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ON SECOND ORDER CONDITIONS IN THE MULTIVARIATE

BLOCK MAXIMA AND PEAK OVER THRESHOLD METHOD

AXEL BÜCHER, STANISLAV VOLGUSHEV, AND NAN ZOU

Abstract. Second order conditions provide a natural framework for establishing as-
ymptotic results about estimators for tail related quantities. Such conditions are typ-
ically tailored to the estimation principle at hand, and may be vastly different for es-
timators based on the block maxima (BM) method or the peak-over-threshold (POT)
approach. In this paper we provide details on the relationship between typical second
order conditions for BM and POT methods in the multivariate case. We show that the
two conditions typically imply each other, but with a possibly different second order
parameter. The latter implies that, depending on the data generating process, one
of the two methods can attain faster convergence rates than the other. The class of
multivariate Archimax copulas is examined in detail; we find that this class contains
models for which the second order parameter is smaller for the BM method and vice
versa. The theory is illustrated by a small simulation study.

Key words: Domain of attraction, Archimax copulas, Pickands dependence function,
Extreme value statistics, Madogram, Extremal dependence.

1. Introduction

Extreme value theory is concerned with describing the tail behavior of a possibly
multivariate distribution. Respective statistical models and methods find important
applications in fields like finance, insurance, environmental sciences, hydrology or me-
teorology. In the multivariate case, a key part of statistical inference is estimation of
the dependence structure. Mathematically, the dependence structure can be described
in various equivalent ways (see, e.g., Resnick, 1987; Beirlant et al., 2004; de Haan and
Ferreira, 2006): by the stable tail dependence function L (Huang, 1992), by the expo-
nent measure µ (Balkema and Resnick, 1977), by the Pickands dependence function A
(Pickands, 1981), by the tail copula Λ (Schmidt and Stadtmüller, 2006), by the spectral
measure Φ (de Haan and Resnick, 1977), by the madogram ν (Naveau et al., 2009), or
by other less popular objects.

Estimators for these objects typically rely on one of two basic principles allowing
one to move into the tail of the distribution: the block maxima method (BM) and the
peak-over-threshold approach (POT). More precisely, suppose that X1, . . . ,Xn, with
Xi = (Xi,1, . . . , Xi,d)

′, is an i.i.d. sample from a multivariate cumulative distribution
function F . For some large number k (in the asymptotics, one commonly considers
k = kn →∞ such that k = o(n)), let

Xp = {Xi | rank(Xi,j among X1,j , . . . , Xn,j) ≥ n− k for some j = 1, . . . , d},
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that is, Xp comprises all observations for which at least one coordinate is large. Any
estimator defined in terms of these observations represents the multivariate POT method.
The vanilla nonparametric estimator within this class is probably the empirical stable
tail dependence function (Huang, 1992).

To introduce the BM approach, let 1 ≤ r ≤ n denote a large block size, and let k =
bn/rc denote the number of blocks (again, in the asymptotics, one commonly considers
k = kn → ∞ such that k = o(n)). For ` = 1, . . . , k, let M`,r = (M`,1,r, . . . ,M`,1,r)

′

denote the vector of componentwise block-maxima in the `th block of observations of
size r, that is, M`,j,r = max(Xi,j : (` − 1)r + 1 ≤ i ≤ `r}). Any estimator defined in
terms of the sample

Xb = (M1,r, . . . ,Mk,r)

represents the BM approach.

Asymptotic theory for estimators based on the POT approach is typically formulated
under a suitable second order condition (see Section 2 below for details). The asymptotic
variance of resulting estimators is then typically of the order k−1

n (see, e.g., Huang,
1992; Einmahl et al., 2012; Einmahl and Segers, 2009; Schmidt and Stadtmüller, 2006;
Fougères et al., 2015, among others), whereas the rate of the bias is given by (n/kn)ρp ,
with ρp < 0 denoting the second order parameter in the aforementioned second order

condition. Balancing the bias and variance leads to the choice kn � n−2ρp/(1−2ρp), which
results in an asymptotic MSE of order n2ρp/(1−2ρp). For a particular class of models, this
resulting convergence rate is in fact minimax-optimal (Drees and Huang, 1998).

Perhaps surprisingly, results on asymptotic theory for estimators based on the BM
approach are typically based on the assumption that the block size r is fixed and that the
sample Xb is a genuine i.i.d. sample from the limiting attractor distribution (see, e.g.,
Genest and Segers, 2009 and references therein). Thereby, a potential bias is completely
ignored and a fair comparison between estimators based on the POT and the BM ap-
proach is not feasible. This imbalance has recently been recognized by Dombry (2015);
Ferreira and de Haan (2015); Bücher and Segers (2018); Dombry and Ferreira (2017) in
the univariate case; see also the overview article Bücher and Zhou (2018). To the best of
our knowledge, the only reference in the multivariate case is Bücher and Segers (2014).
In analogy to the POT case, the results in the latter paper can be simply reformulated
in terms of a suitable second order condition (see Section 2 below for details). Based on
these results, an estimator for the Pickands dependence function can then shown to have
asymptotic variance of order k−1

n = (n/rn)−1, while the bias is again typically governed
by a second order parameter ρb < 0 and has order rρbn . Similar calculations as in the
preceding paragraph show that the best possible MSE is of order n2ρb/(1−2ρb).

