements correspond to
the null hypothesis. We observe a good approximation of the nominal level with model II a bit
undersized. The off-diagonal shows good power overall, with model II and model I appearing to
be more difficult to distinguish than the other choices. Regardless of the second-order proper-
ties being time-varying or not, it appears therefore that the quantiles of the normal distribution
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are well-captured for the various models if H0 is true, while good power is observed under HA .

I II V VI
I 10.8 96.6 100.0 100.0

II 96.6 8.0 99.9 100.0
V 100.0 99.9 9.8 100.0

VI 100.0 100.0 100.0 10.0

I II V VI
I 5.4 93.1 100.0 100.0

II 93.1 3.2 99.7 100.0
V 100.0 99.7 3.6 100.0

VI 100.0 100.0 100.0 4.7

Table 4: Rejection probabilities of the pairwise equality test (5.6) at the 10% (left); and 5% level.

6 Data Application

We illustrate our clustering algorithm by means of an application to high resolution infrared sur-
face temperature measurements recorded during the years 2015-2018 in the conterminous U.S.,
Alaska and Hawaii. The exact locations of the 126 included stations in our study are depicted in
Figure 6.1.
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Figure 6.1: Measurement stations projected upon the map of North America acording to their longitude
(long) and latitude (lat) coordinates.

.

The measurements are part of a quality controlled dataset (Diamond et al., 2013) monitored
within the United States Climate Reference Network (USCRN). These are publicly available on
the website of the NOAA U.S. government agency.
Understanding the characteristics of land surface temperature is of interest in various appli-
cations as it influences for example surface energy balance and various soil hydrologic pro-
cesses. Our goal is to investigate whether we can identify spatial or geographical patterns in
terms of variation in the surface temperature. Variation in surface temperature can be expected
to be influenced by numerous factors such as wind, elevation, proximity of major water bod-
ies or yet land cover types. For each location i = 1, . . . ,126, we have of a sample of observations
{Xi ,t (τ1), . . . , Xi ,t (τmax)}t=1,...,1288, where Xi ,t represents the sampled temperature curve on day t
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for location i . The first measurement day t = 1 corresponds to February 28 2015 and the last
measurement day t = T = 1288 corresponds to September 7 2018. The recordings were made
at a 5 minute time-interval leading to a maximum of 288 observations per day. We remark that
the measurement stations included have at most 10% of missing observations per day over the
measurement period. The gridded observations were transformed into functional objects using
21 Fourier basis functions, rescaled to the unit interval, i.e., τ1 corresponds to local time 0.00am
and τ288 = τmax to local time 23.55pm. A few sets of realized curves are depicted in Figure 6.2.

(a) Lincoln, Nebraska (b) Selma, Alabama (c) St. Paul, Alaska

Figure 6.2: Daily surface temperature curves (solid) fitted to the observations (dotted) for the period 28-Feb.
2015-07 Sept. 2018.

It can be observed there is more between-curves variation for Lincoln, Nebraska while there
is more within-curve variation for Selma, Alabama. For St. Paul, the more visible variety in colors
indicate a stronger variation over longer periods of time. To cluster the locations, we factorize
the 1288 daily curves into M = 14 complete seasons, each of length N = 92. We applied our al-
gorithm described in Section 3. For the choice of k, we looked at the various criteria discussed
in the previous section. These indicated 2 to 4 clusters, with the majority picking 3 clusters. To
choose the number of clusters, we used the index that performed best in the simulation study,
which was the CH index and which indicates 3 clusters. The results of clustering the locations
in 3 clusters by means of our algorithm are given in Figure 6.3. The figure seems to indicate
the seasonal variation for two clusters is related to two prevailing wind patterns; those in red to
the westerlies wind, while those in green to northeasterly trade wind. We moreover observe a
separate cluster consisting of mainly locations on the coast in a bay area, island or on a penin-
sula. In particular, these locations correspond to areas known to be more affected by different
atmospheric pressures which are responsible for forming cyclones and that can vary with the
El Niño-Southern Oscillations cycle. It is worth remarking that a similar pattern was observed
when different time periods were considered.
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Figure 6.3: Measurement stations clustered according to variation in surface temperature
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Appendix A Background material and auxiliary results

Let H i for each i = 1, . . . ,n be a Hilbert space with inner product 〈·, ·〉. The tensor of these is
denoted by

H :=H1 ⊗ . . .⊗Hn =
n⊗

i=1
H i

If H i = H ∀i , then this is the n-th fold tensor product of H . For Ai ∈ Hi ,1 ≤ i ≤ n the ob-
ject

⊗n
i=1 Ai is a multi-antilinear functional that generates a linear manifold, the usual algebraic

tensor product of vector spaces H i , to which the scalar product

〈
n⊗

i=1
Ai ,

n⊗
i=1

Bi 〉 =
n∏

i=1
〈Ai ,Bi 〉

can be extended to a pre-Hilbert space. The completion of the above algebraic tensor product is⊗n
i=1 H i .

For A,B ,C ∈ L (H ) we define the following bounded linear mappings. The kronecker product
is defined as (A

⊗̃
B)C = AC B †, while the transpose Kronecker product is given by (A

⊗̃
>B)C =

(A
⊗̃

B)C
†
. For A,B ,C ∈ S2(H ), we shall denote, in analogy to elements a,b ∈ H , the Hilbert

tensor product as A
⊗

B . We list the following useful properties:

Properties A.1. Let H i = L2
C

([0,1]k ) for i = 1, . . . ,n. Then for ai ,bi ∈ H i and Ai ,Bi ∈ S2(H i ), we
have

1. 〈A,B〉HS = Tr(AB †)
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2. 〈⊗n
i=1 Ai ,

⊗n
i=1 Bi 〉HS =∏n

i=1〈Ai ,Bi 〉HS

3. 〈a1 ⊗a2,b1 ⊗b2〉HS = 〈a1 ⊗a2,b1 ⊗b2〉H i⊗H i = 〈a1,b1〉〈a2,b2〉
4. If Ai ∈ S1(H), then

∏n
i=1 Tr(Ai ) = Tr(

⊗̃n
i=1 Ai )

5.
(
(a1 ⊗a2)

⊗
(a3 ⊗a4)

)= (
(a1 ⊗a3)

⊗̃
(a2 ⊗a4)

)= (
(a1 ⊗a4)

⊗̃
>a2 ⊗a3)

)
Let X be a random element on a probability space (Ω,A ,P) that takes values in a separable

Hilbert space H . More precisely, we endow H with the topology induced by the norm on H and
assume that X :Ω→ H is Borel-measurable. The k-th order cumulant tensor is defined by (van
Delft and Eichler, 2018)

Cum
(
X1, . . . , Xk

)= ∑
l1,...lk∈N

Cum
(〈X1,ψl1〉, . . . ,〈Xk ,ψlk 〉

)
(ψl1 ⊗·· ·⊗ψlk ), (6.2)

where {ψl }l∈N is an orthonormal basis of H and the cumulants on the right hand side are as usual
given by

Cum
(〈X1,ψl1〉, . . . ,〈Xk ,ψlk 〉

)= ∑
ν=(ν1,...,νp )

(−1)p−1 (p −1)!
p∏

r=1
E
[ ∏

t∈νr

〈X t ,ψlt 〉
]

,

where the summation extends over all unordered partitions ν of {1, . . . ,k}. The product theorem
for cumulants (Brillinger, 1981, Theorem 2.3.2) can then be generalised (see e.g. van Delft and
Eichler, 2018) to simple tensors of random elements of H , i.e., X t =⊗Jt

j=1X t j with j = 1, . . . , Jt and
t = 1, . . . ,k. The joint cumulant tensor is then be given by

Cum(X1, . . . , Xk ) = ∑
ν=(ν1,...,νp )

Sν
(
⊗p

n=1 Cum
(
X t j |(t , j ) ∈ νn

))
, (6.3)

where Sν is the permutation that maps the components of the tensor back into the original order,
that is, Sν(⊗p

r=1 ⊗(t , j )∈νr X t j ) = X11 ⊗·· ·⊗Xk Jt .

