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Abstract

This paper develops a modified and a fully modified OLS estimator for a panel of cointegrat-

ing polynomial regressions, i.e. regressions that include an integrated process and its powers

as explanatory variables. The stationary errors are allowed to be serially correlated and the

regressors are allowed to be endogenous and we allow for individual and time fixed effects. In-

spired by Phillips and Moon (1999) we consider a cross-sectional i.i.d. random linear process

framework. The modified OLS estimator utilizes the large cross-sectional dimension that allows

to consistently estimate and subtract an additive bias term without the need to also transform

the dependent variable as required in fully modified OLS estimation. Both developed estimators

have zero mean Gaussian limiting distributions and thus allow for standard asymptotic infer-

ence. Our illustrative application indicates that the developed methods are a potentially useful

addition to not least the environmental Kuznets curve literature’s toolkit.
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1 Introduction

This paper is motivated by the large and growing literature investigating the environmental Kuznets

curve (EKC) hypothesis that postulates an inverse U-shaped relationship between measures of

economic development, typically GDP, and measures of pollution, often proxied by emissions. The

term EKC refers by analogy to the inverted U-shaped relationship between the level of economic

development and the degree of income inequality postulated by Simon Kuznets (1955) in his 1954

presidential address to the American Economic Association.1

In the empirical EKC literature a large variety of specification and estimation strategies are pursued,

in both a time series and panel context. A large part of the literature resorts to unit root and

cointegration techniques, estimating – in the panel case – equations like

yit = αi + xitβ1 + x2
itβ2 + uit, (1)

with yit denoting (in our application) log CO2 emissions per capita and xit log GDP per capita.

If log GDP per capita is an integrated process, then the above equation involves an integrated

process and its square – often also the third power is included – as regressors. It is immediate

to see and well-known, see, e.g., Wagner (2012, 2015), that powers of integrated processes are

not themselves integrated processes. Consequently, theory has to be developed for regressions

involving integrated processes and their powers as regressors. In a time series setting this has been

done, e.g., in Wagner and Hong (2016), who refer to such regressions as cointegrating polynomial

regressions (CPRs) when the errors are stationary. In particular, that paper extends the fully

modified OLS (FM-OLS) estimator of Phillips and Hansen (1990) from the cointegrating linear to

the cointegrating polynomial regression case.2

1The empirical EKC literature started in the first half of the 1990s, with early important contributions including

Grossman and Krueger (1993) or Holtz-Eakin and Selden (1995). Early survey papers like Stern (2004) or Yandle et

al. (2004) already find more than 100 refereed publications, with the number growing substantially since then. For

more discussion on the empirical literature and the theoretical underpinnings of the EKC see, e.g., Wagner (2015).

Inverted U-shaped relationships also feature prominently in modelling the relationship between energy or material

intensity and GDP per capita, see, e.g., Malenbaum (1978). Additionally, relationships involving powers of integrated

processes as regressors are used in the exchange rate target zone literature, e.g., Darvas (2008) or Svensson (1992).

2The original motivation for Wagner and Hong (2016) to develop a fully modified type estimator for CPRs was

the widespread practice in the EKC literature to consider, e.g., a quadratic CPR incorrectly as a cointegrating linear

regression with two integrated regressors. Wagner (2015) compares results obtained with the fully modified estimator

for CPRs and when using the standard estimator and finds that the estimation results are relatively similar, but that

inference concerning the presence of a CPR relationship differs substantially. These findings are understood by the

results of Stypka et al. (2018) who show that the two estimation approaches lead to the same asymptotic distribution,

but that cointegration testing is asymptotically affected. The “tailor-made” estimator for CPRs, however, exhibits

superior finite sample performance.

2



Here, we perform a similar extension of the FM-OLS estimator to CPRs in a large N and large T

panel setting allowing for individual and time fixed effects. Since in the parametric EKC literature

typically only quadratic and cubic formulations are considered we also focus here on the cubic

formulation and abstain from considering a general polynomial degree. Our results, however, extend

to higher order polynomials under corresponding moment conditions. Also, of course, the analysis

can be generalized straightforwardly to consider multiple integrated processes and their powers as

regressors. In terms of assumptions we follow Phillips and Moon (1999) by using a cross-sectional

i.i.d. random linear process framework. Pedroni (2000), a seminal contribution to panel FM-

OLS estimation, considers a non-random structure and only assumes that cross-sectional limits of

(non-random) quantities like long run variances exist. This framework has been generalized and

substantiated by Phillips and Moon (1999), who introduced random linear processes to the panel

cointegration literature. Clearly, also our results hold, with obvious notational changes, in case of

linear processes rather than random linear processes. Another aspect we do not consider here is

joint asymptotics, also studied in detail in Phillips and Moon (1999). We only consider sequential

asymptotics with T to infinity followed by N to infinity. Generalizations to joint asymptotics are

beyond the scope of this paper.3

The narrow focus with respect to polynomial degree and the confinement to sequential asymptotics

gives room to zoom in on another aspect that has gone unnoticed in the (linear) panel cointegration

literature. The cross-sectional dimension allows to consider another estimator that we call modified

OLS. This estimator is based on subtracting a consistent estimator of a second-order bias term but

without the need to transforming the dependent variable like in FM-OLS or the addition of leads

and lags of the first difference of the integrated regressor as in Dynamic OLS (Saikkonen, 1991,

Stock and Watson, 1993). This is possible, since the large cross-sectional dimension transforms the

individual specific random bias term into an expected value that can be consistently estimated and

hence subtracted.

We compare the modified and fully modified OLS estimators, as well as tests based upon them, by

means of a small simulation study and also provide a brief illustration of the developed methodology

by estimating the EKC for carbon dioxide (CO2) emissions, using two data sets, a long data set

with a small cross-sectional and large time dimension (N = 19 and T = 135) taken from Wagner

et al. (2018) and a wide data set, with N = 89 and T = 54.4

The paper is organized as follows. The following section introduces the model and the assumptions.

3Let us note for completeness that we are more general than, e.g., Phillips and Moon (1999) in one aspect by

allowing for time effects in addition to individual effects.

4Wagner et al. (2018) develop fully modified OLS type estimators – feasible by construction only for small N –

for systems of seemingly unrelated cointegrating polynomial regressions. Our results here complement the results of

that paper for data sets with a more sizeable cross-sectional dimension.
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Section 3 discusses estimation in the model with only individual specific fixed effects. The results

of this section also provide important input for estimation in the model with individual and time

effects discussed in Section 4. The finite sample performance is considered in Section 5 and Section

6 contains the illustration with the environmental Kuznets curve for CO2 emissions. Section 7

briefly summarizes and concludes. Two appendices and one supplementary appendix complement

the main text: The proofs of the theorems are contained in Appendix A, whilst Appendix B

contains several useful lemmata. Supplementary Appendix C contains calculations in relation to

some functionals of Brownian motions.

2 Model and Assumptions

The model considered in this paper is a fixed effects model with both individual and time effects

and a regressor with a unit root and its square and cube, i.e.,

yit = αi + γt + xitβ1 + x2
itβ2 + x3

itβ3 + uit, (2)

xit = xi,t−1 + vit, (3)

where for brevity we assume xi0 = 0. Alternatively, without any consequences for the asymptotic

analysis, we could assume that the random variables xi0 are a sequence of cross-sectionally inde-

pendent random variables with finite second moments. The quadratic case is, evidently, included

with β3 = 0 and appropriate (2× 2) matrices replacing (3× 3) matrices.

The cross-sectionally independently and identically distributed error processes ηit = (uit, vit)
′ are

assumed to be random linear processes fulfilling a functional central limit theorem similar to Phillips

and Moon (1999, Lemma 3), i.e.,

1√
T

[rT ]∑
t=1

ηit
T→∞⇒ Bi(r) = Ω

1/2
i Wi(r), (4)

where Wi(r) = (Wui(r),Wvi(r))
′, with Bi(r) partitioned analogously, is a bivariate standard Wiener

process. The random long run variance matrices are partitioned as

Ωi =

(
Ωuui Ωuvi

Ωvui Ωvvi

)
. (5)

For later usage we also define what is usually referred to as half long run variance matrix and

partition it analogously, i.e.

∆i =

(
∆uui ∆uvi

∆vui ∆vvi

)
, (6)

with Ωi = ∆i + ∆′i − Σi, with Σi the random contemporaneous variance matrix.
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We denote the time-demeaned variables and the averages over time by, e.g., ỹit and ȳi., i.e.,

ỹit = yit − ȳi. = yit −
1

T

T∑
t=1

yit, (7)

with analogous quantities defined for xit (and its powers), uit and vit. In addition, we write

X̃it =


xit − xi.
x2
it − x2

i.

x3
it − x3

i.

 . (8)

For the two-way effects model we need the correspondingly two-way demeaned quantities, i.e. we

define

y̌it = yit −
1

T

T∑
t=1

yit −
1

N

N∑
j=1

yjt +
1

NT

N∑
j=1

T∑
t=1

yit (9)

= yit − ȳi. − ȳ.t + ȳ..,

with again similar definitions for xit (and its powers), uit and vit.

We are now ready to state the assumptions, denoting with [x] the integer part of x ∈ R.

Assumption 1. The random variables ηit are i.i.d. across i for all t ∈ N. Furthermore, (∆i,Ωi)i∈N

are i.i.d. and independent of (Wi)i∈N. The matrices (Ωi)i∈N are positive definite almost surely.

Denoting with GT = diag(T−1, T−3/2, T−2) it holds for all i ∈ N that:

T 1/2GT X̃i,[rT ]
T→∞⇒


Bvi(r)−

∫ 1
0 Bvi(s)ds

B2
vi(r)−

∫ 1
0 B

2
vi(s)ds

B3
vi(r)−

∫ 1
0 B

3
vi(s)ds

 = B̃vi(r) = Bvi(r)−
∫ 1

0
Bvi(r)dr (10)

= DiW̃vi(r) = Di

(
Wvi(r)−

∫ 1

0
Wvi(r)dr

)
,

with Wvi(r) = (Wvi(r),Wvi(r)
2,Wvi(r)

3)′ and Di = diag(Ω
1/2
vvi ,Ωvvi,Ω

3/2
vvi ). Furthermore,

T∑
t=1

GT X̃itũit
d,T→∞−→

∫ 1

0
B̃vi(r)dBui(r) + ∆vui

(
1, 2

∫ 1
0 Bvi(r)dr, 3

∫ 1
0 Bvi(r)

2dr
)′
. (11)

and for i 6= j,
T∑
t=1

GT X̃itũjt
d,T→∞−→

∫ 1

0
B̃vi(r)dBuj(r). (12)

Weak convergence in equations (10), (11) and (12) is joint.
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Conditional upon Ωuui the processBui(r) is Gaussian. By construction, Ω
−1/2
uui Bui(r) is conditionally

N(0, r)-distributed. This implies, for p > 0, that:

E|Bui(r)|p <∞ if E|Ωui|p/2 <∞ (13)

and similarly,

E|Bvi(r)|p <∞ if E|Ωvi|p/2 <∞. (14)

We furthermore define for later usage Bu·v,i(r) = Bui(r)−ΩuviΩ
−1
vviBvi(r). By construction Bu·v,i(r)

is, conditional upon the long run variances, independent of Bui(r). The conditional (long run)

variance of Bu·v,i(r) is given by Ωu·v,i = Ωuui − Ω−1
vviΩ

2
vui. In the sequel we use the short hand

notation ρi = ΩuviΩ
−1
vvi.

The processes Bu·v,i(r) play a key role in the development of FM-OLS type estimators that have

asymptotic distributions free of second order bias terms. Given that the long run variances are in

general unknown, estimators need to be constructed invoking consistent estimators of the long run

variances. The existence of consistent long run variance estimators is ensured by Assumption 2

below, whilst Assumption 3 contains the key functional central limit result underlying fully modified

type estimation:

Assumption 2. The estimators ∆̂i and Ω̂i satisfy ∆̂i
p,T→∞−→ ∆i and Ω̂i

p,T→∞−→ Ωi.

Assumption 3. Jointly with the weak convergence results of equations (10), (11) and (12) in

Assumption 1 it holds that

T∑
t=1

GT X̃itvit
d,T→∞−→

∫ 1

0
B̃vi(r)dBvi(r) + ∆vvi(1, 2

∫ 1

0
Bvi(r)dr, 3

∫ 1

0
B2
vi(r)dr)

′ (15)

and for i 6= j,
T∑
t=1

GT X̃itvjt
d,T→∞−→

∫ 1

0
B̃vi(r)dBvj(r). (16)

Our setting is inspired by Phillips and Moon (1999), but we restrict ourselves to a special case

with respect to asymptotic theory in that we only consider sequential asymptotics with T → ∞
followed by N → ∞. This framework already leads to substantial complications, as will be seen

below. Furthermore, with appropriate rate restrictions it seems likely that the results derived here

continue to hold in joint asymptotic with T going to infinity fast enough in relation to N .

Also, at this point we formulate only high level assumptions and abstain from adding primitive as-

sumptions that generate our Assumptions 1 to 3. The literature provides several pathways to derive
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these results from primitive assumptions that are well understood (see, e.g., de Jong, 2002, Ibragi-

mov and Phillips, 2008 or Park and Phillips, 2001).5 It is worth mentioning that Pötscher (2004)

is an important contribution covering a wide class of nonlinear functions by deriving convergence

results without invoking the continuous mapping theorem.

3 Individual Effects Only

In this section we consider the case when only individual fixed effects αi are present. Time effects

are added in the following section, where it will be seen that the results of this section are of prime

importance also for the two-way effects case.

3.1 The OLS Estimator

If the focus is only on the coefficient vector β = (β1, β2, β3)′, the corresponding OLS estimator is

typically referred to as Least Squares Dummy Variables (LSDV for short) estimator and is given

by:

β̃ = (

N∑
i=1

T∑
t=1

X̃itX̃
′
it)
−1

N∑
i=1

T∑
t=1

X̃itỹit. (17)

To next discuss the asymptotic behavior of the OLS estimator we define:

V1 = E
(∫ 1

0
B̃vi(r)B̃vi(r)

′dr

)
= E(DiMDi), (18)

where

M = E
(∫ 1

0
W̃vi(r)W̃vi(r)

′dr

)
=


1/6 0 3/8

0 5/12 0

3/8 0 39/20

 , (19)

as shown in Lemma 9 of Supplementary Appendix C.

Theorem 1. Under Assumption 1, when γt = 0 for all t, E|Ωuui|1/2 < ∞, E|Ωvvi|3 < ∞,

E|Ω−1/2
vvi Ωuvi| < ∞, E|∆vui| < ∞, E|∆vuiΩ

1/2
vvi | < ∞, E|∆vuiΩvvi| < ∞, and for p = 1, 2, 3,

E|ΩuuiΩ
p
vvi|1/2 <∞ and E|ΩuviΩ

p/2−1/2
vvi | <∞, it holds that

G−1
T (β̃ − β)

p,N→∞,T→∞−→ V1
−1


−(1/2)E(Ωuvi) + E(∆vui)

0

−E(ΩvviΩuvi) + (3/2)E(Ωuvi∆vui)

 . (20)

5In case one considers a standard, i.e., non-random, coefficient setting, the convergence results posited in our

assumptions follow immediately from, e.g., the results of Wagner and Hong (2016). In this case, as mentioned in the

introduction, it is sufficient to assume that the cross-sectional averages of, e.g., Ωi converge to well-defined positive

definite limits to derive the results in this paper.
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The theorem is formulated with appropriate moment assumptions on the random long run variance

matrices, which are necessary to obtain consistency, as N,T →∞ sequentially. Due to the bias term

the convergence rate does not depend upon N but only upon T and that the result is a convergence

in probability result to a non-random quantity. As is well-known, the bias term depends upon

the dependence structure between uit and vit and is zero in case that Ωuvi and ∆uvi are zero with

probability one. In this case the OLS estimator features a faster rate of convergence given by

N1/2G−1
T and the limiting distribution is normal. The panel dimension allows to remove the bias

term responsible for the result independent of N given above in (20) with a one-step correction by

subtracting a consistent estimator of the bias. This is simpler than the two-part transformation

required for FM-OLS, where additionally also the dependent variable is modified. Hence, the panel

setting in fact allows for more possibilities of corrections than the pure time series setting, which

have not yet been explored in the literature.

