
SFB 
823 

Consistency for the negative 
binomial regression with fixed 
covariate 

D
iscussion P

aper 

 
Rafael Weißbach, Lucas Radloff 
 
 

 
Nr. 26/2018 

 
 
 
 
 
 
 
 



 



Consistency for the Negative Binomial Regression with

Fixed Covariate

Rafael Weißbach and Lucas Radloff∗

Chair in Statistics and Econometrics, University of Rostock, Germany

Abstract

We model an overdispersed count as a dependent measurement, by means of

the Negative Binomial distribution. We consider quantitative regressors that

are fixed by design. The expectation of the dependent variable is assumed to

be a known function of a linear combination involving regressors and their co-

efficients. In the NB1-parametrization of the negative binomial distribution,

the variance is a linear function of the expectation, inflated by the dispersion

parameter, and not a generalized linear model. We apply a general result of

Bradley and Gart (1962) to derive weak consistency and asymptotic normal-

ity of the maximum likelihood estimator for all parameters. To this end, we

show (i) how to bound the logarithmic density by a function that is linear

in the outcome of the dependent variable, independently of the parameter.

Furthermore (ii) the positive definiteness of the matrix related to the Fisher

information is shown with the Cauchy-Schwarz inequality.
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1. Introduction

When modelling count data, overdispersion occasionally prevents applying

a Poisson regression. Examples include numbers of sick pupils in schools

(Weißbach et al., 2015), of insolvencies in credit portfolios (Weißbach et al.,

2009) or of bookings on diverse occasions in a business context. Overdis-

persion is commonly modelled with a negative binomial distribution (see

Cameron and Trivedi, 2008, Chap. 3). Different parametrizations of this

distribution result from different relations between the expectation and the

variance. In the NB1-model, the variance is linear in the expectation. As a

consequence, it can not be represented as a member of the linear exponential

family, and, hence, is not included in the class of generalized linear models

(GLM) (see Cameron and Trivedi, 2008, Sec. 3.3). In contrast, in the NB2-

model the relation is quadratic and it is a GLM, but only if one assumes the

dispersion parameter to be known (see Hilbe, 2011, Chap. 8). Parametriza-

tions with other polynomial relations are also reported (see Winkelmann,

2000, Sec. 2.3).

In this paper, we establish consistency of the maximum likelihood estima-

tor (MLE) for the NB1-regression-model in the case of fixed covariates, i.e.

when the regressors are deterministic vectors instead of random variables.

A less efficient method, but more robust to modell misspecification is the

method of moments, with asymptotic properties discussed in Moore (1986).

The central limit theorems for identically distributed random variables do

not apply. If a Poisson regression were applicable, consistency in the case

of fixed covariates could have been derived using results from Fahrmeir and

Kaufmann (1985). They provide conditions for the consistency of the MLE,

as the Poisson regression is a GLM. In order to prove consistency in such

a case of independent, but not identically distributed observations, Kremer

et al. (2014) exploit of the concavity of the criterion function. In contrast,
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as classically done, we use properties of the densities’ derivatives. For the

NB1-model, we apply a theorem of Bradley and Gart (1962) and validate the

provided conditions. It should be mentioned, that the method of proof also

applies to the Poisson regression, for which the derivatives are fairly simple

and the representations of Fisher matrices are explicit.

2. Model and Notation

2.1. Negative binomial distribution

The negative binomial distribution is a discrete distribution for which several

parametrizations are possible (see Johnson et al., 2005, Chap. 5). Through-

out this paper, we will work with the following definition, which is usually

referred to as the NB1-model:

Definition 1. We call a probability distribution with the probability mass
function

f(y;λ, σ) =
Γ(λ

σ
+ y)

y!Γ(λ
σ
)

(
1

1 + σ

)λ
σ
(

σ

1 + σ

)y
, y ∈ N0 (1)

a negative binomial distribution with parameters λ > 0 and σ > 0. It is
denoted by NB(λ, σ).

For X ∼ NB(λ, σ) we have (see Winkelmann, 2000, Sec. 2.3.1)

EX = λ and V ar(X) = λ(1 + σ).

The dispersion parameter σ scales the variance, linearly dependent on λ.

Clearly, we have EX < V ar(X), which constitutes modelling overdispersion.

In contrast, the Poisson model with EX = V ar(X) arises for σ → 0.

It will occasionally prove helpful to rewrite

Γ(a+ y)

Γ(a)
=

y−1∏
j=0

(a+ j) ∀a ∈ R+, y ∈ N. (2)
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2.2. Regression model and further assumptions

Let Yi, i ∈ N, be random variables defined on the probability space (Ω,A, P )

which describe the count data. Further let zi = (zi1, ..., zip)
T ∈ Z ⊂ Rp, i ∈

N, denote the deterministic covariate vectors. The negative binomial regres-

sion model is defined by the following assumptions.

NBR1 The random variables Yi, i ∈ N, are stochastically independent.

NBR2 Yi ∼ NB(λ0
i , σ0), i ∈ N. (Hence, the dispersion parameter σ0 ∈ S ⊂ R+

is identical for all i ∈ N.)

NBR3 The expected values are given by the equations

λ0
i = EYi = g(zi,β0), i ∈ N, (3)

where g is a function to be specified and β0 ∈ B ⊂ Rp is an unknown

parameter vector.

We consider the infinite sequence of random variables (Yi)i∈N, but for the

estimation of parameters always only a finite sample Y1, ..., Yn is available.

