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Abstract. Drawing on a consumer search model and a unique panel data set of dai-

ly fuel prices covering over 5,000 fuel stations in Germany, this paper documents a

change in the price setting behavior of retail gas stations following the introduction of

a legally mandated on-line price portal. Prior to the introduction of the portal in 2013,

positive asymmetry is found on the basis of error correction models, with prices fol-

lowing the “rockets and feathers” pattern documented in many commodity markets,

particularly in retail markets for fuels. In the aftermath of the portal’s introduction, by

contrast, negative asymmetry is observed: fuel price decreases in response to refinery

price decreases are stronger than fuel price increases due to refinery price increases.

This reversal in price pass-through, which is found among both branded and unbran-

ded stations, suggests welfare gains for consumers from increased market transparen-

cy.

JEL classification: D12, Q41.

Key words: Retail markets, competition, error correction model.



Acknowledgements: This work has been supported by the Fritz Thyssen Founda-

tion and the Collaborative Research Center “Statistical Modeling of Nonlinear Dy-

namic Processes” (SFB 823) of the German Research Foundation (DFG), within Pro-

ject A3, “Dynamic Technology Modeling”. Marco Horvath gratefully acknowledges

financial support by the Ruhr Graduate School in Economics and the Commerzbank-

Foundation.



1 Introduction

Few products elicit as much consternation among consumers as gasoline. Being almost

indispensable to daily living for many people, the demand for gasoline is highly inela-

stic, at least in the short run. Moreover, gasoline purchases represent a significant share

in many consumers’ budgets. Price increases and fluctuations may therefore have sub-

stantial effects on disposable income. One type of pricing dynamic, characterized by

BACON (1991) as the “rockets and feathers” phenomenon, has piqued special attention.

This is the pattern whereby gasoline prices rise quickly – like a rocket – in response to

positive oil price shocks, but fall slowly – like a feather – in response to negative shocks

(NOEL, 2016:393).

This phenomenon is the basis of an extensive literature, with BORENSTEIN et

al. (1997) being an early and influential article on the topic. Support for the rockets-

and-feathers hypothesis is found more often than not, but the extent varies widely,

depending on the origin and time period of data (NOEL, 2016:393). Theoretical ex-

planations are likewise varied, but can be broadly distinguished by whether market

power or some other source, such as consumer behavior, is emphasized as a driver of

asymmetric pricing patterns. For example, numerous articles, such as DELTAS (2008),

suggest that price asymmetry is a sign of local market power.

Notably, a growing line of the literature argues that heterogeneity in consumer

search intensity drives the differences in how retailers respond to positive and nega-

tive price shocks. Using a theoretic search model, CABRAL and FISHMAN (2012), for

instance, demonstrate that firms are reluctant to pass on small cost changes to consu-

mers, as cost changes trigger consumer searching. TAPPATA (2009) develops a model

where consumers’ decision to search affects a firm’s cost pass-through depending on

whether the cost increases or decreases.

The present analysis draws on a related model developed by YANG and YE (2008)

in which consumers know the process with which cost evolves but, in contrast to TAP-

PATA (2009), do not know the history of cost evolution. Price asymmetry arises in this
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model due to heterogeneity in learning: in case of a positive cost shock, all searchers

immediately learn the true cost state and stop searching. Hence, search intensity rea-

ches a minimum in the next period, with the result that prices fully adjust. In contrast,

in case of a negative cost shock, non-searchers do not immediately learn the true cost

state and thus search intensity increases gradually, leading to a slow fall in prices. An

implication of this model is that if the net expected benefit of acquiring information

increases, the adjustment of retail prices to a negative cost shock will be faster.

We test this model implication and assess changes in price setting behavior among

retail gas stations in Germany, where concerns about market power came to the fore

following the release of a report by the Federal Cartel Office in 2011 (FCO, 2011). The

report concluded that five brands – Aral (BP), Jet (ConocoPhilipps), Esso (ExxonMo-

bil), Shell, and Total – exercise market-dominating influence as oligopolists, leading to

higher gas prices than would otherwise prevail under perfect competition. This fin-

ding led to the establishment of a publicly accessible on-line price portal in December

2013, at which gasoline retailers are legally obligated to post fuel prices in real time.