3.2 A Modified OLS Estimator

In order to remove the additive bias and to obtain an asymptotic normal distribution at the

convergence rate N1/2G−1
T we define

β̃m = (
N∑
i=1

T∑
t=1

X̃itX̃
′
it)
−1

N∑
i=1

(
T∑
t=1

X̃itỹit − C̃i), (21)

where

C̃i = ∆̂vui(T, 2
T∑
t=1

xit, 3
T∑
t=1

x2
it)
′ + (−(1/2)T Ω̂uvi, 0,−T 2Ω̂vviΩ̂uvi)

′. (22)

Note that for the modified OLS estimator, in contrast with the fully modified OLS estimator

considered below, the dependent variable is not changed. The large cross-sectional dimension

allows to consistently remove the expectation of the cross-product of the regressors and the errors,

the endogeneity bias arising in OLS, directly.

In the theorem below, a role is played by the matrix

Q = E(

∫ 1

0
W̃(r)dW (r))(

∫ 1

0
W̃(r)dW (r))′) =


1/3 0 9/10

0 59/60 0

9/10 0 101/20

 . (23)

The calculations to show second equality in the above equation are provided in Lemma 13 in

Supplementary Appendix C.

Theorem 2. Under Assumptions 1, 2 and 3, when γt = 0 for all t, E|Ωvvi|3 < ∞, E|Ωuui| <
∞, E|∆uvi| < ∞, E|∆uviΩ

1/2
vvi | < ∞, E|∆uviΩvvi| < ∞, E|Ω2

uviΩ
−1
vvi| < ∞, and for p = 1, 2, 3,
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E|ΩuuiΩ
p
vvi| <∞, E|ΩuviΩ

p−1
vvi | <∞, and E|Ω2

uviΩ
p−1
vvi | <∞, it holds that

N1/2G−1
T (β̃m − β)

d,N→∞,T→∞−→ N(0, V −1
1 Σ1V

−1
1 ), (24)

where

Σ1 = E
(∫ 1

0

B̃vi(r)dBui(r)− E(

∫ 1

0

B̃vi(r)dBui(r)|Ωi)
)(∫ 1

0

B̃vi(r)dBui(r)− E(

∫ 1

0

B̃vi(r)dBui(r)|Ωi)
)′

= E(Ωu·v,iDiMDi) + E(Ω2
uviΩ

−1
vviDiQDi)

− E


(1/4)Ω2

uvi 0 (1/2)ΩvviΩ
2
uvi

0 0 0

(1/2)ΩvviΩ
2
uvi 0 Ω2

vviΩ
2
uvi

 . (25)

Using the modified OLS estimator for inference requires, of course, consistent estimators of V1 and

Σ1. A consistent estimator of V1 is straightforwardly given by

V̂1 = 1
N

∑N
i=1

∑T
t=1GT X̃itX̃

′
itGT . (26)

An estimator for Σ1 is constructed using consistent estimators of its components, i.e., is based

on replacing in the above limiting expression the expected values by cross-sectional averages of

estimates based on Ω̂i and ∆̂i. Thus, e.g., the second component composing Σ1 is estimated by
1
N

∑N
i=1 Ω̂2

uviΩ̂
−1
vviD̂iMD̂i with D̂i = diag(Ω̂

1/2
vvi , Ω̂vvi, Ω̂

3/2
vvi ) and similarly for the other components.

3.3 A Fully Modified OLS Estimator

The above modified estimator utilizes the panel dimension for bias correction. In this section we

consider a “classical” fully modified OLS (FM-OLS) estimator based on the Phillips and Hansen

(1991) two part “full modification” that considers ỹ+
it , rather than ỹit, and an additive bias correc-

tion. Define

∆̂+
vui = ∆̂vui − ∆̂vviΩ̂

−1
vviΩ̂vui, (27)

C̃+
i = ∆̂+

vui(T, 2

T∑
t=1

xit, 3

T∑
t=1

x2
it)
′ (28)

and

ỹ+
it = ỹit − Ω̂uviΩ̂

−1
vvivit = X̃ ′itβ + ũit − Ω̂uviΩ̂

−1
vvivit. (29)

With the necessary quantities defined, the FM-OLS estimator is given by:

β̃+ = (

N∑
i=1

T∑
t=1

X̃itX̃
′
it)
−1

N∑
i=1

(

T∑
t=1

X̃itỹ
+
it − C̃

+
i ) (30)
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Assumptions 1 to 3 are tailor-made to establish consistency of the FM-OLS estimator in this

context. This extends the time series results contained in Wagner and Hong (2016) to the panel

case.

Theorem 3. Under Assumptions 1, 2 and 3, when γt = 0 for all t, E|Ωvvi|3 <∞, E|Ωuui|1/2 <∞,

E|Ω−1/2
vvi Ωuvi| < ∞, E|Ωvvi|3/2 < ∞, E|∆vui| < ∞, E|∆vuiΩ

1/2
vvi | < ∞, E|∆vuiΩvvi| < ∞, and for

p = 1, 2, 3, E|ΩuuiΩ
p
vvi|1/2 <∞, and E|Ω2

uviΩ
p−1
vvi |1/2 <∞, E|ΩuviΩ

(p−1)/2
vvi | <∞, it holds that

N1/2G−1
T (β̃+ − β)

d,N→∞,T→∞−→ N(0, V −1
1 Σ+

1 V
−1

1 ). (31)

where

Σ+
1 = E(Ωu·v,iDiMDi).

Inference for the FM-OLS estimator requires an estimate of E(Ωu·v,iDiMDi). This can be done

in several ways, one based on replacing the expectation by cross-sectional averaging, that is,
1
N

∑N
i=1 Ω̂u·v,iD̂iMD̂i. The other one replaces D̂iMD̂i in this formula by the sample analogue,

i.e., 1
N

∑N
i=1 Ω̂u·v,i

∑T
t=1GT X̃itX̃

′
itGT .

Remark 1. As can be expected, the result given above for the FM-OLS estimator simplifies con-

siderably if we assume that the processes are cross-sectionally i.i.d. with non-random (and thus

identical) long run variance matrices, e.g., Ωuvi = Ωuv for i = 1, 2, . . . , N and similar for all other

quantities. In this case the limiting distribution has a “standard” rather than a “sandwich” variance

covariance matrix given by

Ωu·v(DMD)−1 = Ωu·v


(1/6)Ωvv 0 (3/8)Ω2

vv

0 (5/12)Ω2
vv 0

(3/8)Ω2
vv 0 (39/20)Ω3

vv


−1

. (32)

The result in (32) of course relates to existing results for linear panel cointegration. In case of a

scalar regressor as discussed here, the limiting variance is given by 6Ωu·vΩ
−1
vv , with similar results

contained in Pedroni (2000), for a standardized version of the estimator, and in Phillips and Moon

(1999, Section 6, p. 1090–1091).

4 Individual and Time Effects

In this section we turn to the case when both individual and time effects are present. It is convenient

for the analysis of the asymptotic behavior of the three considered estimators to express quantities

in differences to the corresponding quantities arising in the one-way model, i.e.,

X̌it = X̃it − VNTt, (33)
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with VNTt = 1
N

∑N
i=1(Xit − X̄i.) = 1

N

∑N
i=1 X̃it,

ǔit = uit − ūi. − ū.t + ū = ũit − wNTt, (34)

with wNTt = 1
N

∑N
i=1(uit − ūi.) = 1

N

∑N
i=1 ũit.

4.1 The OLS Estimator

In the two-way effects model, the OLS (LSDV) estimator is given by

β̌ = (
N∑
i=1

T∑
t=1

X̌itX̌
′
it)
−1

N∑
i=1

T∑
t=1

X̌ity̌it. (35)

The asymptotic behavior of the LSDV estimator is quite similar to the one-way effects case and

as before, in order to state its asymptotic behavior, we need to define the corresponding V -matrix

first:

V2 = E(DiMDi)− diag(0, (1/12)(EΩvvi)
2, 0)′ (36)

= V1 − diag(0, (1/12)(EΩvvi)
2, 0)′.

It is interesting to note that V2 and V1 in fact only differ in the (2, 2)-element. This difference

stems from the additional averaging across individual units in the two-way model. This averaging

generates an additional term in the variance covariance matrix of the limiting distribution given by

the expected value of B̃vi(r) times its transpose (related to VNTt defined above). Since, the first

and third element of EB̃vi(r) are equal to zero, only the (2,2)-element changes between V1 and V2.6

With the necessary quantities defined, we are now in a position to give the result for the LSDV

estimator in the two-way model.

Theorem 4. Under Assumption 1, E|Ωuui| <∞, E|Ωvvi|3 <∞, E|Ω−1/2
vvi Ωuvi| <∞, E|∆vui| <∞,

E|∆vuiΩ
1/2
vvi | <∞, E|∆vuiΩvvi| <∞, and for p = 1, 2, 3, E|ΩuuiΩ

p
vvi|1/2 <∞ and E|ΩuviΩ

p/2−1/2
vvi | <

∞, it holds that

G−1
T (β̌ − β)

p,N→∞,T→∞−→ V −1
2


−(1/2)E(Ωuvi) + E(∆vui)

0

−E(ΩvviΩuvi) + (3/2)E(Ωuvi∆vui)

 . (37)

The second component of the bias term is unchanged compared to the one-way case discussed in

Theorem 1 and the first, as discussed, differs prior to inversion only in its (2,2)-element.

6Such a pattern also occurs when considering higher order polynomials, driven by the zero odd (cross-)moments

of normal distributions.
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4.2 A Modified OLS Estimator

Parallelling the structure of the discussion for the one-way effects model we now define the correction

terms for the modified estimator, which depends upon C̃i just as in the one-way effects model, that

is

β̌m = (

N∑
i=1

T∑
t=1

X̌itX̌
′
it)
−1

N∑
i=1

(

T∑
t=1

X̌ity̌it − C̃i). (38)

Its limiting distribution is given in the following theorem.

Theorem 5. Let Assumptions 1, 2 and 3 hold. Assume that E|Ωuui| <∞, E|Ωvvi|3 <∞, E|∆vui| <
∞, E|∆vuiΩ

1/2
vvi | < ∞, E|∆vuiΩvvi| < ∞, E|Ω−1/2

vvi Ωuvi| < ∞, E|ΩuuiΩ
3
vvi| < ∞, and for p = 1, 2, 3,

E|ΩuviΩ
(p−1)/2
vvi | <∞ and E|ΩuuiΩ

p
vvi|1/2 <∞. Then it holds that

N1/2G−1
T (β̌m − β)

d,N→∞,T→∞−→ N(0, V −1
2 Σ2V

−1
2 ), (39)

where

Σ2 = E
(∫ 1

0
B̃vi(r)dBui(r)− E(

∫ 1

0
B̃vi(r)dBui(r)|Ωi)−

∫ 1

0
EB̃vi(r)dBui(r)

)
×
(∫ 1

0
B̃vi(r)dBui(r)− E(

∫ 1

0
B̃vi(r)dBui(r)|Ωi)−

∫ 1

0
EB̃vi(r)dBui(r)

)′
= Σ1 − (1/6)diag(0,E(ΩuuiΩvvi)E(Ωvvi), 0) + (1/12)diag(0,E(Ωuui)(E(Ωvvi))

2, 0). (40)

4.3 A Fully Modified OLS Estimator

Finally, again as in the one-way effects model we define a classical FM-OLS estimator, which uses

the correspondingly transformed dependent variable y̌+
it = y̌it− Ω̂uvΩ̂

−1
vv vit. The FM-OLS estimator

for the two-way effects model is defined as

β̌+ = (

N∑
i=1

T∑
t=1

X̌itX̌
′
it)
−1

N∑
i=1

(

T∑
t=1

X̌ity̌
+
it − C̃

+
i ). (41)

Theorem 6. Under the same assumptions as in Theorem 5, plus E|∆vvi| <∞, E|∆vviΩ
1/2
vvi | <∞

and E|∆vviΩvvi| <∞, it holds that

N1/2G−1
T (β̌+ − β)

d,N→∞,T→∞−→ N
(
0, V −1

2 Σ+
2 V
−1

2

)
(42)

where

Σ+
2 = Σ+

1 − diag(0, (1/6)E(Ωvvi)E(Ωu·v,iΩvvi), 0) + diag(0, (1/12)E(Ωu·v,i)(E(Ωvvi))
2, 0).
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5 Finite Sample Performance

We now turn to a brief simulation investigation of the developed estimators and consider for brevity

only the cubic case with two-way effects, i.e., our most general setting.7 The data are given by

yit = αi + γt + β1xit + β2x
2
it + β3x

3
it + uit, (43)

where uit and vit = ∆xit are generated as:

uit = ρ1iui,t−1 + εit + ρ2iηit, ui0 = 0,

vit = νit + 0.5νi,t−1,

with (εit, νit)
′ ∼ N (0, I2) cross-sectionally independent. The parameters ρ1i control the level of

serial correlation in the error terms uit, and ρ2i control the extent of regressor endogeneity. The

parameters ρi1, ρi2 are cross-sectionally i.i.d. distributed and are independent of (εit, νit)
′. In

particular we consider ρ1i = ρ1 +U1i and ρ2i = ρ2 +U2i with U1i,U2i independently and identically

distributed uniform random variables over the interval [−0.05, 0.05], with ρ1, ρ2 ∈ {0, 0.3, 0.6, 0.8}.8

The slope parameters are chosen as β1 = 5, β2 = −3 and β3 = 0.3. The individual effects αi are

i.i.d. N (0, 1) and the time effects are set to γt = t, i.e., we simply consider a common linear trend.

For the construction of the modified and fully modified estimators, consistent estimators of the long

run variances and half long run variances are required. Based upon those, different variants of the

estimators (and test statistics based upon them) are conceivable, as discussed in the theory sections.

We have compared several versions in preliminary simulations and focus for brevity on the best

performing variants here only. Estimator performance, in terms of bias and root mean squared error

(RMSE), is improved by using cross-sectional averages, i.e., the modified OLS estimator as defined

in (38) is implemented using C̃i as given in (22) with the individual specific estimates ∆̂vui, Ω̂uvi and

Ω̂vvi replaced for each cross-section member by the cross-sectional average, e.g., ∆̂vu = 1
N

∑N
i=1 ∆̂vui

and similarly for the other quantities appearing. The FM-OLS estimator as defined in (41) is

implemented using C̃+
i as defined in (28) using ∆̂vu = 1

N

∑N
i=1 ∆̂vui for all i = 1, . . . , N instead of

∆̂vui. The modified dependent variable is used in the form y̌+
it = y̌it−Ω̂uvΩ̂

−1
vv vit, i.e., again with the

cross-sectional average of the long run variances used for all cross-section members. All long run

variances are estimated using the Bartlett kernel and the Andrews (1991) bandwidth selection rule.

The results are very similar for other choices, e.g., the Quadratic Spectral kernel or the Newey and

West (1994) bandwidth rule. The sample sizes considered are all combinations of T = 50, 100, 200

7The results are very similar for the quadratic case.

8The addition of cross-sectionally i.i.d. random variables to the coefficients ρ1 and ρ2 is obviously a simple way of

generating data in a random linear process fashion. Considering non-random ρ1i and ρ2i leads to very similar results

in the simulations.
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and N = 10, 25, 50, 100. For each setting the number of replications is 5,000 and all test decisions

are performed at the nominal 5% level.

For hypothesis testing we consider one variant for the modified estimator and two variants for the

fully modified estimator. In particular, for the modified OLS estimator, we consider Σ̂β̌mβ̌m =
1
NGT V̂

−1
2 Σ̂2V̂

−1
2 GT , with

V̂2 =
1

N

N∑
i=1

D̂iMD̂i − diag

(
0,

1

12
Ω̂2
vv, 0

)
, (44)

with D̂i = diag(Ω̂
1/2
vvi , Ω̂vvi, Ω̂

3/2
vvi ) and M as given in (19) and

Σ̂2 =
1

N

N∑
i=1

Ω̂u·v,iD̂iMD̂i +
1

N

N∑
i=1

Ω̂2
uviΩ̂

−1
vviD̂iQD̂i− (45)

− 1

N

N∑
i=1


1
4 Ω̂2

uvi 0 1
2 Ω̂2

vviΩ̂
2
uvi

0 0 0
1
2 Ω̂2

vviΩ̂
2
uvi 0 Ω̂2

vviΩ̂
2
uvi

− 1

6
diag

(
0,

(
1

N

N∑
i=1

Ω̂uuiΩ̂vvi

)
Ω̂vv, 0

)
+

+
1

12
diag

(
0, Ω̂uuΩ̂2

vv, 0
)
,

with Q as defined in (23). We consider two estimators of the covariance matrices of the FM-OLS

estimator β̌+. The first is given by

Σ̂β̌+β̌+ =
1

N
GT V̂

−1
2 Σ̂+

2 V̂
−1

2 GT , (46)

with

Σ̂+
2 =

1

N

N∑
i=1

Ω̂u·v,iD̂iMD̂i −
1

6
diag

(
0, Ω̂vv

1

N

N∑
i=1

Ω̂u·v,iΩ̂vvi, 0

)
+

1

12
diag

(
0, Ω̂u·vΩ̂

2
vv, 0

)
. (47)

The second variant is based on a “standard expression” for an FM-OLS variance covariance matrix,

i.e.,

Σ̂std
β̌+β̌+ = Ω̂u·v

(
N∑
i=1

T∑
t=1

X̌itX̌
′
it

)−1

, (48)

compare also Remark 1.