We are interested in the asymptotic behaviour of the maximum likelihood

estimator when increasing the sample size, i.e. the case n→∞. In order to

establish weak consistency, and asymptotic normality later in this paper, we

introduce some further assumptions:

CN1 The set Z of all possible regressor outcomes is compact. The sets B

and S ⊂ (0,∞) of all possible parameters are compact intervals of the

corresponding dimensions.

CN2 The equation (3) has the special form

λ0
i = EYi = g(zi

Tβ0), i ∈ N, (4)

where g : G −→ R+ with G := {zTβ ∈ R|z ∈ Z,β ∈ B} is a three

times continuously differentiable function of which the first derivative

has no zeros. In particular, it is strictly monotonous.
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CN3 Denote by λmin[A] the smallest eigenvalue of the matrix A. For the

sequence of regressors (zi)i it is valid that

lim inf
n→∞

1

n
λmin

[
n∑
i=1

ziz
T
i

]
> 0. (5)

CN4 For all open sets A ⊂ Z there is a cA ∈ [0, 1], such that

1

n

n∑
i=1

1A(zi) −→
n→∞

cA.

The more specific model equation (4) contains the standard choice

g(z,β) = exp(zTβ).

Assumption CN3 was inspired by Fahrmeir and Kaufmann (1985), who pro-

pose a similar condition in the context of a generalized linear model. Here,

it ensures the asymptotic occurrence of the deterministic regressors (zi)i. In

order to see that such requirements are necessary, consider, for example, a

0-1-valued covariate. If this regressor, for n → ∞, is zero or one only for

a finite number of times, a parameter that describes the difference between

occurrence and non-occurrence cannot be estimated consistently. To render

the argument explicit, note that CN3 is actually not fulfilled in such a case.

Let p = 2, with the first covariate being constantly one and a 0-1-valued

second, i.e. zi = (1, zi)
T with zi ∈ {0, 1}. Using the notation kn :=

∑n
i=1 zi

for the number of ones occuring until n we obtain

ziz
T
i =

1 zi

zi z2
i

 =

1 zi

zi zi

 and thus
n∑
i=1

ziz
T
i =

 n kn

kn kn

 .

Therefore, the smallest eigenvalue of
∑n

i=1 ziz
T
i can be calculated by:

λmin

[
n∑
i=1

ziz
T
i

]
=
n+ kn

2
−
√

(n+ kn)2

4
− (nkn − k2

n)

=
1

2

(
n+ kn −

√
(n− kn)2 + 4k2

n

)
≤


1
2

(
n+ kn −

√
(n− kn)2

)
= kn

1
2

(
n+ kn −

√
4k2

n

)
= 1

2
(n− kn)
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Thus the sequence of the smallest eigenvalues is actually bounded if kn or

n − kn is bounded and therefore, CN3 is not fulfilled. Condition CN4 is

another claim to the asymptotic behaviour of the sequence of determinis-

tic covariables. It ensures a property that would have been guaranteed for

stochastic regressors by the law of large numbers.

In the following analysis, we assume Conditions NB1-3 and CN1-4 to hold.

Often, we will use the notation θ := (β, σ) for a complete parameter vec-

tor (respectively θ0 := (β0, σ0) for the complete true parameter vector) and

Θ := B×S for the corresponding parameter space. fi(·;θ), i ∈ N, will denote

negative binomial densities with expectation parameters λi = g
(
zTi β

)
and

dispersion parameter σ. Hence, fi(·;θ0) is the probability mass function of

Yi. The model is smooth in the following sence.

Lemma 1. For all i ∈ N, for all y ∈ N0, for all θ ∈ Θ and for all j, k, l =
1, ..., p+ 1 the following partial derivatives exist,

∂ ln fi
∂θj

,
∂2 ln fi
∂θj∂θk

, and
∂3 ln fi
∂θj∂θk∂θl

.

Proof: Considering (1), (2) and condition CN2, one can easily see that

ln fi, i ∈ N, are compositions of sufficiently often differentiable functions of

the parameters and thus sufficiently often differentiable themselves. �

2.3. Maximum likelihood estimation

Using (1) and (2) we obtain the log-likelihood function:

L(β, σ;y) =
n∑
i=1

[
yi−1∑
j=0

ln

(
λi
σ

+ j

)
− ln(yi!)−

(
yi +

λi
σ

)
ln(1 + σ) + yi ln(σ)

]

=
n∑
i=1

[
yi−1∑
j=0

ln

(
g(zi

Tβ)

σ
+ j

)
− ln(yi!)

−
(
yi +

g(zi
Tβ)

σ

)
ln(1 + σ) + yi ln(σ)

]
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This will be maximized with respect to β and σ simultaneously, so that the

maximum likelihood estimator is defined as

(β̂, σ̂) := arg max
β,σ

L(β, σ;y).

It is necessary for the estimators to solve the likelihood equations (using the

chain rule):

∂L(β, σ;y)

∂σ
=

n∑
i=1

[
yi−1∑
j=0

− λi
σ2

λi
σ

+ j
+
yi
σ
− yi

1 + σ
− λi
σ(1 + σ)

+
λi
σ2

ln(1 + σ)

]∣∣∣∣
λi=g(ziTβ)

=
n∑
i=1

[
−

yi−1∑
j=0

λi
λiσ + jσ2

+
yi − λi
σ(1 + σ)

+
λi
σ2

ln(1 + σ)

]∣∣∣∣∣
λi=g(ziTβ)

!
= 0

∂L(β, σ;y)

∂βk
=
∂L(β, σ;y)

∂λi

∣∣∣∣
λi=g(ziTβ)

· ∂λi
∂βk

=
n∑
i=1

[
yi−1∑
j=0

1

λi + jσ
− ln(1 + σ)

σ

]∣∣∣∣∣
λi=g(ziTβ)

· g′
(
zi
Tβ
)
zik

!
= 0, k = 1, ..., p (6)

They do not have closed-form solutions, but are accessible by numerical meth-

ods.

