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Abstract

We introduce a set of new Value-at-Risk independence backtests by establishing a

connection between the independence property of Value-at-Risk forecasts and the

extremal index, a general measure of extremal clustering of stationary sequences.

We introduce a sequence of relative excess returns whose extremal index has to

be estimated. We compare our backtest to both popular and recent competitors

using Monte-Carlo simulations and find considerable power in many scenarios.

In an applied section we perform realistic out-of-sample forecasts with common

forecasting models and discuss advantages and pitfalls of our approach.
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1 Introduction

In spite of its usage as a risk measure for more than 20 years, researchers are still

engaged in exploring new forecasting and backtesting procedures for the Value-at-

Risk (VaR). The latter procedures are typically based on a statistical test which

tries to assess whether a certain desirable property is met for the observed sequence

of VaR-violations: first, the concept of correct unconditional coverage aims at

checking whether the number of overall violations is justifiable. From an academic

perspective, we typically seek for a forecasting procedure which yields neither too

many nor too few violations. On the other hand, regulators are usually interested

in situations where the risk is not underestimated, resulting in a focus on not too

many violations. Second, the correct independence aspect focuses on possible serial

dependence of violations, and aims at checking whether the sequence of violations

behaves like an independent sequence. This concept becomes most important if

unconditional coverage is statistically satisfied, i.e., an unconditional test cannot

be rejected. In that case, a test using information about the way how violations

occur has still potential to reject the forecasts. Available independence backtests

may have power only with respect to a lack of independence, or with respect to

both the lack of independence and of correct unconditional coverage. The latter

ones are called conditional coverage tests.

In general, tackling the independence property is challenging. This is mainly

due to the fact that risk forecasts deal with low probability events and an often

short testing sample. As a consequence, observing many violations is unlikely,

which naturally results in small effective sample sizes and, therefore, bad power

properties. In addition, some of the classical tests explicitly assume an alternative

model incorporating a special kind of dependence, which may also result in a loss

of power if in fact a more general form of dependence is present.

Despite these natural difficulties, the independence hypothesis itself is relevant.
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As a matter of fact, most financial time series exhibit large degrees of heteroscedas-

ticity and therefore require for time-changing risk forecasts. Renouncement would

lead to a probably threatening violation clustering, something a sound risk man-

agement should always aim to prevent.

We contribute to the backtesting literature by introducing a new test for the

independence hypothesis which is particularly sensitive to deviations from indepen-

dence among the most extreme observations. Unlike standard methods, the new

test does not use solely the 0-1-violation sequence. Instead, we assess whether a

series of VaR-adjusted returns, coined relative excess returns, exhibits a significant

tendency for that its most extreme observations occur in clusters. As a measure

for that tendency, we employ the extremal index, a natural measure of clustering

of extreme observations stemming from extreme value theory. We implement the

approach with two different extremal index estimators, the first one (Süveges and

Davison, 2010) leading to a more classic 0-1-test, while the second one (Northrop,

2015; Berghaus and Bücher, 2017) enables the processing of more detailed infor-

mation. We find considerable power improvements in many cases in comparison to

common competing tests, with the second test often showing the most convincing

results.

As is well known, VaR lacks some important features of risk measures. The

most common alternative measure is provided by the Expected Shortfall (ES),

which will soon replace the VaR as the standard regulatory measure of risk for

banks (BCBS, 2016). However, since VaR and ES are closely related, it does not

come as a surprise that VaR and its backtests also play a prominent role in some

ES backtests. For example, Kratz et al. (2018) propose a joint backtest for several

VaR levels as an intuitive way to implicitly backtest ES. A second example is BCBS

(2016) itself, where out-of-sample backtesting is based on VaR as well. However,

both in general and in the aforementioned examples, the issue of a possible lack of
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independence is rarely addressed. Since the implementation of our idea is relatively

independent of the specific VaR level, we see this as a promising approach in this

respect.

The remainder of this paper is structured as follows. Section 2 provides prelim-

inaries about the notation, a more detailed description of the backtesting problem

alongside with a short overview of existing tests, and mathematical details on the

extremal index. Section 3 introduces our new approach of independence backtest-

ing based on the extremal index. In Section 4, we perform a detailed analysis of

the small-sample properties, while Section 5 focuses on some empirical implica-

tions. Finally, Section 6 concludes, while less important aspects are deferred to a

sequence of appendices.

2 Preliminaries on Backtesting and the Extremal

Index

In this section we review the essentials of VaR backtesting and introduce our

notation. Then we turn to the extremal index and its estimators.

2.1 Backtesting the Value-at-Risk

Consider a random return rt of a financial asset in a period t, usually a day.

Suppose this return is continuously distributed with c.d.f. Ft, conditional on the

information set Ft−1 which embodies all information up to period t−1. We define

the Value-at-Risk at level p as VaR(t)
p := −F−1t (p), where F−1t denotes the inverse

of Ft. Throughout the paper, we will refer to p as VaR level, usual values are 5 %

and 1 %, whereas q = 1 − p will be called the VaR confidence level. Note that,

with this definition, we report large losses and hence VaRs as positive numbers.
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A violation at time t occurs if rt < −V̂aR
(t)

p , where V̂aR
(t)

p denotes a forecast

of the true VaR at period t, calculated based on information from Ft−1. Using a

series of VaR forecasts corresponding to observed returns r1, . . . , rn, we define the

violation sequence (It)
n
t=1, by

It =

1 (violation), if rt < −V̂aR
(t)

p

0 (compliance), if rt ≥ −V̂aR
(t)

p

. (2.1)

The time points t where violations occur, that is It = 1, are called violation times

or violations indices. Suppose there are M1 violations, that is, M1 = #{It = 1},

and order the violation times increasingly t1 < · · · < tM1 . We define the inter-

violation durations Di as Di := ti+1 − ti, where i = 1, . . . ,M1 − 1. If the VaR

forecasts happen to be completely correct, that is V̂aR
(t)

p = VaR(t)
p for all t, then

the violation sequence forms an i.i.d. Bernoulli sequence with success probability

p, that is It
i.i.d.∼ Bernoulli(p). This implies M1 =

∑n
t=1 It ∼ Binom(n, p) and

Di
i.i.d.∼ Geom(p).

The goal of backtesting is to asses whether a sequence of n ex-ante VaR fore-

casts are appropriate in relation to the realized returns. This is usually done by

stressing one of the above mentioned properties of the violation sequence or the

durations.

Since Christoffersen (1998) backtests are classified according to their focus, see

also the discussion in the introduction. The property of forecasts being completely

unsuspicious is called correct conditional coverage (cc) and may be written as

cc: It
i.i.d.∼ Bernoulli(p), t = 1, . . . , n. (2.2)

Before this term was introduced, assessing VaR forecasts was solely concerned with

the aspect of unconditional coverage (uc) which is defined by

uc: E(It) = p, t = 1, . . . , n. (2.3)
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In other words, uc is concerned about whether the frequency of violations is rea-

sonable in the sense that, for all time points t, the probability of observing an

violation equals p, which is the probability had the true VaR been used for the

calculation of It. A simple way to get a first impression about the latter property

is to calculate the actual number of violations M1 and compare the result to its

expectation np under the assumption V̂aR
(t)

p = VaR(t)
p . See, e.g., Kupiec (1995) for

an early test or BCBS (1996b) for the Traffic Light Approach used by the Basel

Committee.

Unconditional coverage is complemented by the independence property (ind),

given by

ind: I1, . . . , In are stochastically independent. (2.4)

Rather than on how many violations occur, the focus is on how the violations occur

over time. A simple graphical way to check this property is to look on a plot of VaR

violations and assess visually whether there are any patterns. However, detecting a

failure of the independence property can be fairly hard due to the natural scarcity

of violations if the VaR level is sufficiently small or the backtesting sample is

not large enough. Still, possible dependence among violations can be extremely

important for risk managers, as subsequent violations can sum up and result in an

overall loss of threatening magnitude.

Note that, from a more technical perspective, plain independence of violations

does not necessarily imply absence of violation clustering. This can be seen by

an example in Ziggel et al. (2014) where It and It−k are in fact independent but

clustering can still happen.1.

1See equation 28 of Ziggel et al. (2014) The authors argue that the independence property should
be replaced by an i.i.d. property. Although the prevention and detection of violation clustering
is also our aim, we continue to speak of independence when we mean the absence of violation
clustering in the remainder of the paper.
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2.2 Existing Backtests for the Independence Hypothesis

In this section, we provide a brief description of the backtests that we use as

competitors to our new proposal. The section may be skipped at first reading.

Test Based on a Markov Chain Model. This early test by Christoffersen

(1998) employs a first-order Markov chain model to allow for possibly dependent

violations. The model permits differing probabilities of a violation at time t,

depending on whether a violation has occurred at t− 1. More precisely, for i, j ∈

{0, 1}, let πij = Pr(It = j | It−1 = i) denote the transition probabilities in the

chain (It). Denote the number of compliances (zeros) in an observed sequence of

length n by M0 = n −M1 and denote by Mij the number of events in I1, . . . , In

where an observation of i is followed by an observation of j. The likelihood of the

Markov model is

LMar(I1, . . . , In; π01, π11) = (1− π01)M0−M01πM01
01 (1− π11)M1−M11πM11

11 .

The null hypothesis of previous-state-independent violations is equivalent to equal-

ity of the transition probabilities π01 and π11, i.e, the null of independence can be

written as

H0 : π01 = π11. (2.5)

Under H0, the likelihood simplifies to LH0(I1, . . . , In; π1) = πM1
1 (1− π1)n−M1 . The

test statistic LRMar
ind is now defined as the ratio of both likelihoods multiplied by 2,

with πij replaced by their maximum likelihood estimators π̂ij, and can be shown

to be asymptotically χ2(1) distributed:

LRMar
ind = 2 log

(
LMar(I1, . . . , In; π̂01, π̂11)

LH0(I1, . . . , In; π̂1)

)
asy∼ χ2(1), (2.6)

Note that π̂01 = M01/M0, π̂11 = M11/M1 and π̂1 = M1/n.

In addition to LRMar
ind , one often encounters a statistic LRMar

uc for the uc property
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in (2.3). The sum of both statistics is known as the Markov chain conditional

coverage test LRMar
cc for (2.2) and is widely used in the literature and appraised as

a standard method, see Alexander et al. (2013).

The test statistic LRMar
ind solely relies on information of directly subsequent

observations and how they relate to each other. Hence, only a limited kind of

deviation form independence can be detected, which is often viewed as a striking

drawback. For example, if there were only two violations in (It) which occurred

directly subsequently, then π̂11 > 0 which corresponds to evidence against H0.

Instead, if the second violation would have happened only one day later, then

immediately π̂11 = 0 which - according to the Markov chain model - no longer

provides evidence of clustering. In order to overcome this limitation, duration-

based tests as described in the next paragraph have been proposed.

Durations-Based Test Using Explicit Alternative Models. The first us-

age of inter-violation durations can be found in Christoffersen and Pelletier (2004).

If the cc property in (2.2) holds, then the durations Di are distributed as an inde-

pendent sequence of geometric random variables, Di
i.i.d.∼ Geom(p). Christoffersen

and Pelletier (2004) propose to exploit this in a time-continuous setting. Since the

exponential distribution is the natural continuous counterpart of the geometric

distribution, alternative models which embed the exponential distribution are eli-

gible, as, e.g., the Weibull distribution or the Gamma distribution. However, both

models do not use the order of the durations and are hence incapable of detecting

deviations from independence of the durations. This limitation has been tackled

by Christoffersen and Pelletier (2004), who proposed to use the exponential au-

toregressive conditional duration (EACD) model to model dependent durations. A

further, more recent, alternative (’geometric test’) has been proposed by Berkowitz

et al. (2011), where a discrete approach was used to model duration dependence.
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Of all the aforementioned tests, the approach based on Weibull distribution

seems to be most popular one, whence we also choose it as a competitor throughout

the simulation study. Recall that the density of the Weibull distribution is given

by

fW (d; p, b) = pb b db−1 exp(−(p d)b). (2.7)

Plugging in b = 1 yields the exponential distribution fW (D; p, 1) = fexp(D, p) =

p exp(−pD) with expectation 1/p, where p should be interpreted as the VaR level.