As indicated by the above discussion, “best” convergence rates for the BM and POT
approaches depend on the second order parameters in their respective second order
conditions. This motivates to study the relationship between the two types of second
order conditions. Our first major contribution is to show that a natural POT second
order condition, in case ρp ∈ (−1, 0], implies a natural BM second order condition with
ρb = ρp, and vice versa. As a consequence, if ρb = ρp ∈ (−1, 0), the best attainable
rates for POT and BM estimators coincides. The situation changes when ρp < −1, in
which case we obtain that under mild additional conditions ρb = max(ρp,−1); similarly
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we prove that typically ρb < −1 implies ρp = max(ρb,−1). This identifies scenarios in
which either BM or POT estimators can attain better rates of convergence. Finally,
when ρp = −1 both ρb = −1 and ρb < −1 is possible (and vice versa), and additional
conditions to verify which of the two cases occurs are provided. Note that a similar
relationship between second order parameters in the univariate case has been worked
out in Drees et al. (2003).

As a second major contribution, we provide a detailed analysis of second order condi-
tions (BM and POT) for the class of Archimax copulas (Charpentier et al., 2014). Simple
sufficient conditions are formulated in terms of the Archimedean generator associated
with such copulas. In particular, we show that the class of Archimax copulas copulas
contains examples where either the POT or BM method can lead to faster convergence
rates. This is also illustrated in a small finite-sample simulation study.

The remaining part of this article is organized as follows: in Section 2, we introduce
the second order conditions of interest and work out the connections between the two,
including the above mentioned main result. In Section 3, we work out details in two
particular examples: the general class of Archimax copulas and outer power transforms
of the Clayton copula. In Section 4, we illustrate the consequences for the rate of
convergence of respective estimators, both by theoretical means and by a simulation
study.

2. Second Order Conditions for the BM and the POT approach

Let (Xt)t∈N denote an i.i.d. sequence of d-variate random vectors Xt = (Xt1, . . . , Xtd)
with joint cumulative distribution function (c.d.f.) F and continuous marginal c.d.f.s
F1, . . . , Fd. Let C denote the associated unique copula. For integer r ∈ N and j =
1, . . . , d, let M1:r,j = maxrt=1Xtj denote the maximum over the first r observations in
the jth coordinate, and let M1:r = (M1:r,1, . . . ,M1:r,d). By independence, M1:r has

joint c.d.f. Fr and copula Cr, defined as Fr(x) = F (x)r and Cr(u) = C(u1/r)r, where
us = (us1, . . . , u

s
d).

We assume that C lies in the copula domain of attraction of some extreme-value
copula C∞, that is

C∞(u) = lim
r→∞

Cr(u) = lim
r→∞

C(u1/r)r, u ∈ [0, 1]d. (2.1)

Hence, C∞(u1/s)s = C∞(u) for all s > 0 and u ∈ [0, 1]d and

C∞(u) = exp{−L(− log u1, . . . ,− log ud)}, u ∈ [0, 1]d,

for some stable tail dependence function L : [0,∞]d → [0,∞] satisfying

(1) L is homogeneous: L(s ·) = sL(·) for all s > 0;
(2) L(ej) = 1 for j = 1, . . . , d, where ej denotes the jth unit vector;

(3) max(x1, . . . , xd) ≤ L(x) ≤ x1 + · · ·+ xd for all x ∈ [0,∞)d;
(4) L is convex;

see, e.g., Beirlant et al. (2004). By Taylor expansions, the assumption in (2.1) is equiv-
alent to assuming that

lim
t→∞

t{1− C(1− x/t)} = L(x), x ∈ [0,∞]d, (2.2)
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where the copula C is naturally extended to a c.d.f. on [−∞,∞]d. Note that the con-
vergence is necessarily uniform on [0, T ]d, for any fixed T > 0, by Lipschitz-continuity
of C and L. Consider the following natural second order conditions.

Definition 2.1 (Second order conditions). Let C be a copula satisfying one of the
equivalent limit relations in (2.1) or (2.2).

(SO)p Suppose there exists a positive function αp : (0,∞)→ (0,∞) with limt→∞ αp(t) =
0 and a non-null function Sp, such that,

lim
t→∞

t{1− C(1− x/t)} − L(x)

αp(t)
= Sp(x), x ∈ [0,∞)d,

uniformly on [0, T ]d, for any fixed T > 0.
(SO)b,d Suppose there exists a positive sequence αb,d : N→ (0,∞) with limr→∞ αb,d(brc) =

0 and a non-null function Sb,d, such that,

lim
r→∞

Cbrc(u)− C∞(u)

αb,d(brc)
= Sb,d(u), u ∈ [0, 1]d,

uniformly on [δ, 1]d for each δ > 0.
(SO)b Suppose there exists a positive function αb : (0,∞)→ (0,∞) with limr→∞ αb(r) =

0 and a non-null function Sb, such that,

lim
r→∞

C(u1/r)r − C∞(u)

αb(r)
= Sb(u), u ∈ [0, 1]d,

uniformly on [δ, 1]d for each δ > 0.