3. Weak Consistency

3.1. Smoothness properties

Lemma 2 will help to prove ones, and claims that the partial derivatives of

the log-densities are bounded by a linear function in y. Broadly speaken it

ensures condition (D) from Wald (1949) in the notation of (Gourieroux and

Monfort, 1995, Sec. 24.2).

Lemma 2. For k = 1, 2, 3 and l1, ..., lk ∈ {1, ..., p + 1} there are constants
C,D <∞ independent of i ∈ N and θ ∈ Θ, such that∣∣∣∣∂k ln fi(y;θ)

∂θl1 . . . ∂θlk

∣∣∣∣ ≤ Cy +D, y ∈ N0.
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For k > 3, the statement remains valid as long as continuous derivatives of
the respective order exist, which basically depends on the differentiability of
g.

For this lemma and for all other lemmas in the sequel with no display of the

proof in the body of the paper, proofs are provided in Appendix A.

Lemma 3. (1) For all i ∈ N and j, k = 1, ..., p+ 1 the function series

∞∑
y=0

∂fi(y,θ)

∂θj
and

∞∑
y=0

∂2fi(y,θ)

∂θj∂θk

converge uniformly in θ ∈ Θ.
(2) For all i ∈ N and j, k, l = 1, ..., p + 1 there are functions Hijkl(y), inde-
pendent of θ, and constants Mi, only dependent on i, such that∣∣∣∣∂3 ln fi(y,θ)

∂θj∂θk∂θl

∣∣∣∣ < Hijkl(y) with
∑
y∈N0

Hijkl(y)fi(y) < Mi.

(3) Furthermore there is a finite number M , such that for all n ∈ N

1

n

n∑
i=1

Mi < M.

Proof: (1): Using the chain rule, the generalized product rule and formula

(2) as the first partial derivative of the density with respect to σ there arises

∂fi(y;β, σ)

∂σ
=

1

y!

[(
1

1 + σ

)λi
σ
(

σ

1 + σ

)y y−1∑
j=0

−λi
σ2

∏
k 6=j

(
λi
σ

+ k

)

+
Γ(λi

σ
+ y)

Γ(λi
σ

)

(
1

1 + σ

)λi
σ

y

(
1

(1 + σ)2

)y−1

+
Γ(λi

σ
+ y)

Γ(λi
σ

)

(
σ

1 + σ

)y (
ln(1 + σ)

λi
σ2
− 1

1 + σ

λi
σ

)(
1

1 + σ

)λi
σ

]
.

As finite sums of uniformly converging sequences of functions are uniformly

converging, we can examine the summands separatly. Indeed, we will only

investigate the first summand in detail here, because the arguments are very

similar for the others. The same applies to the derivatives with respect to
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βj, j = 1, ..., p and the partial derivatives of second order.

According to the Weierstrass criterion (e.g. Amann and Escher (2005), The-

orem V.1.6) it suffices to proof the convergence of the supremum norms (on

Θ). Denoting the first summand with (I) we obtain:

|(I)| (i)
=

1

y!

(
1

1 + σ

)λi
σ
(

σ

1 + σ

)y y−1∑
j=0

λi
σ2

Γ(λi
σ

+ y)

Γ(λi
σ

)

1
λi
σ

+ j

(ii)

≤ 1

y!

(
1

1 + σ

)λi
σ
(

σ

1 + σ

)y (
y − 1 +

σ

λi

)
λi
σ2

Γ(λi
σ

+ y)

Γ(λi
σ

)

(iii)

≤ 1

y!
· c · qy (y − 1 + d)

Γ(m+ y)

Γ(m)

In equality (i) we obtain a representation, for which we can apply formula

(2), by multiplying each summand with 1 = λi/σ+j
λi/σ+j

. Inequality (ii) is due to

1/(λi
σ

+j) ≤ 1, j ≥ 1. Using the compactness of B and S in combination with

the continuity of all involved functions, we can find constants 0 < c,m, d <∞

and 0 < q < 1, such that inequality (iii) is valid.

Thus, we have ‖(I)‖∞ ≤ 1
y!
· c · qy (y − 1 + d) Γ(m+y)

Γ(m)
and the corresponding

series converges according to the ratio test (e.g. Amann and Escher (2005),

Theorem II.8.6) since

1
(y+1)!

· c · qy+1 (y + d) Γ(m+y+1)
Γ(m)

1
y!
· c · qy (y − 1 + d) Γ(m+y)

Γ(m)

=
y + d

y − 1 + d
· q · y +m

y + 1
−→ q < 1, y →∞.

Here xΓ(x) = Γ(x+ 1) is used.

(2): According to Lemma 2, there are constants Cjkl, Djkl independent of i

such that ∣∣∣∣∂3 ln fi(y,θ)

∂θj∂θk∂θl

∣∣∣∣ ≤ y · Cjkl +Djkl =: Hijkl(y).

Since there is only a finite number of combinations of j, k, l we also find

constants C,D such that

∞∑
y=0

Hijkl(y)fi(y;θ) ≤
∞∑
y=0

(yC +D)fi(y;θ) = λiC +D ≤M =: Mi.
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We can find the constant M , since λi is a continuous function of zi and β

and both are from compact sets. Thus (λi)i is a bounded sequence.