Therefore, the null hypothesis ind in (2.4) can be identified with

H0 : b = 1. (2.8)

In practice, the sample of observed durations D1, . . . , DM1−1 is now fitted to the

exponential distribution and to the Weibull distribution, and, similar as in LRMar
ind ,

a likelihood ratio test is performed to test for H0 : b = 1. More precisely, the test

statistic is defined as

LRWei
ind = 2 log

(
LWei(D1, . . . , DM1−1; p̂Wei, b̂Wei)

LExp(D1, . . . , DM1−1; p̂Exp)

)
asy∼ χ2(1), (2.9)

where p̂Wei, b̂Wei and p̂Exp denote the respective maximum likelihood estimators.

Note that, in the Weibull case, these values must be computed by numerical op-

timization. Moreover, Berkowitz et al. (2011) propose to introduce additional

artificial durations at the start and the end of the violation sequence, which are

then treated as censored durations. Details are omitted for the sake of brevity.

Durations-Based Test Using a Generalized Method of Moments. Can-

delon et al. (2011) introduce a duration-based test which needs no specification of

any alternative model. Instead, it is directly tested whether the observed dura-

tions follow the geometric law, by applying a goodness-of-fit procedure based on

the generalized method of moment (GMM, see also Bontemps and Meddahi, 2012).
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More precisely, the geometric distribution is associated with some recursively de-

fined sequence of orthonormal polynomials, denoted by Pj(d; p) with j ∈ N. The

connection between these polynomials and the geometric distribution guarantees

that

E [Pj(D; p)] = 0 for all j ∈ N, (2.10)

where D denotes a geometrically distributed variable with success probability p.

After choosing a maximal order k, the property ind in (2.4) is then tested by

checking whether the sample

Pj(D1; p̂), . . . , Pj(DM1−1, p̂)

is approximately centred, for all j = 1, . . . , k. The precise test statistic, which is

asymptotically χ2(k− 1) distributed, can be found in Candelon et al. (2011). The

test will subsequently be denoted by GMM
(k)
ind .

Durations-Based Test Using the Sum of Squared Durations. The last

test on our list is proposed by Ziggel et al. (2014) and exploits the fact that

violation times t1, . . . , tM1 should be equally spread across the sample {1, . . . , n} if

violation clustering is not existent. This can be measured by calculating the sum

of squared durations as

MCSind = t21 + (n− tM1)
2 +

M1−1∑
i=1

D2
i . (2.11)

If the violation sequence exhibits no clustering, then MCSind is typically small.

Note that Equation 2.11 includes both the censored duration t1, with implicit

violation time 0, and (n− tM1), with implicit violation time n. The original work

does not provide the asymptotic distribution. Therefore, this test relies necessarily

on Monte-Carlo simulations which justifies the abbreviation MCS. However, this

should not regarded as a drawback, since it is common to use such simulations
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also in situations where a test’s asymptotic distribution is known. In fact, this is

also the approach we apply for all new tests proposed in this paper, see Section

3.2 below for details. Nevertheless, the procedure for MCS differs from the other

tests in one aspect. The statistic of a particular application of the test is compared

to a distribution depending on its outcome, namely the number of violations M1,

see Appendix A.2. of Ziggel et al. (2014). This is in contrast to the other tests

where such a constraint is not used.

2.3 The Extremal Index

Loosely spoken, the extremal index θ, a parameter in the interval [0, 1], measures

the tendency of a (strictly) stationary time series to form temporal clusters of

extreme values. The formal definition is as follows, see, e.g., Embrechts et al.

(1997), p. 416.

Definition 2.1. Let (et) be a strictly stationary sequence with stationary c.d.f.

F (x) = Pr(e1 ≤ x) and let θ be a non-negative number. Assume that, for every

τ > 0, there exists a sequence (un) = (un(τ)) such that

lim
n→∞

nPr(e1 > un) = τ,

and

lim
n→∞

Pr(Mn ≤ un) = exp (−θτ),

where Mn = max {e1, . . . , en}. Then θ is called the extremal index of the se-

quence (et), and it can be shown to lie necessarily in [0, 1].

The definition is fairly abstract and certainly needs some explanation. Consider

an i.i.d. sequence first, and assume that the c.d.f. F of e1 is continuous and, for

simplicity, invertible. For given τ > 0, we may then choose un = F−1(1 − τ/n)
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to guarantee that nPr(e1 > un) = n{1 − F (F−1(1 − τ/n))} = τ , i.e., the first

limiting relationship in the above definition is satisfied. Since nPr(e1 > un) =

E[
∑n

i=1 1(et > un)] by linearity of expectation, we obtain that we can expect, on

average, to observe τ exceedances of the threshold un in a sequence of length n. At

the same time, it may well happen that we do not observe a single exceedance of

the threshold, and this event is exactly {Mn ≤ un}. For the i.i.d. case, we obtain

Pr(Mn ≤ un) = Pr(e1 ≤ un) · · ·Pr(en ≤ un) = F (un)n =
(

1− n{1− F (un)}
n

)n
,

which converges to exp(−τ). As a consequence, we obtain that the extremal index

of an i.i.d. sequence is θ = 1.

For more general time series, a similar calculation is typically much more dif-

ficult. It has however been shown that, under weak conditions on the serial de-

pendence and if Pr(Mn ≤ un) does converge, then the limit is always of the form

exp (−θτ) with θ being independent of the level τ , as requested in the above defi-

nition (Leadbetter, 1983). The extremal index has been shown to exist for many

common time series models, including e.g. GARCH-models (Mikosch and Starica,

2000), and is often smaller than 1 as in the i.i.d. case.

A common interpretation of the extremal index is as follows: the reciprocal

of the extremal index, i.e., 1/θ, represents, in a suitable elaborated asymptotic

framework, the expected size of a temporal cluster of extreme observations, see

p. 421 in Embrechts et al. (1997). As a consequence, θ = 1 means that extreme

observations typically occur by oneself, while values below 1 mean that extreme

observations tend to occur in temporal clusters, that is, close by in time; with

the expected number of ‘close-by-extreme-observations’ being equal to 1/θ. It

is exactly this interpretation which leads us to consider backtests based on the

extremal index in Section 3.
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2.4 Estimators for the Extremal Index

Perhaps not surprisingly, a huge variety of estimators for the extremal index has

been described in the literature. Early estimators include the blocks and the runs

method, see Smith and Weissman (1994) or Beirlant et al. (2004) for an overview.

In this section, we describe the classical blocks estimator and two more recent

methods which will be applied in the subsequent parts of this paper. In what

follows, let e1, . . . , en be an observed stretch from a strictly stationary time series

whose extremal index exists and is larger than 0.

2.4.1 The Classical Blocks Estimator

One of the most intuitive estimators is the classical blocks estimator, see Smith

and Weissman (1994). This estimator is closely related to the definition of clusters

and its relationship to the extremal index and relies on a block size b = bn and a

threshold u = un to be chosen by the statistician.

Divide the sample e1, . . . , en into n/b disjoint blocks of size b.2 Let Mdj
i =

max
{
e(i−1)b+1, . . . , eib

}
denote the maximum of the observations in the ith disjoint

block. The set of exceedances within a block containing at least one exceedance

(i.e., Mdj
i > u) is regarded as a cluster. Since 1/θ is the expected cluster size, this

suggests to set

θ̂CB
n =

 1∑n/b
i=1 1(Mdj

i > u)

 n/b∑
i=1

b∑
j=1

1(e(i−1)b+j > u)

−1

=

∑n/b
i=1 1(Mdj

i > u)∑n
i=1 1(ei > u)

,

which equals the number of clusters over the number of exceedances and yields

the classical blocks estimator.

2We assume that the number of blocks n/b is an integer. If this is not the case, a possible
remainder block of smaller size than b must be discarded (typically at the beginning or the end
of the observation period).
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2.4.2 The K-Gap Estimator

The K-Gap estimator by Süveges and Davison (2010) is based on inter-exceedance

times between the extreme observations (the latter bear some similarities with the

duration times introduced in a backtesting context in Section 2.1). The founda-

tions of the estimator are laid in Ferro and Segers (2003) where it is shown that the

inter-exceedance times, appropriately standardized, weakly converge to a limiting

mixture model. This remains true after truncation by the so-called gap parameter

K ∈ N, as shown for K = 1 in Süveges (2007) and in the general K-gap case in

Süveges and Davison (2010).

The K-gap estimator does depend on a high threshold u = un to be chosen by

the statistician and is constructed as follows. Let M1 =
∑n

t=1 1(et > u) denote

the number of exceedances of the threshold u. Let 1 ≤ j1 < · · · < jM1 ≤ n denote

the time points at which an exceedance has occured, and let Ti = ji+1 − ji denote

the inter-exceedance time, for i = 1, . . . ,M1 − 1. The K-gaps are introduced by

truncating with K > 0, that is

S
(K)
i = max {Ti −K, 0}.

The mentioned limiting mixture model means that a transformed inter-exceedance

time (K-gaps also) follows either an exponential distribution with mean θ (with

probability θ, inter-exceedance time positive) or equals zero (with probability 1−θ).

Under the assumption of independence of the inter-exceedance times, this result

can be used to derive the following log likelihood for θ:

logLK(θ;S
(K)
i ) = (M1 − 1−MC) log(1− θ) + 2MC log θ − θ

M1−1∑
i=1

F̄ (un)S
(K)
i ,

where MC =
∑M1−1

i=1 1(S
(K)
i 6= 0). The maximization of this log-likelihood yields
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a closed-form estimator of the extremal index given by

θ̂Gn = θ̂Gn (u,K) =
Σ2 − (Σ2

2 − 8MCΣ1)
1/2

2Σ1

(2.12)

where Σ1 =
∑M1−1

i=1 F̄ (un)S
(K)
i and Σ2 = Σ1 + M1 − 1 + MC . In practice, one

must typically replace the unknown function F by the empirical c.d.f. F̂n and un

by F̂−1n (q), for some value q = qn near 1. The asymptotic behavior of the estimator

does seem to be known, unless one imposes additional strong assumptions such as

knowledge of the c.d.f. F and independence of the inter-exceedance-times (which

is not the case in general).

2.4.3 A Block Based Maximum Likelihood Estimator

A sliding block version of a maximum likelihood estimator for the extremal index

has been proposed and theoretically analyzed in Northrop (2015) and Berghaus

and Bücher (2017), respectively. Unlike other blocks estimators for the extremal

index, it is only depending on one parameter to be chosen by the statistician,

namely a block length parameter b = bn. The estimator has a simple closed

form expression, and is defined as follows: first, given a block length b, let M sl
t =

max {et, . . . , et+b−1} and Zsl
t = b {1 − F (M sl

t )}, where F denotes the c.d.f. of e1

and where t = 1, . . . , n − b + 1. It can be shown that the transformed block

maxima Zsl
t are asymptotically independent and exponentially distributed with

mean θ−1. Hence, after replacing F by its empirical counterpart F̂n, the reciprocal

of the sample mean of Ẑsl
t = b {1− F̂n(M sl

t )} can be used to estimate the extremal

index3:

θ̂Bn = θ̂Bn (b) =

(
1

n− b+ 1

n−b+1∑
t=1

Ẑsl
t

)−1
. (2.13)

3Berghaus and Bücher (2017) propose an additional bias correction, which we do not describe here
in detail, but which we employ throughout the simulation studies and the empirical applications.
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Under regularity conditions on the time series and if b = bn → ∞ with b = o(n),

it follows from Theorem 3.1 in Berghaus and Bücher (2017) that√
n/b (θ̂Bn − θ)→ N(0, θ4 σ2

sl),

where θ denotes the true extremal index and where σ2
sl > 0 denotes the asymptotic

variance of the sliding blocks estimator. It is worthwhile to mention that σ2
sl =

0.2726 in case the extremal index is equal to 1, that is, the limiting distribution is

pivotal; see Example 3.3 in Berghaus and Bücher (2017).

2.4.4 An Example

In Figure 1 we illustrate the classical blocks estimator from Section 2.4.1, the

K-Gap estimator from Section 2.4.2, and the disjoint variant of the block based

Maximum Likelihood estimator from Section 2.4.3 (obtained by using Ẑdj
t = b {1−

F̂n(Mdj
t )} with Mdj

t = max {ebt−1+1, . . . , etb} for t = 1, . . . , n/b).