Appendix B Distributional properties of the similarity measure

In order to derive the distributional properties of Âi1,i2 defined in (2.7), we require the following
assumptions on the functional processes { Xi ,t ,T : t ∈Z}T∈N, i = 1, . . . ,d

Assumption B.1. Assume { Xi ,t ,T : t ∈ Z}T∈N are d locally stationary zero-mean stochastic pro-

cesses taking values in HR and let κm;t1,...,tm−1 : L2([0,1]bm/2c) → L2([0,1]b
m+1

2 c) be a positive oper-
ator independent of T such that, for all j = 1, . . . ,m −1 and some ` ∈N,∑

t1,...,tk−1∈Z
(1+|t j |`)|||κm;t1,...,tm−1 |||1 <∞. (6.4)

Let us denote

Y (T )
i ,t = Xi ,t ,T −X (t/T )

i ,t and Y (u,v)
i ,t =

X (u)
i ,t −X (v)

i ,t

(u − v)
(6.5)

for T ≥ 1, 1 ≤ t ≤ T and u, v ∈ [0,1] such that u 6= v . Suppose furthermore that m-th order joint
cumulants satisfy

(i) ‖Cum(Xi1,t1,T , . . . , Xim−1,tm−1,T ,Y (T )
im ,tm

)‖2 ≤ 1
T |||κm;t1−tm ,...,tm−1−tm |||1,
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(ii) ‖Cum(X (u1)
i1,t1

, . . . , X (um−1)
im−1,tm−1

,Y (um ,v)
im ,tm

)‖2 ≤|||κm;t1−tm ,...,tm−1−tm |||1,

(iii) supu ‖Cum(X (u)
i1,t1

, . . . , X (u)
im−1,tm−1

, X (u)
im ,tm

)‖2 ≤|||κm;t1−tm ,...,tm−1−tm |||1,

(iv) supu ‖ ∂`

∂u` Cum(X (u)
i1,t1

, . . . , X (u)
im−1,tm−1

, X (u)
im ,tm

)‖2 ≤|||κm;t1−tm ,...,tm−1−tm |||1,

We remark that if the process is in fact stationary, the dependence on localized time u drops.
As explained in Section 2, the estimator requires splitting the sample T ∈ N as T = N (T )M(T ),
where N (T ) defines the resolution in frequency of the local fDFT and M(T ) controls the number
of nonoverlapping local fDFT’s in (2.6). Since they correspond to the number of terms used in a
Riemann sum approximating the integrals with respect to du and dω they have to be sufficiently
large. We assume

Assumption B.2. M →∞, N →∞ as T →∞, such that

N /M →∞ and N /M 3 → 0

The number of elements in the blocks grows therefore must grow faster than the number
of blocks, but slower than the cube number of blocks. The choice of the number of blocks is
carefully discussed in van Delft et al. (2018), who used the integrated periodogram operators as
a basis for a stationarity test.

In order to derive the results in Section 4, we require four auxiliary results, which can be
proved using similar arguments as given in van Delft et al. (2018) and the proofs are therefore
omitted. The first one expresses the cumulants of Hilbert-Schmidt inner products of local peri-
odogram tensors, into the trace of cumulants of simple tensors of the local functional DFT’s.

Theorem B.1. Let E
∏2n

il∈{1,...,d}|||I u,ω
il

|||2 <∞ for some n ∈N and uniformly in u andω. Then for any
i1, . . . , i2n ∈ {1, . . . ,d}.

Cum
(
〈I

u j1 ,ωk1
i1

, I
u j2 ,ωk2
i2

〉HS , . . . ,〈I
u j2n−1 ,ωk2n−1

i2n−1
, I

u j2n ,ωk2n

i2n
〉HS

)
= Tr

( ∑
P=P1∪...∪PG

SP

(
⊗G

g=1 cum
(
D

u jp ,ωkp

ip
|p ∈ Pg

))
.

where the summation is over all indecomposable partitions P = P1 ∪ . . .∪PG of the array

(1,1) (1,2) (1,3) (1,4)
(2,1) (2,2) (2,3) (2,4)

...
...

...
...

(n,1) (n,2) (n,3) (n,4)

(6.6)

where p = (l ,m) and ip = i2l−δ{m∈{1,2}}, kp = (−1)mk2l−δ{m∈{1,2}} and jp = j2l−δ{m∈{1,2}} for l ∈
{1, . . . ,n} and m ∈ {1,2,3,4} and where δ{A} equals 1 if event A occurs and 0 otherwise.

We additionally require auxiliary results on the properties of the local fDFTs.

Lemma B.1. Suppose Assumption B.1 is satisfied k moments and
∑k

j=1ω j ≡ 0 mod 2π then

∣∣∣∣∣∣∣∣∣Cum
(
D

u j ,ω1

i , . . . ,D
u j ,ωk

i

)
− (2π)1−k/2

N k/2−1
Fui ,ω1,...,ωk−1

∣∣∣∣∣∣∣∣∣
1
=O

(
N−k/2 × N

M 2

)
.
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additionally, for |i1| = |i2| = k/2, we have∣∣∣∣∣∣∣∣∣Cum
(
D

u j ,ω1

i , . . . ,D
u j ,ωk

i

)
− (2π)1−k/2

N k/2−1
F

i1,i2
ui ,ω1,...,ωk−1

∣∣∣∣∣∣∣∣∣
1
=O

(
N−k/2 × N

M 2

)
.

where F
i1,i2
ui ,ω1,...,ωk−1

denotes the cross spectral density operator of series i1 and i2 of order k at time
ui .

When evaluated off the manifold, i.e.,
∑k

j=1ω j 6= 0 mod 2π, the above cumulant is of lower
order (see Corollary B.1). A direct consequence of the proof of Lemma B.1 is the following corol-
lary

Corollary B.1. For i1, . . . , ik ∈ {1, . . . ,d} We have for any p ≥ 1∣∣∣∣∣∣∣∣∣Cum
(
Du1,ω1

i1
, . . . ,Duk ,ωk

ik

)∣∣∣∣∣∣∣∣∣
p
=O

(
N 1−k/2

)
(6.7)

uniformly in ω1, . . . ,ωk and u1, . . . ,uk . Moreover, if
∑k

j=1ω j 6= 0 mod 2π then∣∣∣∣∣∣∣∣∣Cum
(
Du1,ω1

i1
, . . . ,Duk ,ωk

ik

)∣∣∣∣∣∣∣∣∣
p
=O

(
N−k/2

)
. (6.8)

Additionally, when the local fDFT’s are evaluated on different midpoints then we have the
following lemma.

Lemma B.2. If Assumption B.1 is satisfied and | j1 − j2| > 1 for some midpoints u j1 and u j2 then∣∣∣∣∣∣∣∣∣Cum
(
Du1,ω1

i1
, . . . ,Duk ,ωk

ik

)∣∣∣∣∣∣∣∣∣
1
=O

(
N−k/2M−1

)
uniformly in ω1, . . . ,ωk .

In the following, for random variables Y0,Y1,Y2,Y3 let cumm0,m1,m2,m3 (Y0,Y1,Y2,Y3) denote
the joint cumulant

cum(Y0, . . . ,Y0︸ ︷︷ ︸
m0 times

,Y1, . . . ,Y1︸ ︷︷ ︸
m1 times

,Y2, . . . ,Y2︸ ︷︷ ︸
m2 times

,Y3, . . . ,Y3︸ ︷︷ ︸
m3 times

),

where 0 ≤ mi ≤ m, i = 0,1,2,3 s.t.
∑3

i=0 mi = m. Using the previous statements, we can derive the
order of the higher order joint cumulants of elements defined in (2.6).

Theorem B.2. If Assumption B.1 is satisfied then for finite m

T m/2 cumm0,m1,m2,m3 (F̂i1,i2 , F̂i3,i4 , F̂i5,i6 , F̂i7,i8 )

1

T m/2

bN /2c∑
k1,...,km=1

M∑
j1,..., jm=1

Tr
( ∑

P=P1∪...∪PG

SP

(
⊗G

g=1 cum
(
D

u jp ,ωkp

ip
|p ∈ Pg

))
=O(T 1−m/2).

uniformly in 0 ≤ mi ≤ m s.t.
∑3

i=0 mi = m.

Proof of Theorem B.2. For a fixed partition P = {P1, . . . ,PG }, let the cardinality of set Pg be de-
noted by |Pg | = Cg . By (6.7) of Corollary B.1 and Lemma B.2 an upperbound of (6.6) is given
by

O
(
T −m/2

bN /2c∑
k1,...,km=1

M∑
j1,..., jm=1

G∏
g=1

1

NCg /2−1
M−δ{∃p1,p2∈Pg :| jp1 − jp2 |>1}

)
(6.9)
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Similar to Lemma 4.3 of van Delft et al. (2018), we can show inductively that the indecompos-
ability of the array (6.6) and the behavior of the joint cumulants of the local fDFT’s at different
midpoints imply this is at most of order

O(N m/2M−m/2E m M N−2m+G ) =O(T 1−m/2NG−m−1).

Thus, partitions of size G ≤ m + 1 will vanish as T → ∞. For G ≥ m + 2, indecomposability of
the array requires to stay on the frequency manifold (see equation (6.8) of Corollary B.1) and
therefore imposes additional restrictions in frequency direction. It can be shown (van Delft et
al., 2018, Proposition 4.1) that for a partition of size G = m + r1 +1 with r1 ≥ 1 of the array (6.6)
only partitions with at least r1 restrictions in frequency direction are indecomposable if m > 2,
while if m = 2 there must be at least 1 restriction in frequency direction. Consequently, the joint
cumulant is at most of order O(T 1−n/2N m+r1+1−m−1N−r1 ) =O(T 1−n/2).

Proof of Theorem 2.1. Using Theorem B.1 with n = 1 implies

EFi1,i2 =
1

T

bN /2c∑
k=1

M∑
j=1

Tr
(
E
[
D

u j1 ,ωk1
i1

⊗D
u j1 ,−ωk1
i1

⊗D
u j1 ,−ωk1−1

i2
⊗D

u j1 ,ωk1−1

i2

])
.