(3): Obviously we have 1
n

∑n
i=1 Mi = 1

n

∑n
i=1 M = M. �

3.2. D-sets

The next lemma shows how we can find an upper bound for certain sets that

will occur afterwards.

Lemma 4. Let hi : N0 → R, i ∈ N, be a sequence of sequences for which
|hi(y)| ≤ Cy + D, y ∈ N0, i ∈ N, with C,D ∈ R. Let further Dn

i := {y ∈
N0 : |hi(y)| > n}. Then there exists a d > 0 and an n0 ∈ N, such that for all
n ≥ n0 and for all i ∈ N:

Dn
i ⊂ {y ∈ N0 : y > d · n}

For the proof of Lemma 6, we need the following lemma.

Lemma 5. Let (ay)y∈N ⊂ (0,∞) be a sequence for which there exists an
y0 ∈ N and 0 < q < 1 such that for all y ≥ y0, ay+1/ay ≤ q, i.e. the
corresponding series converges according to the ratio test. Then, for any
d > 0,

n ·
∞∑

y=ddne

ay −→
n→∞

0.

Lemma 6. For k = 1, 2, 3 and any l1, ..., lk ∈ {1, ..., p + 1} let D
(n)
i1 := {y ∈

N0 :
∣∣∣∂k ln fi(y;θ)
∂θl1 ...∂θlk

∣∣∣ > n}. Then, for all θ ∈ Θ,

n∑
i=1

∑
y∈D(n)

i1

fi(y,θ) = o(1), n→∞.

Here, for real valued sequences (an)n and (bn)n, the o-notation is defined by

an = o(bn), n→∞ :⇔ an
bn
−→
n→∞

0.
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Proof: In each of the cases k = 1, 2, 3 by combination of Lemma 2 and

Lemma 4, we obtain a d > 0, such that for sufficiently large n and all i ∈ N,

we have D
(n)
i1 ⊂ {y ∈ N0 : y > d · n}. Thus, for large n:

n∑
i=1

∑
y∈D(n)

i1

fi(y;β, σ)
(i)

≤
n∑
i=1

∞∑
y=ddne

Γ(λi
σ

+ y)

y!Γ(λi
σ

)

(
1

1 + σ

)λi
σ
(

σ

1 + σ

)y
(ii)

≤
n∑
i=1

∞∑
y=ddne

Γ(m+ y)

y!
Dqy

(iii)
= Dn

∞∑
y=ddne

Γ(m+ y)

y!
qy

(iv)−→
n→∞

0

First, we use the upper bound of the setD
(n)
i1 , derived above, to find inequality

(i). Because of the continuity of λi in zi, the compactness of Z and the

continuity of the summands in λi, constants m, D exist, both independent

of i, such that - with q := σ/(1 + σ) < 1 - inequality (ii) is valid. As the

summands are now independent of i, we can replace the sum by the factor n

(equality (iii)). The sequence
(

Γ(m+y)
y!

qy
)
y

fulfills the prerequisites of Lemma

5, because

Γ(m+y+1)
(y+1)!

qy+1

Γ(m+y)
y!

qy
=
y +m

y + 1
· q −→

y→∞
q < 1,

completing the proof of convergence (iv). �

Lemma 7. For k = 1, 2, 3 and any l1, ..., lk ∈ {1, ..., p + 1} let D
(n)
i2 := {y ∈

N0 :
∣∣∣∂k ln fi(y;θ)
∂θl1 ...∂θlk

∣∣∣ < n}. Then for all θ ∈ Θ

n∑
i=1

∑
y∈D(n)

i2

(
∂ ln fi(y,θ)

∂θl1 . . . ∂θlk

)2

fi(y,θ) = o(n2), n→∞.
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Proof: In each of the cases k = 1, 2, 3 we obtain:

1

n2

n∑
i=1

∑
y∈D(n)

i2

(
∂k ln fi(y;θ)

∂θl1 . . . ∂θlk

)2

fi(y;β, σ) ≤ 1

n2

n∑
i=1

∞∑
y=0

(
∂k ln fi(y;θ)

∂θl1 . . . ∂θlk

)2

fi(y;β, σ)

(i)

≤ 1

n2

n∑
i=1

∞∑
y=0

(yC +D)2 fi(y;β, σ)

(ii)
=

1

n2

n∑
i=1

(C2(λi(1 + σ) + λ2
i ) + 2CDλi +D2)

(iii)

≤ nE

n2
−→
n→∞

0.

The constants C and D, that explain inequality (i), exist according to Lemma

2. Using the known formulas for the expected value and the variance of the

negative binomial distribution mentioned in chapter 2.1, establishes equality

(ii). According to the assumptions, the λi are bounded across all i, so that the

summands are bounded from above by a constant E, which is independent

of i. Such constant leads to inequality (iii). �

3.3. Positive definiteness of F

One can form an arithmetic mean from the information matrices of the single

observations. That the limit of the mean, as a sequence in n, exists for our

assumptions, is a result to which the following lemma contributes.

Lemma 8. Let (ai)i∈N be a bounded sequence of real numbers, such that for
any open set A ⊂ R a cA ∈ R exists, such that

1

n

n∑
i=1

1A(ai) −→
n→∞

cA. (7)

Then, for n→∞, a c ∈ R exists with (
∑n

i=1 ai)/n→ c.