The data consist of about three years of negative daily log returns on the S&P

500 index. The solid red horizontal line corresponds to the ex-post 97.5 % empirical

quantile of the negative return data, i.e., u = 0.0225. Hence, we have exactly 20

values above this threshold. All exceedances of the threshold are labeled with

a vertical dotted red line. The gray dashed lines mark the edges of the disjoint

blocks. We choose a block length of b = 40 returns, resulting in n/b = 20 disjoint

blocks.

The first line at the top of the Figure shows the empirical cluster sizes used

for the disjoint classical blocks estimator from Section 2.4.1. The inverse of the

average cluster size provides the classical blocks estimator for the extremal index,

with a value of θ̂CB = 0.45 for the particular example.

The second line corresponds to the K-Gaps estimator from Section 2.4.2 with

K = 6, which is depending on the threshold u and the gap parameter K, but not
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Figure 1: This plot illustrates the three extremal index estimators described in
Section 2.4. The data set consists of about 800 daily returns on the S&P 500
index from 2011-01-03 till 2014-03-10. The first line at the top documents cluster
sizes, the second line shows three examples for durations and 6-Gaps, and the last
line reports transformed block maxima.

the block size b. The partly displaced horizontal red lines serve as an illustration

for the durations betweens exceedances. Three numerical examples are provided

above those lines. For instance, 109:103 means that the inter-exceedance time was

109 days. This value, truncated with K = 6, leads to a K-Gap of 103. Since this

inter-exceedance time is quite high, the truncating alters little. However, in the

first example the duration is 2 results in a K-Gap of 0. The final estimated value

is θ̂Gn = 0.51.

The blocks estimator θ̂Bn from Section 2.4.3 is only depending on the block size
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b and is based on computing maxima within each block. In particular, such a

block maximum (red crosses) can also be below the threshold, as for example for

blocks 1–2 in the picture. The block maxima are then transformed to the pseudo-

observations Ẑdj
t , which are reported in the third line of the plot. Here, the inverse

of the mean yields an estimate of θ̂Bn = 0.62.

In this example, all estimates are quite similar and show that the negative

S&P 500 returns exhibit a large degree of extremal dependence in their right tail.4

However, it is well know that such estimates can deviate largely depending on the

estimator and parameter choice5.

3 Backtesting Based on the Extremal Index

If the use of correct VaR forecasts leads to an i.i.d. Bernoulli violation sequence, it

seems natural to expect that there exists a VaR-adjusted return series which does

not exhibit any (or only low) serial dependence, provided the true VaR(t)
p -values

are used. In fact, given some arbitrary forecasts V̂aR
(t)

p , we propose to consider

the following negative return-VaR ratio, defined as

et := et(V̂aR
(t)

p ) := − rt

V̂aR
(t)

p

. (3.1)

Note, the negative sign in front of the ratio, which implies that by looking at

the right tail of (et), we essentially look at the right tail of (rt). There is an

obvious relationship with the violation sequence (It) defined in (2.1): we have

{et > 1⇔ It = 1} and {et ≤ 1⇔ It = 0}, but (et) obviously contains much more

information.

4This implies extremal dependence in the left tail of the S&P 500 returns.
5See for example Tables 8.1.8 and 8.1.9 in Embrechts et al. (1997).
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3.1 Relative Excess Returns of Mean-Scale Models

It is instructive to first consider the relative excess return series (et), with V̂aR
(t)

p =

VaR(t)
p , in a general mean-scale model defined by

rt = µt + σt zt, where zt
i.i.d.∼ Fz (3.2)

and where E(zt) = 0, Var(zt) = 1 and µt, σt are Ft−1 -measurable. As a conse-

quence, the conditional VaR using information up to t− 1 can be written as

VaR(t)
p = −µt − σtF−1z (p), (3.3)

which implies that

et =
µt + σt zt

µt + σt F−1z (p)
. (3.4)

We are next going to argue that the sequence (et) is either an i.i.d. sequence (zero

mean case) or at least approximately serially independent (non-zero mean case),

in particular when looking only at the left tail. This suggests to backtest the VaR-

forecasts by checking for serial independence or the absence of extremal clustering

of the relative excesses (et), as will be done in later sections.

The Zero Mean Case. If µt ≡ 0, then Formula 3.4 simplifies to et = zt/F
−1
z (p).

As a consequence, (et) is an i.i.d. sequence due to the i.i.d. property of the inno-

vations (zt).

In practice, the possibility of a non-zero mean cannot be ruled out. However,

it is often argued that financial returns show only insignificant means, see, e.g.,

Hansen (2005). In that paper, a large number of mean-scale models is examined

with respect to their volatility forecasting performance, relative to simple specifi-

cations such as the classical GARCH(1,1)-model. Three different specifications for

the conditional mean are used and it is concluded that the performance is almost

identical across the three versions. In other words, for financial returns, the mean
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is often negligible, especially in the short-term. This stylized fact is also assured by

the popularity of methods and models which explicitly use the assumption of zero

conditional means. A prime example is provided by the famous square-root-of-time

rule for time-scaling of the volatility and VaR. The rule is well appreciated among

academics and practitioners, and is even implemented in regulatory standards for

VaR scaling from daily returns to 10-day-returns (see BCBS, 1996a).

The General Case. Next, consider the general case with µt 6= 0 being allowed.

The event {et > y} can then be rewritten as

St(y) =

{
zt < y

(
µt
σt

+ F−1z (p)

)
− µt
σt

}
,

and this representation suggests that the relative excess returns are in general not

serially independent: the events {et > y} and {et+1 > x} are connected through

the conditional mean and volatility. However, we argue that the serial dependence

is actually either vanishing or low in certain typical cases.

The first case is x = y = 1, in which case St(1) = {zt < F−1z (p)} = {It = 1},

which is obviously independent over time. In fact, we are left with the classical

violation sequence (It).

Next, in case of either µt+1 ≈ 0 or σt+1 → ∞, we get at least approximate

equality of St(y) and {zt < F−1z (p)} and hence approximate serial independence

of (et). Note that large volatilities σt are typically present in periods of financial

turmoil, which are in turn associated with our phenomenon of interest, that is,

violation clustering.

More generally, the serial dependence vanishes for x, y ≥ 1 whenever−F−1z (p)�

µt/σt for all t with high probability, which is reasonable for large values of q. In that

case, St(y) implies zt � F−1z (p), so that only very small values of zt may trigger

the event St(y). Since zt is an i.i.d. sequence, the events St(y) are approximately

serially independent too, with high probability.
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3.2 The Backtesting Procedure for VaR

The discussion in the preceding section motivates to backtest VaR-forecasts by

checking whether the relative excess sequence (et) exhibits no or only low serial

dependence, especially in the right tail. As a proxy, we propose to check for

extremal clustering by using the extremal index, whence the resulting test can in

fact be expected to be particularly sensitive to deviations from independence in

the far right tail of et, i.e., in the most important part for risk management needs.

More precisely, recalling that an independent sequence has extremal index 1, we

aim at checking for what we coin no cluster property (noc):

noc: θe := θ((et)t) = 1. (3.5)

The backesting procedure we propose then is as follows: first, given a sequence

of VaR forecasts V̂aR
(t)

p and observed returns rt, for t = 1, . . . , n , calculate (et)

as defined in (3.1). Second, calculate θ̂n = θ̂n(e1, . . . , en) with θ̂n denoting any of

the extremal index estimators from Section 2.4. Finally, reject the VaR-forcasts

if θ̂n is significantly smaller than 1. Regarding the extremal index estimators,

we only consider the sliding blocks estimator from Section 2.4.3 and the K-Gap

estimator from Section 2.4.2; the resulting tests will subsequently be denoted by

ΘB
noc = ΘB

noc(b) and ΘG
noc = ΘG

noc(u,K), respectively.

Regarding test ΘB
noc, we first need to choose a block length parameter b. A

preliminary Monte Carlo simulation study to compare several values of b; details

can be found in Table 8 in Appendix A.1; guides us to choose b = 40 across all

further analyses. Although more suitable choices may be possible depending on

the data generating process (DGP), we set a general data-dependent strategy for

the choice of b aside, thus possibly resigning power in some cases.

Critical values for test ΘB
noc could in principal be calculated based on the nor-

mal approximation described in Section 2.4.3: if the extremal index is 1, then
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θ̂b − 1 is approximately centred normal with variance 0.2726 · b/n, no matter the

stationary distribution Fe or the serial dependence of the time series outside the

upper tail. However, the fact that the limiting distribution is pivotal also allows

to approximate it by simulating from an arbitrary model for which the extremal

index is 1. We hence opt for calculating critical values by first simulating ẽ1, . . . , ẽn

from the model

ẽt =
r̃t

−VaR(t)
p

, r̃t
i.i.d.∼ N(0, 1), V̂aR

(t)

p = −Φ−1(p), (3.6)

where Φ denotes the c.d.f. of the standard normal distribution, and by then

calculating θ̂Bn = θ̂Bn (ẽ1, . . . , ẽn) with the same block length parameter as chosen

above, i.e., b = 40. Note that such a simulation based approach is also common for

other classical backtesting procedures where asymptotic distributions are known,

e.g., for the test LRMar
ind defined in Section 2.2.

Let us next describe details on test ΘG
noc, which depends on the choice of both

K and u = un. Regarding the latter choice of u, we simply set u = 1, which

essentially means that we leave the extreme value context and are back to the

0-1-violation sequence from Section 2.1 (note that et > 1 if and only if It = 1).

The K-gap approach should hence rather be regarded as a classical duration-based

test for the hypothesis of independence of the innovation sequence given in (2.4)

(though with a different initial motivation), see also Section 2.2 for other duration-

based tests.6 In particular, this viewpoint suggests to obtain critical values of

the test simply by generating i.i.d. Bernoulli(p)-sequences Ĩt, and to calculate

θ̂Gn = θ̂Gn (K) by considering each time points where Ĩt = 1 as an exceedance (note

that θ̂Gn only depends on those time points). Regarding the choice of the K-gap

parameter, a further preliminary simulation study (details are presented in Table 7

in Appendix A.1) prompts us choose K = 6 for all further analyses.

6A more appropriate notation would hence be ΘG
ind instead of ΘG

noc.
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Throughout this paper, the two above described simulation-based approaches,

as well as all other similar approaches, are based on N = 10, 000 replications,

and corresponding p-values are computed as described in Appendix A.2, see also

Dufour (2006).

3.3 Extensions to More General Risk Measures Including

Expected Shortfall

Backtesting the Expected Shortfall (ES) recently received increased attention due

to its upcoming implementation as a standard risk measure for regulatory purposes

in banking (BCBS, 2016). Most available backtests of ES focus on unconditional

coverage, see Kerkhof and Melenberg (2004), Wong (2008), Costanzino and Cur-

ran (2015), and Kratz et al. (2018). Only recently, Du and Escanciano (2017)

propose to additionally use a Box-Pierce test to test for autocorrelation in a cer-

tain sequence of cumulative violations. This test can hence be regarded as the

first ES backtest for independence (rather: serial uncorrelation). In this section,

we extend the basic idea from Section 3.2 to obtain a further backtest for ES that

is particularly sensitive to certain deviations from independence in the tails.

Recall that the main idea of the VaR method from Section 3.2 consists of

checking whether the relative excess returns in (3.1) do not show any sign of ex-

tremal clustering. The sensibility of such an approach was explained in Section 3.1

for mean-scale models, and the arguments can in fact be generalized to any risk

measure which is translation invariant and positively homogeneous. Indeed, recall

that a risk measure ρ : M → R, M a set of random variables, satisfies translation

invariance if, for all R ∈ M and every c ∈ R, we have ρ(R + c) = ρ(R) − c (the

change of the sign stems from interpreting R as a return and not a loss). Positive

homogeneity is satisfied if ρ(c R) = c ρ(R) for all R ∈ M and c > 0 (McNeil

et al., 2005). By the same arguments as in Section 3.1, it is sensible to backtest a
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sequence of forecasts ρ̂t by checking whether the sequence

et = −rt
ρ̂t

(3.7)

does not so any sign of extremal clustering. Indeed, for location scale models as

defined in (3.2) and for ρ̂t = ρt = ρ(rt | Ft−1), we obtain that

et = −rt
ρt

=
µt + σtzt

µt − σtρ(zt)
,

which simplifies to Equation 3.4 if we use ρ(zt) = −F−1z (p), that is, VaR. As a

consequence, it is sensible to apply the methodology described in Section 3.2 to

the sequence (et)t defined in (3.7), for any translation invariant and homogeneous

risk measure. We do not pursue this any further in this document.