Rewriting this expectation in cumulant tensors, we get

EFi1,i2 =
1

T

bN /2c∑
k=1

M∑
j=1

Tr
(
S1234Cum

(
(D

u j1 ,ωk1
i1

,D
u j1 ,−ωk1
i1

,D
u j1 ,−ωk1−1

i2
,D

u j1 ,ωk1−1

i2
)
)

+ 1

T

bN /2c∑
k=1

M∑
j=1

Tr

(
S1234

(
Cum(D

u j1 ,ωk1
i1

,D
u j1 ,−ωk1
i1

)⊗Cum(D
u j1 ,−ωk1−1

i2
,D

u j1 ,ωk1−1

i2
)
))

+ 1

T

bN /2c∑
k=1

M∑
j=1

Tr

(
S1324

(
Cum(D

u j1 ,ωk1
i1

,D
u j1 ,−ωk1−1

i2
)⊗Cum(D

u j1 ,−ωk1
i1

,D
u j1 ,ωk1−1

i2
)
))

+ 1

T

bN /2c∑
k=1

M∑
j=1

Tr

(
S1423

(
Cum(D

u j1 ,ωk1
i1

,D
u j1 ,ωk1−1

i2
)⊗Cum(D

u j1 ,−ωk1
i1

,D
u j1 ,−ωk1−1

i2
)
))

By Corollary B.1 andLemma B.1 we thus find

EFi1,i2 =
1

T

bN /2c∑
k=1

M∑
j=1

〈F i1
u j ,ωk

,F i2
u j ,ωk−1

〉HS +O(
1

M 2 )+O(
1

N
).

Hence,

lim
N ,M→∞

EFi1,i2 =
1

2π

∫ π

0

∫ 1

0
〈F i1

u,ω,F i2
u,ω〉HSdudω= 1

4π

∫ π

−π

∫ 1

0
〈F i1

u,ω,F i2
u,ω〉HSdudω.

Secondly, we have for any i1, i2, i3, i4 ∈ {1, . . . ,d}

T Cov(Fi1,i2 ,Fi3,i4 ) = T Cum
(
Fi1,i2 ,Fi3,i4

)
Hence, if Assumption B.1 is satisfied with m = 8, Theorem B.2 implies this term is of order O(1).
summarizing, we find Fi1,i1 ,Fi2,i2 ,Fi1,i2 and Fi2,i1 are asymptotically unbiased and jointly con-
vergence in probability. The continuous mapping theorem establishes then that Âi1,i2 is a

p
T -

consistent estimator of Ai1,i2 for any i1, i2,∈ {1 . . . ,d}.
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Proof of Theorem 4.1. If Assumption B.1 holds for all moments, then Theorem B.2, yields that
for m > 2

T m/2 cumm0,m1,m2,m3 (Fi1,i2 ,Fi3,i4 ,Fi5,i6 ,Fi7,i8 ) → 0 as T →∞,

from which asymptotic joint normality of Fi1,i2 ,Fi3,i4 ,Fi5,i6 ,Fi7,i8 follows, i.e., we have

p
T


4πFi1,i1 −E(Fi1,i1 )
4πFi2,i2 −E(Fi2,i2 )
4πFi1,i2 −E(Fi1,i2 )
4πFi2,i1 −E(Fi1,i1 )

−→N (0,Σ),

where

Σ=


Var(Fi1,i1 ) Cov(Fi1,i1 ,Fi2,i2 ) Cov(Fi1,i1 ,Fi1,i2 ) Cov(Fi1,i1 ,Fi2,i1 )

Cov(Fi1,i1 ,Fi2,i2 ) Var(Fi2,i2 ) Cov(Fi2,i2 ,Fi1,i2 ) Cov(Fi2,i2 ,Fi2,i1 )
Cov(Fi1,i1 ,Fi1,i2 ) Cov(Fi2,i2 ,Fi1,i2 ) Var(Fi1,i2 ) Cov(Fi1,i2 ,Fi2,i1 )
Cov(Fi1,i1 ,Fi2,i1 ) Cov(Fi2,i2 ,Fi2,i1 ) Cov(Fi1,i2 ,Fi2,i1 ) Var(Fi2,i1 )

 . (6.10)

To derive from this the distribution of Âi1,i2 , consider the function g :R4 →R

g (x1, x2, x3, x4) = 1− x3

(x1 +x2)
− x4

(x1 +x2)

of which the gradient is given by

∇g>(x) =


x3(x1 +x2)−2 +x4(x1 +x2)−2

x3(x1 +x2)−2 +x4(x1 +x2)−2

−(x1 +x2)−1

−(x1 +x2)−1

= 1

(x1 +x2)


x3+x4

(x1+x2)
x3+x4

(x1+x2)
−1
−1

 .

Then since we can write

Âi1,i2 = g
(
Fi1,i1 ,Fi2,i2 ,Fi1,i2 ,Fi2,i1

)= 1− Fi1,i2

(Fi1,i1 +Fi2,i2 )
− Fi2,i1

(Fi1,i1 +Fi2,i2 )
,

the Delta method implies, that as T →∞,{p
T

(
Âi1,i2 −Ai1,i2

)}
{i1,i2∈[d ]}

→N
(
0,∇g>(x)Σ∇g (x)

)
, (6.11)

where for fixed i1, i2 ∈ {1, . . . ,d},

x =


x1

x2

x3

x4

=


1

4π

∫ π
−π

∫ 1
0 〈F i1

u,ω,F i1
u,ω〉HSdudω

1
4π

∫ π
−π

∫ 1
0 〈F i2

u,ω,F i2
u,ω〉HSdudω

1
4π

∫ π
−π

∫ 1
0 〈F i1

u,ω,F i2
u,ω〉HSdudω

1
4π

∫ π
−π

∫ 1
0 〈F i2

u,ω,F i1
u,ω〉HSdudω,

 (6.12)

and Σ is defined in (6.10). Next, consider the covariance structure. We have,

T Cov(Fi1,i2 ,Fi3,i4 ) = T Cum

(
1

T

bN /2c∑
k1=1

M∑
j1=1

〈I
u j1 ,ωk1
i1

, I
u j1 ,ωk1−1

i2
〉HS ,

1

T

bN /2c∑
k2=1

M∑
j2=1

〈I
u j2 ,ωk2
i3

, I
u j2 ,ωk2−1

i4
〉

HS

)

By Theorem B.2, this satisfies

T Cov(Fi1,i2 ,Fi3,i4 ) = 1

T

bN /2c∑
k1,k2=1

M∑
j1, j2=1

Cum
(

Tr
(
D

u j1 ,ωk1
i1

⊗D
u j1 ,−ωk1
i1

⊗D
u j1 ,−ωk1−1

i2
⊗D

u j1 ,ωk1−1

i2
)
)
,
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Tr
(
D

u j2 ,−ωk2
i3

⊗D
u j2 ,ωk2
i3

⊗D
u j2 ,ωk2−1

i4
⊗D

u j2 ,−ωk2−1

i4

))
= 1

T

bN /2c∑
k1,k2=1

M∑
j1, j2=1

Tr
( ∑

P=P1∪...∪PG

SP

(
⊗G

g=1 cum
(
D

u jp ,ωkp

ip
|p ∈ Pg

))
where p = (l ,m) with kp = (−1)l−mkl −δ{m∈{3,4}}, jp = jl and ip = i2l−δ{m∈{1,2}} for l ∈ {1,2} and
m ∈ {1,2,3,4}. In particular, we are interested in all indecomposable partitions of the array where
the summation is overall indecomposable partitions of the array

D
u j1 ,ωk1
i1︸ ︷︷ ︸

1

D
u j1 ,−ωk1
i1︸ ︷︷ ︸

2

D
u j1 ,−ωk1−1

i2︸ ︷︷ ︸
3

D
u j1 ,ωk1−1

i2︸ ︷︷ ︸
4

D
u j2 ,−ωk2
i3︸ ︷︷ ︸

5

D
u j2 ,ωk2
i3︸ ︷︷ ︸

6

D
u j2 ,ωk2−1

i4︸ ︷︷ ︸
7

D
u j2 ,−ωk2−1

i4︸ ︷︷ ︸
8

The significant partitions of the form Cum4Cum2Cum2 are

Tr
(
S(1256)(34)(78)

(
δ j1, j2

[
(

2π

N
F

i1,i3
u j1 ,ωk1 ,−ωk1 ,−ωk2

+E4)⊗ (F i2
u j1 ,−ωk1−1

+E2)⊗ (F i4
u j2 ,ωk2−1

+E2)

]))
Tr

(
S(1278)(34)(56)

(
δ j1, j2

[
(

2π

N
F

i1,i4
u j1 ,ωk1 ,−ωk1 ,ωk2−1

+E4)⊗ (F i2
u j1 ,−ωk1−1

+E2)⊗ (F i3
u j2 ,−ωk2

+E2)

]))
Tr

(
S(3456)(12)(78)

(
δ j1, j2

[
(

2π

N
F

i2,i3
u j1 ,−ωk1−1,ωk1−1,−ωk2

+E4)⊗ (F i1
u j1 ,ωk1

+E2)⊗ (F i4
u j2 ,ωk2−1

+E2)

]))
Tr

(
S(3478)(12)(56)

(
δ j1, j2

[
(

2π

N
F

i2,i4
u j1 ,−ωk1−1,ωk1−1,ωk2−1

+E4)⊗ (F i1
u j1 ,ωk1

+E2)⊗ (F i3
u j2 ,−ωk2

+E2

]))
.