Condition (SO)b,d, with the additional requirement that the convergence be uniform

on [0, 1]d, can be applied to the results in Bücher and Segers (2014) to obtain an explicit
rate of the bias term for the empirical copula of block maxima (see also Section 4
below for details). We will show in Section 2.1 below that Condition (SO)b,d is actually
equivalent to the seemingly stronger Condition (SO)b (with Sb = Sb,d, Lemma 2.3) and

that further the convergence in (SO)b must in fact be uniform on [0, 1]d (Lemma 2.4).
Finally, note that Condition (SO)p was imposed in Fougères et al. (2015), among others.

2.1. Some simple properties of the second order conditions. The auxiliary func-
tions αm, m ∈ {b, p}, in the second order conditions are necessarily regularly varying
and imply a homogeneity property of the limit function Sm. See also Fougères et al.
(2015) for part (i) of the following lemma.

Lemma 2.2. (i) Suppose that (SO)p is met. Then there exists ρp ≤ 0 such that αp is
regularly varying of order ρp. As a consequence, Sp is homogeneous of order 1− ρp, that
is,

Sp(sx) = s1−ρpSp(x)

for all s > 0,x ∈ [0,∞)d.

(ii) Suppose that (SO)b is met. Then there exists ρb ≤ 0 such that αb is regularly varying
of order ρb. As a consequence,

Sb(u
s)

C∞(us)
= s1−ρb Sb(u)

C∞(u)
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for all s > 0,u ∈ (0, 1]d.

Note that the latter display also implies a growth condition on Sb when one coordinate
approaches zero: with the constant Kb = ed supv∈[e−1,1] |Sb(v)|, which is independent of
u but can depend on Sb, we have

|Sb(u)| ≤ Kbu∧(− log u∧)1+|ρb|, u∧ = min(u1, . . . , ud), (2.3)

for all u ∈ [0, 1]d, with the upper bound to be interpreted as zero if u∧ = 0. Indeed, for
all x ≥ 0 with x∨ = max(x1, . . . , xd) ∈ (0,∞) we have

|Sb(e−x)| = |Sb((e−x/x∨)x∨)| = x
1+|ρb|
∨

|Sb(e−x/x∨)|
C∞(e−x/x∨)

C∞(e−x) ≤ Kbx
1+|ρb|
∨ e−x∨ ,

since e−x/x∨ ∈ [e−1, 1]d and since
∏d
i=1 ui ≤ C∞(u) ≤ u∧.

Proof of Lemma 2.2. We only consider assertion (ii) and for notational brevity, we omit
the index b at all instances throughout the proof.

By Theorem B.1.3 in de Haan and Ferreira (2006), regular variation of α follows if we
prove that there exists X ⊂ (0,∞), a measurable set of positive Lebesgue measure, such
that, for all x ∈ X , α(rx)/α(r) converges, for r →∞, to a finite, positive function of x.
Pick a point u ∈ (0, 1)d with S(u) 6= 0 and let X denote a neighborhood of 1 specified
below.

For r, x > 0, we may write, by max-stability of C∞,

α(rx)

α(r)
=

{
C((u1/x)1/r)rx−C∞(u1/x)x

α(r)

}
{
C(u1/(rx))rx−C∞(u)

α(rx)

} ,

for some arbitrary point u ∈ (0, 1]d such that S(u) 6= 0. The denominator converges to
S(u). By the mean-value theorem, the numerator is equal to

{xC∞(u)1−1/x + o(1)}

{
C((u1/x)1/r)r − C∞(u1/x)

α(r)

}
, r →∞,

which converges to xC∞(u)1−1/xS(u1/x). By continuity of S, the latter limit is positive
for all x in a sufficiently small neighborhood of 1.

The assertion regarding Sb follows from elementary calculations. �

Lemma 2.3. If (SO)b,d is met, then (SO)b holds with αb(r) = αb,d(brc) and Sb = Sb,d.

Proof. Throughout the proof, we omit the index b at all instances. For u ∈ [0, 1]d, let

ur := ubrc/r and note that ur → u uniformly on [δ, 1]d. As explained below, the following
expansion, which implies the assertion of the lemma, holds uniformly in u ∈ [δ, 1]d:

C(u1/r)r =
{
C(u1/brc

r )brc
}r/brc

=
{
Cbrc(ur)

}r/brc
=
{
C∞(ur) + αd(brc)Sd(ur) + o(αd(brc))

}r/brc
(a)
=
{
C∞(ur) + αd(brc)Sd(u) + o(αd(brc))

}r/brc
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(b)
= C∞(ur)

r/brc +
r

brc
{C∞(ur) + o(1)}r/brc−1

{
αd(brc)Sd(u) + o(αd(brc))

}
(c)
= C∞(u) + αd(brc)Sd(u) + o(αd(brc)).

Explanations: (a) is a consequence of uniform continuity of Sd. (b) follows by a Taylor
expansion; note that C∞(ur) is bounded away from 0 uniformly in u ∈ [δ, 1]d and r ∈ N.
This latter fact together with the fact that r/brc converges to 1 implies (c). �

Lemma 2.4. Let (SO)b be met. Then the convergence

lim
r→∞

C(u1/r)r − C∞(u)

αb(r)
= Sb(u), u ∈ [0, 1]d,

is uniform on [0, 1]d.