3.4 An Extension to Distributional Backtests

The general idea from Section 3.2 may also be applied to backtesting forecasts of

the entire conditional distribution (or density), see also Berkowitz (2001). More

precisely, suppose that F̂t is a distributional forecast of the conditional c.d.f. of rt

given Ft−1, the latter being denoted by Ft. The role of the VaR-adjusted return

series (et) may then be played by the probability integral transform sequence

ut = 1− F̂t(rt), t = 1, . . . , n.

In case F̂t = Ft, the sequence is known to constitute an i.i.d. sequence of uniformly

distributed random variables on the interval [0, 1], see Rosenblatt (1952). As in the

previous section, a distributional backtest that is particular sensitive to deviations

from independence in the upper right tail of ut is obtained by comparing the

estimated extremal index of u1, . . . , un with 1.
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4 Size and Power Analysis

In this section, we compare our new approach to several classical backtesting

procedures in terms of their empirical size and power properties. The employed

alternative backtests are briefly described in Section 2.2. The results of large

scale Monte Carlo simulation studies are then presented in Sections 4.1–4.5, under

varying circumstances of interest.

4.1 Power Properties when True Unconditional VaRs are

Used

The first simulation experiment is guided by Table 4 in Ziggel et al. (2014), the

purpose being to compare backtests in situations where clustered violations are

likely due to the use of unconditional instead of conditional VaRs. The comparison

is only carried out for independence backtesting procedures (including the tests for

noc, as the latter also have power against most deviations from ind). The data

generating process is as follows:

rt = σt zt, t = 1, . . . , n,

with zt
i.i.d.∼ N(0, 1), σ1 = 1 and

σ2
t = λσ2

t−1 + (1− λ)z2t−1, t = 2, . . . , n.

As in Ziggel et al. (2014), the parameter λ is chosen from the set {0.8706, 0.9829, 0.9914, 1}

(case λ = 1 will correspond to the null hypothesis) and the sample size n is chosen

from the set {252, 1000, 2500}. Note that results for sample sizes as small as 252

should be regarded with a little caution, at least for test ΘB
noc: taking blocks of

length b = 40 results in only 6 disjoint block maxima (and slightly more distinct

values for the sliding block maxima), to which an exponential distribution is then
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fit. However, since we do not rely on asymptotics but rather on simulation to

calculate critical values, we still think that an application to such small sample

sizes is sensible (and in fact, the results confirm our intuition).

Recall from Section 3.1 that the true conditional VaR of the above described

model is given by VaR(t)
p = −σtΦ−1(p) and that the use of V̂aR

(t)

p = VaR(t)
p in

formula (3.1) would result in an i.i.d. sequence of relative excess returns. Serial

dependence (and in particular extremal clustering) is now introduced by instead

setting V̂aR
(t)

p = V̂aRp (independent of t) to the empirical VaR computed from a

preliminary simulation with 100,000 returns. The simulation study is performed

conditional on the restriction of at least two violations per backtesting sample.7

As described in Section 3, the parameter b is set to b = 40 for test ΘB
noc and to

K = 6 for test ΘK
noc.

The results, namely empirical rejection rates of the competing independence

backtests (calculated based on 5000 Monte Carlo repetitions), are reported in

Table 1. All tests exhibit a reasonable approximation of the intended level (case

λ = 1). In terms of power, the proposed extremal index tests typically yield the

largest power, which on top is often much larger than for the classical competitors.

In the few cases the non-extremal index tests yield larger power, the improvement

over the extremal index versions is rather small.

The rejection rates of all approaches except ΘB
noc are decreasing in the VaR

level. Clearly, the reason is that a small number of violations cannot yield the

same evidence for serial dependence like a large number of violations is capable of.

For ΘB
noc, the rejection rates change barely for varying level, a likely explanation

being that the input data (relative excess returns) are approximately the same up

to a scaling factor. Moreover, by construction, ΘB
noc is also able to use information

7The probability that a generated sample of size n violates this condition is negligible in all cases
except for the 1 % VaR level and n = 252 case, where approximately 28.2 % of randomly drawn
samples exhibit at most one violation.
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λ n Significance level: 1% Significance level: 5% Significance level: 10%

LRMar
ind LRWei

ind GMM
(VD)
ind MCSind ΘG

noc(6) ΘB
noc(40) LRMar

ind LRWei
ind GMM

(VD)
ind MCSind ΘG

noc(6) ΘB
noc(40) LRMar

ind LRWei
ind GMM

(VD)
ind MCSind ΘG

noc(6) ΘB
noc(40)

Panel A: 5 % VaR

0.8706 252 0.056 0.008 0.110 0.093 0.115 0.138 0.147 0.040 0.235 0.229 0.276 0.269 0.200 0.086 0.327 0.340 0.388 0.385
1000 0.130 0.037 0.204 0.231 0.396 0.528 0.210 0.143 0.579 0.505 0.621 0.738 0.284 0.251 0.705 0.653 0.728 0.833
2500 0.325 0.158 0.568 0.588 0.772 0.920 0.514 0.382 0.903 0.837 0.901 0.975 0.626 0.524 0.951 0.919 0.939 0.991

0.9828 252 0.011 0.017 0.021 0.023 0.019 0.028 0.061 0.051 0.068 0.090 0.080 0.100 0.105 0.097 0.125 0.160 0.144 0.169
1000 0.014 0.005 0.050 0.069 0.046 0.097 0.045 0.023 0.157 0.200 0.140 0.241 0.089 0.054 0.242 0.301 0.239 0.370
2500 0.013 0.002 0.085 0.134 0.086 0.225 0.056 0.009 0.264 0.328 0.234 0.479 0.110 0.022 0.354 0.472 0.338 0.610

0.9914 252 0.009 0.011 0.011 0.013 0.010 0.017 0.056 0.052 0.055 0.067 0.055 0.067 0.098 0.103 0.106 0.127 0.114 0.117
1000 0.010 0.005 0.021 0.028 0.021 0.036 0.042 0.032 0.090 0.108 0.081 0.133 0.082 0.068 0.154 0.180 0.147 0.224
2500 0.013 0.003 0.048 0.062 0.034 0.091 0.050 0.017 0.136 0.175 0.106 0.231 0.102 0.035 0.210 0.287 0.185 0.346

1 (H0) 252 0.009 0.011 0.014 0.012 0.008 0.014 0.052 0.044 0.047 0.058 0.046 0.056 0.102 0.096 0.095 0.113 0.099 0.109
1000 0.014 0.008 0.009 0.012 0.013 0.010 0.053 0.047 0.048 0.054 0.060 0.054 0.097 0.101 0.105 0.103 0.121 0.104
2500 0.006 0.012 0.011 0.010 0.008 0.012 0.048 0.057 0.060 0.059 0.054 0.054 0.098 0.103 0.114 0.113 0.112 0.103

Panel B: 1 % VaR

0.8706 252 0.069 0.036 0.089 0.050 0.072 0.152 0.197 0.109 0.211 0.139 0.227 0.322 0.263 0.165 0.291 0.220 0.354 0.445
1000 0.099 0.022 0.089 0.046 0.184 0.527 0.216 0.120 0.215 0.167 0.372 0.739 0.337 0.216 0.272 0.277 0.497 0.848
2500 0.204 0.168 0.138 0.076 0.439 0.914 0.397 0.374 0.321 0.255 0.644 0.974 0.493 0.491 0.409 0.401 0.748 0.989

0.9828 252 0.019 0.018 0.028 0.015 0.019 0.039 0.115 0.078 0.112 0.082 0.077 0.112 0.213 0.169 0.196 0.150 0.180 0.191
1000 0.016 0.015 0.050 0.035 0.020 0.096 0.064 0.050 0.118 0.120 0.091 0.236 0.162 0.104 0.186 0.209 0.160 0.352
2500 0.019 0.016 0.065 0.051 0.035 0.229 0.091 0.078 0.176 0.180 0.125 0.452 0.155 0.142 0.259 0.303 0.214 0.591

0.9914 252 0.017 0.016 0.022 0.015 0.011 0.016 0.107 0.073 0.092 0.057 0.067 0.064 0.199 0.144 0.170 0.117 0.153 0.127
1000 0.016 0.019 0.031 0.027 0.014 0.045 0.061 0.065 0.091 0.096 0.069 0.131 0.130 0.120 0.142 0.170 0.132 0.223
2500 0.014 0.008 0.043 0.044 0.024 0.080 0.070 0.055 0.131 0.149 0.090 0.229 0.124 0.115 0.196 0.237 0.170 0.344

1 (H0) 252 0.014 0.012 0.009 0.006 0.015 0.011 0.068 0.076 0.061 0.047 0.065 0.043 0.144 0.148 0.137 0.100 0.134 0.091
1000 0.011 0.009 0.009 0.008 0.012 0.007 0.049 0.051 0.053 0.049 0.050 0.043 0.100 0.103 0.102 0.103 0.099 0.097
2500 0.011 0.008 0.008 0.008 0.012 0.012 0.054 0.051 0.044 0.047 0.052 0.049 0.104 0.100 0.100 0.098 0.097 0.103

Table 1: Rejection rates for several DGPs, backtesting samples sizes, VaR levels, significance levels and backtesting
procedures. The setting is borrowed from Table 4 in Ziggel et al. (2014). The DGPs produce clustered violations
by the usage of a constant VaR forecast obtained as the unconditional empirical VaR of a simulated path of length
100,000. The additional DGP with λ = 1 allows to check for the sizes of the tests. Furthermore, the DGPs are
simulated subject to at least 2 violations. The rejection rates are based on 5,000 Monte-Carlo replications. The
tests use Monte-Carlo p-values with simulated distributions of the statistics. Here, 10,000 replications subject to H0

are used.
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of events where violations did occur almost, see also Figure 1. This questions

whether it is meaningful to asses the independence property of 1 % VaR forecasts

in small samples based solely on violations sequences.

4.2 How Often can we Reject Historical Simulation?

The second simulation is inspired by Candelon et al. (2011) and Christoffersen and

Pelletier (2004). Again, returns are simulated using a mean scale model with µt ≡ 0

and innovations zt
i.i.d.∼

√
d−2
d
εt, where εt follows a student t-distribution with d

degrees of freedom. The conditional variance involves an asymmetric leverage

effect and is given by

σ2
t = ω + γσ2

t−1 (zt−1 − θ)2 + βσ2
t−1, t ∈ N≥2,

where γ = 0.1, θ = 0.5, β = 0.85, ω = 3.9683 · 10−6 and d = 8. We set σ2
1 = ω and

use a burn-in period of length Nburn-in = 200 before forecasting is started.