We start with assessing estimator performance measured by bias and RMSE, where we include

as a benchmark also the OLS estimator, labelled β̌, in the discussion and in Tables 1 to 4. We

mostly focus on β1 and β2, since the results for β3 are similar to the results for either β1 or β2,

depending upon question considered.9 For β1 (and qualitatively very similarly for β3), see Table 1,

9Additional simulation results are available upon request.
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the modified OLS estimator leads to the smallest bias, with the differences to the fully modified OLS

estimator often negligible. The exception is, of course ρ1 = ρ2 = 0, where the OLS estimator, that

is in this case second order bias free and by construction tuning parameter free, exhibits the best

performance. For β2 (Table 2) the best performance is, to a certain extent surprisingly, exhibited

by the OLS estimator and the FM-OLS estimator, with the differences between the two estimators

often very small. Here the exception is N = 50, where for the larger values of T the modified OLS

estimator has the smallest bias.

Table 1: Bias of estimators of β1

N = 10 N = 25 N = 50 N = 100

ρ1 = ρ2 β̌1 β̌m1 β̌+
1 β̌1 β̌m1 β̌+

1 β̌1 β̌m1 β̌+
1 β̌1 β̌m1 β̌+

1

T = 50

0 -0.000 -0.000 0.000 -0.000 -0.000 -0.000 0.000 -0.000 -0.000 0.000 0.000 0.000

0.3 0.017 -0.001 0.005 0.016 0.002 0.004 0.015 0.003 0.003 0.015 0.003 0.003

0.6 0.070 0.015 0.032 0.066 0.023 0.028 0.065 0.025 0.026 0.064 0.025 0.025

0.8 0.185 0.084 0.116 0.178 0.095 0.105 0.175 0.097 0.102 0.172 0.098 0.100

T = 100

0 -0.000 -0.000 -0.000 0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.000 0.000 0.000

0.3 0.008 -0.002 0.002 0.008 0.000 0.001 0.008 0.001 0.001 0.008 0.001 0.001

0.6 0.036 0.003 0.013 0.035 0.008 0.011 0.034 0.009 0.010 0.033 0.010 0.010

0.8 0.103 0.030 0.053 0.100 0.039 0.047 0.098 0.041 0.045 0.096 0.042 0.043

T = 200

0 -0.000 -0.000 -0.000 0.000 0.000 0.000 -0.000 -0.000 -0.000 0.000 0.000 0.000

0.3 0.004 -0.001 0.001 0.004 0.000 0.001 0.004 0.000 0.000 0.004 0.000 0.000

0.6 0.018 -0.001 0.005 0.018 0.003 0.004 0.017 0.003 0.004 0.017 0.004 0.004

0.8 0.054 0.007 0.022 0.053 0.014 0.019 0.051 0.016 0.018 0.051 0.017 0.018

With respect to RMSE, Table 3 shows that for β1 the fully modified OLS estimator generally

exhibits the best performance, followed by the modified OLS estimator. The differences between

these two tend to become very small as N increases. For β2 (Table 4) the ordering is different,

with the fully modified estimator exhibiting the best performance and the OLS estimator coming

in second. The modified estimator leads to partly substantially larger RMSE than the other two

estimators in case of β2, especially for small N . Grosso modo, from a bias and RMSE perspective

the fully modified OLS estimator is the best choice, especially given that the performance of the

modified OLS estimator is comparably quite poor for β2.10

Let us now turn to test performance, where we start by considering the empirical null rejection

10Note for completeness that for N = 100 the modified OLS estimator leads to smallest bias and RMSE for β3.
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Table 2: Bias (×104) of estimators of β2

N = 10 N = 25 N = 50 N = 100

ρ1 = ρ2 β̌2 β̌m2 β̌+
2 β̌2 β̌m2 β̌+

2 β̌2 β̌m2 β̌+
2 β̌2 β̌m2 β̌+

2

T = 50

0 -0.009 -0.170 -0.018 0.091 0.130 0.103 0.142 0.145 0.144 0.002 0.003 0.002

0.3 0.050 -0.784 0.065 0.153 0.283 0.163 0.199 0.162 0.197 -0.001 0.027 0.004

0.6 0.283 -1.650 0.371 0.329 0.632 0.335 0.355 0.229 0.348 0.010 0.090 0.017

0.8 0.864 -2.689 0.980 0.703 1.167 0.697 0.657 0.397 0.662 0.025 0.178 0.039

T = 100

0 -0.032 -0.097 -0.029 0.014 0.017 0.016 0.023 0.021 0.023 0.020 0.019 0.020

0.3 -0.007 -0.114 -0.028 0.027 0.021 0.020 0.023 0.042 0.027 0.028 0.030 0.027

0.6 0.091 0.031 0.018 0.037 0.019 0.009 0.026 0.091 0.040 0.049 0.053 0.046

0.8 0.344 0.467 0.195 -0.037 -0.042 -0.099 0.041 0.185 0.071 0.092 0.098 0.086

T = 200

0 -0.001 0.016 0.002 -0.003 -0.002 -0.003 -0.002 -0.002 -0.002 0.002 0.002 0.002

0.3 0.011 0.079 0.004 0.000 0.026 -0.002 -0.004 -0.002 -0.003 0.002 -0.001 0.003

0.6 0.047 0.249 0.017 0.007 0.094 -0.000 -0.010 -0.001 -0.006 0.003 -0.009 0.006

0.8 0.102 0.520 0.031 0.026 0.230 0.011 -0.016 0.005 -0.007 0.006 -0.023 0.010

probabilities of t-tests for β1 in Table 5 and β2 in Table 6. The most pervasive finding is that the

test based on the FM-OLS estimator with the estimated variance given by (48) leads to the best

performance (smallest size distortions) in most cases. In some cases, when N is large and ρ1 and

ρ2 are large, the t-test based on the modified OLS estimator leads to the smallest size distortions.

For β2 and small N the modified OLS estimator based test is outperformed by both variants of

FM-OLS based tests. When comparing the findings for β1 and β2 (and β3) a striking feature is the

size divergence observed for testing hypothesis concerning β1. For N large relative to T , the null

rejection probabilities tend to one. This phenomenon has been found to be widespread in panel unit

root and cointegration testing, see, e.g., Hlouskova and Wagner (2006) and Wagner and Hlouskova

(2009). The faster convergence rate of the estimators of β2 and β3 ameliorate this problem. In

this respect it is a surprising observation that size divergence is less present for β2 than for β3, for

which the coefficient estimators converge faster than for β2. When the simulations are performed

using true rather than estimated half long run and long run variances the test performances are

throughout much better, which identifies, as is well-known in the literature, long run variance

estimation as a man culprit for poor performance.

We close this section with a brief look on size corrected power, where we consider all three co-

efficients. The rejection probabilities are calculated using the empirical critical values from the
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Table 3: RMSE of estimators of β1

N = 10 N = 25 N = 50 N = 100

ρ1 = ρ2 β̌1 β̌m1 β̌+
1 β̌1 β̌m1 β̌+

1 β̌1 β̌m1 β̌+
1 β̌1 β̌m1 β̌+

1

T = 50

0 0.018 0.019 0.019 0.010 0.010 0.010 0.007 0.007 0.007 0.005 0.005 0.005

0.3 0.030 0.030 0.026 0.021 0.015 0.015 0.018 0.010 0.010 0.016 0.008 0.007

0.6 0.082 0.062 0.054 0.071 0.035 0.037 0.067 0.030 0.031 0.065 0.028 0.028

0.8 0.201 0.136 0.141 0.184 0.107 0.115 0.178 0.102 0.107 0.174 0.100 0.102

T = 100

0 0.009 0.009 0.009 0.005 0.005 0.005 0.003 0.003 0.003 0.002 0.002 0.002

0.3 0.015 0.017 0.013 0.011 0.008 0.007 0.009 0.005 0.005 0.008 0.004 0.004

0.6 0.043 0.037 0.026 0.037 0.017 0.017 0.035 0.013 0.013 0.034 0.012 0.011

0.8 0.114 0.079 0.069 0.104 0.048 0.053 0.099 0.045 0.048 0.097 0.044 0.045

T = 200

0 0.004 0.005 0.005 0.002 0.003 0.003 0.002 0.002 0.002 0.001 0.001 0.001

0.3 0.008 0.008 0.006 0.005 0.004 0.004 0.004 0.003 0.002 0.004 0.002 0.002

0.6 0.022 0.019 0.012 0.019 0.008 0.008 0.018 0.006 0.006 0.017 0.005 0.005

0.8 0.060 0.042 0.032 0.055 0.021 0.023 0.052 0.019 0.020 0.051 0.018 0.019

t-test null simulations with data generated under the alternative using an equidistant grid of 21

points for the parameter values (including also the null parameter values). Reflecting the different

convergence rates we consider for β1 the interval [5, 5.08], for β2 the interval [−3,−2.996] and for

β3 the interval [0.3, 0.3002]. Figures 1 to 3 display the results for T = 100 all values of N and

ρ1 = ρ2 = 0.6. Size corrected power is lowest for the t-test based on the modified estimator,

the two variants based on the FM-OLS estimator perform relatively similarly, with some visible

performance advantages of the “standard” version in case of small N . With increasing N , the

performance disadvantages of the modified OLS estimator based test diminish, reflecting the fact

that the modified OLS estimator crucially rests upon a cross-sectional limit in the bias correction

step. Combining size and power behavior we conclude that the “standard” variant of the FM-OLS

based tests leads to the best performance.
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Table 4: RMSE (×104) of estimators of β2

N = 10 N = 25 N = 50 N = 100

ρ1 = ρ2 β̌2 β̌m2 β̌+
2 β̌2 β̌m2 β̌+

2 β̌2 β̌m2 β̌+
2 β̌2 β̌m2 β̌+

2

T = 50

0 14.851 16.784 14.864 6.173 6.263 6.183 3.787 3.802 3.789 2.441 2.443 2.442

0.3 20.854 39.644 20.375 8.747 10.955 8.560 5.346 5.883 5.233 3.513 3.669 3.391

0.6 36.837 100.570 33.303 15.571 24.660 14.262 9.457 11.749 8.667 6.392 6.993 5.683

0.8 66.161 179.831 58.813 29.020 45.185 26.072 17.732 21.503 15.899 12.178 12.900 10.580

T = 100

0 5.342 5.927 5.371 2.186 2.215 2.191 1.328 1.330 1.328 0.841 0.842 0.842

0.3 7.652 18.295 7.498 3.132 4.096 3.071 1.905 2.165 1.866 1.226 1.307 1.188

0.6 14.065 49.865 12.632 5.759 10.041 5.259 3.497 4.661 3.187 2.306 2.645 2.049

0.8 27.665 99.151 23.986 11.796 20.848 10.387 7.160 9.582 6.273 4.814 5.418 4.090

T = 200

0 1.842 1.942 1.847 0.771 0.775 0.771 0.470 0.471 0.470 0.300 0.300 0.300

0.3 2.648 6.803 2.601 1.115 1.484 1.093 0.680 0.772 0.667 0.443 0.472 0.426

0.6 5.053 20.954 4.480 2.082 3.765 1.899 1.265 1.727 1.155 0.846 0.995 0.743

0.8 10.922 46.609 9.020 4.447 8.457 3.834 2.692 3.791 2.323 1.834 2.164 1.512

Table 5: Empirical null rejection probabilities of t-tests for β1

N = 10 N = 25 N = 50 N = 100

ρ1 = ρ2 β̌m1 β̌+
1 β̌++

1 β̌m1 β̌+
1 β̌++

1 β̌m1 β̌+
1 β̌++

1 β̌m1 β̌+
1 β̌++

1

T = 50

0 0.194 0.205 0.094 0.131 0.143 0.084 0.110 0.121 0.084 0.093 0.104 0.076

0.3 0.242 0.237 0.128 0.155 0.171 0.118 0.140 0.162 0.124 0.147 0.165 0.137

0.6 0.329 0.384 0.263 0.316 0.443 0.366 0.462 0.591 0.537 0.706 0.803 0.774

0.8 0.512 0.688 0.567 0.731 0.877 0.831 0.936 0.985 0.973 0.997 1.000 1.000

T = 100

0 0.180 0.178 0.094 0.111 0.115 0.077 0.091 0.094 0.072 0.084 0.091 0.074

0.3 0.241 0.207 0.111 0.141 0.140 0.096 0.116 0.120 0.091 0.117 0.119 0.106

0.6 0.306 0.309 0.192 0.234 0.317 0.249 0.296 0.400 0.354 0.475 0.570 0.540

0.8 0.403 0.544 0.417 0.509 0.722 0.646 0.762 0.904 0.880 0.951 0.992 0.988

T = 200

0 0.163 0.167 0.081 0.101 0.105 0.069 0.075 0.077 0.062 0.072 0.074 0.065

0.3 0.217 0.183 0.097 0.121 0.126 0.084 0.096 0.095 0.074 0.093 0.096 0.086

0.6 0.274 0.248 0.143 0.176 0.233 0.172 0.203 0.268 0.228 0.297 0.381 0.352

0.8 0.320 0.414 0.286 0.338 0.542 0.463 0.513 0.721 0.674 0.804 0.924 0.910
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Table 6: Empirical null rejection probabilities of t-tests for β2

N = 10 N = 25 N = 50 N = 100

ρ1 = ρ2 β̌m2 β̌+
2 β̌++

2 β̌m2 β̌+
2 β̌++

2 β̌m2 β̌+
2 β̌++

2 β̌m2 β̌+
2 β̌++

2

T = 50

0 0.308 0.335 0.088 0.163 0.198 0.079 0.113 0.147 0.074 0.085 0.113 0.072

0.3 0.355 0.351 0.109 0.190 0.216 0.098 0.127 0.161 0.092 0.090 0.129 0.093

0.6 0.398 0.380 0.126 0.205 0.252 0.123 0.122 0.181 0.111 0.079 0.156 0.113

0.8 0.420 0.443 0.161 0.211 0.306 0.153 0.128 0.242 0.142 0.087 0.212 0.144

T = 100

0 0.297 0.312 0.079 0.151 0.168 0.069 0.099 0.117 0.062 0.067 0.086 0.059

0.3 0.357 0.332 0.095 0.188 0.184 0.083 0.113 0.135 0.078 0.075 0.098 0.074

0.6 0.401 0.361 0.108 0.211 0.215 0.098 0.129 0.160 0.094 0.074 0.125 0.090

0.8 0.422 0.404 0.132 0.219 0.268 0.121 0.129 0.199 0.109 0.077 0.163 0.110

T = 200

0 0.285 0.295 0.072 0.149 0.158 0.059 0.097 0.106 0.059 0.070 0.081 0.057

0.3 0.362 0.310 0.087 0.179 0.174 0.071 0.111 0.121 0.072 0.077 0.093 0.073

0.6 0.404 0.335 0.097 0.212 0.196 0.081 0.126 0.142 0.082 0.084 0.116 0.083

0.8 0.422 0.366 0.108 0.223 0.227 0.091 0.131 0.170 0.087 0.082 0.136 0.093
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Figure 1: Size corrected power of t-tests for β1 for T = 100, ρ1, ρ2 = 0.6 and all values of N
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Figure 2: Size corrected power of t-tests for β2 for T = 100, ρ1, ρ2 = 0.6 and all values of N
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Figure 3: Size corrected power of t-tests for β3 for T = 100, ρ1, ρ2 = 0.6 and all values of N
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6 The Environmental Kuznets Curve

In this section we briefly illustrate the developed methods by estimating EKCs for CO2 emissions.

The dependent variable is the logarithm of CO2 emissions per capita and the explanatory variable

is the logarithm of GPD per capita and its powers. We consider both the quadratic and the cubic

specification and both the individual effects only (one-way) and the individual and time effects

(two-way) specification. All estimation results given in this section are based on the fully modified

estimator, with “standard” inference in the terminology of the above finite sample performance

section. Also as in the simulations we use the Bartlett kernel and the Andrews (1991) bandwidth

selection rule.