For the notation in the proof of Lemma 10, we want to introduce two real-

valued random variables:

Ai := A(Yi, zi,θ) :=g′(zTi β)
∂ ln fi(Yi,θ)

∂λi

=g′(zTi β)

[
Yi−1∑
j=0

σ−1

λiσ−1 + j
− 1

σ
ln(1 + σ)

]

12



and

Ci := C(Yi, zi,θ) :=
∂ ln fi(Yi,θ)

∂σ

=

Yi−1∑
j=0

−λiσ−2

λiσ−1 + j
− 1

1 + σ

(
λi
σ

+ Yi

)
+
λi
σ2

ln(1 + σ) +
Yi
σ

We summarize some of their properties.

Lemma 9. For any θ ∈ Θ, the following statements hold:

(a) EθA2
i and EθC2

i exist.

(b) EθA2
i , EθC2

i and EθAiCi are continuous functions of zi.

(c) (EθA2
i )i and (EθC2

i )i are sequences both bounded from above and away
from zero.

(d) An ε > 0 exists, such that

|EθAiCi| ≤
(
EθA2

iEθC2
i

) 1
2 − ε

for all i ∈ N.

Lemma 10. For j, k = 1, ..., p+ 1 the following limits exist:

F jk(θ) : = lim
n→∞

1

n

n∑
i=1

∑
y∈N0

−∂
2 ln fi(y,θ)

∂θj∂θk
fi(y,θ)

= lim
n→∞

1

n

n∑
i=1

∑
y∈N0

∂ ln fi(y,θ)

∂θj

∂ ln fi(y,θ)

∂θk
fi(y,θ)

The resulting matrix F (θ) := [F jk(θ)]j,k is positive definite and has a finite
determinant.

Proof:

Step 1: Existence of limit: First we note that both versions of the inner series

(which are expected values with respect to the parameter θ) of the sequences

considered in the lemma coincide, which follows from Lemma 3, but will not

be discussed in further detail (see e.g. Bickel and Doksum, 2007, Proposition

3.4.4, for details).
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Using the denotations introduced in front of this lemma, we can describe the

matrix F as follows:

F (θ) = lim
n→∞

1

n

n∑
i=1

zizTi EθA2
i ziEθAiCi

zTi EθAiCi EθC2
i

 ∈ R(p+1)×(p+1), (8)

for which the existence of the limits is still to be proven. Thus, each of the

sequences of interest has the form

1

n

n∑
i=1

ai =
1

n

n∑
i=1

a(zi),

with a function a : Z → R, which is continuous according to Lemma 9 (b).

According to Lemma 8, this sequence converges if, for all open sets A ⊂ R,

there is a cA ∈ [0, 1] such that 1
n

∑n
i=1 1A(ai)→ ca. Since pre-images of open

sets under continuous functions are open and 1A(ai) = 1a−1(A)(zi), this is

the case according to assumption CN4.

Step 2: Positive definiteness: In order to prove the positive definiteness, we

consider an arbitrary vector (x1
T , x2)T ∈ Rp+1 \ {0} and denote ci := zTi x1.

We note that in case of x1 6= 0 = (0, ..., 0)T

lim
n→∞

1

n

n∑
i=1

c2
i = xT1

[
lim
n→∞

1

n

n∑
i=1

ziz
T
i

]
x1 > 0, (9)

because, according to assumption CN3, limn→∞
1
n

∑n
i=1 ziz

T
i is positive def-

inite (the existence of the limit, which is not required in CN3, emerges from

identical arguments to those regarding the existence of F ).

14



We now obtain

(x1
T , x2)F (θ)(x1

T , x2)T = lim
n→∞

1

n

n∑
i=1

(x1
T , x2)

zizTi EθA2
i ziEθAiCi

zTi EθAiCi EθC2
i

x1

x2


= lim

n→∞

1

n

n∑
i=1

[
(xT1 zi)(z

T
i x1)EθA2

i + (xT1 zi)x2EθAiCi

+ (zTi x1)x2EθAiCi + x2
2EθC2

i

]
= lim

n→∞

1

n

n∑
i=1

[
c2
iEθA2

i + 2cix2EθAiCi + x2
2EθC2

i

]
(i)

≥ lim
n→∞

1

n

n∑
i=1

[
c2
iEθA2

i − 2|cix2||EθAiCi|+ x2
2EθC2

i

]
(ii)

≥ lim
n→∞

1

n

n∑
i=1

[
c2
iEθA2

i − 2|cix2|
(√

EθA2
iEθC2

i − ε
)

+ x2
2EθC2

i

]

= lim
n→∞

1

n

n∑
i=1

[(
ci

√
EθA2

i − x2

√
EθC2

i

)2

+ 2|cix2|ε

]
(iii)
> 0.

Here, inequality (i) is due to the rule x ≥ −|x|, x ∈ R, and inequality (ii)

is due to Lemma 9 (d). In order to establish the strict inequality (iii), we

distinguish betweem several cases. In case x2 = 0, we have x1 6= 0 and hence

(9). Together with the boundedness away from zero of (EθA2
i )i, according to

Lemma 9 (c), this provides the inequality. In case x1 = 0, we have x2 6= 0,

and thus the inequality is guaranteed by the boundedness away from zero of

(EθC2
i )i according to Lemma 9 (c). In case of x1 6= 0 and x2 6= 0, we use (9)

and the boundedness of (ci)i (by a constant d > 0) to see that

0 < lim
n→∞

1

n

n∑
i=1

c2
i ≤ d · lim

n→∞

1

n

n∑
i=1

|ci|,

which implies

lim
n→∞

1

n

n∑
i=1

2|cix2|ε = 2|x2|ε · lim
n→∞

1

n

n∑
i=1

|ci| > 0.