Time-varying forecasts are obtained by applying the popular and realistic VaR

forecasting technique of (unconditional) ‘Historical Simulation’ (HS): given an in-

teger Te ∈ {250, 500}, we estimate the conditional VaR at time t by the respective

empirical quantile (multiplied with −1) of the Te observations prior to time point

t. The experiment is hence in contrast to the scenario from Section 4.1, where one

fixed VaR forecast was used for all t. Still, since HS is not able to capture the

dynamics of the time-varying volatility adequately either, the forecasting method

should be rejected. We hence allow for an assessment of the methods’ power in

a more realistic environment. For completeness, we also use as additional com-

petitors to the independence tests the conditional coverage backtests described in

Section 2.2, which also exploit information about the number of violations. Note

that we have to simulate Nburn-in +Te +n returns in total per replication to obtain

the results of the simulation experiment.
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Te n Significance level: 1% Significance level: 5% Significance level: 10%

LRMar
cc LRWei

cc GMM
(5)
cc MCSind ΘG

noc(6) ΘB
noc(40) LRMar

cc LRWei
cc GMM

(5)
cc MCSind ΘG

noc(6) ΘB
noc(40) LRMar

cc LRWei
cc GMM

(5)
cc MCSind ΘG

noc(6) ΘB
noc(40)

Panel A: 5 % VaR

250 250 0.179 0.154 0.146 0.295 0.265 0.430 0.322 0.291 0.430 0.484 0.429 0.610 0.411 0.363 0.543 0.580 0.515 0.695
500 0.172 0.223 0.275 0.548 0.523 0.782 0.320 0.389 0.654 0.746 0.693 0.878 0.413 0.486 0.757 0.833 0.764 0.920
750 0.203 0.313 0.389 0.724 0.676 0.914 0.328 0.524 0.795 0.881 0.811 0.962 0.438 0.630 0.870 0.931 0.875 0.978
1000 0.262 0.446 0.548 0.812 0.775 0.967 0.408 0.629 0.879 0.938 0.893 0.988 0.470 0.728 0.935 0.969 0.937 0.993
1500 0.352 0.624 0.764 0.931 0.916 0.997 0.479 0.789 0.962 0.982 0.966 1.000 0.623 0.857 0.983 0.995 0.982 1.000

500 250 0.252 0.198 0.182 0.266 0.269 0.394 0.409 0.303 0.473 0.445 0.425 0.578 0.492 0.383 0.561 0.555 0.513 0.675
500 0.283 0.284 0.344 0.527 0.513 0.766 0.441 0.456 0.716 0.736 0.657 0.876 0.532 0.554 0.812 0.826 0.734 0.921
750 0.282 0.369 0.436 0.703 0.680 0.903 0.436 0.586 0.819 0.860 0.805 0.958 0.552 0.682 0.896 0.923 0.858 0.976
1000 0.337 0.510 0.622 0.818 0.775 0.967 0.489 0.696 0.901 0.932 0.879 0.988 0.552 0.778 0.950 0.962 0.915 0.995
1500 0.428 0.705 0.830 0.945 0.923 0.995 0.562 0.841 0.978 0.983 0.964 0.998 0.700 0.899 0.991 0.993 0.980 1.000

Panel B: 1 % VaR

250 250 0.105 0.079 0.191 0.097 0.085 0.469 0.210 0.195 0.327 0.209 0.207 0.635 0.288 0.251 0.395 0.310 0.306 0.717
500 0.071 0.116 0.210 0.178 0.166 0.812 0.173 0.193 0.417 0.374 0.366 0.892 0.270 0.228 0.512 0.490 0.486 0.932
750 0.103 0.119 0.104 0.206 0.247 0.919 0.163 0.237 0.421 0.409 0.476 0.970 0.290 0.364 0.547 0.544 0.590 0.983
1000 0.105 0.207 0.072 0.234 0.336 0.975 0.198 0.376 0.491 0.469 0.563 0.989 0.276 0.479 0.612 0.614 0.672 0.994
1500 0.137 0.372 0.142 0.287 0.492 0.998 0.301 0.549 0.596 0.559 0.701 1.000 0.358 0.641 0.725 0.694 0.782 1.000

500 250 0.122 0.091 0.194 0.099 0.087 0.403 0.224 0.183 0.284 0.197 0.197 0.579 0.366 0.228 0.341 0.274 0.282 0.677
500 0.148 0.187 0.257 0.225 0.180 0.791 0.279 0.266 0.425 0.396 0.349 0.880 0.386 0.319 0.515 0.494 0.447 0.920
750 0.175 0.235 0.197 0.321 0.326 0.924 0.253 0.373 0.517 0.507 0.510 0.973 0.377 0.479 0.615 0.621 0.612 0.985
1000 0.161 0.354 0.167 0.395 0.423 0.968 0.299 0.512 0.611 0.614 0.628 0.989 0.385 0.608 0.708 0.718 0.717 0.993
1500 0.213 0.532 0.260 0.507 0.606 0.997 0.383 0.683 0.708 0.719 0.768 1.000 0.444 0.746 0.807 0.808 0.833 1.000

Table 2: Rejection rates of Historical Simulation VaR forecasts with two estimation window sizes Te ∈ {250, 500}
across several backtesting samples sizes, VaR levels and backtesting procedures. The setting is borrowed from Table
3 in Candelon et al. (2011). Compared to this, we dropped the GMM test with p = 3 and added instead the MCS
independence test. The rejection rates are based on 5,000 Monte-Carlo replications. The tests use Monte-Carlo
p-values with simulated distributions of the statistics. Here, 10,000 replications subject to H0 are used.
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Results of the simulation experiment are reported in Table 2. Focusing only

at the classical methods first, we find that typically one of LRWei
cc , GMM

(5)
cc , or

MCSind backtests yields the largest power. The 0-1-Extremal Index approach ΘG
noc

shows overall comparable rejection rates to these - sometimes the power is larger,

sometimes smaller and sometimes there is barely any difference. In addition, note

that ΘG
noc shows slight improvements over its related backtest LRWei

cc .8 Finally, the

second extremal index test ΘB
ind is able to improve the power in every case under

consideration, sometimes by a considerable amount.

4.3 Rejection Rates of (Misspecified) Stochastic Volatility

Models

In this section, we study backtest rejection rates for forecasts based on estimated,

but possibly misspecified stochastic volatility models. The underlying data gener-

ating process is fixed as a certain GJR-GARCH(1,1)-model with student t innova-

tions and a non-zero mean parameter µ, with the model parameters being chosen

as the estimated values obtained by fitting the model to daily S&P 500 log returns

from 1st January 2012 to 1st January 2015 (754 observations), see Appendix A.3

for details. Note that all parameters of the model where found to be highly signif-

icant in the latter fit, including the mean parameter µ = 6.91 × 10−4. Hence, in

light of the discussion in Section 3.1, the present setting also serves as a robustness

check of the extremal index tests against a non-zero mean.

For each Monte Carlo repetition, a time series of length n + 1000, with n ∈

{252, 1000, 2500}, is simulated from the above described model. Three forecasting

methods are then investigated, based on either a GJR-GARCH(1,1), a GARCH(1,1)

or an ARCH(1)-model fit to the first 1,000 observations of the time series, and a

subsequent VaR forecast based on the respective estimated model and the realized

8Under the null both use an exponential distribution of durations/K-Gaps.
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FC n Significance level: 1% Significance level: 5% Significance level: 10%

LRMar
ind LRWei

ind GMM
(VD)
ind MCSind ΘG

noc(6) ΘB
noc(40) LRMar

ind LRWei
ind GMM

(VD)
ind MCSind ΘG

noc(6) ΘB
noc(40) LRMar

ind LRWei
ind GMM

(VD)
ind MCSind ΘG

noc(6) ΘB
noc(40)

Panel A: 5 % VaR

True VaRs 252 0.015 0.007 0.009 0.007 0.010 0.012 0.058 0.041 0.040 0.044 0.045 0.050 0.114 0.089 0.086 0.094 0.085 0.100
1000 0.006 0.010 0.014 0.015 0.010 0.007 0.038 0.051 0.057 0.046 0.050 0.048 0.086 0.104 0.110 0.093 0.118 0.106
2500 0.010 0.007 0.006 0.006 0.012 0.006 0.049 0.039 0.048 0.041 0.052 0.042 0.096 0.089 0.086 0.085 0.098 0.085

GJR-GARCH(1,1) 252 0.013 0.013 0.014 0.011 0.013 0.023 0.060 0.058 0.047 0.049 0.061 0.060 0.110 0.100 0.105 0.096 0.113 0.105
1000 0.016 0.008 0.013 0.014 0.025 0.026 0.052 0.055 0.063 0.063 0.070 0.075 0.093 0.102 0.138 0.117 0.127 0.132
2500 0.018 0.024 0.019 0.022 0.042 0.031 0.076 0.075 0.089 0.088 0.108 0.097 0.136 0.138 0.157 0.144 0.170 0.167

GARCH(1,1) 252 0.034 0.006 0.058 0.046 0.077 0.060 0.109 0.032 0.138 0.142 0.200 0.135 0.166 0.062 0.201 0.238 0.298 0.225
1000 0.080 0.014 0.066 0.072 0.225 0.134 0.132 0.038 0.253 0.217 0.428 0.294 0.194 0.072 0.368 0.339 0.574 0.426
2500 0.169 0.021 0.157 0.186 0.487 0.369 0.315 0.062 0.495 0.419 0.688 0.566 0.406 0.109 0.611 0.557 0.775 0.680

ARCH(1) 252 0.017 0.016 0.154 0.119 0.200 0.220 0.067 0.051 0.312 0.301 0.405 0.398 0.114 0.102 0.388 0.441 0.504 0.500
1000 0.050 0.136 0.431 0.464 0.653 0.759 0.098 0.312 0.764 0.704 0.785 0.882 0.151 0.430 0.850 0.814 0.845 0.930
2500 0.106 0.448 0.836 0.821 0.901 0.984 0.205 0.651 0.976 0.944 0.950 0.997 0.296 0.745 0.988 0.971 0.966 1.000

Panel B: 1 % VaR

True VaRs 252 0.010 0.006 0.012 0.006 0.011 0.012 0.045 0.052 0.054 0.048 0.057 0.048 0.100 0.117 0.107 0.110 0.118 0.094
1000 0.007 0.004 0.013 0.010 0.008 0.014 0.050 0.060 0.052 0.052 0.045 0.044 0.096 0.106 0.110 0.096 0.085 0.108
2500 0.010 0.014 0.014 0.011 0.010 0.020 0.050 0.052 0.055 0.058 0.050 0.079 0.101 0.104 0.111 0.110 0.102 0.146

GJR-GARCH(1,1) 252 0.015 0.006 0.016 0.014 0.014 0.015 0.061 0.059 0.056 0.054 0.054 0.063 0.106 0.097 0.108 0.098 0.107 0.120
1000 0.011 0.014 0.014 0.011 0.009 0.025 0.046 0.062 0.066 0.057 0.058 0.078 0.118 0.107 0.117 0.107 0.104 0.145
2500 0.012 0.011 0.013 0.010 0.021 0.040 0.059 0.063 0.051 0.056 0.070 0.119 0.110 0.124 0.113 0.109 0.126 0.188

GARCH(1,1) 252 0.031 0.015 0.027 0.014 0.030 0.050 0.111 0.056 0.088 0.067 0.106 0.138 0.174 0.096 0.140 0.118 0.187 0.235
1000 0.048 0.018 0.047 0.027 0.070 0.178 0.122 0.063 0.112 0.094 0.190 0.333 0.258 0.121 0.171 0.179 0.286 0.472
2500 0.071 0.026 0.043 0.033 0.141 0.355 0.219 0.098 0.123 0.119 0.307 0.570 0.289 0.164 0.176 0.198 0.423 0.685

ARCH(1) 252 0.019 0.052 0.130 0.071 0.080 0.230 0.140 0.088 0.228 0.159 0.200 0.399 0.208 0.129 0.276 0.232 0.284 0.514
1000 0.029 0.121 0.269 0.148 0.360 0.780 0.076 0.296 0.394 0.339 0.547 0.889 0.198 0.409 0.474 0.470 0.631 0.932
2500 0.028 0.504 0.452 0.316 0.712 0.989 0.125 0.693 0.644 0.550 0.820 0.997 0.204 0.771 0.712 0.685 0.869 0.998

Table 3: Rejection rates for several forecasting models using stochastic volatility are shown. We use simulated data
from an estimated GJR-GARCH(1,1) model with student t innovations, see Appendix A.3. For each iteration the
corresponding model is fitted using the first 1,000 simulated returns, remaining returns are used for forecasting and
backtesting. The rejection rates are based on 5,000 Monte-Carlo replications. The tests use Monte-Carlo p-values
with simulated distributions of the statistics. Here, 10,000 replications subject to H0 are used.
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returns up to time t − 1. Note that the three models are included in each other,

and that the latter two models are, by construction, misspecified. We hence expect

increasing rejection rates in this chronology.

The results are presented in Table 3. For comparison, the first forecasting

method (FC) corresponds to the usage of the true VaRs of the simulated data,

which is not available in practice but for which the null hypothesis is met (hence,

we do not report bold marks here). The remaining methods correspond to the

three mentioned forecasting models. The main findings are summarized in the

next three paragraphs.

Size. The forecasting method ‘True VaRs’ serves as a size benchmark. Overall,

all methods exhibit a reasonable approximation of the nominal size. Deviations

may in most cases be explained by simulation variance of the simulated distribu-

tions of the test statistics, as well as the Monte-Carlo simulations itself. However,

we also observe a larger deviation for ΘB
noc at the 1 % VaR level and a backtesting

sample size of n = 2, 500. For example, the rejection rate is 14.6 % at the 10 %

significance level. A possible explanation is the non-zero mean in the DGP, whence

we further investigate this issue in Section 4.5 below. This kind of oversizedness

does not seem to occur for the other extremal index test ΘG
noc.

Estimation Risk. The forecast based on estimating the (true) GJR-GARCH(1,1)

is slightly more likely to be rejected than the true VaRs. We further check the

sensitivity of the backtests to estimation uncertainty in the next Section 4.4.