We use two data sets, the long data set with small N = 19 and large T = 135 and the wide data

set with large N = 89 and small T = 54. The long data set is as in Wagner et al. (2018) and

comprises data on per capita CO2 emissions and per capita GDP for the period 1878–2013 for 19

early industrialized countries.11 We also consider a subset of six out of these 19 countries for the

period 1870–2013 as analyzed in Wagner et al. (2018) in a seemingly unrelated regressions (SUR)

setting. These six countries are Austria, Belgium, Finland, the Netherlands, Switzerland and the

United Kingdom.

The estimation results for the long data set (for both N = 19 and N = 6) are given in Table 7.

The sample range for the N = 6 country set is 1,725 to 26,102 and for the N = 19 country set the

range is 794 to 31,933 (measured in 1990 Geary-Khamis Dollars). Let us start with the quadratic

specification. Three of the four estimated EKCs (with the exception of the two-way specification

and N = 6) have significant coefficients with a negative coefficient to squared log GDP per capita

and thus correspond to an inverted U shape. For these three estimated EKCs also the turning

points are (with one slight exception) inside the sample range and for the N = 6 case close to the

pooled turning point estimated with SUR methods in Wagner et al. (2018). For the six country

data set the estimated time effects γ̂t “take out” a very large amount of common variation in the

GDP-emissions relationship across these six countries, and therefore this specification appears to a

certain extent over-parameterized. The cubic specification leads to mostly insignificant coefficients,

except for N = 6 with two-way effects. Furthermore, the fitted curves are essentially monotonic

over the sample ranges with again especially in the two-way case the inverted U shape taken out

by the estimated time effects.

11The 19 countries are given by Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Italy,

Japan, Netherlands, New Zealand, Norway, Portugal, Spain, Sweden, Switzerland, United Kingdom and USA. Note

that the data are in fact available from 1870 onwards, with the exception of CO2 emissions for New Zealand. Thus,

when considering all 19 countries we use 1878 as starting point to have a balanced panel for simplicity. A detailed

description of the data including the sources is contained in Wagner et al. (2018).
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Table 7: Estimation results for the long data set.

Quadratic Cubic

N = 19 N = 6 N = 19 N = 6

1-way 2-way 1-way 2-way 1-way 2-way 1-way 2-way

β1 7.972 7.364 6.642 -9.372 20.954 23.638 33.432 195.860

(9.649) (5.432) (3.380) (-2.381) (1.864) (1.676) (0.922) (5.505)

β2 -0.402 -0.362 -0.331 0.645 -1.914 -2.288 -3.352 -23.138

(-8.536) (-4.257) (-3.021) (2.737) (-1.463) (-1.372) (-0.820) (-5.653)

β3 0.058 0.076 0.113 0.917

(1.155) (1.153) (0.738) (5.854)

TP 20,240 26,141 22,771 1,430 127,784 −− −− −−
28,054

Note: The turning points (TP) are computed as exp
(
− β1

2β2

)
in the quadratic case and as

exp
(
±(− β1

3β3
+ ( β2

3β3
)2)1/2 − β2

3β3

)
in the cubic case. t-statistics given in brackets.

The results for the wide data set are given in Table 8. The sample range in this data set is

340 to 100,959 Dollars (here measured in 2015 US-Dollars). Since in the cubic specification all

coefficients are significant, we have to consider the quadratic specification to be misspecified and

consequently focus on the cubic case. The negative third order coefficient, obviously, means that

the larger turning point corresponds to an inverted U shape behavior. At the lower sample end,

at around 500 Dollars, a U-shaped turning point occurs (owing to the third order specification).

Plotting the estimated time effects for the cubic specification displays a trend with a break towards

a smaller but still positive slope around 1970. This may contribute to the smaller estimated

turning point in the two-way specification. Altogether, these are reasonable first findings based

on our problem adequate estimators for panels of cointegrating polynomial regressions. A detailed

empirical analysis is, however, beyond the scope of this paper.

7 Summary and Conclusions

This paper extends the fully modified OLS estimation principle for cointegrating polynomial re-

gressions from the time series case, studied in detail in Wagner and Hong (2016), to the panel

case. Following Phillips and Moon (1999) we consider a cross-sectional i.i.d. random linear process

framework, however, we only consider a sequential asymptotic framework with T tending to infinity

first followed by N tending to infinity. Given that in applications basically only the quadratic and
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Table 8: Estimation results for the wide data set.

Quadratic Cubic

1-way 2-way 1-way 2-way

β1 2.438 2.292 -13.410 -13.327

(9.093) (8.843) (-6.962) (-7.042)

β2 -0.092 -0.102 1.728 1.695

(-6.299) (-7.117) (7.846) (7.828)

β3 -0.069 -0.068

(-8.277) (-8.320)

TP 531,250 72,329 43,231 29,519

443 578

Note: See note to Table 7.

cubic formulations are used we also confine ourselves, mostly for notational brevity, to the cubic

specification, with either fixed individual effects or fixed individual and time effects.

Utilizing the large cross-sectional dimension we also introduce an additional estimator, labelled

modified OLS. This estimator is based on the observation that the large cross-sectional dimension

allows to consistently estimate an additive bias term arising in OLS estimation that can hence

be removed. Contrary to FM-OLS, no modification of the dependent variable is required. This

idea has, to the best of our knowledge, not yet been considered in the (linear) panel cointegration

literature.

The simulations indicate that by and large the FM-OLS estimator outperforms the modified OLS

estimator. However, especially in case of a large cross-sectional dimension (compared to the time

series dimension) the modified estimator leads to the best performance. Based on the mostly

superior estimator performance of FM-OLS, it is not surprising that FM-OLS based tests mostly

outperform modified OLS based tests, with the differences vanishing with increasing cross-sectional

dimension. As has been observed before in the nonstationary panel literature, hypothesis tests are

prone to size divergence in case of a large cross-sectional dimension compared to the time series

dimension. We also observe this behavior, but only when testing hypotheses for the coefficient to

the level of integrated process regressor. When testing hypotheses concerning the coefficient for the

second or third power of the integrated regressor, size divergence is not an issue. This may well be

due to the faster time dimension convergence rate for these coefficients, T 3/2 and T 2 respectively,

compared to T for the coefficient to the integrated regressor itself. A more detailed formal analysis

of this finding is on the agenda for future research.

Our first small illustrative application leads to reasonable findings for two (the long and the wide)
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data sets. This indicates that our estimator is a potentially valuable addition to – not least – the

EKC toolkit, where often panel data with a relatively large cross-sectional dimension are used and

where consequently the SUR estimators of Wagner et al. (2018) cannot be used.
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Appendix A: Proofs of the Main Theorems

Proof of Theorem 1:

First note that β̃ satisfies

G−1
T (β̃ − β) = (N−1

N∑
i=1

GT

T∑
t=1

X̃itX̃
′
itGT )−1N−1

N∑
i=1

GT

T∑
t=1

X̃itũit.

Under Assumption 1,

GT

T∑
t=1

X̃itX̃
′
itGT

d,T→∞−→
∫ 1

0
B̃vi(r)B̃vi(r)

′dr

GT

T∑
t=1

X̃itũit
d,T→∞−→

∫ 1

0
B̃vi(r)dBui(r) + ∆vui(1, 2

∫ 1

0
Bvi(r)dr, 3

∫ 1

0
Bvi(r)

2dr)′.

By parts 7, 8 and 10 of Lemma 1, E|
∫ 1

0 B̃vi(r)B̃vi(r)
′dr| <∞, E|

∫ 1
0 B̃vi(r)dBui(r)| <∞ and

E|∆vui(1, 2
∫ 1

0 Bvi(r)dr, 3
∫ 1

0 Bvi(r)
2dr)| < ∞, since the conditions for parts 7, 8 and 10 of Lemma

1 were assumed under the conditions of the theorem. Therefore,

N−1
N∑
i=1

GT

T∑
t=1

X̃itX̃
′
itGT

d,N→∞,T→∞−→ E
(∫ 1

0
B̃vi(r)B̃vi(r)

′dr

)
= V1,

N−1
N∑
i=1

GT

T∑
t=1

X̃itũit

d,N→∞,T→∞−→ E(

∫ 1

0
B̃vi(r)dBui(r)) + E(∆vui

(
1, 2

∫ 1
0 Bvi(r)dr, 3

∫ 1
0 Bvi(r)

2dr
)′

) = M2,

say. To calculate M2, note that by Lemma 2, since all moment assumptions for this lemma are

assumed,

M2 = E(

∫ 1

0
B̃vi(r)dBui(r)) + E(∆vui

(
1, 2

∫ 1
0 Bvi(r)dr, 3

∫ 1
0 Bvi(r)

2dr
)′

)

=


−(1/2)E(Ωuvi)

0

−E(ΩvviΩuvi)

+


E(∆vui)

0

3E(∆vuΩvvi)E(
∫ 1

0 Wvi(r)
2dr)

 =


−(1/2)E(Ωuvi) + E(∆vui)

0

−E(ΩvviΩuvi) + (3/2)E(Ωuvi∆vui)

 .

This completes the calculation of all values as stated in the theorem, thereby completing the

proof.
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Proof of Theorem 2:

Using the definitions of β̃m and C̃i, we have

N1/2G−1
T (β̃m − β) = (N−1

N∑
i=1

GT

T∑
t=1

X̃itX̃
′
itGT )−1N−1/2

N∑
i=1

GT (

T∑
t=1

X̃itũit − C̃i).

The proof of Theorem 1 shows that under Assumption 1, if the conditions for parts 7, 8 and 10 of

Lemma 1 are assumed,

N−1
N∑
i=1

GT

T∑
t=1

X̃itX̃
′
itGT

p,N→∞,T→∞−→ V1.

By Assumptions 1, 2 and 3 and the definition of C̃i,

GT C̃i = ∆̂vui(1, 2T
−3/2

T∑
t=1

xit, 3T
−2

T∑
t=1

x2
it)
′ + (−(1/2)Ω̂uvi, 0,−Ω̂vviΩ̂uvi)

′

d,T→∞−→ ∆vui

(
1, 2

∫ 1
0 Bvi(r)dr, 3

∫ 1
0 Bvi(r)

2dr
)′

+ (−(1/2)Ωuvi, 0,−ΩvviΩuvi). (49)

Now as T →∞, by Assumption 1, the result of Equation (49), and Lemma 2,

GT (
T∑
t=1

X̃itũit − C̃i)
d,T→∞−→

∫ 1

0
B̃vi(r)dBui(r) + ∆vui(1, 2

∫ 1

0
Bvi(r)dr, 3

∫ 1

0
Bvi(r)

2dr)′

−(∆vui( 1, 2
∫ 1

0 Bvi(r)dr, 3
∫ 1

0 Bvi(r)
2dr )′ + (−(1/2)Ωuvi, 0,−ΩvviΩuvi)

′)

=

∫ 1

0
B̃vi(r)dBui(r)− E(

∫ 1

0
B̃vi(r)dBui(r)|Ωi). (50)

By part 9 of Lemma 1, the moment conditions of which were assumed, all elements of this vector

have a finite second moment. Therefore, by the CLT for i.i.d. distributed random variables with

finite variance,

N−1/2
N∑
i=1

GT (

T∑
t=1

X̃itũit − C̃i)
d,N→∞,T→∞−→ N(0,Σ1)

where

Σ1 = E(

∫ 1

0
B̃vi(r)dBui(r)−E(

∫ 1

0
B̃vi(r)dBui(r)|Ωi))(

∫ 1

0
B̃vi(r)dBui(r)−E(

∫ 1

0
B̃vi(r)dBui(r)|Ωi))

′.

Therefore,

N1/2G−1
T (β̃m − β)

d,n→∞,T→∞−→ N(0, V −1
1 Σ1V

−1
1 ),

and the value of Σ1 as stated in the theorem is calculated in Lemma 3.
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Proof of Theorem 3:

By the definition of β̃+,

N1/2G−1
T (β̃+−β) = (N−1

N∑
i=1

GT

T∑
t=1

X̃itX̃
′
itGT )−1N−1/2

N∑
i=1

GT (

T∑
t=1

X̃itũit−
T∑
t=1

X̃itΩ̂uviΩ̂
−1
vvivit−C̃

+
i ).

Again, if the conditions for parts 7, 8 and 10 of Lemma 1 are assumed,

N−1
N∑
i=1

GT

T∑
t=1

X̃itX̃
′
itGT

p,N→∞,T→∞−→ V1.

By Assumptions 1 and 2, it follows that

GT C̃
+
i

d,T→∞−→ ∆+
vui(1, 2

∫ 1

0
Bvi(r)dr, 3

∫ 1

0
B2
vi(r)dr)

′, (51)

and therefore under Assumptions 1, 2, 3, recalling that Bu·v,i(r) = Bui(r) − ΩuviΩ
−1
vviBvi(r) and

Ωu·v,i = Ωuui − Ω2
uviΩ

−1
vvi,

T∑
t=1

G̃TXitũit − Ω̂uviΩ̂
−1
vviGT

T∑
t=1

X̃itvit −GT C̃+
i

d,T→∞−→ (

∫ 1

0
B̃vi(r)dBui(r) + ∆vui(1, 2

∫ 1

0
Bvi(r)dr, 3

∫ 1

0
Bvi(r)

2dr)′)

−ΩvuiΩ
−1
vvi(

∫ 1

0
B̃vi(r)dBvi(r) + ∆vvi(1, 2

∫ 1

0
Bvi(r)dr, 3

∫ 1

0
B2
vi(r)dr)

′)

−(∆vui −∆vviΩ
−1
vviΩvui)(1, 2

∫ 1

0
Bvi(r)dr, 3

∫ 1

0
B2
vi(r)dr)

′

=

∫ 1

0
B̃vi(r)d(Bui(r)− ΩuviΩ

−1
vviBvi(r)) =

∫ 1

0
B̃vi(r)dBu·v,i(r),

implying that, by the CLT for i.i.d. summands, because E(
∫ 1

0 B̃vi(r)dBu·v,i(r)) = 0 and

E(

∫ 1

0
B̃vi(r)dBu·v,i(r)

∫ 1

0
B̃vi(r)

′dBu·v,i(r)) = E(Ωu·v,iDiMDi)

as shown in the proof of Lemma 3, we have

N−1/2
N∑
i=1

GT (

T∑
t=1

X̃itũit −
T∑
t=1

X̃itΩ̂uvΩ̂
−1
vv vit − C̃+

i )
d,N→∞,T→∞−→ N(0,E(Ωu·v,iDiMDi)).

It now follows that

N1/2G−1
T (β̃+ − β)

d,N→∞,T→∞−→ N(0, V −1
1 E(Ωu·v,iDiMDi)V

−1
1 ),

which is the result as stated.

30



Proof of Theorem 4:

Because X̌it = X̃it−VNTt and ǔit = ũit−wNTt, VNTt = N−1
∑N

i=1 X̃it, and wNTt = N−1
∑N

i=1 ũit,

we have

N−1
N∑
i=1

T∑
t=1

X̃itV
′
NTt =

T∑
t=1

VNTtV
′
NTt,

N−1
N∑
i=1

T∑
t=1

X̃itwNTt =
T∑
t=1

VNTtwNTt,

and

N−1
N∑
i=1

T∑
t=1

VNTtũit =

T∑
t=1

VNTtwNTt,

and recalling that y̌it = X̌ ′itβ + ǔit, it follows that

G−1
T (β̃ − β) = G−1

T (

N∑
i=1

T∑
t=1

X̌itX̌
′
it)
−1

N∑
i=1

T∑
t=1

X̌itǔit

= (N−1
N∑
i=1

T∑
t=1

GT (X̃it − VNTt)(X̃it − VNTt)′GT )−1N−1
N∑
i=1

T∑
t=1

GT (X̃it − VNTt)(ũit − wNTt)

= (N−1
N∑
i=1

T∑
t=1

GT (X̃itX̃
′
it − VNTtV ′NTt)GT )−1N−1

N∑
i=1

T∑
t=1

GT (X̃itũit − VNTtwNTt).