The significant partitions of the form Cum2Cum2Cum2Cum2 are

Tr
(
S(12)(37)(56)(48)

(
δ j1, j2δk1,k2

[
F

i1
u j1 ,ωk1

⊗F
i2,i4
u j1 ,−ωk1−1

⊗F
i3
u j2 ,−ωk2

⊗F
i2,i4
u j1 ,ωk1−1

+E2
])

Tr
(
S(12)(36)(78)(45)

(
δ j1, j2δk1−1,k2

[
F

i1
u j1 ,ωk1

⊗F
i2,i3
u j1 ,−ωk1−1

⊗F
i4
u j2 ,ωk2−1

⊗F
i2,i3
u j1 ,ωk1−1

+E2
])

Tr
(
S(15)(26)(37)(48)

(
δ j1, j2δk1,k2

[
F

i1,i3
u j1 ,ωk1

⊗F
i1,i3
u j1 ,−ωk1

⊗F
i2,i4
u j1 ,−ωk1−1

⊗F
i2,i4
u j1 ,ωk1−1

+E2
])

Tr
(
S(15)(26)(34)(78)

(
δ j1, j2δk1,k2

[
F

i1,i3
u j1 ,ωk1

⊗F
i1,i3
u j1 ,−ωk1

⊗F
i2
u j1 ,−ωk1−1

⊗F
i4
u j2 ,ωk2−1

+E2
])

Tr
(
S(18)(27)(34)(56)

(
δ j1, j2δk1,k2−1

[
F

i1,i4
u j1 ,ωk1

⊗F
i1,i4
u j1 ,−ωk1

⊗F
i2
u j1 ,−ωk1−1

⊗F
i3
u j2 ,−ωk2

+ε2
])

.

The covariance structure are derived in more detail in the proof of Theorem 4.2.

Proof of Theorem 4.2. If the series are independent, possible cross spectral terms drop out. The
significant partitions of the form Cum4Cum2Cum2 become therefore

Tr
(
S(1256)(34)(78)

(
δi1,i3δ j1, j2

[
(

2π

N
F

i1
u j1 ,ωk1 ,−ωk1 ,−ωk2

+E4)⊗ (F i2
u j1 ,−ωk1−1

+E2)⊗ (F i4
u j2 ,ωk2−1

+E2)

]))
Tr

(
S(1278)(34)(56)

(
δi1,i4δ j1, j2

[
(

2π

N
F

i1
u j1 ,ωk1 ,−ωk1 ,ωk2−1

+E4)⊗ (F i2
u j1 ,−ωk1−1

+E2)⊗ (F i3
u j2 ,−ωk2

+E2)

]))
Tr

(
S(3456)(12)(78)

(
δi2,i3δ j1, j2

[
(

2π

N
F

i2
u j1 ,−ωk1−1,ωk1−1,−ωk2

+E4)⊗ (F i1
u j1 ,ωk1

+E2)⊗ (F i4
u j2 ,ωk2−1

+E2)

]))
Tr

(
S(3478)(12)(56)

(
δi2,i4δ j1, j2

[
(

2π

N
F

i2
u j1 ,−ωk1−1,ωk1−1,ωk2−1

+E4)⊗ (F i1
u j1 ,ωk1

+E2)⊗ (F i3
u j2 ,−ωk2

+E2

]))
.
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The significant partitions of the form Cum2Cum2Cum2Cum2 are

Tr
(
S(12)(37)(56)(48)

(
δi2,i4δ j1, j2δk1,k2

[
F

i1
u j1 ,ωk1

⊗F
i2
u j1 ,−ωk1−1

⊗F
i3
u j2 ,−ωk2

⊗F
i2
u j1 ,ωk1−1

+E2
])

Tr
(
S(12)(36)(78)(45)

(
δi2,i3δ j1, j2δk1−1,k2

[
F

i1
u j1 ,ωk1

⊗F
i2
u j1 ,−ωk1−1

⊗F
i4
u j2 ,ωk2−1

⊗F
i2
u j1 ,ωk1−1

+E2
])

Tr
(
S(15)(26)(37)(48)

(
δi1,i3δi2,i4δ j1, j2δk1,k2

[
F

i1
u j1 ,ωk1

⊗F
i1
u j1 ,−ωk1

⊗F
i2
u j1 ,−ωk1−1

⊗F
i2
u j1 ,ωk1−1

+E2
])

Tr
(
S(15)(26)(34)(78)

(
δi1,i3δ j1, j2δk1,k2

[
F

i1
u j1 ,ωk1

⊗F
i1
u j1 ,−ωk1

⊗F
i2
u j1 ,−ωk1−1

⊗F
i4
u j2 ,ωk2−1

+E2
])

Tr
(
S(18)(27)(34)(56)

(
δi1,i4δ j1, j2δk1,k2−1

[
F

i1
u j1 ,ωk1

⊗F
i1
u j1 ,−ωk1

⊗F
i2
u j1 ,−ωk1−1

⊗F
i3
u j2 ,−ωk2

+ε2
])

.

In order to give meaning to the covariance structure, we need to investigate how it ‘operates’
as a result of the permutation that occurs due to the cumulant operation. For the second or-
der cumulant structure, Theorem B.1] implies that the original order of the simple tensors has
structure Tr(S1234 · ⊗ · ⊗ ·⊗ · ⊗̃S5678 · ⊗ · ⊗ ·⊗·). Using the properties listed in A.1 we obtain the
following.

Proposition B.1 (Trace of permutations of order 8). Let Sν be the permutation operator as defined
in (6.3) that acts on a tensor Hilbert space of appropriate order. The object Tr(S1234 ·⊗·⊗·⊗·⊗̃S5678 ·
⊗ ·⊗ ·⊗·) leads to the following correspondence of simple tensors; 1 ↔ 3, 2 ↔ 4, 5 ↔ 7, 6 ↔ 8. Then
for X ∈H ⊗4

and Y , Z , X ∈H ⊗2
, properties A.1 imply

Tr
(
S(1256)(12)(56)X ⊗Y ⊗Z ) = Tr

(
X (Y

⊗
Z )†)= 〈X ,Y

⊗
Z 〉HS

Tr
(
S(1256)(12)(56)X ⊗Y ⊗Z ) = Tr

(
X (Y

⊗
Z )†)= 〈X ,Y

⊗
Z 〉HS

Tr
(
S(1256)(12)(56)X ⊗Y ⊗Z ) = Tr

(
X (Y

⊗
Z )†)= 〈X ,Y

⊗
Z 〉HS

Tr
(
S(1256)(12)(56)X ⊗Y ⊗Z ) = Tr

(
X (Y

⊗
Z )†)= 〈X ,Y

⊗
Z 〉HS , (6.13)

and for W, X ,Y , Z ∈ X ∈H ⊗2
, these imply

Tr
(
S(12)(15)(56)(26)W ⊗X ⊗Y ⊗Z

)
= 〈W †

X , Z Y †〉HS

Tr
(
S(12)(16)(56)(25)W ⊗X ⊗Y ⊗Z

)
= 〈W †

X , Z Y 〉HS

Tr
(
S(15)(26)(15)(26)W ⊗X ⊗Y ⊗Z

)
= 〈W,Y 〉HS〈X , Z 〉HS

Tr
(
S(15)(26)(12)(56)W ⊗X ⊗Y ⊗Z

)
= 〈W ⊗̃

X , (Y
⊗

Z )〉HS

Tr
(
S(16)(25)(12)(56)W ⊗X ⊗Y ⊗Z

)
= 〈W ⊗̃

>X , (Y
⊗

Z )〉HS . (6.14)

Therefore using Proposition B.1and in particular (6.13)(6.14), the corresponding terms of the
covariance equal

T Cov(Fi1,i2 ,Fi3,i4 ) = 1

T

bN /2c∑
k1,k2=1

M∑
j1, j2=1

δi1,i3δ j1, j2

[〈2π

N
F

i1
u j1 ,ωk1 ,−ωk1 ,−ωk2

,F i2
u j1 ,ωk1−1

⊗
F

i4
u j2 ,ωk2−1

〉
HS

+O(
1

T
)

]

+ 1

T

bN /2c∑
k1,k2=1

M∑
j1, j2=1

δi1,i4δ j1, j2

[〈2π

N
F

i1
u j1 ,ωk1 ,−ωk1 ,ωk2−1

,F i2
u j1 ,ωk1−1

⊗
F

i3
u j2 ,−ωk2

〉
HS

+O(
1

T
)

]

+ 1

T

bN /2c∑
k1,k2=1

M∑
j1, j2=1

δi2,i3δ j1, j2

[〈2π

N
F

i2
u j1 ,−ωk1−1,ωk1−1,−ωk2

,F i1
u j1 ,−ωk1

⊗
F

i4
u j2 ,ωk2−1

〉
HS

+O(
1

T
)