Rejection Rates of Misspecified Models. As expected, ARCH(1) is most

likely to be rejected, followed by the standard GARCH model. Interestingly, ΘG
noc

performs often better than ΘB
noc in the 5% VaR Panel. For the 1% Panel, the

decrease in the number of violations leads to a better performance of ΘB
noc. In
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most cases, both tests are able to improve the power substantially compared to

the classical competitors.

4.4 Estimation Risk

The results in Table 3 reveal that estimating the correct model is not sufficient to

get correct forecasts. Hence, an additional aspect of the forecasting task in general

is the ability to estimate the potentially correct model sufficiently accurate. To

shed light on this issue we report in Table 4 results of a similar task as in the

previous section. We estimate the true model using varying lengths of sample sizes

nEst ranging from 500 to 5,000 (recall that we used a fixed value of nEst = 1, 000 in

the previous section). The table reveals that, across all tests, the extremal index

approaches are most likely to reject the estimated model. A large amount of data

is hence needed for the rejection rates to approach the nominal significance level.
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nEst n Significance level: 1% Significance level: 5% Significance level: 10%

LRMar
ind LRWei

ind GMM
(VD)
ind MCSind ΘG

noc(6) ΘB
noc(40) LRMar

ind LRWei
ind GMM

(VD)
ind MCSind ΘG

noc(6) ΘB
noc(40) LRMar

ind LRWei
ind GMM

(VD)
ind MCSind ΘG

noc(6) ΘB
noc(40)

Panel A: 5 % VaR

∞ 252 0.013 0.010 0.008 0.007 0.010 0.013 0.058 0.040 0.042 0.041 0.044 0.050 0.114 0.092 0.085 0.091 0.091 0.100
1000 0.016 0.007 0.009 0.007 0.009 0.009 0.063 0.052 0.034 0.046 0.047 0.046 0.105 0.112 0.081 0.095 0.091 0.101
2500 0.013 0.011 0.013 0.006 0.008 0.005 0.053 0.048 0.045 0.041 0.039 0.050 0.094 0.102 0.086 0.092 0.089 0.097

5000 252 0.010 0.008 0.012 0.012 0.011 0.016 0.044 0.041 0.049 0.061 0.047 0.054 0.096 0.089 0.104 0.118 0.115 0.101
1000 0.010 0.008 0.010 0.013 0.013 0.010 0.051 0.053 0.055 0.051 0.054 0.048 0.097 0.116 0.113 0.098 0.108 0.102
2500 0.012 0.013 0.015 0.013 0.015 0.012 0.052 0.057 0.056 0.045 0.063 0.063 0.107 0.114 0.104 0.099 0.117 0.117

1000 252 0.011 0.009 0.014 0.010 0.011 0.016 0.055 0.041 0.059 0.063 0.056 0.065 0.115 0.092 0.117 0.116 0.110 0.120
1000 0.018 0.013 0.014 0.018 0.021 0.024 0.057 0.050 0.077 0.068 0.080 0.078 0.115 0.110 0.136 0.126 0.148 0.134
2500 0.014 0.019 0.012 0.016 0.035 0.035 0.070 0.079 0.074 0.066 0.095 0.086 0.126 0.131 0.135 0.119 0.158 0.153

500 252 0.010 0.013 0.021 0.019 0.021 0.022 0.058 0.051 0.071 0.074 0.073 0.078 0.115 0.102 0.131 0.125 0.144 0.130
1000 0.027 0.017 0.017 0.023 0.050 0.044 0.064 0.061 0.088 0.085 0.128 0.107 0.107 0.124 0.160 0.143 0.203 0.173
2500 0.029 0.032 0.031 0.041 0.096 0.076 0.095 0.087 0.129 0.113 0.188 0.162 0.158 0.138 0.209 0.185 0.247 0.239

Panel B: 1 % VaR

∞ 252 0.010 0.006 0.011 0.007 0.010 0.011 0.044 0.053 0.055 0.046 0.055 0.055 0.096 0.118 0.109 0.101 0.111 0.103
1000 0.010 0.008 0.011 0.010 0.013 0.013 0.046 0.056 0.057 0.052 0.048 0.051 0.100 0.109 0.106 0.103 0.096 0.101
2500 0.010 0.011 0.011 0.010 0.006 0.014 0.043 0.046 0.045 0.042 0.042 0.063 0.102 0.097 0.094 0.090 0.093 0.134

5000 252 0.015 0.007 0.011 0.007 0.011 0.013 0.053 0.047 0.044 0.045 0.050 0.048 0.113 0.110 0.091 0.087 0.097 0.095
1000 0.009 0.013 0.008 0.007 0.009 0.021 0.045 0.051 0.047 0.041 0.049 0.069 0.106 0.110 0.107 0.099 0.094 0.124
2500 0.010 0.010 0.011 0.009 0.012 0.027 0.043 0.053 0.047 0.050 0.041 0.090 0.090 0.103 0.105 0.099 0.078 0.150

1000 252 0.013 0.010 0.011 0.014 0.008 0.016 0.064 0.052 0.052 0.052 0.057 0.063 0.119 0.105 0.104 0.100 0.110 0.124
1000 0.008 0.010 0.012 0.011 0.006 0.028 0.041 0.042 0.042 0.042 0.051 0.089 0.102 0.097 0.090 0.091 0.107 0.171
2500 0.017 0.007 0.006 0.004 0.026 0.043 0.064 0.046 0.051 0.046 0.079 0.122 0.115 0.109 0.107 0.096 0.125 0.196

500 252 0.010 0.011 0.014 0.012 0.009 0.023 0.071 0.040 0.058 0.046 0.056 0.059 0.141 0.086 0.101 0.086 0.117 0.120
1000 0.011 0.016 0.023 0.013 0.022 0.056 0.039 0.058 0.073 0.067 0.079 0.133 0.147 0.103 0.129 0.125 0.133 0.201
2500 0.021 0.019 0.017 0.014 0.033 0.077 0.092 0.069 0.073 0.059 0.094 0.175 0.161 0.125 0.126 0.113 0.164 0.254

Table 4: Rejection rates for VaRs forecasts computed with an estimated correct model are shown. We use simulated
data from an estimated GJR-GARCH(1,1) model with student t innovations, see Appendix A.3. For each iteration
the corresponding model is fitted using the first nEst simulated returns, remaining returns are used for forecasting and
backtesting. The rejection rates are based on 5,000 Monte-Carlo replications. The tests use Monte-Carlo p-values
with simulated distributions of the statistics. Here, 10,000 replications subject to H0 are used.
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4.5 Impact of a non-zero Mean

In this section, we investigate the influence of a non-zero mean on the various

extremal index backtests. To do so, we choose again the GJR-GARCH(1,1)-model

from Section 4.3, with all parameters being the same as in the that section except

for the mean parameter, which we choose as µ = k × 6.91 × 10−4 with k ∈

{−2,−1, 0, 1, 2} (note that we used k = 1 in Section 4.3).

In addition, we present a way to deal with potential size distortions related to

the mean. Instead of using the relative excess returns defined in Equation 3.1 we

suggest to include an estimate of the sample mean µ̂ readily available from the

realized returns r1, . . . , rn. This leads to a slightly altered version of the relative

excess returns given by

eµ6=0
t := − rt − µ̂

V̂aR
(t)

p + µ̂
. (4.1)

The corresponding test is denoted ΘB,µ6=0
noc in order to differentiate it from the

standard one ΘB,µ=0
noc which was solely used in all previous power sections. Note

that we do not perform this distinction for ΘG
noc since this test is effectively 0-1-

violation/duration based as the existing competitors. Still, we report its results as

a benchmark.

The results, presented in Table 5, reveal that the influence of the mean seems

rather small for k = −1, 0, 1. Instead, for k ∈ {−2, 2} the test ΘB,µ=0
noc shows

some larger deviations from the nominal significance levels. For a negative mean,

we observe a tendency of rejecting too infrequently. Hence, the test becomes

conservative. For a positive mean, the contrary is true since the null is rejected

too often. The effect is more pronounced for the 1 % VaR.

The most serious case k = 2 corresponds to a rather unusual scenario. Most

assets do not experience upswings of this magnitude over such a long period.9

9Note that n = 2, 500 daily returns are roughly 10 years of data.
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k n Significance level: 1% Significance level: 5% Significance level: 10%

ΘG
noc(6) ΘB,µ=0

noc (40) ΘB,µ6=0
noc (40) ΘG

noc(6) ΘB,µ=0
noc (40) ΘB,µ6=0

noc (40) ΘG
noc(6) ΘB,µ=0

noc (40) ΘB,µ 6=0
noc (40)

Panel A: 5 % VaR

-2 252 0.005 0.014 0.016 0.040 0.049 0.051 0.086 0.100 0.106
1000 0.012 0.012 0.014 0.058 0.051 0.056 0.106 0.109 0.113
2500 0.008 0.007 0.007 0.050 0.041 0.044 0.105 0.087 0.094

-1 252 0.007 0.011 0.013 0.040 0.038 0.041 0.100 0.096 0.099
1000 0.008 0.007 0.008 0.050 0.045 0.046 0.101 0.099 0.104
2500 0.008 0.010 0.010 0.053 0.055 0.055 0.095 0.107 0.108

0 252 0.012 0.015 0.016 0.044 0.051 0.051 0.106 0.110 0.110
1000 0.008 0.011 0.012 0.054 0.054 0.054 0.101 0.101 0.102
2500 0.015 0.008 0.008 0.056 0.047 0.047 0.122 0.108 0.107

1 252 0.007 0.016 0.015 0.034 0.051 0.049 0.079 0.098 0.095
1000 0.008 0.013 0.010 0.047 0.053 0.052 0.111 0.105 0.101
2500 0.008 0.009 0.008 0.052 0.050 0.048 0.109 0.103 0.101

2 252 0.008 0.016 0.015 0.034 0.068 0.063 0.093 0.112 0.109
1000 0.009 0.009 0.007 0.048 0.041 0.037 0.108 0.093 0.088
2500 0.009 0.012 0.008 0.049 0.056 0.051 0.092 0.112 0.101

Panel B: 1 % VaR

-2 252 0.008 0.006 0.010 0.051 0.034 0.046 0.113 0.083 0.099
1000 0.008 0.004 0.008 0.044 0.021 0.036 0.095 0.059 0.084
2500 0.008 0.003 0.007 0.044 0.018 0.039 0.099 0.044 0.091

-1 252 0.008 0.013 0.016 0.038 0.048 0.055 0.084 0.100 0.109
1000 0.009 0.004 0.008 0.049 0.028 0.038 0.098 0.072 0.092
2500 0.007 0.006 0.010 0.051 0.040 0.061 0.094 0.088 0.114

0 252 0.011 0.011 0.012 0.052 0.048 0.047 0.097 0.089 0.093
1000 0.005 0.008 0.007 0.039 0.042 0.042 0.081 0.103 0.106
2500 0.008 0.008 0.008 0.044 0.045 0.047 0.092 0.094 0.098

1 252 0.007 0.018 0.014 0.036 0.047 0.043 0.081 0.099 0.096
1000 0.008 0.015 0.012 0.043 0.070 0.053 0.092 0.131 0.110
2500 0.012 0.009 0.006 0.054 0.060 0.034 0.103 0.117 0.090

2 252 0.006 0.019 0.014 0.039 0.067 0.053 0.094 0.127 0.102
1000 0.008 0.024 0.013 0.047 0.086 0.055 0.092 0.149 0.111
2500 0.007 0.025 0.011 0.043 0.102 0.055 0.089 0.190 0.107

Table 5: Rejection rates for true VaRs for different DGPs with varying mean are
shown. We show only results for extremal index backtests. In contrast to all
previous settings, we add the backtest ΘB,µ 6=0

noc which includes de-meaning. The
base case (k = 1) corresponds to a fitted GJR-GARCH(1,1) model with student t
innovations, see Appendix A.3. The parameter k controls the mean of the DGPs
by multiplying the mean of the base case. The rejection rates are based on 5,000
Monte-Carlo replications. The tests use Monte-Carlo p-values with simulated dis-
tributions of the statistics. Here, 10,000 replications subject to H0 are used.
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Furthermore, such large average returns are even more unusual for a diversified

portfolio. Hence, we do not think that the observed liberality of the test is a too

severe issue. Nevertheless, the results of ΘB,µ 6=0
noc show that a simple correction can

help making a liberal test more conservative and a conservative test more liberal.