Theorem 1 showed that, if the conditions for parts 7, 8 and 10 of Lemma 1 are assumed,

N−1
N∑
i=1

T∑
t=1

GT X̃itX̃
′
itGT

p,N→∞,T→∞−→ V1

and under the moment conditions of Lemma 2,

N−1
N∑
i=1

T∑
t=1

GT X̃itũit
d,N→∞,T→∞−→


−(1/2)E(Ωuvi) + E(∆vui)

0

−E(ΩvviΩuvi) + (3/2)E(Ωuvi∆vui)

 ,

and therefore it now suffices to show that under Assumption 1,

N−1
N∑
i=1

T∑
t=1

GTVNTtV
′
NTtGT

p,N→∞,T→∞−→ diag(0, (1/12)(E(Ωvvi))
2, 0)

and
T∑
t=1

GTVNTtwNTt
p,N→∞,T→∞−→ 0.
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The first result follows from Lemma 4, and it follows from Lemma 5 that under Assumption 1,

|N1/2
T∑
t=1

GTVNTtwNTt −N−1/2
N∑
j=1

∫ 1

0
E(B̃vi(r))dBuj(r)|

p,N→∞,T→∞−→ 0.

To show the second result, note that E(
∫ 1

0 E(B̃vi(r))dBuj(r)) = 0 and that

E(

∫ 1

0
E(B̃vi(r))dBuj(r))(

∫ 1

0
E(B̃vi(r))dBuj(r))

′ = E(Buj(1)2)

∫ 1

0
E(B̃vi(r))E(B̃vi(r))

′dr <∞

if E|Ωuuj | <∞ and E|Ω3
vvj | <∞. Therefore, it follows that

|
T∑
t=1

GTVNTtwNTt|
p,N→∞,T→∞−→ 0,

which completes the proof.

Proof of Theorem 5:

It follows from the definition of β̌m that

N1/2G−1
T (β̌m − β)

= (N−1
N∑
i=1

T∑
t=1

GT X̌itX̌
′
itGT )−1N−1/2

N∑
i=1

(
T∑
t=1

GT X̌itǔit − C̃i)

= (N−1
N∑
i=1

T∑
t=1

GT X̌itX̌
′
itGT )−1N−1/2

N∑
i=1

(

T∑
t=1

GT X̃itũit −
T∑
t=1

GTVNTtwNTt −GT C̃i).

The proof of Theorem 4 shows that, if the conditions for parts 7, 8 and 10 of Lemma 1 and

Assumption 1 are assumed,

N−1
N∑
i=1

T∑
t=1

GT X̌itX̌
′
itGT

d,n→∞,T→∞−→ V2.

Furthermore, by Lemma 5, under the conditions of this lemma,

|N1/2
T∑
t=1

GTVNTtwNTt −N−1/2
N∑
j=1

∫ 1

0
E(B̃vi(r))dBuj(r)|

p,N→∞,T→∞−→ 0,

and the result of Equation (50) showed that

GT (

T∑
t=1

X̃itũit − C̃i)
d,T→∞−→

∫ 1

0
B̃vi(r)dBui(r)− E(

∫ 1

0
B̃vi(r)dBui(r)|Ωi),
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implying that

|N−1/2
N∑
i=1

(GT

T∑
t=1

X̃itũit −GT
T∑
t=1

VNTtwNTt − C̃i)

−N−1/2
N∑
i=1

(

∫ 1

0
B̃vi(r)dBui(r)− E(

∫ 1

0
B̃vi(r)dBui(r)|Ωi)−

∫ 1

0
E(B̃vi(r))dBui(r))|

p,N→∞,T→∞−→ 0.

Therefore, by the CLT for i.i.d. distributed random variables,

N−1/2
N∑
i=1

(GT

T∑
t=1

X̃itũit −GT
T∑
t=1

VNTtwNTt − C̃i)
d,N→∞,T→∞−→ N(0,Σ2)

where

Σ2 = E(

∫ 1

0
B̃vi(r)dBui(r)− E(

∫ 1

0
B̃vi(r)dBui(r)|Ωi)−

∫ 1

0
E(B̃vi(r)dBui(r)))

×(

∫ 1

0
B̃vi(r)dBui(r)− E(

∫ 1

0
B̃vi(r)dBui(r)|Ωi)−

∫ 1

0
E(B̃vi(r))dBui(r))

′.

In sum,

N1/2(G−1
T (β̂ − β)− B̌)

d,n→∞,T→∞−→ N(0, V2
−1Σ2V2

−1)

and the value of Σ2 as stated in the theorem is calculated in Lemma 6.

Proof of Theorem 6:

By the definition of β̌+,

N1/2G−1
T (β̌+ − β) = (N−1

N∑
i=1

GT

T∑
t=1

X̌itX̌
′
itGT )−1

×N−1/2
N∑
i=1

GT (

T∑
t=1

X̌itǔit −
T∑
t=1

X̌itΩ̂uvΩ̂
−1
vv vit − C̃+

i )

= (N−1
N∑
i=1

GT

T∑
t=1

X̌itX̌
′
itGT )−1

×N−1/2
N∑
i=1

GT (

T∑
t=1

X̃itũit −
T∑
t=1

VNTtwNTt −
T∑
t=1

X̃itΩ̂uvΩ̂
−1
vv vit +

T∑
t=1

VNTtΩ̂uvΩ̂
−1
vv vit − C̃+

i )

= (N−1
N∑
i=1

GT

T∑
t=1

X̌itX̌
′
itGT )−1

×N−1/2
N∑
i=1

(GT

T∑
t=1

X̃itũit−GT
T∑
t=1

X̃itΩ̂uvΩ̂
−1
vv vit−GT C̃+

i +GT

T∑
t=1

VNTtΩ̂uvΩ̂
−1
vv vit−GT

T∑
t=1

VNTtwNTt).
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It was shown in the proof of Theorem 4, if the conditions for parts 7, 8 and 10 of Lemma 1 and

Assumption 1 are assumed,

N−1
N∑
i=1

T∑
t=1

GT X̌itX̌
′
itGT

p,N→∞,T→∞−→ V2.

Furthermore, it was shown in the proof of Theorem 3,

T∑
t=1

GT X̃itũit − Ω̂uviΩ̂
−1
vvi

T∑
t=1

GT X̃itvit −GT C̃+
i

d,T→∞−→
∫ 1

0
B̃vi(r)dBu·vi(r),

and it follows from Lemma 5 that under Assumption 1,

|N−1/2
T∑
t=1

GTVNTtwNTt −N−1/2
N∑
j=1

∫ 1

0
E(B̃vi(r))dBuj(r)|

p,N→∞,T→∞−→ 0,

while Lemma 7 shows that

|N−1/2
N∑
i=1

T∑
t=1

GTVNTtvit −N−1/2
N∑
j=1

∫ 1

0
E(B̃vi(r))dBvj(r)|

p,N→∞,T→∞−→ 0,

implying that, since Bu·v,i(r) = Bui(r)− ΩuviΩ
−1
vviBvi(r), we have

|
T∑
t=1

GTVNTtΩ̂uvΩ̂
−1
vv vit −

T∑
t=1

GTVNTtwNTt +N−1/2
N∑
j=1

∫ 1

0
E(B̃vi(r))dBu·v,i(r)|

p,N→∞,T→∞−→ 0.

Together this implies that

|N−1/2
N∑
i=1

(GT

T∑
t=1

X̃itũit−GT
T∑
t=1

X̃itΩ̂uvΩ̂
−1
vv vit−GT D̃i+GT

T∑
t=1

VNTtΩ̂uvΩ̂
−1
vv vit−GT

T∑
t=1

VNTtwNTt)

−N−1/2
N∑
i=1

(

∫ 1

0
(B̃vi(r)− E(B̃vi(r)))dBu·v,i(r))|

p,N→∞,T→∞−→ 0.

Therefore, by the CLT for i.i.d. summands, because E(
∫ 1

0 (B̃vi(r)− E(B̃vi(r)))dBu·vi(r)) = 0 and

E(

∫ 1

0
(B̃vi(r)− E(B̃vi(r)))dBu·vi(r)

∫ 1

0
(B̃vi(r)− E(B̃vi(r)))

′dBu·vi(r)|Ωi)

= E(Bu·vi(1)2|Ωi)E(

∫ 1

0
(B̃vi(r)− E(B̃vi(r)))(B̃vi(r)− E(B̃vi(r)))

′dr|Ωi).

Now,

E(

∫ 1

0
(B̃vi(r)− E(B̃vi(r)))(B̃vi(r)− E(B̃vi(r)))

′dr|Ωi)

= E(

∫ 1

0
B̃vi(r)B̃vi(r)

′dr|Ωi)−
∫ 1

0
E(B̃vi(r))E(B̃vi(r)|Ωi)

′dr
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−
∫ 1

0
E(B̃vi(r))E(B̃vi(r)|Ωi)

′dr + E(Di)diag(0, 1/12, 0)E(Di)

= DiMDi − E(Di)

∫ 1

0
E(W̃vi(r))E(W̃vi(r))

′drDi

−Di

∫ 1

0
E(W̃vi(r))E(W̃vi(r))

′drE(Di) + E(Di)diag(0, 1/12, 0)E(Di)

= DiMDi − E(Di)diag(0, 1/12, 0)Di

−Didiag(0, 1/12, 0)E(Di) + E(Di)diag(0, 1/12, 0)E(Di)

so after taking expectations we get

E(Ωu·v,iDiMDi)− diag(0, (1/6)E(Ωvvi)E(Ωu·v,iΩvvi), 0) + diag(0, (1/12)E(Ωu·v,i)(E(Ωvvi))
2, 0),

and therefore the result of the theorem now follows.
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Appendix B: Proofs of Lemmata

Below, | · | is defined as the Frobenius norm, viz. |A| = (tr(A′A))1/2.

Lemma 1. Let Assumption 1 hold, then

1. For p ≥ 1, E
∫ 1

0 |Bvi(r)|
pdr <∞ if E|Ωvvi|p/2 <∞.

2. E|
∫ 1

0 Bvi(r)dBu·v,i(r)| <∞ if for p = 1, 2, 3, E|ΩuuiΩ
p
vvi|1/2 <∞ and E|Ω2

uviΩ
p−1
vvi |1/2 <∞.

3. E|
∫ 1

0 Bvi(r)dBui(r)| <∞ if for p = 1, 2, 3, E|ΩuuiΩ
p
vvi|1/2 <∞ and E|Ω2

uviΩ
p−1
vvi |1/2 <∞;

4. E|
∫ 1

0 Bvi(r)dBui(r)|2 < ∞ if for p = 1, 2, 3, E|ΩuuiΩ
p
vvi| < ∞, E|ΩuviΩ

p−1
vvi | < ∞ and

E|Ω2
uviΩ

p−1
vvi | <∞;

5. E|Bui(1)
∫ 1

0 Bvi(r)dr| < ∞ if E|Ωuui|1/2 < ∞, E|Ω−1/2
vvi Ωuvi| < ∞, E|Ωvvi|3/2 < ∞, and for

p = 1, 2, 3, E|ΩuviΩ
(p−1)/2
vvi | <∞;

6. E|Bui(1)
∫ 1

0 Bvi(r)dr|2 < ∞ if E|Ωuui| < ∞, E|Ω−1
vviΩ

2
uvi| < ∞, E|Ωvvi|3 < ∞, and for p =

1, 2, 3, E|Ω2
uviΩ

p−1
vvi | <∞;

7. E|
∫ 1

0 B̃vi(r)B̃vi(r)
′dr| <∞ if E|Ωvvi|3 <∞;

8. E|
∫ 1

0 B̃vi(r)dBui(r)| <∞ if the conditions from 3 and 5 hold;

9. E|
∫ 1

0 B̃vi(r)dBui(r)|2 <∞ if the conditions from 4 and 6 hold;

10. E|∆vui(1, 2
∫ 1

0 Bvi(r)dr, 3
∫ 1

0 Bvi(r)
2dr)′| <∞ if E|∆vui| <∞, E|∆vuiΩ

1/2
vvi | <∞ and E|∆vuiΩvvi| <

∞.

Proof of Lemma 1:

Note that by assumption, Ωvvi is independent of Wvi(r). Therefore the first result follows because

for all p ≥ 1

E|
∫ 1

0
Bvi(r)

pdr| = E|Ωvvi|p/2E
∫ 1

0
|Wvi(r)|pdr,

and because E
∫ 1

0 |Wvi(r)|pdr <∞, for p ≥ 1, E
∫ 1

0 |Bvi(r)|
pdr <∞ if E|Ωvvi|p/2 <∞, as asserted.
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To show the second result, note that since Bu·v,i(r) = Bui(r) − ρiBvi(r) for ρi = ΩuviΩ
−1
vvi, since

Bvi(r) and Bu·v,i(r) are independent by construction,

E|
∫ 1

0
Bvi(r)

pdBu·v,i(r)|

≤ E(E(|
∫ 1

0
Bvi(r)

pdBu·v,i(r)|2|Ωi))
1/2

= E
(
E(Bu·v,i(1)2|Ωi)E(

∫ 1

0
Bvi(r)

2pdr|Ωi)

)1/2

= E(Ωu·v,iΩ
p
vvi)

1/2E(

∫ 1

0
W (r)2pdr)1/2,

implying that E|
∫ 1

0 Bvi(r)
pdBu·v,i(r)| <∞ if E|Ωu·v,iΩ

p
vvi|1/2 <∞, and therefore E|

∫ 1
0 Bvi(r)dBu·v,i(r)| <

∞ if for p = 1, 2, 3, E|Ωu·v,iΩ
p
vvi|1/2 < ∞. Since Ωu·v,i = Ωuui − Ω−1

vviΩ
2
uvi, this is implied by

E|ΩuuiΩ
p
vvi|1/2 <∞ and E|Ω2

uviΩ
p−1
vvi |1/2 <∞.

To show the third result, note that since Bu·v,i(r) = Bui(r)− ρiBvi(r) for ρi = ΩuviΩ
−1
vvi,

E|
∫ 1

0
Bvi(r)

pdBui(r)| ≤ E|
∫ 1

0
Bvi(r)

pdBu·v,i(r)|+ E|ρi
∫ 1

0
Bvi(r)

pdBvi(r)|,

and by the second part of this lemma, the first expression is finite under the stated assumptions.

To show that the second expression is finite also, note that

E|ρi
∫ 1

0
Bvi(r)

pdBvi(r)| = E|ρiΩ(p+1)/2
vvi |E|

∫ 1

0
Wvi(r)

pdWvi(r)|,

implying that E|ρi
∫ 1

0 Bvi(r)
pdBvi(r)| <∞ if E|ΩuviΩ

(p−1)/2
vvi | = E|Ω2

uviΩ
p−1
vvi |1/2 <∞. This condition

was also assumed for p = 1, 2, 3, thereby ensuring that E|
∫ 1

0 Bvi(r)dBui(r)| <∞.

To show the fourth result, we can reason similarly and conclude that E|
∫ 1

0 Bvi(r)dBui(r)|2 <∞ if

for p = 1, 2, 3, E|
∫ 1

0 Bvi(r)
pdBu·v,i(r)|2 <∞ and E|ρi

∫ 1
0 Bvi(r)

pdBvi(r)|2 <∞. Now

E|
∫ 1

0
Bvi(r)

pdBu·v,i(r)|2

≤ EE(|
∫ 1

0
Bvi(r)

pdBu·v,i(r)|2|Ωi)

= EE(Bu·v,i(1)2|Ωi)E(

∫ 1

0
Bvi(r)

2pdr|Ωi)

= E(Ωu·v,iΩ
p
vvi)E(

∫ 1

0
W (r)2pdr),
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implying that E|
∫ 1

0 Bvi(r)
pdBu·v,i(r)|2 <∞ if E|Ωu·v,iΩ

p
vvi| <∞, and since Ωu·v,i = Ωuui−Ω−1

vviΩ
2
vui,

this is implied by E|ΩuuiΩ
p
vvi| < ∞ and E|ΩuviΩ

p−1
vvi | < ∞. These conditions were assumed for

p = 1, 2, 3. Finally,

E|ρi
∫ 1

0
Bvi(r)

pdBvi(r)|2 = E|ρiΩ(p+1)/2
vvi |2E|

∫ 1

0
Wvi(r)

pdWvi(r)|2,

implying that E|ρi
∫ 1

0 Bvi(r)
pdBvi(r)|2 <∞ if E|Ω2

uviΩ
p−1
vvi | <∞. This condition was also assumed

for p = 1, 2, 3.