]
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+ 1

T

bN /2c∑
k1,k2=1

M∑
j1, j2=1

δi2,i4δ j1, j2

[〈
(

2π

N
F

i2
u j1 ,−ωk1−1,ωk1−1,ωk2−1

,F i1
u j1 ,−ωk1

⊗
F

i3
u j2 ,−ωk2

〉
HS

+O(
1

T
)

]

+ 1

T

bN /2c∑
k1,k2=1

M∑
j1, j2=1

δi2,i4δ j1, j2δk1,k2

[
〈F †,i1

u j1 ,−ωk1
F

i2
u j1 ,−ωk1−1

,F i2
u j1 ,−ωk1−1

F
†,i3
u j2 ,−ωk2

〉+O(
1

M 2 )

]

+ 1

T

bN /2c∑
k1,k2=1

M∑
j1, j2=1

δi2,i3δ j1, j2δk1−1,k2

[
〈F †,i1

u j1 ,−ωk1
F

i2
u j1 ,−ωk1−1

,F i2
u j1 ,−ωk1−1

F
i4
u j2 ,−ωk2−1

〉HS +O(
1

M 2 )

]

+ 1

T

bN /2c∑
k1,k2=1

M∑
j1, j2=1

δi1,i3δi2,i4δ j1, j2δk1,k2

[
〈F i1

u j1 ,ωk1
,F i2

u j1 ,ωk1−1
〉HS〈F i1

u j1 ,−ωk1
,F i2

u j1 ,−ωk1−1
〉HS +O(

1

M 2 )

]

+ 1

T

bN /2c∑
k1,k2=1

M∑
j1, j2=1

δi1,i3δ j1, j2δk1,k2

[
〈F i1

u j1 ,ωk1

⊗̃
F

i1
u j1 ,ωk1

,F i2
u j1 ,ωk1−1

⊗
F

i4
u j2 ,ωk2−1

〉HS +O(
1

M 2 )

]

+ 1

T

bN /2c∑
k1,k2=1

M∑
j1, j2=1

δi1,i4δ j1, j2δk1,k2−1

[
〈F i1

u j1 ,ωk1

⊗̃
>F

i1
u j1 ,−ωk1

,F i2
u j1 ,ωk1−1

⊗
F

i3
u j2 ,−ωk2

〉HS +O(
1

M 2 )

]

So that, as N , M →∞,

T Cov(Fi1,i2 ,Fi3,i4 ) → δi1,i3

1

8π

∫ π

−π

∫ π

−π

∫ 1

0

〈
F

i1
u,ω1,−ω1,−ω2

,F i2
u,ω1

⊗
F

i4
u,ω2

〉
HS

dudω1dω2

+δi1,i4

1

8π

∫ π

−π

∫ π

−π

∫ 1

0

〈
F

i1
u,ω1,−ω1,ω2

,F i2
u,ω1

⊗
F

i3
u,−ω2

〉
HS

dudω1dω2

+δi2,i3

1

8π

∫ π

−π

∫ π

−π

∫ 1

0

〈
F

i2
u,−ω1,ω1,−ω2

,F i1
u,−ω1

⊗
F

i4
u,ω2

〉
HS

dudω1dω2

+δi2,i4

1

8π

∫ π

−π

∫ π

−π

∫ 1

0

〈
F

i2
u,−ω1,ω1,ω2

,F i1
u,−ω1

⊗
F

i3
u,−ω2

〉
HS

dudω1dω2

+δi2,i4

1

4π

∫ π

−π

∫ 1

0
〈F †,i1

u,−ωF
i2
u,−ω,F i2

u,−ωF
†,i3
u,−ω〉dudω

+δi2,i3

1

4π

∫ π

−π

∫ 1

0
〈F †,i1

u,−ωF
i2
u,−ω,F i2

u,−ωF
i4
u,−ω〉HSdudω

+δi1,i3δi2,i4

1

4π

∫ π

−π

∫ 1

0
〈F i1

u,ω,F i2
u,ω〉HS〈F i1

u,−ω,F i2
u,−ω〉HSdudω

+δi1,i3

1

4π

∫ π

−π

∫ 1

0
〈F i1

u,ω

⊗̃
F

i1
u,ω,F i2

u,ω

⊗
F

i4
u,ω〉HSdudω

+δi1,i4

1

4π

∫ π

−π

∫ 1

0
〈F i1

u,ω

⊗̃
>F

i1
u,−ω,F i2

u,ω

⊗
F

i3
u,−ω〉HSdudω.

From this we can now derive the structures of the four distinct components of the asymptotic
variance of A T

(i1,i2).

1. Setting i1 = i3 = i2 = i4

T Var(Fi1 ) → 2

8π

∫ π

−π

∫ π

−π

∫ 1

0

〈
F

i1
u,ω1,−ω1,−ω2

,F i1
u,ω1

⊗
F

i1
u,ω2

〉
HS

dudω1dω2

+ 2

8π

∫ π

−π

∫ π

−π

∫ 1

0

〈
F

i1
u,ω1,−ω1,ω2

,F i1
u,ω1

⊗
F

i1
u,−ω2

〉
HS

dudω1dω2

+ 2

4π

∫ π

−π

∫ 1

0
|||(F i1

u,ω)
2|||22dudω
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+ 1

4π

∫ π

−π

∫ 1

0
|||F i1

u,ω|||42dudω

+ 1

4π

∫ π

−π

∫ 1

0
〈F i1

u,ω

⊗̃
F

i1
u,ω,F i1

u,ω

⊗
F

i1
u,ω〉HSdudω

+ 1

4π

∫ π

−π

∫ 1

0
〈F i1

u,ω

⊗̃
>F

i1
u,−ω,F i1

u,ω

⊗
F

i1
u,−ω〉HSdudω (6.15)

where we used the self-adjointness of the spectral density operator and that, for any func-
tion g : R→ K, we have

∫ π
−π g (ω)dω = ∫ π

−π g (−ω)dω. From this it follows that the terms 1
and 4, 2 and 3 and 5 and 6 are respectively equal in the limit.

2. Setting i1 = i3 and i2 = i4, i1 6= i2 → i3 6= i4, i1 6= i4, i3 6= i2

T Var(Fi1i2 ) → 1

8π

∫ π

−π

∫ π

−π

∫ 1

0

〈
F

i1
u,ω1,−ω1,−ω2

,F i2
u,ω1

⊗
F

i2
u,ω2

〉
HS

dudω1dω2

+ 1

8π

∫ π

−π

∫ π

−π

∫ 1

0

〈
F

i2
u,−ω1,ω1,ω2

,F i1
u,−ω1

⊗
F

i1
u,−ω2

〉
HS

dudω1dω2

+ 1

4π

∫ π

−π

∫ 1

0
〈F i1

u,−ωF
i2
u,−ω,F i2

u,−ωF
i1
u,−ω〉dudω

+ 1

4π

∫ π

−π

∫ 1

0
〈F i1

u,ω,F i2
u,ω〉HS〈F i1

u,−ω,F i2
u,−ω〉HSdudω

+ 1

4π

∫ π

−π

∫ 1

0
〈F i1

u,ω

⊗̃
F

i1
u,ω,F i2

u,ω

⊗
F

i2
u,ω〉HSdudω. (6.16)

3. Setting i1 = i2 and i3 = i4, i1 6= i3, we have to due independence

T Cov(Fi1,i1 ,Fi3,i3 ) = 0. (6.17)

4. Setting i3 = i2, i4 = i1, i1 6= i2 → i3 6= i4, i1 6= i3, i2 6= i4

T Cov(Fi1,i2 ,Fi2,i1 ) → 1

8π

∫ π

−π

∫ π

−π

∫ 1

0

〈
F

i1
u,ω1,−ω1,ω2

,F i2
u,ω1

⊗
F

i2
u,−ω2

〉
HS

dudω1dω2

+ 1

8π

∫ π

−π

∫ π

−π

∫ 1

0

〈
F

i2
u,−ω1,ω1,−ω2

,F i1
u,−ω1

⊗
F

i1
u,ω2

〉
HS

dudω1dω2

+ 1

4π

∫ π

−π

∫ 1

0
〈F i1

u,−ωF
i2
u,−ω,F i2

u,−ωF
i1
u,−ω〉HSdudω

+ 1

4π

∫ π

−π

∫ 1

0
〈F i1

u,ω

⊗̃
>F

i1
u,−ω,F i2

u,ω

⊗
F

i2
u,−ω〉HSdudω. (6.18)

5. Setting i2 = i3 = i1 with i1 6= i4,

T Cov(Fi1i1 ,Fi1i4 ) → 1

8π

∫ π

−π

∫ π

−π

∫ 1

0

〈
F

i1
u,ω1,−ω1,−ω2

,F i1
u,ω1

⊗
F

i4
u,ω2

〉
HS

dudω1dω2

+ 1

8π

∫ π

−π

∫ π

−π

∫ 1

0

〈
F

i1
u,−ω1,ω1,−ω2

,F i1
u,−ω1

⊗
F

i4
u,ω2

〉
HS

dudω1dω2

+ 1

4π

∫ π

−π

∫ 1

0
〈F †,i1

u,−ωF
i1
u,−ω,F i1

u,−ωF
i4
u,−ω〉HSdudω

+ 1

4π

∫ π

−π

∫ 1

0
〈F i1

u,ω

⊗̃
F

i1
u,ω,F i1

u,ω

⊗
F

i4
u,ω〉HSdudω. (6.19)
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6. Setting i2 = i4 = i1 with i1 6= i3,