Thus, the positive definiteness is shown. The finiteness of the determinant

is clear, since (EA2
i )i, (EC2

i )i and all entries of (zi)i are bounded. �
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3.4. Result

We are now able to establish the weak consistency of the maximum likelihood

estimator.

Theorem 1. Let, for a negative binomial regression, conditions NBR1-3 and
CN1-4 be fulfilled. Further let θ̂ := (β̂, σ̂) denote a solution of the likelihood
equations (6). Then

θ̂
P−→

n→∞
θ0.

Proof: Since the distributions of the different observations differ, dependent

on the fixed covariate, we are in the situation of independent, but not iden-

tically distributed observations. Bradley and Gart (1962) provide conditions

for consistency in such a case. Lemma 1 states that assumption I(i) from the

mentioned paper is fulfilled, and Lemma 3 states the validity of assumption

I(ii). Assumption II(i) is proven by Lemmas 6 and 7, Assumption II(ii) by

Lemmas 6, 7 and 10. The validity of assumption II(iii) is guaranteed by

Lemmas 6, 7 and 3. Thus, we can apply Theorem 2(i) from Bradley and

Gart (1962), which proves our theorem. �

4. Asymptotic Normality

In order to establish the asymptotic normality of the maximum likelihood

estimator, we need to prove one further lemma:

Lemma 11. For all θ ∈ Θ and all ε > 0 let

D
(n,ε)
i3 :=

{
y ∈ N0 :

[∑p+1
j=1

(
∂ ln fi(y,θ)

∂θj

)2
]1/2

> ε
√
n

}
. Then for all θ ∈ Θ

lim
n→∞

1

n

n∑
i=1

∑
y∈D(n,ε)

i3

p∑
j=1

(
∂ ln fi(y,θ)

∂θj

)2

fi(y,θ) = 0.
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Proof: First, we find an upper bound for large n for D
(n,ε)
i3 :

D
(n,ε)
i3

(i)
⊂

y :

(
p+1∑
j=1

(Cjy +Dj)
2

)1/2

> ε
√
n


(ii)
= {y :

(
Cy2 +Dy + E

)
> ε2n}

(iii)
⊂ {y : Fy2 > ε2n} (iv)

= {y : y > d
√
n}

The positive constants Cj and Dj in (i), which do not depend on i, exist

according to Lemma 2. Squaring both sides, expanding the left-hand side

and summarizing the constants leads to equality (ii). Defining F := 2C, (iii)

is valid for sufficiently large n. Defining d := ε√
F

we obtain identity (iv).

Thus, for large n, we obtain

0 ≤ lim
n→∞

1

n

n∑
i=1

∑
y∈D(n,ε)

i3

p+1∑
j=1

(
∂ ln fi(y,θ)

∂θj

)2

fi(y;θ)

(i)

≤ lim
n→∞

1

n

n∑
i=1

∞∑
y=dd

√
ne

(
Cy2 +Dy + E

)
fi(y;θ)

(ii)

≤ lim
n→∞

n

n
F

∞∑
y=dd

√
ne

(Cy2 +Dy + E)
Γ(m+ y)

Γ(m)y!
qy

= 0.

Applying the bound of D
(n,ε)
i3 found before, as well as Lemma 2, leads to

inequality (i). In inequality (ii), we bound the density uniformly across all i

und can thus substitute the sum by the factor n. Again, we have q < 1, and

n/n cancels out. For a fixed starting index, the series converges according

to the ratio test. Thus, the term approaches zero when shifting the starting

index to infinity. �

Theorem 2. We consider the negative binomial regression model including
the conditions NBR1-3 and CN1-4.
Let θ̂ := (β̂, σ̂) denote a solution of the likelihood equations (6). Then

√
n(θ̂ − θ0)

d−→ Z with Z ∼ N
(
0,F (θ0)

−1) ,
where F (θ) is defined in Lemma 10.
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Proof: Lemma 11 states that assumption III from Bradley and Gart (1962)

is also fulfilled in our scenario. Thus, the application of their Theorem 2(iv)

proves asymptotic normality for our model. �

5. Discussion and Conclusion

Practically, in some applications, the counts are events for (latent) subunits

being exposed (see Winkelmann (2000), Sec. 2.1.3, and Dobson (2002), Sec.

9.1). Different kinds of exposed subunits are possible. For instance, a time

period can be of a certain length when counting the number of events, or

a number of people or objects may cause or suffer from certain events. For

instance, a number of people on a ship cruise may - or may not - book one

or more shore leaves. A couple of loans in a bank portfolio or a number

of policies in an insurance portfolio may cause losses. If the amount of ex-

posure is the same for all observed units, it may be normalized to one, as

was implicitly the case in the present model. But if exposure varies between

units, it should be involved in the model as a factor in (3). Under justifiable

assumptions, our proofs are not affected by such factors.