Proof. Write fr(u) = C(u1/r)r − C∞(u) and omit the index b at Sb and αb. Recall

that α ∈ RVρ with ρ ≤ 0 by Lemma 2.2, and define γr = r−(1+|ρ|) = o(α(r)). Since
C(u), C∞(u) ≤ u∧ = min(u1, . . . , ud) by the upper Fréchet-Hoeffding bound, we obtain
that

sup
u∈[0,1]d\[γr,1]d

∣∣∣fr(u)

α(r)
− S(u)

∣∣∣ ≤ sup
u∈[0,1]d\[γr,1]d

2u∧
α(r)

+ |S(u)| = o(1)

by (2.3). It is hence sufficient to show that the claimed convergence is uniform in
u ∈ [γr, 1]d. Suppose this is not the case. Then there exists ε > 0 and sequences
rn →∞,un ∈ [γrn , 1]d with ∣∣∣frn(un)

α(rn)
− S(un)

∣∣∣ ≥ 2ε ∀n.

Here, the sequence un must satisfy (un)∧ → 0: indeed, for any η > 0, there exists n0

with supu∈[η,1]d |frn(u)/α(rn)− S(u)| < ε for all n ≥ n0, which implies that (un)∧ < η
for all n ≥ n0.

By (2.3) and since (un)∧ → 0 we have S(un) = o(1). As a consequence, we may
without loss of generality assume that∣∣∣frn(un)

α(rn)

∣∣∣ ≥ ε ∀n. (2.4)

Further, by (2.3), we may choose δ ∈ (0, 1) such that |S(u)| ≤ ε for all u with u∧ ≤ δ.
Next, note that | log δ|/| log((un)∧)| = (log δ)/ log((un)∧) and define

vn = usnn , sn =
| log δ|

| log((un)∧)|
≥ | log δ|
| log(γrn)|

=
| log δ|
1 + |ρ|

× 1

log rn
,

so that sn → 0 and

(vn)∧ = min(vn,1, . . . , vn,d) = ((un)∧)sn = δ

and thus vn ∈ [δ, 1]d. Hence, by the mean value theorem and the Fréchet-Hoeffding
bounds,

|frn(un)| = |frn(v1/sn
n )| =

∣∣{C(v1/(rnsn)
n )rnsn}1/sn − C∞(vn)1/sn

∣∣
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≤ 1

sn
δ1/sn−1|frnsn(vn)| ≤ 1

sn
δ1/sn−1 sup

v∈[δ,1]d
|frnsn(v)|.

Further, recall the Potter bounds (e.g., Proposition B.1.9(5) in de Haan and Ferreira,
2006): since α ∈ RVρ, there exists r0 > 0 such that

α(rx)

α(r)
≤ 2x−(1+|ρ|) ∀ x ∈ (0, 1], r ≥ r0 : rx ≥ r0.

The preceding two displays (note that rnsn & rn/ log rn →∞) imply that, for sufficiently
large n, ∣∣∣frn(un)

α(rn)

∣∣∣ ≤ 2sn
−(2+|ρ|)δ1/sn−1 sup

v∈[δ,1]d

∣∣∣frnsn(v)

α(rnsn)

∣∣∣
= 2sn

−(2+|ρ|)δ1/sn−1
{

sup
v∈[δ,1]d

|S(v)|+ o(1)
}
.

The upper bound converges to 0, which yields a contradiction to (2.4). �

2.2. The relationship between (SO)b and (SO)p. This section contains the first
main result of the paper on the relationship between the two second order conditions
(SO)b and (SO)p. Depending on the speed of convergence of αm, we will occasionally
need the following functions

Γ1(x) = ∂x2L(x) = lim
r→∞

r
{
L
(
x +

x2

r

)
− L(x)

}
, x ∈ [0,∞)d, (2.5)

Γ2(x) = −∂−x2L(x) = lim
r→∞

r
{
L(x)− L

(
x− x2

r

)}
, x ∈ [0,∞)d. (2.6)

Note that both limits necessarily exist for all x ∈ [0,∞)d: indeed, by convexity of L,
the difference quotients inside the limits are monotone functions of r (see Theorem 23.1
in Rockafellar, 1970) and, by Lipschitz continuity of L, they are uniformly bounded.
Furthermore, the functions Γ1,Γ2 must be homogeneous of order 2, satisfy 0 ≤ Γ`(x) ≤∑d

j=1 x
2
j and may be discontinuous. For a class of examples regarding the last assertion,

consider the case d = 2 with Pickands dependence function A(t) = L(1 − t, t). A
straightforward but tedious calculation utilizing the homogeneity of L shows that

L
(

1− t+
(1− t)2

r
, t+

t2

r

)
= A

(
t+

t(1− t)(2t− 1)

r

)
+A(t)

1− 2t+ 2t2

r
+O(r−2).

Hence, we have

Γ1(1− t, t) = A(t)(1− 2t+ 2t2) + lim
r→∞

r
{
A
(
t+

t(1− t)(2t− 1)

r

)
−A(t)

}
.