Summarizing, we find that all tests hold their sizes at least approximately in

the discussed, usual finance-settings. However, in case of concerns whether those

conditions are indeed met, we recommend to use the correction introduced in

Equation 4.1.

5 Empirical Applications

After we have investigated the power of the extremal index approach and compet-

ing methodologies in theoretical setups, we now shed light onto practical implica-

tions of our approach. Our focus is on three questions, which one might summa-

rize under the title “Historical Simulation, Few Violations, and the Rejection of

GARCH Models”.

The first question aims again at Historical Simulation (HS), which is not only

wide-spread in the academic literature as is evident from the frequent use in sim-

ulation studies (as in this paper and others) but also one of the most popular

forecasting approaches used in practice. See, e.g., Pérignon and Smith (2010) who

report that HS was the most used procedure in 2005 with a percentage of 47.4%

among their sample. Despite its prevalence, HS in its classical form should be

rejected as a correct conditional approach due to its lack of a quick reaction to

changing volatility. Therefore, we check backtesting results of HS in two different

periods. First, we backtest HS for a 1% VaR on the S&P 500 index in a phase

containing the last financial crisis (2008-01-15 till 2011-12-31), and second the

subsequent relatively calm phase (2012-01-01 till 2015-12-22). Both backtesting
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Turbulent Period from 2008-01-15 till 2011-12-31 (1,000 Obs)

FC M1: p-value LRMar
ind LRWei

ind GMM
(VD)
ind MCSind ΘG

noc(6) ΘB
noc(40)

Panel A: 1 % VaR

HS (250) 22: 0.0010 *** 0.0932 0.0000 *** 0.0000 *** 0.0000 *** 0.0000 *** 0.0000 ***
HS (500) 26: 0.0000 *** 0.0729 0.0000 *** 0.0000 *** 0.0000 *** 0.0000 *** 0.0000 ***

Panel B: 0.05 % VaR

skew-t (250) 2: 0.1103 0.0402 * 0.0611 0.0190 * 0.2532 0.0631 0.0000 ***
skew-t (500) 0: 0.3175 0.5215 - - - - 0.0000 ***

Panel C: 1 % VaR

GJR-GARCH(1,1) 18: 0.0221 * 0.1057 0.8109 0.9237 0.4345 0.4318 0.6984
GARCH(1,1) 20: 0.0051 ** 0.0954 0.1338 0.0387 * 0.0673 0.0221 * 0.2554
ARCH(1) 31: 0.0000 *** 0.9994 0.0000 *** 0.0000 *** 0.0000 *** 0.0002 *** 0.0000 ***

Calm Period from 2012-01-01 till 2015-12-22 (1,000 Obs)

FC M1: p-value LRMar
ind LRWei

ind GMM
(VD)
ind MCSind ΘG

noc(6) ΘB
noc(40)

Panel A: 1 % VaR

HS (250) 13: 0.3604 0.0039 ** 0.2192 0.4600 0.3444 0.0067 ** 0.0003 ***
HS (500) 8: 0.5121 0.0001 *** 0.0028 ** 0.0032 ** 0.0050 ** 0.0002 *** 0.0002 ***

Panel B: 0.05 % VaR

skew-t (250) 1: 0.5336 0.2977 - - 0.1695 - 0.0000 ***
skew-t (500) 1: 0.5336 0.2073 - - 0.1701 - 0.0000 ***

Panel C: 1 % VaR

GJR-GARCH(1,1) 11: 0.7520 0.3778 0.2059 0.1879 0.9014 0.6124 0.9525
GARCH(1,1) 13: 0.3604 0.0645 0.3275 0.1331 0.9349 0.3551 0.7950
ARCH(1) 3: 0.0091 ** 0.9932 0.0278 * 0.0249 * 0.0015 ** 0.6344 0.0000 ***

Table 6: This table presents backtesting results for several one-step-ahead forecasts
adopting a rolling window scheme assessed by different backtests. In Panels A 1
% VaR forecasts are performed with an unconditional non-parametric method. In
Panels B 0.05 % VaR forecasts are made using a skew-t distribution. In each case,
the numbers in brackets report the size of the rolling window. GARCH model
refits are done every 5 days, unconditional methods are refitted on a daily basis.
Panels C belong to 1 % VaR forecasts using three different GARCH models with
rolling window size 1,000. The out-of-sample periods are a troubled and a calm
market period of 1,000 returns each. Hence, in Panels A 10 violations, in Panels B
0.5 violations, and in Panels C again 10 violations have to be expected. Column
FC on the left side reports forecasting methods. The second column reports both,
the number of violations M1 and the corresponding asymptotic p-value of the
unconditional backtest by Christoffersen (1998). The remaining columns show
results of several independence backtests. The numbers are Monte-Carlo p-values.
Asterisks mark levels of significance: *** at 0.1 %, ** at 1 %, and * at 5 %.

periods consist of exactly 1,000 returns which leads to an expectation of 10 viola-

tions. We re-use these periods for questions 2 and 3. The data was downloaded
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from Yahoo Finance.

The second question addresses a finding of Pérignon et al. (2008), and Pérignon

and Smith (2010). In the first named paper, the authors report that disclosed VaR

numbers of Canadian banks were way too conservative in the past (74 violations

expected, only 2 violations happened) and suggest two explanations. First, it is hy-

pothesized that markets will severely punish banks who underestimate risk which

makes them possibly very conservative. Second, a lack of correct accounting for di-

versification across departments of a bank could yield too large risk estimates, too.

In the second paper, this conservatism is also found in another sample containing

US, Canadian, and International Banks. Interestingly, in the subsequent financial

crisis, almost all banks suffered substantial losses which is surprising when market

risk measurements of banks were considered conservative before. Therefore, we an-

alyze how the extremal index approach enables to asses independence even in the

absence of many violations. We achieve this by calculating incorrect conditional

VaR forecasts at an unconventional low level of 0.05% by simply fitting a skewed

Student t-distribution (Azzalini and Capitanio, 2003) to the Te ∈ {250, 500} ob-

servations prior to time t. Note that Eling (2014) found that this distribution can

provide a good fit for asset returns. Due to the low VaR level, only 0.5 violations

can be expected throughout the considered time periods.

The third question we consider is about distinguishing different specifications

of the volatility process of GARCH-type models at the 1% VaR level. Note that

GARCH model-based forecasts possibly provide the most common alternative

to HS, aiming at more accurate forecasts due to their particular focus on time-

changing aspects. However, there are many different models available and a mod-

eler has to asses which of them captures the dynamic beahavior the best. Hence,

we adopt two very popular GARCH specifications (Bollerslev, 1986; Glosten et al.,

1993) as well as ARCH(1) and report how backtesting results differ. Of course, it
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is important to note that backtesting is not the appropriate method for compar-

ing the accuracy of two or more forecasters. Nevertheless, it is interesting to see

whether disparities can be made visible by backtesting.

For each forecasting exercise we perform one-day ahead forecasts based on a

rolling window scheme of previous returns. Questions 1 and 2 use estimation

sample sizes Te of 250 and 500. In the GARCH case we chose windows of Te =

1, 000 returns.

Respective results for all three questions are presented in Table 6. Panels A

correspond to question 1, panels B to question 2, and panels C to question 3.

First, we focus on Question 1. Panel A of the turbulent period shows that both

HS approaches yield way too many violations. Most independence backtests are

able to reject both methods. Here, the only failing backtest is LRMar
ind . Throughout

the calm period, HS forecasts are more appropriate (see the smaller number of

violations M1) but can still be rejected by the use of independence backtests.

Especially, both extremal index approaches reject the forecasts, but also LRMar
ind

which failed in the turbulent phase. This somewhat surprising change can be

explained by the fact that LRMar
ind can only detect violations that occurred on

subsequent days. Moreover, we observe that the rejection of the longer estimation

sample using Te = 500 returns appears to be easier, as expected from the simulation

results and their interpretation in Section 4.

Next, we turn to Question 2. Apparently, most independence backtests can

reject unconditional forecasts. However, if violations are rare, then a correct as-

sessment can become impossible. As expected the skew-t distribution at this low

VaR level yields few violations. For zero or one violation, classical violations or

durations-based backtests do not lead to a statement, since they are considered to

be unfeasible in these cases (at least two violations are necessary to change this).

Instead, the extremal index approach decouples the result from the particular VaR
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level and yields very similar p-values as for the HS scenarios.

Finally, panels C show that a differentiation between several GARCH models

can be hard. In almost no case, an independence backtest is able to reject one of

these two models. This is to some extent in line with the literature (Hansen, 2005).

Only in two cases the p-values are below 5%. The extremal index backtest ΘB
noc

shows barely a sign of misspecification which is noteworthy due to its often large

power. However, especially in the turbulent phase, the GARCH models yield too

many violations and can therefore be rejected with an unconditional test. Instead,

the ARCH(1) model is quite easily rejected with independence tests.

6 Conclusion

In this paper, a new idea for the assessment of VaR forecasts with respect to viola-

tion clustering is worked out in detail. For that purpose, we implement two recently

proposed estimators for the extremal index, derive corresponding new backtests,

and compare them to existing ones. The results show that especially the sliding

blocks estimator from Northrop (2015); Berghaus and Bücher (2017) is suitable for

this task. The corresponding backtest exhibits substantial power improvements in

many theoretical scenarios and can easily reject unconditional forecasters even in

the absence of violations, a feature lacked by many other backtests. The latter

feature is possibly interesting to detect bad forecasts even if they are conserva-

tive, since conservative forecasts can fail to accurately adapt to changing markets,

too. Furthermore, we briefly hint at possible extensions to backtesting Expected

Shortfall, which may become more important in the future.
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A Appendix

A.1 Parameter Choice for Extremal Index Estimators

For the sake of simplicity, we want to choose the parameters for the extremal

index tests constant across all scenarios. To justify our choices we conduct the

simulation experiment from Section 4.1 again for several choices of K and b. In

contrast to the DGPs underlying Table 1 we perform the simulations here without

any restrictions with respect to the number of violations. This allows us to study

both the size and power of the tests in the particular setting. Given a reasonably

sized test we want a test maximizing the power.

Furthermore, the results of this Section give an idea about the sensitivity of

the tests. This can be useful to detect eventual size anomalies. In addition, we can

assess the extent of potential power losses and improvements. The latter is useful

in order to investigate whether a more sophisticated parameter choice procedure

provides space for enhancements.

Table 7 reports results for ΘG
noc(K). As the varying bold values for λ < 1

indicate, the ’optimal’ value for K depends on the concrete setting. However,

the actual power differences are often quite small, especially for K > 2. As a

rough tendency, it can be conjectured that K should be increasing in λ, though

the sensitivity to power changes seems relatively small. The H0 DGP reveals no

too large deviations from the corresponding significance levels. Overall, the results

suggest that a fixed value of K = 6 would a reasonable global choice.