Theoretically, there is an advantage of the NB1-parametrization over the

NB2-one. It is reproducible, i.e. the convolution of two NB1-distributions –

with coinciding dispersion parameters – is a NB1-distribution (see Winkel-

mann, 2000, Proposition 2.3.2). Such a property may facilitate analyzing

data at different levels of aggregation. One should finally note the theoretical

disadvantage that the Poisson regression, i.e. a dispersion parameter equal

to zero, is not nested in our model. Hence, for example a likelihood ratio

test for overdispersion cannot be derived directly from the asymptotic pa-

rameter normality (as in Weißbach and Walter, 2010). However, reasons for

overdispersion such as correlation between subunits or unobserved heterogen-

ity between units are often present beyond doubt, at least for observational

data.
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Appendix A. Proof of Lemmas

Proof of Lemma 2:

Statement 1: The partial derivatives of order k = 1, 2, 3 for ln fi have the

form

∂k ln fi(y;θ)

∂θl1 . . . ∂θlk
=

y−1∑
j=0

a(j,θ, zi) + y · b(θ, zi) + c(θ, zi),

where a is a rational function in j, the degree of the denominator of which is

greater than the degree of the numerator. Let M := Θ×Z. The coefficient

functions of a are continuous on M. In the denominator, the absolut term

is not zero and all non-zero coefficient functions are strictly positive on M.

b and c are continuous functions on M.

Proof of statement 1: For k = 1, the partial derivatives are:

∂ ln fi(y;θ)

∂σ
=

y−1∑
j=0

−λiσ−2

λiσ−1 + j
− 1

1 + σ

(
λ

σ
+ y

)
+
λi
σ2

ln(1 + σ) +
y

σ

∂ ln fi(y;θ)

∂βl
=

[
y−1∑
j=0

σ−1

λiσ−1 + j
− 1

σ
ln(1 + σ)

]
zilg

′(zTi β)

Since λi is continuous in β and zi, the statement is obviuos. The linear

structure in y obviously remains valid after further differentiation. The con-

tinuity of the respective versions of b and c is ensured by assumption CN2.

Using the quotient rule, it is easy to see that the mentioned properties of a

also remain valid after further differentiating.

Statement 2: Let a(j,x),x ∈ X ⊂ Rk be a rational function in j, whose

coefficient functions are continuous on the compact set X . In addition, let

the absolute term function of the denominator be strictly positive and all

coefficient functions of the denominator non-negative on X . Furthermore,

let the degree of the denominator µ be greater than the degree of the nu-

merator λ. Then, there is a constant M , independent of j and x such that

|a(j,x)| ≤M for all j ≥ 0,x ∈ X .
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Proof of statement 2: Using the continuity of the coefficient functions (see

Lemma 1) and the compactness of X , we obtain

max
x∈X
|a(j,x)| = max

x∈X

∣∣∣∣ ∑ν
l=0 al(x)jl∑µ
k=0 bk(x)jk

∣∣∣∣ ≤ max
x∈X

∑ν
l=0 |al(x)|jl∑µ
k=0 bk(x)jk

≤
∑ν

l=0 maxx |al(x)|jl∑µ
k=0 minx bk(x)jk

=:

∑ν
l=0 alj

l∑µ
k=0 bkj

k
=: amax(j).

amax(j) is a rational function in j independent of x. According to the assump-

tions, the denominator has no zeros for j ≥ 0 und thus, amax(j) is defined and

continuous in j on [0,∞). Since µ > λ, we have limj→∞ amax(j) = 0. There-

fore, M := maxj≥0 amax(j), which obviously fulfills the condition claimed in

the statement.

For k ∈ {1, 2, 3} we combine both statements. M from the first statement

corresponds to X from the second. Let M be the constant from statement

2 and bmax := max(θ,zi)∈M b(θ, zi) < ∞, cmax := max(θ,zi)∈M c(θ, zi) < ∞,

which exist because of the compactness ofM and the continuity of b, c. Then∣∣∣∣∂k ln fi(y;θ)

∂θl1 . . . ∂θlk

∣∣∣∣ ≤ y−1∑
j=0

|a(j,θ, zi)|+ y · |b(θ, zi)|+ |c(θ, zi)|

≤ y ·M + y · bmax + cmax =: Cy +D

�

Proof of Lemma 4: W.l.o.g. let C > 0 and define c := 2C. Then, there is

a ỹ ∈ N, such that cy ≥ Cy + D for all y ≥ ỹ. Define n0 := dỹce. Then, for

all n ≥ n0 and all y ≤ ỹ

Cy +D ≤ Cỹ +D ≤ cỹ ≤ n0 ≤ n. (A.1)

Thus, for all n ≥ n0 and all i follows

Dn
i ⊂ {y ∈ N0 : Cy +D > n} (i)

= {y ≥ ỹ : Cy +D > n}
(ii)
⊂ {y ≥ ỹ : c · y > n} ⊂ {y ∈ N0 : c · y > n} (iii)

= {y ∈ N0 : y > d · n}

22



Here, equality (i) is due to n ≥ n0 in connection with (A.1). Since we have

c · y ≥ Cy + D for all y ≥ ỹ, the subset relation (ii) follows. With the

definition d := 1
c
, identity (iii) is clear. �

Proof of Lemma 5: First, we observe that for all y ≥ y0, ay ≤ ay0 ·qy−y0 =:

c · qy. This is easy to prove inductively, because for y = y0, the statement is

clear and for y → y + 1 we obtain

ay+1 =
ay+1

ay
ay

(i)

≤ q · ay
(ii)

≤ q · qy−y0ay0 = q(y+1)−y0ay0 = c · qy+1,

where (i) is due to the prerequisites of the lemma and (ii) due to the induction

hypothesis. Thus, for n ≥ y0
d

we have

n ·
∞∑

y=ddne

ay ≤ c · n ·
∞∑

y=ddne

qy = c · n · q
ddne+1

1− q
≤ c

1− q
· nqdn.