T Cov(Fi1i1 ,Fi3i1 ) →+ 1

8π

∫ π

−π

∫ π

−π

∫ 1

0

〈
F

i1
u,ω1,−ω1,ω2

,F i1
u,ω1

⊗
F

i3
u,−ω2

〉
HS

dudω1dω2

+ 1

8π

∫ π

−π

∫ π

−π

∫ 1

0

〈
F

i1
u,−ω1,ω1,ω2

,F i1
u,−ω1

⊗
F

i3
u,−ω2

〉
HS

dudω1dω2

+ 1

4π

∫ π

−π

∫ 1

0
〈F i1

u,−ωF
i2
u,−ω,F i1

u,−ωF
i3
u,−ω〉dudω

+ 1

4π

∫ π

−π

∫ 1

0
〈F i1

u,ω

⊗̃
>F

i1
u,−ω,F i1

u,ω

⊗
F

i3
u,−ω〉HSdudω (6.20)

Let e be the identity vector in R4. We note that we the variance structure can be written in
the form

e>[
Σ∇g (x)∇g>(x)

]
e = e> Σ

(x1 +x2)2


(x3+x4)2

(x1+x2)2
(x3+x4)2

(x1+x2)2 − x3+x4
(x1+x2) − x3+x4

(x1+x2)
(x3+x4)2

(x1+x2)2
(x3+x4)2

(x1+x2)2 − x3+x4
(x1+x2) − x3+x4

(x1+x2)

− x3+x4
(x1+x2) − x3+x4

(x1+x2) 1 1

− x3+x4
(x1+x2) − x3+x4

(x1+x2) 1 1,

e

where Σ is defined in (6.10) where the expression of the individiual entries are given by (6.15)-
(6.20) and where the vector is evaluated as in (6.12). Under the null hypothesis H0, the matrix
becomes

Σ∇g (x)∇g>(x) = 1( 2
4π

∫ π
−π

∫ 1
0 |||F i1

u,ω|||22dudω
)2


1 1 −1 −1
1 1 −1 −1
−1 −1 1 1
−1 −1 1 1



×


Var(Fi1,i1 ) 0 Cov(Fi1,i1 ,Fi1,i2 ) Cov(Fi1,i1 ,Fi2,i1 )

0 Var(Fi2,i2 ) Cov(Fi2,i2 ,Fi1,i2 ) Cov(Fi2,i2 ,Fi2,i1 )
Cov(Fi1,i1 ,Fi1,i2 ) Cov(Fi2,i2 ,Fi1,i2 ) Var(Fi1,i2 ) Cov(Fi1,i2 ,Fi2,i1 )
Cov(Fi1,i1 ,Fi2,i1 ) Cov(Fi2,i2 ,Fi2,i1 ) Cov(Fi1,i2 ,Fi2,i1 ) Var(Fi2,i1 ).


(6.21)

where we used that Cov(Fi1,i1 ,Fi2,i2 ) = 0 because of the independence assumption. Using the
expression of the entries of the asympototic variance (6.15)-(6.20) we exploit that all of these
components are restricted forms of (6.15) and that this equation consists of 6 distinct terms. For
the structure of (6.21), a tedious derivation yields

1. the first and second term of (the fourth order terms) (6.15): 2 times in Var(Fi1,i1 ), Var(Fi2,i2 ),
once in Var(Fi2,i1 ) and Var(Fi2,i1 ),Cov(Fi1,i2 ,Fi2,i1 ), and once in Cov(Fi1,i1 ,Fi1,i2 ),Cov(Fi1,i1 ,Fi2,i1 ).
Hence using the number of occurrence in the covariance matrix of these entries, we find
these terms to arise 4+2+2−4−4 = 0 times and hence cancels.

2. the third term of (6.15): two times in Var(Fi1,i1 ), Var(Fi2,i2 ), once in Var(Fi2,i1 ) and Var(Fi2,i1 ),
Cov(Fi1,i2 ,Fi2,i1 ), and once in Cov(Fi1,i1 ,Fi1,i2 ),Cov(Fi1,i1 ,Fi2,i1 ). Hence using the number of
occurrence in the matrix, we find this term to arise 4+ 2+ 2− 4− 4 = 0 times and hence
cancels.

3. the fourth term of (6.15): once in Var(Fi1,i1 ), Var(Fi2,i2 ) and in once in Var(Fi2,i1 ) and Var(Fi2,i1 )
and does not aris in the other components. Therefore, we find a term 4

4π

∫ π
−π

∫ 1
0 |||F i1

u,ω|||42dudω
to remain.
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4. the fifth term of (6.15): once in Var(Fi1,i1 ), Var(Fi2,i2 ) and in once in Var(Fi2,i1 ) and Var(Fi2,i1 )
and off diagonal it occurs in the structures of the form Cov(Fi1,i1 ,Fi1,i2 ), which arises 4
times. Hence 4−4 = 0 and cancels.

5. the sixth term of (6.15): once in Var(Fi1,i1 ), Var(Fi2,i2 ), and from the off-diagonal terms
once in Cov(Fi1,i2 ,Fi2,i1 ) and once in Cov(Fi1,i1 ,Fi2,i1 ). As Cov(Fi1,i2 ,Fi2,i1 ) occurs twice off-
diagonal in (6.21) and Cov(Fi1,i1 ,Fi2,i1 ) four times, we find the sixth term of (6.15) to occur
2+2−4 = 0 and cancels as well.

Thus, under the null hypothesis H0

Var(Â(i1,i2))
p→

4
4π

∫ π
−π

∫ 1
0 |||F i1

u,ω|||42dudω( 2
4π

∫ π
−π

∫ 1
0 |||F i1

u,ω|||22dudω
)2 = 4π

∫ π
−π

∫ 1
0 |||F i1

u,ω|||42dudω(∫ π
−π

∫ 1
0 |||F i1

u,ω|||22dudω
)2 .

Proof of Lemma 4.1. We have,

〈I
u j ,ωk
p , I

u j ,ωk−1
p 〉HS =

〈1

2

(
I

u j ,ωk

i1
+ I

u j ,ωk

i2

)
,

1

2

(
I

u j ,ωk−1

i1
+ I

u j ,ωk−1

i2

)〉
HS

.

Hence the proof of theorem Theorem 2.1 shows that

( 2

T

M∑
j=1

bN /2c∑
k=1

〈I
u j ,ωk
p , I

u j ,ωk−1
p 〉HS

)2 p→ ( 2

4π

∫ π

−π

∫ 1

0
|||F i1

u,ω|||22dudω
)2,

and it remains to show that under H0

2

3T

M∑
j=1

bN /2c∑
k=1

(〈I
u j ,ωk
p , I

u j ,ωk−1
p 〉HS

)2 p→ 1

π

∫ π

−π

∫ 1

0
|||F i1

u,ω|||42dudω.

To this purpose note that

E
1

T

M∑
j=1

bN /2c∑
k=1

(〈I
u j ,ωk
p , I

u j ,ωk−1
p 〉HS

)2 = 1

T

M∑
j=1

bN /2c∑
k=1

Cov
(〈I

u j ,ωk
p , I

u j ,ωk−1
p 〉HS

)
+ 1

T

M∑
j=1

bN /2c∑
k=1

(
E〈I

u j ,ωk
p , I

u j ,ωk−1
p 〉HS

)2, (6.22)

and that the second term converges to 1
4π

∫ π
−π

∫ 1
0 |||F i1

u,ω|||42dudω. For the first term we write

Cov
(〈I

u j ,ωk
p , I

u j ,ωk−1
p 〉HS

)
=1

4

(
Cov

(〈I
u j ,ωk

i1
, I

u j ,ωk−1

i1
〉HS +〈I

u j ,ωk

i2
, I

u j ,ωk−1

i2
〉HS +〈I

u j ,ωk

i1
, I

u j ,ωk−1

i2
〉HS +〈I

u j ,ωk

2 , I
u j ,ωk−1

1 〉HS

)
=1

4

[
Var

(〈I
u j ,ωk

i1
, I

u j ,ωk−1

i1
〉HS

)+Var
(〈I

u j ,ωk

i2
, I

u j ,ωk−1
2 〉HS

)+Var
(〈I

u j ,ωk

i1
, I

u j ,ωk−1

i2
〉HS

)+Var
(〈I

u j ,ωk

i2
, I

u j ,ωk−1

i1
〉HS

)
+2Cov(〈I

u j ,ωk

i1
, I

u j ,ωk−1

i1
〉HS ,〈I

u j ,ωk

i1
, I

u j ,ωk−1

2 〉HS)+2Cov(〈I
u j ,ωk

i1
, I

u j ,ωk−1

i1
〉HS ,〈I

u j ,ωk

i2
, I

u j ,ωk−1

i1
〉HS)