To show the fifth result, note that since Bu·v,i(r) = Bui(r)− ρiBvi(r),

E|Bui(1)

∫ 1

0
Bvi(r)dr| ≤ E|Bu·v,i(1)

∫ 1

0
Bvi(r)dr|+ E|ρiBvi(1)

∫ 1

0
Bvi(r)dr|,

and since Bvi(r) and Bu·v,i(r) are independent by construction,

E|Bu·v,i(1)

∫ 1

0
Bvi(r)

pdr| = E|Bu·v,i(1)|E|
∫ 1

0
Bvi(r)

pdr|

= E|Ωu·v,i|1/2E|Ωvvi|p/2E|
∫ 1

0
Wvi(r)

pdr|,

implying that E|Bu·v,i(1)
∫ 1

0 Bvi(r)dr| <∞ if E|Ωu·v,i|1/2 <∞ and E|Ωvvi|3/2 <∞. Since Ωu·v,i =

Ωuui−Ω−1
vviΩ

2
uvi, the condition E|Ωu·v,i|1/2 <∞ is implied by E|Ωuui|1/2 <∞ and E|Ω−1/2

vvi Ωuvi| <∞,

which was assumed. Also,

E|ρiBvi(1)

∫ 1

0
Bvi(r)

pdr| = E|ρiΩ(p+1)/2
vvi

∫ 1

0
Wvi(r)

pdr|

≤ E|ΩuviΩ
(p−1)/2
vvi | E(

∫ 1

0
|Wvi(r)|pdr),

and therefore E|ρiBvi(1)
∫ 1

0 Bvi(r)dr| < ∞ if for p = 1, 2, 3, E|ΩuviΩ
(p−1)/2
vvi | < ∞, which was also

assumed.

To show the sixth result, note that the reasoning of the fourth result ensures that E|Bui(1)
∫ 1

0 Bvi(r)dr|2 <

∞ if E|Bu·v,i(1)
∫ 1

0 Bvi(r)dr|2 <∞ and E|ρiBvi(1)
∫ 1

0 Bvi(r)dr|2 <∞. Similarly to the earlier rea-

soning,

E|Bu·v,i(1)

∫ 1

0
Bvi(r)

pdr|2 = E|Bu·v,i(1)|2E|
∫ 1

0
Bvi(r)

pdr|2 = E|Ωu·v,i|E|Ωvvi|pE
∫ 1

0
|Wvi(r)|pdr,

implying that E|Bu·v,i(1)
∫ 1

0 Bvi(r)dr|2 < ∞ if E|Ωu·v,i| < ∞ and E|Ωvvi|3 < ∞. Since Ωu·v,i =

Ωuui − Ω−1
vviΩ

2
uvi, the condition E|Ωu·v,i| < ∞ is implied by E|Ωuui| < ∞ and E|Ω−1

vviΩ
2
uvi| < ∞,

which was assumed. Also,

E|ρiBvi(1)

∫ 1

0
Bvi(r)

pdr|2 = E|ρiΩ(p+1)/2
vvi

∫ 1

0
Wvi(r)

pdr|2 ≤ E|ΩuviΩ
(p+1)/2−1
vvi |2E(

∫ 1

0
|Wvi(r)|pdr)2,
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and therefore E|ρiBvi(1)
∫ 1

0 Bvi(r)dr| <∞ if E|ΩuviΩ
(p−1)/2
vvi |2 <∞ for p = 1, 2, 3.

To show the seventh result, using properties of the Frobenius norm, note that

E|
∫ 1

0
B̃vi(r)B̃vi(r)

′dr| ≤ E
∫ 1

0
|B̃vi(r)|2dr

= E
∫ 1

0
|Bvi(r)−

∫ 1

0
Bvi(s)ds|2dr

≤ 4

∫ 1

0
E|Bvi(r)|2dr,

and by part 1 of this lemma using p = 6, the last expression is finite if E|Ωvvi|3 <∞.

For the eight result, note that by definition∫ 1

0
B̃vi(r)dBui(r) =

∫ 1

0
Bvi(r)dBui(r)−Bui(1)

∫ 1

0
Bvi(r)dr,

so the combined conditions of the third and fifth part of this lemma suffice, and those were the

assumed conditions here.

Similarly, for the ninth part of this lemma, it suffices to show that E|
∫ 1

0 Bvi(r)dBui(r)|2 <∞ and

that E|Bui(1)
∫ 1

0 Bvi(r)dr|2 < ∞. So the combined conditions of the fourth and sixth part of this

lemma suffice, and those were the assumed conditions here.

Finally, the tenth result follows from noting that

E|∆vui(1, 2

∫ 1

0
Bvi(r)dr, 3

∫ 1

0
Bvi(r)

2dr)′| = E|∆vui(1, 2Ω
1/2
vvi

∫ 1

0
Wvi(r)dr, 3Ωvvi

∫ 1

0
Wvi(r)

2dr)′|

and therefore E|∆vui| <∞, E|∆vuiΩ
1/2
vvi | <∞ and E|∆vuiΩvvi| <∞ suffices.
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Lemma 2. Let Assumption 1 hold and assume that E|Ωuui|1/2 <∞, E|Ω−1/2
vvi Ωuvi| <∞, E|Ωvvi|3/2 <

∞, and for p = 1, 2, 3, E|ΩuuiΩ
p
vvi|1/2 <∞ and E|ΩuviΩ

p/2−1/2
vvi | <∞. Then

E(

∫ 1

0
B̃vi(r)dBui(r)|Ωi) =


−(1/2)Ωuvi

0

−ΩvviΩuvi

 .

Proof of Lemma 2:

It follows from part 8 of Lemma 1 that E|
∫ 1

0 B̃vi(r)dBui(r)| < ∞ under the conditions of this

lemma. Furthermore, using E(
∫ 1

0 Bvi(r)
pdBui(r)|Ωi) = 0 for p = 1, 2, 3,

E(

∫ 1

0
B̃vi(r)dBui(r)|Ωi) = E(

∫ 1

0
Bvi(r)dBui(r)|Ωi)− E(Bui(1)

∫ 1

0
Bvi(s)ds|Ωi)

= −E(

∫ 1

0
Bvi(s)Bui(1)ds|Ωi)

= −E(

∫ 1

0
Bvi(s)Bui(s)ds|Ωi)− E(

∫ 1

0
Bvi(s)(Bui(1)−Bui(s))ds|Ωi),

and both objects are well-defined as follows from

E|
∫ 1

0
Bvi(s)

pBui(s)ds| = E|Ω1/2
uuiΩ

p/2
vvi |E|

∫ 1

0
Wvi(s)

pWui(s)ds| <∞,

if for p = 1, 2, 3, E|Ω1/2
uuiΩ

p/2
vvi | < ∞, which was assumed. Also, using the independent increments

property of Brownian motion, for p = 1, 2, 3,

E(

∫ 1

0
Bvi(s)

p(Bui(1)−Bui(s))ds|Ωi) = Ω
1/2
uuiΩ

p/2
vviE(

∫ 1

0
Wvi(s)

p(Wui(1)−Wui(s))ds) = 0.

Therefore,

E(

∫ 1

0
B̃vi(r)dBui(r)|Ωi) = −E(

∫ 1

0
Bvi(s)Bui(s)ds|Ωi).

Since (s1/2Bui(1), s1/2Bvi(1))
d
= (Bui(s), Bvi(s)), using the substitutionBui(r) = Bu·v,i(r)+ρiBvi(r),

the conditional independence of the processes Bu·v,i(r) and Bvi(r), and remembering that ρi =

ΩuviΩ
−1
vvi, it follows that the previous expression equals

−E(


Bvi(1)Bui(1)

∫ 1
0 sds

Bvi(1)2Bui(1)
∫ 1

0 s
3/2ds

Bvi(1)3Bui(1)
∫ 1

0 s
2ds

 |Ωi) = −E(


(1/2)Bvi(1)(Bu·v,i(1) + ρiBvi(1))

(2/5)Bvi(1)2(Bu·v,i(1) + ρiBvi(1))

(1/3)Bvi(1)3(Bu·v,i(1) + ρiBvi(1))

 |Ωi)
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=


−(1/2)ρiE(Bvi(1))2|Ωi)

0

−(1/3)ρiE(Bvi(1))4|Ωi)

 =


−(1/2)ρiΩvvi)

0

−ρiΩ2
vvi

 =


−(1/2)Ωuvi

0

−ΩvviΩuvi

 .

Lemma 3. Let Assumption 1 hold, then

Σ1 = E
(∫ 1

0
B̃vi(r)dBui(r)− E(

∫ 1

0
B̃vi(r)dBui(r)|Ωi)

)(∫ 1

0
B̃vi(r)dBui(r)− E(

∫ 1

0
B̃vi(r)dBui(r)|Ωi)

)′
= E(Ωu·v,iDiMDi) + E(Ω2

uviΩ
−1
vviDiQDi)

−E


(1/4)Ω2

uvi 0 (1/2)ΩvviΩ
2
uvi

0 0 0

(1/2)ΩvviΩ
2
uvi 0 Ω2

vviΩ
2
uvi

 ,

with M as given in (19) and Q as given in (23).

Proof of Lemma 3:

Using

E
(
(Zi − E(Zi|Ωi))(Zi − E(Zi|Ωi))

′)

= E(ZiZ
′
i)− E

(
E(Zi|Ωi)E(Zi|Ωi)

′) (52)

for Zi =
∫ 1

0 B̃vi(r)dBui(r) leads to

Σ1 = E
(

(

∫ 1

0
B̃vi(r)dBui(r))(

∫ 1

0
B̃vi(r)dBui(r))

′
)

−E
(
E(

∫ 1

0
B̃vi(r)dBui(r)|Ωi)E(

∫ 1

0
B̃vi(r)dBui(r)|Ωi)

′
)

(53)

with

E(

∫ 1

0
B̃vi(r)dBui(r)|Ωi) =


−(1/2)Ωuvi

0

−ΩvviΩuvi

 (54)

as calculated in Lemma 2. It thus remains to consider the first term above. Using Bui(r) =

Bu·v,i(r) + ρiBvi(r), we find

E((

∫ 1

0
B̃vi(r)dBui(r))(

∫ 1

0
B̃vi(r)dBui(r))

′|Ωi)
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= E
(∫ 1

0
B̃vi(r)dBu·v,i(r)

∫ 1

0
B̃vi(r)

′dBu·v,i(r)|Ωi

)
+ρiE

(∫ 1

0
B̃vi(r)dBu·v,i(r)

∫ 1

0
B̃vi(r)

′dBvi(r)|Ωi

)
+ρiE

(∫ 1

0
B̃vi(r)dBvi(r)

∫ 1

0
B̃vi(r)

′dBu·v,i(r)|Ωi

)

+ρ2
iE
(∫ 1

0
B̃vi(r)dBvi(r)

∫ 1

0
B̃vi(r)

′dBvi(r)|Ωi

)
.) (55)

Note that the second and third term are well-defined by the Cauchy-Schwartz inequality if the

first and fourth term are finite. Since the first and fourth term are positive semi-definite, they are

well-defined if the diagonal elements are well-defined, which is shown below. For the first term, we

have

E
(

(

∫ 1

0
B̃vi(r)dBu·v,i(r))(

∫ 1

0
B̃vi(r)dBu·v,i(r))

′|Ωi

)
= E(Bu·v,i(1)2|Ωi)DiMDi = Ωu·v,iDiMDi

and for the fourth term, we have

ρ2
iE
(

(

∫ 1

0
B̃vi(r)dBvi(r))(

∫ 1

0
B̃vi(r)dBvi(r))

′|Ωi

)

= ρ2
iΩvviDiE

(
(

∫ 1

0
W̃vi(r)dWvi(r))(

∫ 1

0
W̃vi(r)dWvi(r))

′|Ωi

)
Di.

= Ω2
uviΩ

−1
vviDiQDi

with Q as in Equation (23). The second and third terms vanish because of the conditional inde-

pendence of the processes Bu·v,i(r) and Bvi(r).

Combining these findings for the expression considered in Equation (55) with the results of Equa-

tions (53) and (54) leads to

Σ1 = E(Ωu·v,iDiMDi) + E(Ω2
uviΩ

−1
vviDiQDi) + E(


−(1/2)Ωuvi

0

−ΩvviΩuvi



−(1/2)Ωuvi

0

−ΩvviΩuvi


′

).

Lemma 4. Let Assumption 1 hold and assume additionally that E|Ωvvi|3 <∞. Then

GTN
−1

T∑
t=1

VNTtV
′
NTtGT

p,N→∞,T→∞−→ diag(0, (1/12)(E(Ωvvi))
2, 0).
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Proof. Note that because VNTt = N−1
∑N

i=1 X̃it, we have, by the continuous mapping theorem and

Assumption 1,
T∑
t=1

GTVNTtV
′
NTtGT =

T∑
t=1

N−2
N∑
i=1

GT X̃Tti

N∑
j=1

X̃ ′TtjGT

= N−2
N∑
i=1

N∑
j=1

T∑
t=1

GT X̃TtiX̃
′
TtjGT

d,T→∞−→ N−2
N∑
i=1

N∑
j=1

∫ 1

0
B̃vi(r)B̃vj(r)

′dr

=

∫ 1

0
(N−1

N∑
i=1

B̃vi(r))(N
−1

N∑
j=1

B̃vj(r))
′dr.

It now follows that under the assumptions of the lemma
∫ 1

0 (N−1
∑N

i=1 B̃vi(r))(N
−1
∑N

j=1 B̃vj(r))
′

converges to
∫ 1

0 E(B̃vi(r))E(B̃vj(r))
′dr, as can be verified by showing that the expectation and the

variance of the difference converges to zero. Thus,

|GT
T∑
t=1

VNTtV
′
NTtGT −

∫ 1

0
E(B̃vi(r))E(B̃vj(r))

′dr| p,N→∞,T→∞−→ 0.

Next, note that∫ 1

0
E(B̃vi(r))E(B̃vj(r))

′dr =

∫ 1

0
E(Di)E(W̃vi(r))E(W̃vi(r))

′E(Di)dr

= E(Di)

∫ 1

0


0 0 0

0 (r − 1/2)2 0

0 0 0

 drE(Di)

= E(Di)


0 0 0

0 1/12 0

0 0 0

E(Di) = diag(0, (1/12)(E(Ωvvi))
2, 0)

because

E(W̃vi(r)) = E


Wvi(r)−

∫ 1
0 Wvi(s)ds

W 2
vi(r)−

∫ 1
0 W

2
vi(s)ds

W 3
vi(r)−

∫ 1
0 W

3
vi(s)ds



=


0

r −
∫ 1

0 sds

0

 =


0

r − 1/2

0


and

E(Di) = diag(E(Ω
1/2
vvi ),E(Ωvvi),E(Ω

3/2
vvi )).
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Therefore,

|
T∑
t=1

GTVNTtV
′
NTtGT − diag(0, (1/12)(E(Ωvvi))

2, 0)| p,N→∞,T→∞−→ 0,

which is the asserted result.

Lemma 5. Let Assumption 1 hold. In addition, assume E|Ωvvi|3 <∞, E|Ωuui| <∞, E|ΩuuiΩ
3
vvi| <

∞, E|∆vui| <∞, E|∆vuiΩ
1/2
vvi | <∞ and E|∆vuiΩvvi| <∞. Then

|N1/2
T∑
t=1

GTVNTtwNTt −N−1/2
N∑
j=1

∫ 1

0
E(B̃vi(r))dBuj(r)|

p,N→∞,T→∞−→ 0.

Proof. By Assumption 1 and 3, and because VNTt = N−1
∑N

i=1 X̃it and wNTt = N−1
∑N

i=1 ũit,

N1/2
T∑
t=1

GTVNTtwNTt = N−3/2
N∑
i=1

N∑
j=1

T∑
t=1

GT X̃Ttiũtj

= N−3/2
N∑
i=1

N∑
j=1

T∑
t=1

GT X̃Ttiutj

= N−3/2
N∑
i=1

N∑
j=1,j 6=i

T∑
t=1

GT X̃Ttiutj +N−3/2
N∑
i=1

T∑
t=1

GT X̃Ttiuti

d,T→∞−→ N−3/2
N∑
i=1

N∑
j=1,j 6=i

∫ 1

0
B̃vi(r)dBuj(r) +N−3/2

N∑
i=1

∫ 1

0
B̃vi(r)dBui(r)

+N−3/2
N∑
i=1

∆vui(1, 2

∫ 1

0
Bvi(r)dr, 3

∫ 1

0
Bvi(r)

2dr)′.