For t ∈ (1/2, 1) this limit is continuous if and only if s 7→ limh↓0(A(s + h) − A(s))/h is
continuous at t which can fail for piecewise linear functions A.

For the general result to come, the convergences in (2.5) and (2.6) must be uniform
on [0, T ]d. Sufficient conditions are formulated in the next lemma, where we also provide
a representation of Γ` in terms of the partial derivatives of L.
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Lemma 2.5. (i) If the limit Γ1 in (2.5) is continuous, then the convergence is uniform
on [0, T ]d for any T > 0. The same assertion holds for Γ2 and the convergence in (2.6).

(ii) If, for all j = 1, . . . , d, the first order partial derivative L̇j of L exists and is contin-

uous on {x ∈ [0,∞)d : xj > 0}, then the convergences in (2.5) and (2.6) are uniform on

[0, T ]d for any T > 0 and we have Γ1 = Γ2 = Γ with

Γ(x) =
∑
j:xj>0

x2
j L̇j(x).

Proof. The assertion in (i) is a consequence of Dini’s theorem:

Γr(x) := r{L(x + x2/r)− L(x)}

is a continuous function of x and a monotone function of r converging point-wise to a
limit Γ which is continuous by assumption.

For the proof of (ii), apply the mean value theorem to write

Γr(x) =
∑
j:xj>0

x2
j L̇j(x + o(1)),

where the o-term is uniform on [0, T ]d. As a consequence,∣∣Γr(x)− Γ(x)
∣∣ ≤ ∑

j:xj>0

x2
j |L̇j(x + o(1))− L̇(x)|.

It is now sufficient to show uniform convergence to zero for each summand on the right-
hand side separately. For arbitrary ε > 0, decompose [0, T ]d into {x ∈ [0, T ]d : xj < ε}
and {x ∈ [0, T ]d : xj ≥ ε}. On the first set, we have x2

j |L̇j(x + o(1)) − L̇(x)| < ε2 by

boundedness of L̇j . On the second set, the function L̇j is uniformly continuous, whence

x2
j |L̇j(x + o(1))− L̇(x)| = o(1) uniformly. �

The next two theorems are the main results of this section, and provide simple con-
ditions that allow to derive (SO)b from (SO)p and vice versa. The most important
consequence is that, under minimal extra conditions, (SO)b with second order param-
eter ρb 6= −1 implies (SO)p with second order parameter ρp = max(ρb,−1), and vice
versa. Let

L∨(x) = max(x1, . . . , xd), x ∈ [0,∞)d

denote the stable tail dependence function corresponding to perfect tail dependence.

Theorem 2.6. (a) Suppose that (SO)p is met with αp regularly varying of order ρp ≤ 0
and assume that limr→∞ 2rαp(r) = cp ∈ [0,∞].

(i) If cp =∞, then (SO)b holds with αb ≡ αp and Sb(e
−x) = −C∞(e−x)Sp(x).

(ii) If cp = 0 and L 6= L∨, then (SO)b holds if and only if Γ2 in (2.6) is continuous.
We may choose αb(r) = (2r)−1 and Sb(e

−x) = C∞(e−x){Γ2(x)− L2(x)}.
(iii) If cp ∈ (0,∞), Γ2 is continuous, and Sb defined below is not the null function,

then (SO)b is met with

αb(r) = αp(r) +
1

2r
,
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and with

Sb(e
−x) = C∞(e−x)

{
λp{Γ2(x)− L2(x)} − (1− λp)Sp(x)

}
, λp =

1

1 + cp
.

(b) Suppose that (SO)b is met with αb regularly varying of order ρb ≤ 0 and assume that
limr→∞ 2rαb(r) = cb ∈ [0,∞].

(i) If cb =∞, then (SO)p holds with αp ≡ αb and Sp(x) = −Sb(e−x)/C∞(e−x).
(ii) If cb = 0 and L 6= L∨, then (SO)p holds if and only if Γ1 in (2.5) is continuous.

We may choose αp(r) = (2r)−1 and Sp(x) = Γ1(x)− L2(x).
(iii) If cb ∈ (0,∞), Γ1 is continuous, and Sp defined below is not the null function,

then (SO)p is met with

αp(r) = αb(r) +
1

2r
,

and with

Sp(x) = λb{Γ1(x)− L2(x)} − (1− λb)
Sb(e

−x)

C∞(e−x)
, λb =

1

1 + cb
.

In other words, if one of the two conditions holds with cm =∞, which is only possible
for ρm ∈ [−1, 0] and necessarily the case if ρm ∈ (−1, 0], then the other condition holds
as well with ρb = ρp; in that case we can choose αp = αb.