+2Cov(〈I
u j ,ωk

i2
, I

u j ,ωk−1

i2
〉HS ,〈I

u j ,ωk

1 , I
u j ,ωk−1

i2
〉HS)+2Cov(〈I

u j ,ωk

i2
, I

u j ,ωk−1

2 〉HS ,〈I
u j ,ωk

i2
, I

u j ,ωk−1

1 〉HS)

+2Cov(〈I
u j ,ωk

i1
, I

u j ,ωk−1

i2
〉HS ,〈I

u j ,ωk

i2
, I

u j ,ωk−1

i1
〉HS)+2Cov(〈I

u j ,ωk

i1
, I

u j ,ωk−1

i1
〉HS ,〈I

u j ,ωk

i2
, I

u j ,ωk−1

i2
〉HS)

]
(6.23)
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Consider the structure of the first two terms of (6.23). By Theorem B.2, we are interested in all in-
decomposable partitions of the array where the summation is overall indecomposable partitions
of the array

D
u j ,ωk

i1︸ ︷︷ ︸
1

D
u j ,−ωk

i1︸ ︷︷ ︸
2

D
u j ,−ωk−1

i1︸ ︷︷ ︸
3

D
u j ,ωk−1

i1︸ ︷︷ ︸
4

D
u j ,−ωk

i1︸ ︷︷ ︸
5

D
u j ,ωk

i1︸ ︷︷ ︸
6

D
u j ,ωk−1

i1︸ ︷︷ ︸
7

D
u j ,−ωk−1

i1︸ ︷︷ ︸
8

It is immediate from Corollary B.1 that all terms not consisting of second order cumulants will be
of lower order. Additionally, certain partitions will be of lower order when it involves a cumulant
component that is off the frequency manifold. Indecomposability moreover requires the first
row to hook with the second. Those partitions that remain are

Tr
(
S(15)(26)(34)(78)

(
F

i1
u j ,ωk

⊗F
i1
u j ,−ωk

⊗F
i1
u j ,−ωk−1

⊗F
i1
u j ,ωk−1

+E2

))
Tr

(
S(15)(26)(37)(48)

(
F

i1
u j ,ωk

⊗F
i1
u j ,−ωk

⊗F
i1
u j ,−ωk−1

⊗F
i1
u j ,ωk−1

+E2

))
Tr

(
S(12)(56)(37)(48)

(
F

i1
u j ,ωk

⊗F
i1
u j ,−ωk

⊗F
i1
u j ,−ωk−1

⊗F
i1
u j ,ωk−1

+E2

))
Hence, a similar argument as provided in Proposition B.1 demonstrates that the orignal order
has correspondence 1 → 3,2 → 4,5 → 7,6 → 8, if we plug these in, we find

Tr
(
S(15)(26)(12)(56)

(
F

i1
u j ,ωk

⊗F
i1
u j ,−ωk

⊗F
i1
u j ,−ωk−1

⊗F
i1
u j ,ωk−1

+E2

))
Tr

(
S(15)(26)(15)(26)

(
F

i1
u j ,ωk

⊗F
i1
u j ,−ωk

⊗F
i1
u j ,−ωk−1

⊗F
i1
u j ,ωk−1

+E2

))
Tr

(
S(12)(56)(15)(26)

(
F

i1
u j ,ωk

⊗F
i1
u j ,−ωk

⊗F
i1
u j ,−ωk−1

⊗F
i1
u j ,ωk−1

+E2

))
But because switching the tensors at position 2 and 5 has no effect (being the same object), we
find using Properties A.1

1

T

M∑
j=1

bN /2c∑
k=1

Var
(〈I

u j ,ωk

i1
, I

u j ,ωk−1

i1
〉HS

)= 3

T

M∑
j=1

bN /2c∑
k=1

〈F i1
u j ,ωk

⊗
F

i1
u j ,ωk

,F i1
u j ,ωk−1

⊗
F

i1
u j ,ωk−1

〉HS +O(
1

M 2 )

= 3

T

M∑
j=1

bN /2c∑
k=1

〈F i1
u j ,ωk

,F i1
u j ,ωk−1

〉HS〈F i1
u j ,ωk

,F i1
u j ,ωk−1

〉HS +O(
1

M 2 )

→ 3

4π

∫ π

−π

∫ 1

0
|||F i1

u j ,ωk
|||22|||F i1

u j ,ωk
|||22dudω

= 3

4π

∫ π

−π

∫ 1

0
|||F i1

u j ,ωk
|||42dudω, (6.24)

Similarly

1

T

M∑
j=1

bN /2c∑
k=1

Var
(〈I

u j ,ωk

i2
, I

u j ,ωk−1

i2
〉HS

)= 3

4π

∫ π

−π

∫ 1

0
|||F i1

u j ,ωk
|||42dudω, (6.25)

under H0. Consider then the structure of the third and fourth term of (6.23). We are again inter-
ested in all indecomposable partitions of the array where the summation is overall indecompos-
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able partitions of the array

D
u j ,ωk

i1︸ ︷︷ ︸
1

D
u j ,−ωk

i1︸ ︷︷ ︸
2

D
u j ,−ωk−1

i2︸ ︷︷ ︸
3

D
u j ,ωk−1

i2︸ ︷︷ ︸
4

D
u j ,−ωk

i1︸ ︷︷ ︸
5

D
u j ,ωk

i1︸ ︷︷ ︸
6

D
u j ,ωk−1

i2︸ ︷︷ ︸
7

D
u j ,−ωk−1

i2︸ ︷︷ ︸
8

Because of uncorrelatedness under H0 between series i1 and i2 and that the rows of the array
must hook results in three permutations remainging; S(15)(26)(34)(78),S(15)(26)(37)(48)andS(12)(56)(37)(48).
A similar reasoning shows that, for the fifth to eight terms of (6.23) which involve an array of the
form

D
u j ,ωk

i1︸ ︷︷ ︸
1

D
u j ,−ωk

i1︸ ︷︷ ︸
2

D
u j ,−ωk−1

i1︸ ︷︷ ︸
3

D
u j ,ωk−1

1︸ ︷︷ ︸
4

D
u j ,−ωk

i1︸ ︷︷ ︸
5

D
u j ,ωk

i1︸ ︷︷ ︸
6

D
u j ,ωk−1

i2︸ ︷︷ ︸
7

D
u j ,−ωk−1

i2︸ ︷︷ ︸
8

,

will only have the permutation S(15)(26)(34)(78) remaining. Uncorrelatedness under H0 between
series i1 and i2 and the lag Fourier imply that the lasts two terms of (6.23) will be of lower order.
We thus have that the total sum in (6.23) consists of 3×2+3×2+4×2 = 20 terms and similar to the
proof of (6.24) it can be shown these terms all converge to the same limit under H0. Therefore,
we find under H0

E
1

T

M∑
j=1

bN /2c∑
k=1

Cov
(〈I

u j ,ωk
p , I

u j ,ωk−1
p 〉HS

)= 20

4

1

4π

∫ π

−π

∫ 1

0
|||Fu j ,ωk |||42dudω

which together with the second term of (6.22), implies

E
1

T

M∑
j=1

bN /2c∑
k=1

(〈I
u j ,ωk
p , I

u j ,ωk−1
p 〉HS

)2 = 1

T

M∑
j=1

bN /2c∑
k=1

Cov
(〈I

u j ,ωk
p , I

u j ,ωk−1
p 〉HS

)
+ 1

T

M∑
j=1

bN /2c∑
k=1

(
E〈I

u j ,ωk
p , I

u j ,ωk−1
p 〉HS

)2

→ 20

4

1

4π

∫ π

−π

∫ 1

0
|||Fu j ,ωk |||42dudω+ 1

4π

∫ π

−π

∫ 1

0
|||Fu j ,ωk |||42dudω

= 24

4

1

4π

∫ π

−π

∫ 1

0
|||Fu j ,ωk |||42dudω

It can be shown along the lines of the proof of Theorem 2.1 that this is in fact a
p

T consistent
estimator. The joint convergence in probability therefore immediately follows and the result
follows from an application of the continuous mapping theorem.

Appendix C Analysis of the spectral clustering algorithm

C.1 Consistency of L̂ for L

Proof of Lemma 3.1. From Theorem 2.1 we have that Â ∈ Rd×d is a
p

T -consistent estimator of
the distance measure A . The continuous mapping theorem therefore implies that Ŵ T is consis-
tent, i.e., A simple calculation shows that, as T →∞,

P(‖Ŵ T −W ‖∞ ≥ ε) ≤P(d max
i , j

|Ŵ T
i , j −Wi , j | ≥ ε) → 0. (6.26)
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Similarly,

P(max
i

|Di − D̂i | ≥ ε) =P(max
i

|∑
j

Ŵ T
i , j −

∑
j

Ŵ T
i , j | ≥ ε) ≤P(d max

i , j
|Ŵ T

i , j −Wi , j | ≥ ε) → 0. (6.27)

Similar to Chung and Radcliffe (2011), we use the decomposition

L̂−L = D̂−1/2Ŵ T D̂−1/2 −D−1/2Ŵ T D−1/2 +D−1/2Ŵ T D−1/2 −D−1/2W D−1/2

= (
D̂−1/2 −D−1/2)Ŵ T D̂−1/2 +D−1/2Ŵ T (

D̂−1/2 −D−1/2)+D−1/2(Ŵ T −W
)
D−1/2

= (
I −D−1/2D̂1/2)D̂−1/2Ŵ T D̂−1/2 + (

D−1/2D̂1/2)D̂−1/2Ŵ T D̂−1/2(I − D̂1/2D−1/2)
+D−1/2(Ŵ T −W

)
D−1/2

and bound these terms separately. Note that as D and D̂ are degree matrices, they are diagonal
with nonnegative entries. We therefore have

|||I −D−1/2D̂1/2|||∞ = max
i

∣∣∣1−
√

D̂i

Di

∣∣∣≤ max
i

∣∣∣1− D̂i

Di

∣∣∣≤ max
i

|Di − D̂i |
mini Di

.