By increasing market transparency for consumers, it was hoped that the portal would

promote competition among stations, as would be evidenced by a speedier adjustment

to negative oil price shocks. We address this question by undertaking an analysis of

price setting before and after the introduction of the on-line price portal, thereby con-

tributing to a growing strand of the literature on consumer search in gasoline markets

(BYRNE, DE ROOS, 2017; CHANDRA, Tappata, 2011; LEWIS, MARVEL, 2011).

To this end, we assemble a unique data set of daily fuel prices for over 5,000

stations whose daily prices are observed over a period that includes the introduction

of the price portal. The data set is correspondingly split into two nearly adjacent time

intervals of equal length, one covering from January 2012 until November 2013, and

the other covering from January 2014 until November 2015. Error correction models,

from which impulse response functions are derived, are estimated separately on each

of these intervals and for each individual gas station. This disaggregated approach

facilitates exploration of whether the results are robust across branded and unbranded

stations, a question for which existing pricing theory does not provide a consistent set
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of predictions (BESANKO, DUBE, GUPTA, 2005).

The impulse response functions reveal a striking change in the pattern of price

pass-through: Prior to the portal’s introduction, positive price asymmetry prevails, but

this reverses to negative price asymmetry thereafter, providing partial validation of

the theoretical model. Moreover, this pattern in reversal is found for both branded and

unbranded stations. While we cannot definitively ascribe a causal effect to the price

portal, the evidence strongly suggests that its introduction had positive implications

for consumer welfare.

The following section describes the theoretical background of our analysis, fol-

lowed by a discussion of data and methodological issues in Section 3 and Section 4.

Section 5 presents the results and uses these to conduct a simple welfare analysis. Sec-

tion 6 concludes.

2 Theoretical Background

Summarizing the search cost model with learning developed by YANG and YE (2008)

and providing a didactic overview of its key results, this section presents a theoretical

explanation of the rockets-and-feathers phenomenon and how it is affected by increa-

sed transparency in a market. YANG and YE demonstrate that heterogeneity in learning

across searchers and non-searchers is key for the emergence of price asymmetry.

Following these authors, we assume a continuum of consumers and firms in the

fuel retail market, with firms offering a homogeneous good. All firms face the same

unit cost c, as well as common cost shocks, thereby competing in prices. Common

production costs c can take on values at two levels, either a low level cL or a high level

cH, i. e. cL < cH. Furthermore, a capacity constraint k common to all firms is assumed:

no firm can sell more than k units. It is further assumed that each consumer has a unit

demand and the capacity constraint k is not binding: k > β, where β > 1 denotes the

number of customers per firm.
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Consumers make decisions on whether to search to become informed about pri-

ces or not to search and stay uninformed. Informed consumers observe the prices char-

ged by all firms, then purchase from those firms that offer the lowest price and, hence,

always learn the true cost state c. Uninformed consumers shop randomly and only ob-

serve the price at which they purchase. A consumer’s decision to search depends on

whether the expected benefit of searching outweighs individual search cost. Thus, the

search intensity, that is, the percentage of consumers who search will be determined

endogenously.

There are three types of consumers, distinguished by their search cost and search

intensity. The first type, whose proportion is designated by λ1, is called the low-search-

cost consumer, because they have zero search cost: sL = 0. This type of consumer al-

ways searches in equilibrium. The second type, whose proportion is denoted by λ2,

encompasses the high-search-cost consumers who never search. The rest of the con-

sumers, whose proportion amounts to 1− λ1 − λ2, are called critical consumers and

have intermediate search cost sM ∈ (sL, sH). Critical consumers search depending on

their belief about the cost state c, which, in contrast to firms, is unknown to consumers.

Instead, critical consumers have to build beliefs, denoted by α, which is the probability

that c = cH. F(α) denotes the cumulative distribution function of the beliefs among the

critical consumers.

Resulting from the static model of YANG and YE (2008), the unique equilibrium

search intensity µ∗ is given by

µ∗ = λ1 + (1− λ1 − λ2)F(α̂), (1)

provided that firms correctly anticipate F(α̂), where α̂ ∈ (0, 1) is the cutoff value for

which all critical consumers with beliefs below α̂ search, but not those with beliefs

above this cutoff value. Expression (1) is highly intuitive: the equilibrium search inten-

sity µ∗ is the sum of the percentage λ1 of those consumers who always search and the

fraction F(α̂) of those critical consumers who search given cutoff value α̂.