When (SO)p is met with cp = 0, which is only possible for ρp ≤ −1 and necessarily
the case if ρp < −1, the proof of Theorem 2.6 actually shows that the limit relation
required for (SO)b,

lim
r→∞

{C(u1/r)r − C∞(u)}
1/(2r)

= C∞(u){Γ2(− logu)− L2(− logu)}, u ∈ [0, 1]d,

holds point-wise in u, and that this limit is not the zero function if and only if L 6= L∨
(i.e., only ρb = −1 is possible). However, even if the limit is non-zero, (SO)b can still fail
due to a lack of uniformity. If L = L∨, a close look at the proofs (keeping track of higher
order terms) reveals that (SO)p implies (SO)b provided that limr→∞ r

2αp(r) = ∞. In
that case we can choose αb ≡ αp and Sb(e

−x) = −Sp(x)C∞(e−x). If limr→∞ r
2αp(r) <

∞, even higher order expansions along similar lines are possible. Similar comments
apply to case (b) in Theorem 2.6.

When (SO)p is known to hold with cp ∈ (0,∞), which is only possible for ρp = −1,
then both ρb = −1 and ρb < −1 is possible (and vice versa), and additional case-by-case
calculations are necessary. As a matter of fact, the function Sb defined in Theorem 2.6(a),
and likewise Sp in (b), may be zero. Indeed, in Section 4 we provide an example where
ρp = −1, ρb = −2 (and vice versa). Starting from ρp = −1 we see that Sb defined in
Theorem 2.6 (a) must be zero since otherwise we would have ρb = −1. A further, more
direct calculation, is possible for the bivariate independence copula. A simple calculation
shows that (SO)p is met with αp(r) = 1/(2r) and Sp(x, y) = −2xy. Further, λp = 1/2,
L(x, y) = x+ y and Γ2(x, y) = Γ(x, y) = x2 + y2, which implies that the function Sb in
part (iii) of (a) is the null-function. Hence, Theorem 2.6 does not make any assertion
about whether (SO)b holds. In fact, since the independence copula is an extreme-value
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copula, the numerator on the right-hand side of (SO)b is actually zero, so (SO)b is not
met at all as the limit cannot be nonzero.

Proof of Theorem 2.6. It suffices to consider the case u = e−x ∈ (0, 1]d, that is, x =
− logu ∈ [0,∞)d. Subsequently, let δ ∈ (0, 1) and T > 1 be arbitrary, but fixed. All
o- and O-notations within the proof are to be understood uniformly in [δ, 1]d or [0, T ]d,
depending on whether u or x is involved.

Now, either (SO)b or (SO)p implies (2.1) (and the convergence is uniform on [δ, 1]d)

and (2.2) (and the convergence is uniform on [0, T ]d), and we begin by collecting two
properties implied by the latter two limit relations. First of all, since

r logC(u1/r)− logC∞(u) = o(1)

by (2.1) and C∞(u) > 0, a Taylor expansion of the exponential function implies that

C(u1/r)r − C∞(u)

αb(r)
=
r logC(u1/r)− logC∞(u)

αb(r)

×
[
C∞(u) +

1

2

{
C∞(u) + o(1)

}{
r logC(u1/r)− logC∞(u)

}]
=
r logC(u1/r)− logC∞(u)

αb(r)
{C∞(u) + o(1)}.

As a consequence, the convergence in (SO)b for u ∈ (0, 1]d is actually equivalent to

lim
r→∞

r logC(u1/r)− logC∞(u)

αb(r)
=

Sb(u)

C∞(u)
, (2.7)

and if either the convergence in (SO)b or in (2.7) is uniform on [δ, 1]d, then so is the
other. Second, since C is Lipschitz continuous, we obtain that, by (2.2),

r{1− C(e−x/r)} = r{1− C(1− x/r)}+O(r−1) = L(x) + o(1). (2.8)

Let us now prove the assertions in (a). As argued above, it suffices to show (2.7).
Now, the second order condition (SO)p can be rewritten as

r{1− C(1− x/r)} = L(x) + αp(r){Sp(x) + o(1)}.

Let yr = r(1− e−x/r)− x = −x2/(2r) +O(r−2), and note that e−x/r = 1− (x + yr)/r.
We may thus write

r{1− C(e−x/r)} = r{1− C(1− (x + yr)/r)}
= L(x + yr) + αp(r){Sp(x + yr) + o(1)}
= L(x− x2/(2r)) + αp(r){Sp(x) + o(1)}+O(r−2)

by uniform continuity of Sp and Lipschitz continuity of L. As a consequence, by a Taylor
expansion of the logarithm,

−r logC(u1/r) = −r log(1 + C(e−x/r)− 1)

= r{1− C(e−x/r)}+ [r{1− C(e−x/r))]2/(2r) +O(r−2) (2.9)

= L(x− x2/(2r)) + αp(r){Sp(x) + o(1)}+ {L(x)2 + o(1)}/(2r) +O(r−2),
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where we have used (2.8) in the last equality. Hence, we have

r logC(u1/r)− logC∞(u) =
1

2r

[
2r{L(x)− L(x− x2/(2r))} − L(x)2

]
− αp(r)Sp(x)

+ o(αp(r) + r−1).