The triangle inequality gives

|||D−1/2D̂1/2|||∞ =|||I − (
I −D−1/2D̂1/2)|||∞ ≤ 1+max

i

|Di − D̂i |
mini Di

Additionally, since D̂i =∑
j Ŵ T

i , j it follows that |||D̂−1/2Ŵ T D̂−1/2|||∞ = 1. Furthermore,

|||D−1/2
(
Ŵ T −W

)
D−1/2|||∞ ≤ 1

mini Di
|||Ŵ T −W |||∞. Therefore,

|||L̂−L|||∞ ≤ maxi |Di − D̂i |
mini Di

(
2+ maxi |Di − D̂i |

mini Di

)
+ 1

mini Di
|||Ŵ T −W |||∞.

Consequently, (6.26) and (6.27) imply

∀ε> 0, lim
T→∞

P
(|||L̂−L|||∞ > ε)= 0.

C.2 Concentration of Û

We shall use Lemma 3.1 to analyze the concentration of Û . We first need the following auxiliary
lemma, which follows from the Davis-Kahan theorem (Davis and Kahan, 1970)

Lemma C.1. Let S ⊂ R an interval. Let A, H ∈ Rd×d be two symmetric matrices and let Â = A +H
denote a perturbed version of A. Denote Q̂ and Q be orthornormal matrices of dimension Rd×k

whose column spaces equal the eigenspace of Â and A respectively. Then there exists an orthonor-
mal rotation matrix O ∈Rk×k such that

‖Q̂ −QO‖2 ≤
p

2k|||H |||∞
δ

where
δ= min{|λ− s| :λ eigenvalue of A, λ 6∈ S, s ∈ S}
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Proof of Lemma C.1. Using the singular value decomposition, we can find orthonormal matrices
P1 and P2 such that the singular values of Q>Q̂ are exactly the cosines of the principal angles Θ,
i.e., we can find P1 and P2 such that Q>Q̂ = P1ΣP>

2 where the diagonal ofΣ contains the principal
angles between the column space of Q̂ and Q. Define the rotation matrix O as O = P1P>

2 . Then,
by definition of the Frobenius norm, the orthonormality of Q̂ and Q

‖Q̂ −QO‖2
2 = Tr

(
(Q̂ −QO)>(Q̂ −QO)

)
= 2k −2Tr(OQ>Q̂)

= 2k −2Tr(cosΘ) = 2k −2
k∑

i=1
cosθi

≤ 2k −2
k∑

i=1
cos(θ)2

i = 2k −2k +2
k∑

i=1
sin(θ)2

i = 2‖sinΘ‖2
2.

The classical Davis-Kahan theorem then yields

‖Q̂ −QO‖2
2 ≤ 2‖sinΘ‖2

2 ≤ 2
‖H‖2

2

δ2 .

Finally, since ‖H‖2
2 ≤ k max j |λH

j |2 = k|||H |||2∞, we obtain

‖Q̂ −QO‖2 ≤
p

2k
|||H |||∞
δ

.

Corollary C.1. There exists an orthonormal rotation matrix O ∈Rk×k such that

‖Û −UO‖2 ≤ 2
p

k|||L̂−L|||∞
λk+1

where λk+1 is the (k +1)-th smallest eigenvalue of L.

Proof of Corollary C.1. By construction, L̂ and L are symmetric and it is clear that we can view L̂
as a perturbed version of L. Additionally, the columns of Û and U contain the eigenvectors that
correspond to the k smallest eigenvalues of L̂ and L, respectively. It follows therefore directly
from Lemma C.1 that

‖Û −UO‖2 ≤ 2
p

k|||L̂−L|||∞
δ

≤ 2
p

k|||L̂−L|||∞
λk+1

.

The last inequality is a consequence of the following observation. The matrix L has exactly k zero
eigenvalues. Hence if we take S = [0,ε) for arbitray small ε > 0 or actually the singleton S = {0},
then the first k eigenvalues of L all belong to S. The smallest distance between eigenvalues that
belong to S and that do not belong to S is thus given by |0−λk+1|. Hence δ=λk+1.

Proof of Lemma 3.2. We note that by definition we have Ûi ,· = Ûi ,·
‖Ûi ,·‖2

and Ui ,· = (UO)i ,·
‖Ui ,·‖2

. Therefore

standard linear algebra shows

‖Û −U ‖2
2 =

d∑
i=1

∥∥∥∥ Ûi ,·
‖Ûi ,·‖2

− (UO)i ,·
‖Ui ,·‖2

∥∥∥∥2

2
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≤ 2
d∑

i=1

∥∥∥∥Ûi ,·
(‖Ui ,·‖2 −‖Ûi ,·‖2

)
‖Ûi ,·‖2‖Ui ,·‖2

∥∥∥∥2

2
+

∥∥∥∥Ûi ,·− (UO)i ,·
‖Ui ,·‖2

∥∥∥∥2

2

= 2
d∑

i=1

|‖Ui ,·‖2 −‖Ûi ,·‖2|2
‖Ui ,·‖2

2

+ ‖Ûi ,·− (UO)i ,·‖2
2

‖Ui ,·‖2
2

≤ 4
d∑

i=1

‖Ûi ,·− (UO)i ,·‖2
2

‖Ui ,·‖2
2

≤ 4

mini ‖Ui ,·‖2
2

‖Û − (UO)‖2
2 =

4

mini Di
‖Û − (UO)‖2

2

The last equality follows since U collects eigenvectors of the form
p

D1Cl for l = 1, . . . ,k, where
1Cl ∈ Rd denotes the indicator vector that equals 1 if point i belongs to component Cl . This
means in particular that U has exactly one nonzero entry per row. A trivial lower bound on
mini Di can be given by

min
i

‖Ui ,·‖2
2 ≥

mini Di

Cmax

where Cmax = maxi
∑

i1∈Gi

∑
i2∈Gi

Wi1,i2 . Hence, using Corollary C.1 and Lemma 3.1

‖Û −U ‖2 ≤ 4
p

k

√
Cmax

mini Di

‖L̂−L‖∞
λk+1

→ 0 as T →∞.

C.3 Analyzing the k-means step

Using the properties of the row-normalized eigenvectors of L, we proceed by providing a defini-
tion of the set of points that are clustered correctly and then derive a bound on the complement
set.The technique is therefore similar to, among others, Rohe et al. (2011) and Lei and Rinaldo
(2015).

Lemma C.2. Assume the graph has k components. Let C? defined in (3.6) and U defined in (3.4).
Then, the set of correctly clustered points is defined as the complement of the set

Σ= {i : ‖C?
i ,·−Ui ,·‖2 ≥ 1p

2
} (6.28)

Proof of Lemma C.2. By construction and using the properties of the Laplacian, U has exactly
one 1 per row. All other entries in that row are zero. In total, there are k distinct rows which are
orthonormal. Therefore, ‖Ui ,·−U j ,·‖2 = 0 if the embedded points i and j belong to the same
component and ‖Ui ,·−U j ,·‖2 = p

2 if they belong to different components. At the same time,
‖C?

i ,·−C?
j ,·‖2 = 0 if and only if the algorithm has clustered i , j in the same cluster. So let, i and j

belong to Σc. Minkowski’s inequality yields

‖Ui ,·−U j ,·‖2 ≤ ‖Ui ,·−C?
i ,·‖2 +‖C?

i ,·−C?
j ,·‖2 +‖C?

j ,·−U j ,·‖2 ≤ 2
1p
2
=p

2

if and only if i and j are clustered in the same cluster. Otherwise, we have a contradiction. Ad-
ditionally, since C? ∈ M (d ,k) clusters cannot be split. Hence, points in Σc must be correctly
clustered
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Proof of Theorem 3.1. First note that U ∈ M (d ,k) since it has exactly k distinct rows. Conse-
quently,

argmin
C∈M (d ,k)

‖Û −C‖2
2 = ‖Û −C?‖2

2 ≤ ‖Û −U ‖2
2

|Σ| = ∑
i∈Σ

1 ≤∑
i∈Σ

2‖C?
i ,·−Ui ,·‖2

2

≤ 2‖C?−U ‖2
2

≤ 4
(‖C?− Û ‖2

2 +‖Û −U ‖2
2

)
= 8‖Û −U ‖2

2

The result now follows from Lemma 3.2.
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