While critical consumers hold heterogeneous beliefs with respect to the firms’

production cost c, according to formula (1), for given λ1 and λ2, the equilibrium search
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intensity µ∗ only depends on the distribution F(.) of the beliefs among the critical con-

sumers. Two polar cases resulting from formula (1) deserve noting: the lower bound µ

of search intensity results if F(α̂) = 0, that is, if none of the critical consumers search:

µ∗ = λ1 = µ, whereas the upper bound µ̄ emerges from F(α̂) = 1, i. e. all critical

consumers search: µ∗ = 1− λ2 = µ̄.

According to this static analysis, changes in equilibrium prices originate from two

causes, changes in search intensity and cost shocks. To explain the discrepancy in price

adjustments in response to either positive or negative cost shocks, YANG and YE (2008)

extended their static analysis to a dynamic setting where in each period t = 1, 2, ...

the static model applies and common costs evolve according to a Markov process:

P(ct+1 = cH|ct = cH) = P(ct+1 = cL|ct = cL) = ρ, where the persistence parameter ρ

is positive: ρ > 1/2. The authors demonstrate that the asymmetry in price adjustment

arises because the learning behavior of the critical consumers depends upon whether

a cost shock is positive, ct+1 = cH > ct = cL, or negative: ct+1 = cL < ct = cH.

As the consumers do not observe any realization of the cost level c, their beliefs

and search intensity µ∗ do not adjust as quickly as the cost changes. A positive cost

shock can be said to be fully adjusted when in state c = cH no critical consumer sear-

ches, that is, when µ∗ = µ. A negative cost shock is fully adjusted when in state c = cL

all critical consumers search, that is, when µ∗ = µ̄. According to this logic, the lowest

price across periods results when c = cL and all critical consumers search, i. e. µ∗ = µ̄,

whereas the highest possible price results when c = cH and no critical consumer sear-

ches, i. e. µ∗ = µ.

The asymmetry in price adjustments in response to positive and negative cost

shocks is summarized in the following propositions.

Response to Positive Cost Shock: If a positive cost shock occurs in period t+ 1 and persists

thereafter, then, regardless of Ft+1(α̂),

Ft+2(α̂) = 0 (2)

and

µ∗t+2 = µ. (3)
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In other words, regardless of previous history, if the cost states ct = cL and ct+1 = cH =

ct+2 are realized in the periods t, t + 1, and t + 2, prices fully adjust to the highest level

in period t+ 2, that is, within two periods, ultimately because in period t+ 2 no critical

consumer searches anymore: Ft+2(α̂) = 0.

The intuition for this result is as follows: While in period t + 1 only a fraction

of firms adjust their prices upward, those critical consumers who search immediate-

ly learn that the cost realization is cH and thus stop searching in period t + 2. Non-

searchers among the critical consumers remain non-searchers if they happen to ob-

serve a higher price in t + 1 and, hence, learn that the cost state is cH. Likewise, if

non-searchers happen to observe a low price in t + 1, they remain non-searchers, as

they do not observe a change in price. Aggregating over all critical consumers, search

intensity then reaches its lower bound in t + 2: µ∗t+2 = µ, and, hence, all firms pass on

the higher cost in period t + 2.

Response to Negative Cost Shock: If a negative cost shock occurs in period t + 1 and

persists thereafter, then1

Ft+2(α̂) =
µβ

k− β + µβ
< 1 (4)

and

µ∗t+2 < µ̄. (5)

The latter result implies that prices do not fully adjust downward within two

periods, as the search intensity does not reach its upper bound µ̄ in period t + 2, just

because not all of the critical consumers are searching in t + 2: Ft+2(α̂) < 1.2 Instead,

1This proposition is based on the following transition equation for the beliefs of critical consumers:

if ct = cL: Ft+1(α̂) = Ft(α̂) +
µ∗t β

k− β + µ∗t β
[1− Ft(α̂)],

where µ∗t β
k−β+µ∗t β is the proportion of firms that charge the lowest price. This result is intuitive: The fraction