The convergence to zero now follows according to L’Hospital’s rule, since

lim
x→∞

xqdx = lim
x→∞

x

q−dx
= lim

x→∞

1

−d ln(q)q−dx
=

1

−d ln(q)
lim
x→∞

qdx = 0.

�

Proof of Lemma 8: First, we observe that condition (7) is automatically

fulfilled for closed sets B. Additionally, because the compliment Bc is open,

cB = 1− cBc easily arises. It follows that the condition is also fulfilled for all

intervals I ⊂ R, because each interval is the disjoint union of an open set AI

and a closed set BI , so that we obtain cI = cAI + cBI .

Because of the boundedness, a K ∈ R+ exists, such that (an)n∈N ⊂ [−K,K).

We define the intervals I
(m)
j := [−K + j−1

m
2K,−K + j

m
2K), j = 1, ...,m,m ∈

N, and denote the corresponding constants from the assumptions of the

lemma with cjm := c
I
(m)
j

. Since, for all m ∈ N {I(m)
j }j=1,...,m is a partition of

[−K,K), we have

m∑
j=1

cjm = 1,m ∈ N. (A.2)
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Note that the finiteness of m is important here. Otherwise this ’additive

property’ would not be guaranteed. Using the definition of the intervals

I
(m)
j , we find the inequality

1

n

n∑
i=1

ai =
1

n

n∑
i=1

m∑
j=1

1
I
(m)
j

(ai) · ai ≤
1

n

n∑
i=1

m∑
j=1

1
I
(m)
j

(ai)

(
−K +

j

m
2K

)

=
m∑
j=1

(
−K +

j

m
2K

)
1

n

n∑
i=1

1
I
(m)
j

(ai)

and obtain, by taking the limit superior on both sides (which coincides with

the limit on the right-hand side),

lim sup
n→∞

1

n

n∑
i=1

ai ≤
m∑
j=1

(
−K +

j

m
2K

)
cjm =: U (m),m ∈ N.

Analogously, we obtain

lim inf
n→∞

1

n

n∑
i=1

ai ≥
m∑
j=1

(
−K +

j − 1

m
2K

)
cjm =: L(m),m ∈ N.

Altogether, we therefore obtain

L(m) ≤ lim inf
n→∞

1

n

n∑
i=1

ai ≤ lim sup
n→∞

1

n

n∑
i=1

ai ≤ U (m),m ∈ N.

Together with

U (m) − L(m) =
m∑
j=1

1

m
2Kcjm =

1

m
2K

m∑
j=1

cjm
(A.2)
=

1

m
2K −→

m→∞
0

follows the convergence of (
∑n

i=1 ai)/n. �

Proof of Lemma 9: (a): First, we note that there are finite constants M

and N , such that for all i and θ

|Ai| ≤MYi +N and |Ci| ≤MYi +N. (A.3)

For Ci this is a statement of Lemma 2, for Ai Lemma 2 does not apply

directly, but the proof works identically in this case. Thus, the existence of

moments is ensured.
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(b): With (A.3) and the usual arguments of compactness and continuity, we

find constants independent of zi such that

EθA2
i =

∞∑
y=0

A(y,zi,θ)2fi(y;θ) ≤
∞∑
y=0

(My +N)2 · E · Γ(m+ y)

Γ(m)
qy <∞.

This series still converges according to the ratio test (where q < 1 is im-

portant). The continuity of the expected values now follows from a well-

known lemma about the continuity of parameter integrals (e.g. Bauer (2001),

Lemma 16.1). For EθC2
i and EθAiCi, the proofs are identical.

(c): Obviously, neither Ai nor Ci are constant zero, so that EθA2
i and EθC2

i

are positive for all i (remember g 6= 0 according to CN2). Since the depen-

dence on i is only via zi, the dependence on zi is continuous (see (b)) and

all zi are from the compact set Z, the statement is clear.

(d): First, we note that for any θ ∈ Θ and i ∈ N Ai and Ci are linear

independent random variables in the space L2(Ω,A, Pθ). To prove this, it is

sufficient to show that there is no d = d(θ) > 0 in existence, such that

Ai(y) := A(y, zi,θ) = d · C(y, zi,θ) =: d · Ci(y)

for all y ∈ N0. If such a d existed, we would also have

Ai(y + 1)− Ai(y)

Ci(y + 1)− Ci(y)
=
dCi(y + 1)− dCi(y)

Ci(y + 1)− Ci(y)
= d

for all y ∈ N0. But since

Ai(y + 1)− Ai(y)

Ci(y + 1)− Ci(y)
=

σ−1

λiσ−1+y

−λiσ−2

λiσ−1+y
− 1

1+σ
+ 1

σ

=

[
−λi
σ

+ (
1

σ
− 1

1 + σ
)
λi
σ

+ (
1

σ
− 1

1 + σ
)y

]−1

,

which is constant in y if and only of 1
σ
− 1

1+σ
= 0, being impossible, we can

exclude the existence of such a d, and the linear independence is proven.

According to the strict version of the Cauchy-Schwarz inequality (e.g. Feller,

1971, Chap. V, Sec. 8(a)), we thus have

|EθAiCi| <
(
EθA2

iEθC2
i

) 1
2 ⇔ |EθAiCi| −

(
EθA2

iEθC2
i

) 1
2 < 0
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for all i ∈ N. Because, on the left-hand side of the right inequality the

dependence on i is only via zi, the dependence on zi is continuous according

to (b). As all zi come from the compact set Z, there even an ε > 0 exists,

such that

|EθAiCi| −
(
EθA2

iEθC2
i

) 1
2 ≤ −ε,

which proves (d). �
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