The claim in (i) now follows from boundedness of the term in square brackets, which is a
consequence of Lipschitz continuity of L. The claim in (iii) follows after some elementary
calculations taking into account that the convergence in (2.6) is uniform by Lemma 2.5.
For the proof of (ii), note that the latter display implies that

lim
r→∞

2r{r logC(u1/r)− logC∞(u)} = −L(x)2 + lim
r→∞

2r{L(x)− L(x− x2/(2r))}

= Γ2(x)− L2(x)

point-wise in x ∈ [0,∞)d. By (2.7), this is equivalent to pointwise convergence in (SO)b

with αb = 1/(2r) and Sb(e
−x) = C∞(e−x){Γ2(x) − L2(x)}. The assertion in (ii) then

follows from the facts that the convergence is uniform if and only if the convergence
in (2.6) is uniform (which is equivalent to continuity of Γ2 by Lemma 2.5) and that the
limit is non-zero if and only if L 6= L∨. To see the latter, a simple calculation shows
that Γ2 = L2 holds for L = L∨. On the other hand, if Γ2 = L2, then L2(x) = Γ2(x) =∑d

j=1 x
2
j L̇j(x) for all x in the set C of points where L is continuously differentiable; note

that the complement of C is a Lebesgue null set by Theorem 25.5 in Rockafellar, 1970.
A version of Euler’s homogeneous function theorem then implies

|L(x)− L2(x)| = |L(x)− Γ2(x)| = |
d∑
j=1

(xj − x2
j )L̇j(x)| ≤ max(x1, . . . , xd)

d∑
j=1

|xj − 1|

for all x ∈ C. Taking limits along a sequence in C converging to 1, we obtain that
L(1) = L2(1) and hence L(1) = 1, which only occurs for L = L∨.

Let us now prove part (b) of the theorem. The assertion in (2.7), which is equivalent
to (SO)b, may be rewritten as

−r logC(e−x/r) = L(x)− αb(r){Sb(e−x)/C(e−x) + o(1)}.

The Taylor expansion in the first two lines of (2.9), together with (2.8), allows to rewrite
this as

r{1−C(e−x/r)} = L(x)−αb(r){Sb(e−x)/C(e−x)+o(1)}−{L(x)2 +o(1)}/(2r)+O(r−2).

Let zr = −r log(1− x/r)− x = x2/(2r) +O(r−2), and note that 1− x/r = e−(x+zr)/r.
The previous display then implies

r{1− C(1− x/r)} = r{1− C(e−(x+zr)/r)}
= L(x + zr)− αb(r){Sb(e−x−zr)/C(e−x−zr) + o(1)}

− {L(x + zr)
2 + o(1)}/(2r) +O(r−2)

= L(x + x2/(2r))− αb(r){Sb(e−x)/C(e−x) + o(1)}
− {L(x)2 + o(1)}/(2r) +O(r−2),
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and therefore,

r{1− C(1− x/r)} − L(x) =
1

2r

[
2r{L(x + x2/(2r))− L(x)} − L(x)2

]
− αb(r)

Sb(e
−x)

C(e−x)

+ o(r−1 + αb(r)).

The remaining part of the proof is now similar to the proof of (a). �

3. Second Order Conditions in Particular Models

3.1. Outer Power Transform of a Clayton Copula. For θ > 0 and β ≥ 1, the outer
power transform of a Clayton Copula is defined as

Cθ,β(u, v) ≡
[
1 +

{
(u−θ − 1)β + (v−θ − 1)β

}1/β
]−1/θ

, (u, v) ∈ [0, 1]2,

to be interpreted as zero if min(u, v) = 0. Note that Cθ,β is an Archimedean copula with

generator ϕ(t) = {(t−θ−1)/θ}β. It follows from Theorem 4.1 in Charpentier and Segers
(2009) that Cθ,β is in the copula domain of attraction of the Gumbel–Hougaard copula
with shape parameter β, that is,

C∞(u, v) = Cβ(u, v) ≡ exp
[
−
{

(− log u)β + (− log v)β
}1/β

]
, (u, v) ∈ [0, 1]2,

again to be interpreted as zero if min(u, v) = 0. Moreover, by Proposition 4.3 in Bücher
and Segers (2014), Condition (SO)b is met with ρb = −1 and

αb(r) = (2r)−1 and Sb(u, v) = θΛb(u, v;β),

where

Λb(u, v;β) = Cβ(u, v) {(xβ + yβ)2/β − (xβ + yβ)1/β−1(xβ+1 + yβ+1)}

= Cβ(u, v)Lβ(x, y)
{
Lβ(x, y)− xβ+1 + yβ+1

xβ + yβ

}
with x = − log u and y = − log v. The constant cb in Theorem 2.6 is hence equal to
cb = 1.

By similar calculations as in the above reference, Condition (SO)p could be verified
from scratch. However, a much simpler calculation shows that Lβ satisfies the conditions
from Lemma 2.5 (ii) and hence we obtain

Γ1(x) = Γ(x) = Lβ(x, y)
xβ+1 + yβ+1

xβ + yβ
.