Table 8 reports results for ΘB
noc(b). The rough tendency suspected in Table 7,

that the optimal parameter depends on the DGP, is more visible. Besides, the

sensitivity with respect to b is more pronounced, particularly for small sample

sizes and low significance levels. This shows the stronger potential for a setting

dependent parameter choice procedure for this estimator. Yet, we choose also
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λ n Significance level: 1% Significance level: 5% Significance level: 10%

ΘG
noc(2) ΘG

noc(4) ΘG
noc(6) ΘG

noc(8) ΘG
noc(10) ΘG

noc(2) ΘG
noc(4) ΘG

noc(6) ΘG
noc(8) ΘG

noc(10) ΘG
noc(2) ΘG

noc(4) ΘG
noc(6) ΘG

noc(8) ΘG
noc(10)

Panel A: 5 % VaR

0.8706 252 0.101 0.098 0.113 0.098 0.096 0.226 0.250 0.264 0.258 0.244 0.328 0.370 0.395 0.374 0.354
1000 0.259 0.371 0.376 0.370 0.321 0.480 0.603 0.596 0.575 0.525 0.600 0.700 0.695 0.677 0.639
2500 0.602 0.752 0.748 0.727 0.629 0.810 0.882 0.891 0.868 0.829 0.878 0.934 0.930 0.916 0.882

0.9828 252 0.017 0.018 0.017 0.024 0.026 0.058 0.066 0.075 0.092 0.094 0.123 0.127 0.140 0.157 0.162
1000 0.019 0.024 0.041 0.048 0.053 0.101 0.111 0.129 0.141 0.142 0.170 0.188 0.218 0.218 0.224
2500 0.040 0.068 0.076 0.104 0.090 0.138 0.169 0.214 0.234 0.229 0.226 0.281 0.313 0.325 0.324

0.9914 252 0.010 0.018 0.018 0.014 0.019 0.051 0.067 0.076 0.077 0.077 0.106 0.134 0.143 0.143 0.137
1000 0.018 0.023 0.026 0.033 0.036 0.082 0.106 0.107 0.125 0.131 0.159 0.186 0.198 0.209 0.215
2500 0.023 0.044 0.053 0.071 0.069 0.096 0.132 0.158 0.182 0.200 0.186 0.235 0.256 0.282 0.300

1 (H0) 252 0.014 0.012 0.017 0.014 0.018 0.056 0.046 0.060 0.060 0.053 0.098 0.099 0.102 0.098 0.109
1000 0.009 0.013 0.009 0.007 0.007 0.044 0.057 0.048 0.043 0.037 0.092 0.104 0.097 0.090 0.084
2500 0.004 0.009 0.008 0.006 0.005 0.036 0.034 0.040 0.037 0.036 0.082 0.075 0.078 0.078 0.085

Panel B: 1 % VaR

0.8706 252 0.034 0.029 0.037 0.045 0.053 0.146 0.142 0.140 0.137 0.127 0.183 0.217 0.214 0.210 0.213
1000 0.127 0.171 0.181 0.177 0.173 0.278 0.339 0.364 0.363 0.354 0.379 0.442 0.472 0.479 0.475
2500 0.290 0.392 0.419 0.437 0.406 0.488 0.594 0.626 0.633 0.632 0.594 0.704 0.722 0.743 0.733

0.9828 252 0.010 0.009 0.010 0.012 0.018 0.069 0.052 0.058 0.062 0.063 0.104 0.123 0.116 0.110 0.123
1000 0.021 0.025 0.021 0.033 0.036 0.086 0.088 0.099 0.113 0.118 0.142 0.148 0.174 0.186 0.190
2500 0.025 0.034 0.049 0.055 0.061 0.090 0.128 0.144 0.158 0.160 0.181 0.214 0.236 0.248 0.264

0.9914 252 0.008 0.010 0.011 0.009 0.006 0.057 0.044 0.046 0.038 0.037 0.102 0.095 0.084 0.076 0.089
1000 0.017 0.018 0.020 0.021 0.022 0.060 0.065 0.063 0.068 0.074 0.105 0.118 0.130 0.118 0.129
2500 0.016 0.017 0.022 0.027 0.019 0.069 0.081 0.079 0.087 0.090 0.129 0.145 0.137 0.152 0.159

1 (H0) 252 0.011 0.010 0.010 0.010 0.010 0.047 0.054 0.048 0.050 0.045 0.095 0.090 0.102 0.100 0.094
1000 0.010 0.017 0.013 0.012 0.008 0.054 0.050 0.051 0.060 0.049 0.102 0.104 0.096 0.098 0.101
2500 0.013 0.006 0.010 0.011 0.012 0.041 0.049 0.045 0.040 0.046 0.090 0.089 0.094 0.083 0.088

Table 7: Analysis of the influence of the K-gap parameter on the power and size of ΘG
noc. DGPs are as in Table

1 but without any restriction regarding the number of violations. The rejection rates are based on 5,000 Monte-
Carlo replications. The tests use Monte-Carlo p-values with simulated distributions of the statistics. Here, 10,000
replications subject to H0 are used.
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here a fixed b = 40 for all further investigations since this value seems to yield

reasonably good power results across all DGPs. Again, looking at the H0 DGP no

obvious problems regarding the size are detected.

A.2 Computation of p-values

Subsequently, let T− = T−(0) denote a generic test statistic for which small val-

ues provide evidence against some null hypothesis H0. Both tests explained in

Section 3.2 fall into this category, with T− = θ̂Mn with M ∈ {B,G}. Critical val-

ues, or equivalently p-values, are obtained by simulating the H0-distribution of the

test statistic. More precisely, let T−(1), . . . , T−(N) denote the simulated values

of the test statistic;10 with N fixed to N = 10, 000 throughout this paper. To

account for possible ties, we follow Dufour (2006) and Ziggel et al. (2014) and

define T ∗−(i) = T−(i) + εi, where (εi) ∼i.i.d. 0.001 ·N(0, 1). The p-value of the test

associated to T− is then given by

p =
NG+ 1

N + 1
, (A.1)

where

G =
1

N

N∑
i=1

1{T ∗−(i) < T ∗−(0)}.

Similarly, let T+ = T+(0) denote a generic test statistic for which large values

provide evidence against some null hypothesis H0, which is for instance the case for

LRMar
ind , LR

Wei
ind , GMMind or MCSind. The H0 distribution of those tests is simulated

10Some tests, especially the duration-based ones, are not always feasible. This happens typically
due to a lack of violations in small backtesting samples. If a test is not feasible during our
power simulations, we count this always as a non-rejection. Regarding the simulation of the
test statistics for p-value computation, we deal with potential non-feasible tests by setting their
values artificially to that extreme which corresponds to a non-rejection. Thus, for instance, for
the GMM test this would be the minimum of all N obtained values during the simulation.
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λ n Significance level: 1% Significance level: 5% Significance level: 10%

ΘB
noc(10) ΘB

noc(20) ΘB
noc(40) ΘB

noc(80) ΘB
noc(120) ΘB

noc(10) ΘB
noc(20) ΘB

noc(40) ΘB
noc(80) ΘB

noc(120) ΘB
noc(10) ΘB

noc(20) ΘB
noc(40) ΘB

noc(80) ΘB
noc(120)

Panel A: 5 % VaR

0.8706 252 0.142 0.183 0.137 0.056 0.025 0.325 0.383 0.293 0.155 0.097 0.464 0.527 0.404 0.218 0.164
1000 0.579 0.724 0.536 0.231 0.122 0.779 0.886 0.752 0.440 0.298 0.876 0.944 0.846 0.588 0.423
2500 0.951 0.988 0.917 0.594 0.337 0.992 0.998 0.977 0.796 0.599 0.998 1.000 0.990 0.874 0.714

0.9828 252 0.018 0.030 0.040 0.030 0.012 0.066 0.090 0.108 0.088 0.075 0.129 0.152 0.172 0.152 0.147
1000 0.033 0.066 0.089 0.091 0.075 0.119 0.186 0.225 0.218 0.191 0.206 0.297 0.338 0.316 0.295
2500 0.064 0.153 0.230 0.235 0.174 0.196 0.345 0.440 0.430 0.376 0.301 0.470 0.579 0.551 0.504

0.9914 252 0.014 0.020 0.021 0.018 0.013 0.058 0.061 0.071 0.065 0.066 0.121 0.124 0.130 0.125 0.130
1000 0.016 0.026 0.036 0.041 0.039 0.069 0.097 0.117 0.131 0.120 0.141 0.178 0.213 0.225 0.208
2500 0.023 0.059 0.095 0.110 0.095 0.102 0.172 0.238 0.287 0.253 0.183 0.277 0.357 0.412 0.378

1 (H0) 252 0.014 0.012 0.010 0.009 0.016 0.050 0.052 0.044 0.050 0.060 0.107 0.109 0.103 0.101 0.114
1000 0.011 0.012 0.012 0.014 0.014 0.056 0.058 0.054 0.048 0.050 0.113 0.117 0.110 0.088 0.102
2500 0.008 0.008 0.008 0.008 0.012 0.047 0.043 0.042 0.056 0.056 0.102 0.084 0.094 0.110 0.110

Panel B: 1 % VaR

0.8706 252 0.118 0.179 0.122 0.060 0.029 0.295 0.363 0.266 0.152 0.115 0.454 0.519 0.375 0.231 0.172
1000 0.614 0.731 0.531 0.236 0.131 0.804 0.888 0.737 0.436 0.294 0.894 0.937 0.842 0.580 0.429
2500 0.950 0.989 0.935 0.606 0.348 0.989 0.997 0.978 0.814 0.601 0.996 0.999 0.994 0.898 0.718

0.9828 252 0.024 0.030 0.037 0.025 0.019 0.076 0.087 0.098 0.102 0.082 0.152 0.166 0.174 0.162 0.148
1000 0.032 0.064 0.110 0.098 0.084 0.110 0.190 0.245 0.238 0.216 0.211 0.300 0.364 0.350 0.320
2500 0.065 0.148 0.224 0.228 0.175 0.196 0.348 0.439 0.452 0.380 0.306 0.474 0.585 0.573 0.524

0.9914 252 0.009 0.018 0.023 0.014 0.011 0.046 0.066 0.064 0.075 0.064 0.106 0.116 0.128 0.140 0.131
1000 0.015 0.030 0.047 0.052 0.042 0.065 0.104 0.128 0.139 0.136 0.135 0.184 0.224 0.225 0.214
2500 0.024 0.042 0.070 0.082 0.074 0.095 0.154 0.206 0.228 0.221 0.182 0.265 0.326 0.332 0.337

1 (H0) 252 0.007 0.007 0.010 0.006 0.012 0.042 0.051 0.057 0.062 0.059 0.096 0.102 0.106 0.102 0.118
1000 0.012 0.016 0.011 0.008 0.008 0.052 0.060 0.048 0.051 0.049 0.104 0.112 0.112 0.106 0.109
2500 0.012 0.012 0.009 0.008 0.006 0.043 0.052 0.042 0.042 0.048 0.094 0.100 0.095 0.091 0.096

Table 8: Analysis of the influence of the block size parameter b on the power and size of ΘB
noc. DGPs are as in

Table 1 but without any restriction regarding the number of violations. The rejection rates are based on 5,000
Monte-Carlo replications. The tests use Monte-Carlo p-values with simulated distributions of the statistics. Here,
10,000 replications subject to H0 are used.
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by drawing N = 10, 000 samples from

r̃t
i.i.d.∼ N(0, 1), V̂aR

(t)

p = −Φ−1(p),

as already described in Equation 3.6 of Section 3.2 which leads to the required vio-

lations (see the definition of conditional coverage in Equation 2.2), and durations.

Denote the respective values by T+(1), . . . , T+(N) and let T ∗+(i) = T+(i) + εi with

(εi) ∼i.i.d. 0.001 · N(0, 1) as above. We then compute critical values as in (A.1),

but with G replaced by

G =
1

N

N∑
i=1

1{T+(i) ≥ T ∗+(i)}.

A.3 GARCH Model Details and Estimates

In the applied Sections 4 and 5 we employ a variety of GARCH-type models. In

this section, we report model specifications and estimation results used for our

DGPs where not done before. The GJR-GARCH(1,1) model by Glosten et al.

(1993) is defined as follows:

σ2
t = ω + αz2t−1 + βσ2

t−1 + γ1(zt−1 ≤ 0)z2t−1 (A.2)

with returns being generated by rt = µ + σtzt. The innovations are chosen

as described in Section 4.2, that is, zt
i.i.d.∼

√
d−2
d
εt, where εt follows a stu-

dent t-distribution with d degrees of freedom. Note that γ = 0 yields a simple

GARCH(1,1) model and β = γ = 0 an ARCH(1) model. Results of a fit of the

model to S&P 500 log-return data from 2012-01-01 till 2015-01-01 are shown in

Table 9.
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Parameter Estimate Robust Std. Error Robust t stat. p-value

µ 6.91× 10−4 *** 1.96× 10−4 3.52 4.25× 10−4

ω 5.04× 10−6 *** 3.12× 10−7 16.13 0
α 7.83× 10−8 1.86× 10−2 0 1
β 0.75 *** 2.68× 10−2 28.03 0
γ 0.35 *** 7.59× 10−2 4.59 4.46× 10−6

d 6.87 *** 1.46 4.72 2.41× 10−6

Table 9: This table shows our estimates of the GJR-GARCH(1,1) model using
S&P 500 data from 2012-01-01 to 2015-01-01 (754 obs).

Except for α, all parameters are highly significant. Therefore, we believe that

these parameter values yield a fairly realistic example where the features of the

GJR-GARCH(1,1) are able to take shape. In particular, the mean paramater is

significant as well, which qualifies this DGP as a model to the check the robustness

of our backtest to a non-zero mean.
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