It now follows that the last term is Op(N
−1/2) as N →∞ because

E|∆vui(1, 2

∫ 1

0
Bvi(r)dr, 3

∫ 1

0
Bvi(r)

2dr)| <∞

if E|∆vui| < ∞, E|∆vuiΩ
1/2
vvi | < ∞ and E|∆vuiΩvvi| < ∞, which was assumed. Putting the two

remaining terms together again then gives

N−3/2

∫ 1

0
(
N∑
i=1

B̃vi(r))d(

N∑
j=1

Buj(r))

= N−3/2

∫ 1

0
(

N∑
i=1

(Bvi(r)−
∫ 1

0
Bvi(s)ds))d(

N∑
j=1

Buj(r))
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= N−3/2

∫ 1

0
(
N∑
i=1

Bvi(r))d(
N∑
j=1

Buj(r))−N−3/2
N∑
i=1

(

∫ 1

0
Bvi(s)ds)

N∑
j=1

Buj(1)

= N−3/2

∫ 1

0
(
N∑
i=1

E(Bvi(r)))d(
N∑
j=1

Buj(r))−N−3/2
N∑
i=1

(

∫ 1

0
E(Bvi(s))ds)

N∑
j=1

Buj(1)

+N−3/2

∫ 1

0
(
N∑
i=1

(Bvi(r)−E(Bvi(r)))d(
N∑
j=1

Buj(r))−N−3/2
N∑
i=1

(

∫ 1

0
(Bvi(s)−E(Bvi(s)))ds)

N∑
j=1

Buj(1)

(56)

The fourth term is negligible asymptotically because

N−3/2
N∑
i=1

(

∫ 1

0
(Bvi(s)− E(Bvi(s)))ds)

N∑
j=1

Buj(1) = Op(N
−1/2)

as N →∞ because
∑N

j=1Buj(1) = Op(N
1/2), since E(Buj(1)2) <∞ if E|Ωuuj | <∞, and

N∑
i=1

(

∫ 1

0
(Bvi(s)− E(Bvi(s)))ds) = Op(N

1/2)

because for p = 1, 2, 3,

E(

∫ 1

0
(Bp

vi(s)− E(Bp
vi(s)))ds)

2 <∞

if supr∈[0,1] E(Bvi(r)
6) < ∞. This last condition holds by the result of Equation (14) and the

assumption E|Ωvvi|3 <∞.

The third term is also negligible asymptotically. This is because by the martingale property of

Bvi(r)− E(Bvi(r)) and of
∑N

j=1Buj(r), setting

Zn(r) =

N∑
i=1

(Bvi(r)− E(Bvi(r))),

we find

E(N−3/2

∫ 1

0
Zn(r)d(

N∑
j=1

Buj(r)))(N
−3/2

∫ 1

0
Zn(r)d(

N∑
j=1

Buj(r)))
′|Ω1, . . . ,ΩN )

= N−3E((

N∑
j=1

Buj(1))2|Ω1, . . . ,ΩN )

∫ 1

0
E(Zn(r)Zn(r)′|Ω1, . . . ,ΩN )dr

= N−3
N∑
j=1

E(Buj(1)2|Ω1, . . . ,ΩN )

∫ 1

0

N∑
i=1

E((Bvi(r)−E(Bvi(r)))(Bvi(r)−E(Bvi(r)))
′|Ω1, . . . ,ΩN )dr
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= N−1(N−1
N∑
j=1

Ωuuj)N
−1

N∑
i=1

Di

∫ 1

0
E((Wvi(r)− E(Wvi(r)))(Wvi(r)− E(Wvi(r)))

′)drDi.

Therefore, the third term is also Op(N
−1/2) because

E|ΩuujDi

∫ 1

0
E((Wvi(r)− E(Wvi(r)))(Wvi(r)− E(Wvi(r)))

′)drDi| <∞

for all i and j if E|ΩuuiΩ
3
vvi| <∞, E|Ωuui| <∞, and E|Ωvvi|3 <∞, which was assumed. The first

two terms in Equation (56) equal

N−3/2

∫ 1

0
(
N∑
i=1

E(B̃vi(r)))d(
N∑
j=1

Buj(r)) = N−1/2
N∑
j=1

∫ 1

0
E(B̃vi(r))dBuj(r),

and therefore the lemma is now proven.

Lemma 6.

Σ2 = E(

∫ 1

0
B̃vi(r)dBui(r)− E(

∫ 1

0
B̃vi(r)dBui(r)|Ωi)−

∫ 1

0
E(B̃vi(r))dBui(r))

×(

∫ 1

0
B̃vi(r)dBui(r)− E(

∫ 1

0
B̃vi(r)dBui(r)|Ωi)−

∫ 1

0
E(B̃vi(r))dBui(r))

′.

= Σ1 − (1/6)diag(0,E(ΩuuiΩvvi)E(Ωvvi), 0) + (1/12)diag(0,E(Ωuui)(E(Ωvvi))
2, 0). (57)

Proof. We have, by the definition of Σ1,

Σ2 = Σ1 − E((

∫ 1

0
B̃vi(r)dBui(r)− E(

∫ 1

0
B̃vi(r)dBui(r)|Ωi))(

∫ 1

0
E(B̃vi(r))

′dBui(r)))

−E((

∫ 1

0
E(B̃vi(r))dBui(r))(

∫ 1

0
B̃vi(r)

′dBui(r)− E(

∫ 1

0
B̃vi(r)

′dBui(r)|Ωi)))

+E((

∫ 1

0
E(B̃vi(r))dBui(r))(

∫ 1

0
E(B̃vi(r))dBui(r))

′). (58)

The third term of this expression is the transpose of the second term. For the second term of the

last equation, we have

E((

∫ 1

0
B̃vi(r)dBui(r)− E(

∫ 1

0
B̃vi(r)dBui(r)|Ωi))(

∫ 1

0
E(B̃vi(r)

′)dBui(r)))

= E(

∫ 1

0
B̃vi(r)dBui(r)

∫ 1

0
E(B̃vi(r)

′)dBui(r))
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−E(E(

∫ 1

0
B̃vi(r)dBui(r)|Ωi)

∫ 1

0
E(B̃vi(r)

′)dBui(r)) (59)

and

E(E(

∫ 1

0
B̃vi(r)dBui(r)|Ωi)

∫ 1

0
E(B̃vi(r)

′)dBui(r))

= E(E(

∫ 1

0
B̃vi(r)dBui(r)|Ωi)E(

∫ 1

0
E(B̃vi(r)

′)dBui(r)|Ωi)) = 0

since

E(

∫ 1

0
E(B̃vi(r))dBui(r)|Ωi) = 0.

Now for the first term of Equation (59), we have

E(

∫ 1

0
B̃vi(r)dBui(r)

∫ 1

0
E(B̃vi(r)

′)dBui(r))

= E(ΩuuiDi

∫ 1

0
W̃vi(r)dWui(r)

∫ 1

0
E(W̃vi(r)

′)dWui(r))E(Di)

= E(ΩuuiDi)

∫ 1

0
E(W̃vi(r))E(W̃vi(r)

′)drE(Di)

= (1/12)diag(0,E(ΩuuiΩvvi)E(Ωvvi), 0),

and therefore the second and third term in Equation (58) add up to the second term in Equation

(57). Finally, for the fourth term of Equation (58), we find

E(

∫ 1

0
E(B̃vi(r))dBui(r))(

∫ 1

0
E(B̃vi(r)

′)dBui(r))

= E(Ωuui)E(Di)E(

∫ 1

0
E(W̃vi(r))dWui(r)(

∫ 1

0
E(W̃vi(r)

′)dWui(r)))E(Di)

= E(Ωuui)E(Di)E(Wui(1)2)E((

∫ 1

0
E(W̃vi(r))E(W̃vi(r)

′)dr))E(Di)

= E(Ωuui)E(Di)diag(0, 1/12, 0)E(Di)

= (1/12)diag(0,E(Ωuui)(E(Ωvvi))
2, 0),

which forms the last term of the expression of Equation (57), thereby completing the proof.

Lemma 7. Let Assumption 1 hold and assume additionally that E|Ωvvi|3 < ∞, E|Ωuui| < ∞,

E|∆vvi| <∞, E|∆vviΩ
1/2
vvi | <∞ and E|∆vviΩvvi| <∞. Then

|N−1/2
N∑
i=1

GT

T∑
t=1

VNTtvit −N−1/2
N∑
j=1

∫ 1

0
EB̃vi(r)dBvj(r)|

p,N→∞,T→∞−→ 0.
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Proof. Because VNTt = N−1
∑N

i=1 X̃it and ṽjt = vjt − v̄j.,

N−1/2
N∑
i=1

GT

T∑
t=1

VNTtvit = N−3/2
N∑
i=1

N∑
j=1

GT

T∑
t=1

X̃Ttivjt = N−3/2
N∑
i=1

N∑
j=1

GT

T∑
t=1

X̃Ttiṽjt,

and therefore the proof of Lemma 5 applies here, mutatis mutandis.
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Supplementary Appendix C: Functionals of Brownian Motions

First, in order to find the values of M and Q, we need to calculate the φ(., .) and ψ(., .) expressions

below:

Lemma 8. Define

φ(m,n) =

∫ 1

0

∫ 1

0
1(r < s)E(W (s)mW (r)n)drds

ψ(m,n) =

∫ 1

0

∫ 1

0
1(r < s)(1− s)E(W (s)mW (r)n)drds.

Then

φ(m,n) =
m∑
j=0

1(j + n even)1(m− j even)2−(m+n)/2Γ(j+n+1)Γ(m+1)/(Γ(j+1)Γ(n/2+m/2+3)),

and

ψ(m,n) = (n/2 +m/2 + 3)−1φ(m,n).

Proof of Lemma 8:

Let Z denote a N(0, 1) distributed random variable, and note that for all integers j ≥ 0, E(Zj) =

1(j even)π−1/22j/2Γ(j/2 + 1/2). Then, noting that∫ 1

0

∫ 1

0
1(r < s)r(j+n)/2(s− r)(m−j)/2drds

=

∫ 1

0
r(j+n)/2(

∫ s=1

s=r
(s− r)(m−j)/2ds)dr

=

∫ 1

0
r(j+n)/2

[
((m− j)/2 + 1)−1(s− r)(m−j)/2+1

]s=1

s=r
dr

= ((m− j)/2 + 1)−1

∫ 1

0
r(j+n)/2(1− r)(m−j)/2+1dr

= ((m− j)/2 + 1)−1Beta((j + n)/2 + 1, (m− j)/2 + 2)

= ((m− j)/2 + 1)−1Γ((j + n)/2 + 1)Γ((m− j)/2 + 2)/Γ(n/2 +m/2 + 3),

it follows that

φ(m,n) =

∫ 1

0

∫ 1

0
1(r < s)E(W (s)mW (r)n)drds

=

∫ 1

0

∫ 1

0
1(r < s)E((W (s)−W (r) +W (r))mW (r)n)drds
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=

∫ 1

0

∫ 1

0
1(r < s)

m∑
j=0

E(W (r)j+n)E(W (s)−W (r))m−j(Γ(m+ 1)/(Γ(j + 1)Γ(m− j + 1))drds

=

∫ 1

0

∫ 1

0
1(r < s)

m∑
j=0

E(Zj+n)r(j+n)/2(s− r)(m−j)/2E(Zm−j)(Γ(m+ 1)/(Γ(j+ 1)Γ(m− j+ 1))drds

=
m∑
j=0

E(Zj+n)E(Zm−j)(Γ(m+ 1)/(Γ(j+ 1)Γ(m− j+ 1))

∫ 1

0

∫ 1

0
1(r < s)r(j+n)/2(s− r)(m−j)/2drds

=
m∑
j=0

1(j + n even)1(m− j even)π−12(j+n)/22(m−j)/2Γ((j + n+ 1)/2)Γ((m− j + 1)/2)

×(Γ(m+1)/(Γ(j+1)Γ(m−j+1)))((m−j)/2+1)−1Γ((j+n)/2+1)Γ((m−j)/2+2)/Γ(n/2+m/2+3)

=
m∑
j=0

1(j + n even)1(m− j even)π−12(m+n)/2Γ((j + n+ 1)/2)Γ((j + n+ 1)/2 + 1/2)

×Γ((m− j + 1)/2)Γ((m− j + 1)/2 + 1/2) (Γ(m+ 1)/(Γ(j + 1)Γ(m− j + 1)))/Γ(n/2 +m/2 + 3).

Now by the duplication formula Γ(z)Γ (z + 1/2) = 21−2z √π Γ(2z), the last expression can be

written as

m∑
j=0

1(j + n even)1(m− j even)π−12(m+n)/2(21−2(j+n+1)/2Γ(j + n+ 1)
√
π)

×(21−2(m−j+1)/2Γ(m− j + 1)
√
π)(Γ(m+ 1)/(Γ(j + 1)Γ(m− j + 1)))/Γ(n/2 +m/2 + 3)

=
m∑
j=0

1(j + n even)1(m− j even)2−(m+n)/2Γ(j + n+ 1)Γ(m+ 1)/(Γ(j + 1)Γ(n/2 +m/2 + 3)),

which completes the result for φ(m,n).

Now consider

ψ(m,n) =

∫ 1

0

∫ 1

0
1(r < s)(1− s)E(W (s)mW (r)n)drds

and note that∫ s=1

s=r
(1− s)(s− r)(m−j)/2ds = ((m− j)/2 + 1)−1

∫ s=1

s=r
(1− s)d((s− r)(m−j)/2+1)

= ((m− j)/2 + 1)−1
[
(1− s)(s− r)(m−j)/2+1

]s=1

s=r
+ ((m− j)/2 + 1)−1

∫ s=1

s=r
(s− r)(m−j)/2+1ds

= ((m− j)/2 + 1)−1

∫ s=1

s=r
(s− r)(m−j)/2+1ds.

Therefore, following the same reasoning as before, it follows that

ψ(m,n) =
m∑
j=0

E(Zj+n)E(Zm−j)(Γ(m+ 1)/(Γ(j + 1)Γ(m− j + 1))
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×
∫ 1

0
r(j+n)/2((m− j)/2 + 1)−1

∫ s=1

s=r
(s− r)(m−j)/2+1dsdr

=
m∑
j=0

E(Zj+n)E(Zm−j)(Γ(m+ 1)/(Γ(j + 1)Γ(m− j + 1))((m− j)/2 + 1)−1((m− j)/2 + 2)−1

×
∫ 1

0
r(j+n)/2

[
(s− r)(m−j)/2+2

]s=1

s=r
dr

=
m∑
j=0

E(Zj+n)E(Zm−j)(Γ(m+ 1)/(Γ(j + 1)Γ(m− j + 1))((m− j)/2 + 1)−1((m− j)/2 + 2)−1

×
∫ 1

0
r(j+n)/2(1− r)(m−j)/2+2dr

=
m∑
j=0

E(Zj+n)E(Zm−j)(Γ(m+ 1)/(Γ(j + 1)Γ(m− j + 1))((m− j)/2 + 1)−1((m− j)/2 + 2)−1

×Beta((j + n)/2 + 1, (m− j)/2 + 3)

=

m∑
j=0

E(Zj+n)E(Zm−j)(Γ(m+ 1)/(Γ(j + 1)Γ(m− j + 1))((m− j)/2 + 1)−1((m− j)/2 + 2)−1

×Γ((j + n)/2 + 1)Γ((m− j)/2 + 3)/Γ(m/2 + n/2 + 4)

=

m∑
j=0

1(j + n even)1(m− j even)π−12(m+n)/2Γ((j + n+ 1)/2)Γ((m− j + 1)/2)

×(Γ(m+ 1)/(Γ(j + 1)Γ(m− j + 1))((m− j)/2 + 1)−1((m− j)/2 + 2)−1

×Γ((j + n)/2 + 1)Γ((m− j)/2 + 3)/Γ(m/2 + n/2 + 4)

=
m∑
j=0

1(j + n even)1(m− j even)π−12(m+n)/2Γ((j + n+ 1)/2)Γ((j + n+ 1)/2 + 1/2)

×(Γ(m+ 1)/(Γ(j + 1)Γ(m− j + 1))Γ((m− j + 1)/2)Γ((m− j + 1)/2 + 1/2)

×1/Γ(m/2 + n/2 + 4)

=
m∑
j=0

1(j + n even)1(m− j even)π−12(m+n)/2(21−2(j+n+1)/2Γ(j + n+ 1)
√
π)

×(Γ(m+ 1)/(Γ(j + 1)Γ(m− j + 1))(21−2(m−j+1)/2Γ(m− j + 1)
√
π)

×1/Γ(m/2 + n/2 + 4)

=

m∑
j=0

1(j + n even)1(m− j even)2−(m+n)/2Γ(j + n+ 1)Γ(m+ 1)/(Γ(j + 1)Γ(m/2 + n/2 + 4))

= (n/2 +m/2 + 3)−1
m∑
j=0

1(j + n even)1(m− j even)2−(m+n)/2Γ(j + n+ 1)Γ(m+ 1)
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×1/(Γ(j + 1)Γ(n/2 +m/2 + 3)),

and therefore,

ψ(m,n) = (n/2 +m/2 + 3)−1φ(m,n).