Ft+1(α̂) of searchers among critical consumers in period t + 1 is the sum of the respective fraction Ft(α̂)

in period t plus a fraction of the proportion 1− Ft(α̂) of non-searchers who happen to be customers of

those firms that charge the lowest price in t.
2Note that Ft+2(α̂) =

µβ

k−β+µβ is lower than unity because it is assumed that k > β.
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this proposition implies that prices decrease gradually upon a persistent negative cost

shock ct = cH, ct+1 = cL = ct+2. The underlying reason is that in period t + 1 only

those critical consumers who happen to observe the lower price learn the true cost

state ct+1 = cL and start searching in period t + 2. Consumers who observe the high

price do not learn the true cost state cL and remain non-searchers in t + 2. In short,

not all critical consumers search in t + 2 and, hence, µ∗t+2 < µ̄. In other words, it takes

longer than two periods for prices to fully adjust downward.

In sum, according to this theoretical background, the major reason underlying

price asymmetry is the disparity in learning between searchers and non-searchers: the

group of searchers learns the current cost state quicker than non-searchers, leading to

a differential adjustment in search intensity. Most notably, searchers immediately learn

about a positive cost shock and stop searching, leading to a quick price adjustment,

whereas the group of non-searchers slowly learns about a negative price shock and

this group only gradually increases search intensity, leading to a decelerated price ad-

justment.

Increased transparency in the market, as e. g. induced by the introduction of a

legally mandated on-line price portal, may increase the proportion λ1 of low-search-

cost consumers, as the cost and barriers to searching decrease. Furthermore, with the

introduction of such a price portal, the perceived quality of the information increases,

in turn raising the benefit-cost ratio of searching.

Yet, the model implies that an increase in the proportion λ1 of low-search-cost

consumers does not affect price adjustments in response to positive cost shocks, but

only to negative shocks. Recalling that µ = λ1, this can be seen from equation (4),

from which follows that the number of critical consumers who search is higher with a

larger λ1 and, hence, the downward price adjustment in response to a negative shock

is faster. This leads to a less pronounced pattern of asymmetric pricing. Based on these

theoretical considerations, in what follows, we empirically test the hypothesis that the

introduction of the price portal leads to a faster adjustment in response to a negative

cost shock and a reduced asymmetry in price adjustment.
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3 Data

The data used for this analysis comprises two variables, daily retail fuel prices for E10,

a 10% bioethanol fuel mixture, and the wholesale price of refined fuel out of Rotterdam,

where one of the major pipelines into Germany originates. Data on daily refined prices

was taken from the EID, a trade magazine.3

Data on retail daily fuel prices was drawn from two sources. One was established

as of December 2013, when legislation required stations to post prices on an on-line

portal, referred to as the Market Transparency Unit for Fuels (MTU).4 In addition to

fuel prices, the MTU records sundry station characteristics, such as the station’s geo-

graphical coordinates, brand name, and opening hours. This information allows con-

sumers who visit the site to assess price offerings in their vicinity. To access the data,

we wrote a script that continuously retrieves entries from the site and stores these on a

server (FRONDEL et al. , 2016). From the raw data, a panel of daily station-level prices

for E10 was created for the approximately 14,000 filling stations in Germany over a 23-

month interval from January 2014 through November 2015. The accuracy of the MTU

data is high, and it has served as the basis for a growing body of research that analyzes

fuel price setting in Germany (e.g. FRONDEL et al. , 2016; LESAGE et al. , 2017).

To pursue our aim of comparing how price setting changed for individual sta-

tions before and after the introduction of the MTU, we draw on another data set that

was assembled by KIHM et al. (2016) covering the 23-month interval from January 2012

through November 2013. This data set comprises retail fuel prices retrieved from the

site www.clever-tanken.de, which is currently one of a handful of sites in Germany that

publishes real time data from the MTU. Prior to the MTU, the Clevertanken site relied

on price postings voluntarily provided by customers of the stations via mobile apps.