This concludes the proof.

The values for φ(m,n) and ψ(m,n) for m,n = 0, 1, 2, . . . , 5 are as given in Tables 9 and 10.

Table 9: The values of φ(m,n).

φ(m,n) n = 0 n = 1 n = 2 n = 3 n = 4 n = 5

m = 0 1/2 0 1/6 0 1/4 0

m = 1 0 1/6 0 1/4 0 3/4

m = 2 1/3 0 7/24 0 4/5 0

m = 3 0 3/8 0 9/10 0 31/8

m = 4 3/4 0 11/10 0 43/10 0

m = 5 0 3/2 0 5 0 785/28

Lemma 9.

M = E
(∫ 1

0
W̃vi(r)W̃vi(r)

′dr

)
=


1/6 0 3/8

0 5/12 0

3/8 0 39/20

 . (60)

Proof of Lemma 9:

For this proof, we will use the values of φ(., .) and ψ(., .) as defined in Lemma 8 and listed in Tables

9 and Table 10. The six results needed are below:

Table 10: The values of ψ(m,n) for m,n = 1, 2, . . . , 5.

ψ(m,n) m = 1 m = 2 m = 3 m = 4 m = 5

n = 1 1/24 0 3/40 0 1/4

n = 2 0 7/120 0 11/60 0

n = 3 1/20 0 3/20 0 5/7

n = 4 0 2/15 0 43/70 0

n = 5 1/8 0 31/56 0 785/224
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1. M1,1 = E(
∫ 1

0 W (r)2dr) − E(
∫ 1

0 W (r)dr)2 = 1/6 because E(
∫ 1

0 W (r)2dr) =
∫ 1

0 E(W (r)2)dr =∫ 1
0 rdr = 1/2 and

E(

∫ 1

0
W (r)dr)2 =

∫ 1

0

∫ 1

0
E(W (r)W (s))drds = 2

∫ 1

0

∫ 1

0
1(r < s)E(W (r)W (s))drds = 2φ(1, 1) = 1/3.

2. M1,2 = 0 because E(
∫ 1

0 W (r)3dr) =
∫ 1

0 E(W (r)3)dr = 0 and

E(

∫ 1

0
W (r)2dr

∫ 1

0
W (s)ds) =

∫ 1

0

∫ 1

0
E(W (r)2W (s))drds

=

∫ 1

0

∫ 1

0
1(r < s)E(W (r)2W (s))drds+

∫ 1

0

∫ 1

0
1(r > s)E(W (r)2W (s))drds

= φ(2, 1) + φ(1, 2) = 0 + 0 = 0.

3. M1,3 = 3/8 because

E(

∫ 1

0
W (r)4dr) =

∫ 1

0
E(W (r)4)dr =

∫ 1

0
3r2dr = 1

and

E(

∫ 1

0
W (r)dr

∫ 1

0
W (r)3dr)

=

∫ 1

0

∫ 1

0
E(W (r)3W (s))drds

=

∫ 1

0

∫ 1

0
1(r ≤ s)E(W (r)3W (s))drds+

∫ 1

0

∫ 1

0
1(r > s)E(W (r)3W (s))drds

= φ(3, 1) + φ(1, 3) = 3/8 + 1/4 = 5/8.

4. M2,2 = 5/12 because∫ 1

0
(W (r)2 −

∫ 1

0
W (s)2ds)2dr =

∫ 1

0
W (r)4dr − (

∫ 1

0
W (r)2dr)2

and E(
∫ 1

0 W (r)4)dr =
∫ 1

0 E(W (r)4)dr =
∫ 1

0 3r2dr = 1 while

E(

∫ 1

0
W (r)2dr)2 =

∫ 1

0

∫ 1

0
E(W (r)2W (s)2)drds = 2φ(2, 2) = 7/12.

5. M2,3 = 0 because E(
∫ 1

0 W (r)5dr) =
∫ 1

0 E(W (r)5)dr = 0 and

E((

∫ 1

0
W (r)3dr)(

∫ 1

0
W (s)2ds)) =

∫ 1

0

∫ 1

0
E(W (r)3W (s)2)drds

= φ(3, 2) + φ(2, 3) = 0 + 0 = 0.
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6. M3,3 = 39/20 because

E(

∫ 1

0
(W (r)3 −

∫ 1

0
W (s)3ds)2dr) = E(

∫ 1

0
W (r)6dr)− E(

∫ 1

0
W (r)3dr)2

and

E(

∫ 1

0
W (r)6dr) =

∫ 1

0
E(W (r)6)dr =

∫ 1

0
r3E(r−1/2W (r))6dr = E(Z6)

∫ 1

0
r3dr = 15/4

while

E(

∫ 1

0
W (r)3dr)2 =

∫ 1

0

∫ 1

0
E(W (r)3W (s)3)drds = 2φ(3, 3) = 18/10,

and therefore,

M3,3 = 15/4− 9/5 = 39/20.

Together, these results prove the assertion of the lemma.

Finding the value for Q is a bit more work. We will argue that Q = A−B−B′+D, and calculate

A, B, and D first, in the lemmas below:

Lemma 10.

A = EW (1)2E(

∫ 1

0
W(r)W(r)′dr) =


1/2 0 1

0 1 0

1 0 15/4

 .

Proof. This follows because

A =

∫ 1

0
E


W (r)2 W (r)3 W (r)4

W (r)3 W (r)4 W (r)5

W (r)4 W (r)5 W (r)6

 dr

=

∫ 1

0


rEZ2 0 r2EZ4

0 r2EZ4 0

r2EZ4 0 r3EZ6

 dr =


1/2 0 1

0 1 0

1 0 15/4

 .

Lemma 11.

B = EW (1)(

∫ 1

0
W(r)dW (r))(

∫ 1

0
W(s)ds)′ =


1/2 0 7/4

0 7/6 0

7/8 0 9/2

 .
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Proof. Note that

Bij = EW (1)(

∫ 1

0
W (r)idW (r))(

∫ 1

0
W (r)jdr)

and because

f(W (1))− f(W (0)) =

∫ 1

0
f ′(W (r))dW (r) + (1/2)

∫ 1

0
f ′′(W (r))dr,

we have for i = 1, 2, 3

(1 + 1)−1W (1)i+1 − (1 + 1)−1W (0)i+1 =

∫ 1

0
W (r)idW (r) + (i/2)

∫ 1

0
W (r)i−1dr,

so ∫ 1

0
W (r)idW (r) = (i+ 1)−1W (1)i+1 − (i/2)

∫ 1

0
W (r)i−1dr.

Therefore

Bij = EW (1)(

∫ 1

0
W (r)idW (r))(

∫ 1

0
W (r)jdr)

= EW (1)((i+ 1)−1W (1)i+1 − (i/2)

∫ 1

0
W (r)i−1dr)(

∫ 1

0
W (r)jdr)

= E(i+ 1)−1W (1)i+2

∫ 1

0
W (r)jdr − (i/2)W (1)

∫ 1

0
W (r)i−1dr)(

∫ 1

0
W (s)jds)

= B1
ij −B2

ij .

Now

B1
ij = E(i+ 1)−1W (1)i+2

∫ 1

0
W (r)jdr

= (i+ 1)−1χ(i+ 2, j)

where

χ(m,n) = EW (1)m
∫ 1

0
W (r)ndr

= EW (1)m
∫ 1

0
W (r)ndr

=

∫ 1

0
E(W (1)−W (r) +W (r))mW (r)ndr

=

∫ 1

0

m∑
j=0

EW (r)j+nE(W (1)−W (r))m−jdrΓ(m+ 1)/(Γ(j + 1)Γ(m− j + 1))

=
m∑
j=0

∫ 1

0
rj/2+n/2(1− r)m/2−j/2drEZj+nEZm−jΓ(m+ 1)/(Γ(j + 1)Γ(m− j + 1))
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Table 11: The values of χ(m,n).

χ(m,n) n = 1 n = 2 n = 3 n = 4 n = 5

m = 1 1/2 0 1 0 15/4

m = 2 0 7/6 0 4 0

m = 3 3/2 0 9/2 0 93/4

m = 4 0 11/2 0 129/5 0

m = 5 15/2 0 30 0 785/4

=
m∑
j=0

B(j/2 + n/2 + 1,m/2− j/2 + 1)[I(j + n even)2−j/2−n/2(Γ(j + n+ 1)/Γ(j/2 + n/2 + 1))]

×[I(m− j even)2−m/2+j/2(Γ(m− j + 1)/Γ(m/2− j/2 + 1))]Γ(m+ 1)/(Γ(j + 1)Γ(m− j + 1))

=

m∑
j=0

(Γ(j/2 + n/2 + 1)Γ(m/2− j/2 + 1)/Γ(j/2 + n/2 +m/2− j/2 + 2))

×[I(j + n even)2−j/2−n/2(Γ(j + n+ 1)/Γ(j/2 + n/2 + 1))]

×[I(m− j even)2−m/2+j/2(Γ(m− j + 1)/Γ(m/2− j/2 + 1))]Γ(m+ 1)/(Γ(j + 1)Γ(m− j + 1))

= 2−m/2−n/2
m∑
j=0

I(j + n even)I(m− j even)Γ(j + n+ 1)Γ(m+ 1)/(Γ(j + 1)Γ(m/2 + n/2 + 2)).

Noting that the last expression equals∑m
j=0 I(j + n even)I(m− j even)Γ(j + n+ 1)Γ(m+ 1)/Γ(j + 1)

Γ(m/2 + n/2 + 2)2m/2+n/2
,

and noting that the numerator and denominator are integers, we can now calculate the results of

Table 11.

Given the values for χ(., .), the values of B1
ij = E(i+ 1)−1W (1)i+2

∫ 1
0 W (r)jdr = (i+ 1)−1χ(i+ 2, j)

can now be calculated. Noting that

B1
11 = 2−1χ(3, 1) = (1/2)(3/2) = 3/4,

B1
21 = 3−1χ(4, 1) = 0,

B1
31 = 4−1χ(5, 1) = (1/4)(15/2) = 15/8,
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B1
12 = 2−1χ(3, 2) = 0,

B1
22 = 3−1χ(4, 2) = (1/3)(11/2) = 11/6,

B1
32 = 4−1χ(5, 2) = 0,

B1
13 = 2−1χ(3, 3) = (1/2)(9/2) = 9/4,

B1
23 = 3−1χ(4, 3) = 0,

B1
33 = 4−1χ(5, 3) = (1/4)(30) = 15/2,

we have

B1 =


3/4 0 9/4

0 11/6 0

15/8 0 15/2

 .

Also, for i ≥ 1,

B2
ij = (i/2)W (1)

∫ 1

0
W (r)i−1dr)(

∫ 1

0
W (s)jds) = (i/2)ω(i− 1, j)

where

ω(m,n) = EW (1)

∫ 1

0
W (r)mdr)(

∫ 1

0
W (s)nds)

= E
∫ 1

0

∫ 1

0
W (1)W (r)mW (s)nI(r < s)drds

+E
∫ 1

0

∫ 1

0
W (1)W (r)mW (s)nI(r > s)drds

= E
∫ 1

0

∫ 1

0
(W (1)−W (s) +W (s))W (r)mW (s)nI(r < s)drds

+E
∫ 1

0

∫ 1

0
(W (1)−W (r) +W (r))W (r)mW (s)nI(r > s)drds

= E
∫ 1

0

∫ 1

0
W (r)mW (s)n+1I(r < s)drds+ E

∫ 1

0

∫ 1

0
W (r)m+1W (s)nI(r > s)drds

= φ(n+ 1,m) + φ(m+ 1, n),

and therefore,

B2
ij = (i/2)ω(i− 1, j) = (i/2)φ(j + 1, i− 1) + (i/2)φ(i, j).

Using the table with the φ-values, we can now also calculate the values for the B2
ij :

B2
11 = (1/2)φ(2, 0) + (1/2)φ(1, 1) = (1/2)(1/3) + (1/2)(1/6) = 1/4,
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B2
12 = (1/2)φ(3, 0) + (1/2)φ(1, 2) = 0,

B2
13 = (1/2)φ(4, 0) + (1/2)φ(1, 3) = (1/2)(3/4) + (1/2)(1/4) = 1/2,

B2
21 = φ(2, 1) + φ(1, 2) = 0,

B2
22 = φ(3, 1) + φ(2, 2) = 3/8 + 7/24 = 2/3,

B2
23 = φ(4, 1) + φ(2, 3) = 0,

B2
31 = (3/2)φ(2, 2) + (3/2)φ(3, 1) = (3/2)(7/24) + (3/2)(3/8) = 1,

B2
32 = (3/2)φ(3, 2) + (3/2)φ(3, 2) = 0,

B2
33 = (3/2)φ(4, 2) + (3/2)φ(3, 3) = (3/2)(11/10) + (3/2)(9/10) = 3.

which then gives

B2 =


1/4 0 1/2

0 2/3 0

1 0 3


We now get

B = B1 −B2 =


3/4 0 9/4

0 11/6 0

15/8 0 15/2

−


1/4 0 1/2

0 2/3 0

1 0 3



=


1/2 0 7/4

0 7/6 0

7/8 0 9/2

 ,

as asserted.

Lemma 12.

D = E(W (1)2(

∫ 1

0
W(r)dr)(

∫ 1

0
W(s)ds)′) =


5/6 0 101/40

0 139/60 0

101/40 0 103/10

 .

Proof. We will first show that

Dmn = E(W (1)2

∫ 1

0

∫ 1

0
W (r)mW (s)ndrds) = ψ(m,n) + φ(m+ 2, n) + ψ(n,m) + φ(n+ 2,m).
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This follows because

E(W (1)2

∫ 1

0
W (r)mdr

∫ 1

0
W (s)nds)

=

∫ 1

0

∫ 1

0
1(r > s)E(W (r)mW (s)nW (1)2)drds+

∫ 1

0

∫ 1

0
1(r < s)E(W (r)mW (s)nW (1)2)drds

=

∫ 1

0

∫ 1

0
1(r > s)E(W (r)mW (s)n(W (1)−W (r) +W (r))2)drds

+

∫ 1

0

∫ 1

0
1(r < s)E(W (r)mW (s)n(W (1)−W (s) +W (s))2)drds

=

∫ 1

0

∫ 1

0
1(r > s)(1− r)E(W (r)mW (s)n))drds

+

∫ 1

0

∫ 1

0
1(r > s)E(W (r)m+2W (s)n)drds

+

∫ 1

0

∫ 1

0
1(r < s)(1− s)E(W (r)mW (s)ndrds

+

∫ 1

0

∫ 1

0
1(r < s)E(W (r)mW (s)n+2)drds

= ψ(m,n) + φ(m+ 2, n) + ψ(n,m) + φ(n+ 2,m).

Using our tables for φ(., .) and ψ(., .), we now find

D =


5/6 0 101/40

0 139/60 0

101/40 0 103/10

 .

Lemma 13.

Q = E(

∫ 1

0
W̃(r)dW (r))(

∫ 1

0
W̃(r)dW (r))′) =


1/3 0 9/10

0 59/60 0

9/10 0 101/20

 . (61)

Proof. Note that

Q = E(

∫ 1

0
W̃(r)dW (r))(

∫ 1

0
W̃(r)dW (r))′

= E(

∫ 1

0
(W(r)−

∫ 1

0
W(s)ds)dW (r))(

∫ 1

0
(W(r)−

∫ 1

0
W(s)ds)dW (r))′
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= E(

∫ 1

0
W(r)dW (r)−W (1)

∫ 1

0
W(s)ds)(

∫ 1

0
W(r)dW (r)−W (1)

∫ 1

0
W(s)ds)′

= E(

∫ 1

0
W(r)dW (r)))(

∫ 1

0
W(r)dW (r))′

−EW (1)(

∫ 1

0
W(r)dW (r))(

∫ 1

0
W(s)ds)′

−EW (1)(

∫ 1

0
W(s)ds)(

∫ 1

0
W(r)dW (r))′

+EW (1)2(

∫ 1

0
W(r)dr)(

∫ 1

0
W(s)ds)′

= A−B −B′ +D,

and

A−B −B′ +D

=


1/2 0 1

0 1 0

1 0 15/4

−


1/2 0 7/4

0 7/6 0

7/8 0 9/2



−


1/2 0 7/8

0 7/6 0

7/4 0 9/2

+


5/6 0 101/40

0 139/60 0

101/40 0 103/10



=


1/3 0 9/10

0 59/60 0

9/10 0 101/20

 .
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