KIHM et al. (2016) created a panel of daily fuel prices from these postings covering

13,701 stations, i. e. about 95% of the market.
3For more information on the Energie Informationsdienst (EID), see http://www.eid-aktuell.de/.
4For more information on the Market Transparency Unit (MTU) for Fuels, see http://www.

bundeskartellamt.de/EN/Economicsectors/MineralOil/MTU-Fuels/mtufuels_node.html.
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In assembling the data used in the present analysis, we sought to ensure that an

identical set of stations appears in the pre and post MTU periods. To this end, we we-

re able to unambiguously match about 9,410 stations in the Clevertanken and MTU

data sets by linking the street addresses provided in the former with the geographi-

cal coordinates provided in the latter. We eliminated another 3,760 stations from the

Clevertanken data owing to spotty temporal coverage, which particularly applied to

smaller independent stations that registered fewer app readings from customers. The

resulting sample of 5,650 stations, which are observed both before and after the intro-

duction of the MTU, is consequently over-represented by major brands, which compri-

se about 60% of the sample. While our intention here is to focus our analysis on data

for comparable time periods before and after the introduction of the price portal, we

have confirmed the robustness of our empirical results for the post-portal period by

incorporating more recent price data until July 31, 2017.

To assess the accuracy of the Clevertanken data, KIHM et al. (2016) compared

the data with price postings from the German automobile club ADAC and found a

strong correlation, confirming ATKINSON’s (2008) conclusion that internet data can be

reliable for answering questions requiring daily station prices. Further evidence for the

accuracy of the Clevertanken data is seen by comparison with the MTU data. Figure

1 shows the recorded price trajectories for an interval when the two data sets briefly

overlapped between September 21 and November 21, 2013, which corresponds to a

test period of the MTU before its official launch. The figure additionally includes the

trajectory of the cost variable used in our analysis, the wholesale price of refined fuel

out of Rotterdam. The correspondence between the Clevertanken and MTU data is

tight, with a correlation coefficient of 99.7%. While the price level of the MTU is slightly

lower throughout the interval, the difference varies on average by less than 1%.

Figure 1 also reveals a high correlation between retail and wholesale fuel prices.

The results of an augmented Dickey-Fuller test (not shown) indicate that both series are

integrated of order one. For each station in the data, we additionally established that

the gasoline and refinery price series are cointegrated using the approach of ENGLE

and GRANGER (1987).
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Figure 1: Refinery prices and retail prices reported by Clevertanken and the MTU.
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4 Methodological Issues

To model the transmission of refinery prices, PC, to gasoline prices, PG, we follow

BACHMEIER and GRIFFIN (2003:773) and estimate a standard ECM:

∆PGt =
k

∑
i=0

βci∆PCt−i +
n

∑
i=1

βgi∆PGt−i + θzt−1 + εt, (6)

where βci and βgi measure the short-run impact of refinery prices and lagged gasoline

prices, respectively. θ is the long-run equilibrium parameter and

zt = PGt − γ0 − γ1PCt (7)

measures the long-run disequilibrium between gasoline and refinery prices. γ1 reflects

the long-run effect of a permanent change in refinery prices. In line with LESAGE et al.

(2017), ∆PGt and ∆PCt are defined as changes from the same day last week to eliminate

day-of-the-week pricing variation: ∆PGt := PGt − PGt−7 and ∆PCt := PCt − PCt−7.

As we have empirically found that the PC and PG time series are cointegrated,

the long-run relationship follows a stationary process, as well as the other regressors
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in (6). Hence, inference on functions of the coefficients, such as the impulse response

function (IRF), is standard.

As derived in detail by FRONDEL et al. (2016), based on BORENSTEIN et al. (1997),

the general formula for the impulse response function IRFt reads for t = j:

IRFj = βcj +
j

∑
i=1

βgi(IRFj−i − IRFj−i−1) + θ(IRFj−1 − γ1) + IRFj−1. (8)

It bears noting that βcj = 0 if j > k and
j

∑
i=1

βgi(IRFj−i − IRFj−i−1) =
n
∑

i=1
βgi(IRFj−i −

IRFj−i−1) if j > n. Finally, the long-term equilibrium IRF := limk→∞ IRFk is given by

IRF = γ1, as can be seen from formula (8) by setting IRFj = IRF for all j.

In case of asymmetry, instead of ECM (6), the following asymmetric ECM has to

be estimated:

∆PGt =
k

∑
i=0

[β+
ci ∆PC+

t−i + β−ci ∆PC−t−i]+

n

∑
i=1

[β+
gi∆PG+

t−i + β−gi∆PG−t−i] + θ+z+t−1 + θ−z−t−1 + εt,

(9)

where z+t := max{zt, 0}, z−t := min{∆zt, 0}, ∆PC+
t := max{∆PCt, 0}, ∆PC−t :=

min{∆PCt, 0}, and ∆PG−t and ∆PG−t are defined similarly. The distinction between

the coefficients β+
ci and β−ci , as well as β+

gi and β−gi and θ+ and θ−, respectively, allows

an asymmetric response to changes in refinery prices and the error correction term.

For an initial refinery price increase, all of the coefficients βci and βgi emerging in

equation (8) are replaced by β+
ci and β+

gi, respectively:

IRF+
j = β+

cj
+ IRF+

j−1 + θ+(IRF+
j−1 − γ1)+

j

∑
i=1

(β+
gi max{0, (IRF+

j−i − IRF+
j−i−1)}+ β−gi min{0, (IRF+

j−i − IRF+
j−i−1)}).

(10)

Similar adjustments are made for an initial refinery price decrease.

11



5 Empirical Results

After determining the optimal lag lengths of k and n using the Bayes information cri-

terion (BIC), we estimated individual error correction models for each of the 5,650 gas

stations in the data corresponding to the period before and after the establishment of

the MTU. One virtue of this approach is that we control for station-specific fixed effects

such as those related to location, which have been found to be important in the setting

of gas prices (DELTAS (2008), IYER and SEETHARMAN (2008)). Table 1 consolidates the

results of this exercise by presenting the mean-group (MG) estimates, which result

from averaging the estimated coefficients across the stations (PESARAN and SMITH,

1995).

5.1 Model estimates

Although the coefficient estimates from ECM (6) are not straightforward to interpret,

two general patterns can be discerned. First, while all estimates on the adjustment rates

θ+ and θ− to the long-run equilibrium are negative, the higher magnitude of the esti-

mates in the pre-portal period suggests that convergence towards the long-run equi-

librium is faster in this period than in the post-portal period. Second, the coefficients

on the refinery prices have the expected positive signs. Moreover, the estimates of the

coefficients β+
cj

on the positive wholesale price changes are higher in magnitude than

those of the coefficients β−cj
on the negative wholesale price changes in the pre-portal

period, suggesting positive price asymmetry in the price pass-through. This pattern is

reversed in the post-portal period, when negative asymmetry prevails.

Further insight into this distinction can be gained from comparing Figure 2a with

Figure 2b. Figure 2a shows the IRF and associated 95% confidence interval for the pre-

portal period, when the pattern is clearly consistent with the rockets-and-feathers pat-

tern. By the second day, a 1 Euro per liter increase in the refinery cost induces a 0.98

Euro per liter increase in the retail price, after which there is a gradual decrease in the

trajectory until reaching the long-run equilibrium of 0.79 Euro by day ten. By contrast,
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Table 1: Mean-Group Estimation Results for the Asymmetric ECM (9) prior to and

after the Introduction of the MTU

Pre-Portal Post-Portal

Coeff. s Std. Errors Coeff. s Std. Errors

θ+ -0.562∗∗ (0.0020) -0.224∗∗ (0.0018)

θ− -0.495∗∗ (0.0021) -0.202∗∗ (0.0013)

β+
c0 0.559∗∗ (0.0019) 0.318∗∗ (0.0012)

β−c0 0.434∗∗ (0.0018) 0.432∗∗ (0.0010)

β+
c1 0.355∗∗ (0.0020) 0.306∗∗ (0.0014)

β−c1 0.065∗∗ (0.0017) 0.348∗∗ (0.0013)

β+
c2 0.133∗∗ (0.0019) 0.082∗∗ (0.0013)

β−c2 0.030∗∗ (0.0017) 0.196∗∗ (0.0009)

β+
g1 -0.106∗∗ (0.0016) -0.241∗∗ (0.0017)

β−g1 -0.180∗∗ (0.0016) -0.295∗∗ (0.0016)

β+
g2 -0.019∗∗ (0.0013) -0.090∗∗ (0.0012)

β−g2 -0.058∗∗ (0.0013) -0.016∗∗ (0.0010)

Constant 0.047∗∗ (0.0020) -0.070∗∗ (0.0007)

Number of stations 5,650 5,650

Note: Standard errors are in parentheses. ∗ denotes significance at the 5%-level and
∗∗ at the 1%-level, respectively.

a 1 Euro per liter decrease in the refinery price induces only a 0.68 Euro per liter de-

crease in the retail price by the second day. The adjustment duration until the long-run

equilibrium for a negative cost shock likewise takes ten days.

Presenting the IRF and 95% confidence interval for the post-portal period, Figure

2b indicates a reverse pattern characterized by negative asymmetry. A 1 Euro per liter

increase in the refinery price is matched by a 0.32 Euro per liter increase in the refinery

price after the first day, rising to 0.65 Euro by the second and third day. The continuing

adjustment until the long-run equilibrium of 0.78 Euro now reaches about 24 days.

Conversely, a 1 Euro per liter decrease in the refinery price induces a 0.43 Euro decrease

in the retail price the first day, peaking at an 0.83 Euro decreases by the third day, after

which adjustment towards the long-run equilibrium is nearly complete by day seven.
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Figure 2: Impulse Response Functions for the Pre- and Post Portal Period
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Concerning the adjustment to a negative cost shock, this change in the asymmetry

pattern is consistent with the hypothesis derived from the theoretical model. Indeed,

the relative speed of the price adjustment to a negative cost shock is quicker after the

introduction of the MTU: It seems that more consumers are searching after the intro-

duction, which induces firms to pass on price reductions faster, even given the overs-

hooting at day three along the path to the long-run equilibrium. On the other hand,

we also see a change in the adjustment to a positive cost shock, which is at odds with

the theoretical predictions: The price adjustment after a positive cost shock is slower

after the introduction of the MTU. In fact, contrasting with the pre-portal period, the

price-adjustment in the post-portal period undershoots the long-rung equilibrium in

the days following the shock (see Figure 2).

5.2 Influence of branding

The question arises as to whether these patterns hold across branded and unbranded

stations. While numerous studies have found that large brands can demand signifi-

cantly higher prices than unbranded gas stations (for example BARRON et al. (2000)),

few have explored differences in the pass-through of cost shocks across fuel or sta-
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tion types. Exceptions are BAJO-BUENESTADO’s (2017) analysis of for four types of

fuels from 38 gas stations located in Northern Spain and VERLINDA’s (2008) study of

the retail gas market in Southern California, which compares the impulse response

functions for branded and unbranded stations. This comparison is motivated by the

expectation that branding is associated with greater market power via the relatively

lower demand elasticity of brand customers. VERLINDA finds that the maximum diffe-

rence in the degree of asymmetry between branded and unbranded stations amounts

to about 14 cents, which he cautiously interprets as weak evidence supporting tacitly

cooperative price setting from branding.

Having estimated an ECM for each station individually, we can readily follow

VERLINDA’s lead by calculating impulse response functions for subsets of stations, an

exercise that reveals a highly homogeneous pattern across groups. For illustrative pur-

poses, we focus here on a comparison between the Aral stations (n=1862), the brand

with the highest market share in Germany, Shell stations (n=1393), the brand with the

highest market share globally, and unbranded stations (n=2288). Figure 3 and 4 shows

pairwise comparisons of the IRFs for these groups before and after the introduction of

the price portal. The shape of the curves is very similar to those of Figure 2, with positi-

ve asymmetry in the pre-portal period for all Aral, Shell, and unbranded stations, and

negative asymmetry in the post-portal period. Referring to Figure 3, differences in the

IRFs between Aral and Shell are hardly discernible in both periods. For the pre-portal

period, Figure 4 indicates that the overshooting of the IRF for Aral appears slightly

more pronounced than that of the unbranded stations.

To pursue this further, Figure 5 plots the degree of asymmetry between Aral and

the unbranded stations, which results from subtracting the IRF corresponding to a ne-

gative shock from that corresponding to a positive shock. This figure reveals that the

response to shocks is highly similar across the Aral- and the unbranded stations. In

the pre-portal period, the maximum difference between the two curves occurs at day

two and amounts to only four cents, or about 5.8% of the pre-tax retail fuel price of 68

cents. The maximum difference is even smaller in the post-portal period, reaching 2.4

cents at day eight, which amounts to 4.3% of the pre-tax fuel price of 55 cents. By way
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Figure 3: IRF for the Pre- and Post Portal Period, Aral and Shell
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Figure 4: IRF for the Pre- and Post Portal Period, Aral and Unbranded
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of comparison, the corresponding figure that can be derived from VERLINDA’s results

is considerably higher, at about 11%.5 Taken together, these results suggests that the

difference in price pass through between branded and unbranded stations in Germany

is relatively small, and declined even further with the introduction of the price portal.

Figure 5: Degree of Asymmetry by Branding for the Pre- and Post Portal Period
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5.3 Welfare implications

A final question concerns what these patterns imply for consumers. BORENSTEIN et

al. (1997) suggest a simple analytical approach for addressing this question, which in-

volves integrating the difference between the two response functions over the entire

adjustment process:

∆ Consumer Cost =
n∫

j=0

(IRF+
j − IRF−j ). (11)

Referring to the results for entire sample from the pre-portal period (Figure 2a),

when positive asymmetry prevails, this integral yields the extra costs to consumers

5We calculate this figure by dividing VERLINDA’s estimated difference of 14 cents by the pre-tax price

of gas in California in 2003 of 130 cents (Lockyer 2004).
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relative to the case of a symmetric price response, while for the post-portal period

(Figure 2b), when negative asymmetry prevails, it yields the savings. Turning first to

the former case, we calculate that a 1 cent per liter increase in the refinery price would

have resulted in a 0.27 cent per liter extra cost, while a 1 cent per liter decrease would

have resulted in a 0.71 cent pert liter extra cost in the pre-portal period. For a consumer

whose daily consumption is 6 liters, this implies that the rockets phenomenon costs

1.63 cents while the feathers phenomenon costs 4.21 cents over the whole adjustment

time.

By contrast, in the post-portal period, our calculations suggest that relative to

a situation of symmetric price responses, consumers enjoy a cost saving of 1.46 cent

given a 1 cent per liter increase in the refinery price, and incur a cost of 0.3 cents given

a 1 cent per liter decrease in the price.6 Given a daily consumption of six liters, over

the whole adjustment time these figures translate into a saving of 8.77 cents and a cost

of 1.79 cents, respectively. We thereby conclude that on net, the portal has contributed

to welfare gains for consumers.

6 Summary and Conclusion

Concerns about market power in the German gasoline market led to the establishment

of a publicly accessible on-line price portal in December 2013, at which gasoline retai-

lers are legally obligated to post fuel prices in real time. By increasing market transpa-

rency for consumers, it was hoped that the portal would promote competition among

stations. Drawing upon a unique data set of daily fuel prices for over 5,000 stations that

covers two periods, a period prior to the introduction of the portal, from January 2012

until November 2013, and a second nearly adjacent period covering January 2014 until

May 2015, this article has investigated the pass-through of refinery prices, the primary

cost factor for fuel retailers.
6This latter effect emerges despite the overshooting in the IRF by day three, and owes to the unders-

hooting in the IRF over days one and two.
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Drawing on the search cost model developed by YANG and YE (2008), we have

tested the model’s implication that if the net expected benefit of acquiring informati-

on increases, the adjustment of retail prices to a negative cost shock will be faster. By

estimating impulse response functions for standard error correction models, we ha-

ve explored whether the price setting behavior of retail gas stations in Germany has

changed following the introduction of the price portal.

Two principle findings emerge from our analysis. First, we do not uncover econo-

mically significant differences in the pricing response of branded (Aral and Shell) and

unbranded fuel types to cost shocks, either before or after the introduction of the price

portal. Second, we find that prior to the portal’s introduction, a time during which an

informal system existed for posting prices on-line via mobile apps, positive asymmetry

prevailed, with prices following the rockets-and-feathers pattern frequently documen-

ted for retail fuel markets. This results in extra costs incurred by consumers relative to

the case of price symmetry.

In the aftermath of the portal’s introduction, by contrast, negative asymmetry

is observed. Fuel price decreases in response to refinery price decreases are stronger

than fuel price increases due to refinery price increases, which results in cost savings

to consumers. Although our analysis does not isolate a causal role of the portal in

this reversal in price pass-through, it does demonstrate that the period following the

portal’s introduction was marked by welfare gains for consumers.
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