We may hence apply Theorem 2.6 to obtain that (SO)p is met with ρp = −1 and

αp(t) = t−1 and Sp(x, y) =
1 + θ

2
Lβ(x, y)

{xβ+1 + yβ+1

xβ + yβ
− Lβ(x, y)

}
.
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3.2. Archimax Copulas. Let L0 be an arbitrary stable tail dependence function. Fur-
ther, let ψ : [0,∞)→ [0, 1] be a d-Archimedean generator (McNeil and Nešlehová, 2009),
that is, a d-monotone function which is strictly decreasing on [0, inf{x ≥ 0 : ψ(x) = 0}]
and satisfies the conditions ψ(0) = 1 and limx→∞ ψ(x) = 0. Here, d-monotonicity

means that the first d− 2 derivatives of ψ exist on (0,∞) and satisfy (−1)jψ(j) ≥ 0 for

all j = 0, . . . , d − 2, with (−1)d−2ψ(d−2) being convex and non-increasing on (0,∞). In
particular, in the bivariate case, ψ must be convex. The Archimax copula associated
with (ψ,L0) is defined as

C(u) = ψ[L0{ψ−1(u1), . . . , ψ−1(ud)}], u ∈ [0, 1]d,

where ψ−1 denotes the inverse of ψ on (0, 1] and where ψ−1(0) = inf{x ≥ 0 : ψ(x) = 0},
see Charpentier et al. (2014). By Proposition 6.1 in that reference, the copula C is in
the max-domain of attraction of the copula

C∞(u) = exp{−Lα0 (x
1/α
1 , . . . , x

1/α
d )}, u ∈ [0, 1]d,

where xj = − log uj , provided that the function κp : w 7→ 1−ψ(1/w) is regularly varying
with index −α for some α ∈ (0, 1]. Equivalently, the function λp : w 7→ ψ−1(1 − 1/w)
is regularly varying with index −1/α, see equation (15) in Charpentier et al. (2014).
Finally, note that C itself is an extreme-value copula provided ψ(x) = exp(−x) and that
the outer-power transform of the Clayton copula considered in Section 3.1 is an Archimax
copula with parameter ψ(x) = (1 + θx1/β)−1/θ (i.e., κp ∈ RV−1/β) and L0(x, y) = x+ y.

Define yet another function κb : w 7→ − logψ(1/w), and note that κp ∈ RV−α if and
only if κb ∈ RV−α. It is further possible to prove that this is equivalent to the function
λb : w 7→ ψ−1(e−1/w) being regularly varying with index −1/α.1. Consider the following
second order strengthening for m ∈ {b, p}: there exists a positive function Bm with
limt→∞Bm(t) = 0 and a function hκ,m which is not of the from cx−α for some c ∈ R
such that

lim
t→∞

1

Bm(t)

{κm(tx)

κm(t)
− x−α

}
= hκ,m(x) (3.1)

for all x > 0. In that case, by applying Theorem B.2.1 in de Haan and Ferreira (2006)
to the functions f(t) = tακm(t) and a(t) = tακm(t)Bm(t), the limit hκ,m is necessarily
of the form

hκ,m(x) = cmx
−αx

ρ′m − 1

ρ′m
(3.2)

for some constant cm 6= 0 and ρ′m ≤ 0; when ρ′m = 0 the fraction (xρ
′
m−1)/ρ′m should be

interpreted as log x. Moreover, Bm is regularly varying with index ρ′m. As an example,
consider the continuously differentiable 2-Archimedean generator

ψ(x) = (1− x+ x2/2)1(x ∈ [0, 1/2]) + (7/8− x/2)1(x ∈ [1/2, 14/8]),

1Indeed, we have κb = − logψ(1/·) ∈ RV−α iff 1/(− logψ(1/·)) ∈ RVα. Since the latter function is

necessarily strictly increasing, this implies {1/(− logψ(1/·))}−1 = 1/ψ−1(e−1/·) ∈ RV1/α, by Proposition

B.1.9(9) in de Haan and Ferreira (2006). This implies λb ∈ RV−1/α. The other direction is similar.
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such that κb, κp ∈ RV−1, i.e, α = 1. In that case, it can be shown that (3.1) is met for
m = b, p with

Bb(t) = t−2, ρ′b = −2 and Bp(t) = t−1, ρ′p = −1.

Proposition 3.1. Suppose that, for j = 1, . . . , d, the jth first-order partial derivative
L̇0,j of L0 exists and is continuous on {x ∈ [0,∞)d : xj > 0}. For completeness, define

L̇0,j(x) = lim sup
h↓0

L0(x + hej)− L0(x)

h
∈ [0, 1]

for x such that xj = 0. If (3.1) is met for m = p and with ρ′p < 0, then (SO)p is met

with αp(t) = Bp(t
1/α) ∈ RVρ′p/α

. Similarly, if (3.1) is met for m = b and with ρ′b < 0,

then (SO)b is met with αb(t) = Bb(t
1/α) ∈ RVρ′b/α

.

Proof. The proof heavily relies on Lemma 3.2 below. Slightly abusing notation, we
write f(x) = (f(x1), . . . , f(xd)), provided f is a real-valued function on a subset of the
extended real line. Depending on the context, all convergences are for t→∞ or r →∞,
if not mentioned otherwise.

Consider the case m = p first. Using the homogeneity of L0 and the fact that the
convergence in (3.1) is uniform on sets [ε,∞) (Lemma 3.2 below), we may write, using
the notation Cp defined in Lemma 3.2,

t{1− C(1− x/t)} = κp

( 1

L0(λp(t/x))

)/
κp

( 1

λp(t)

)
(a)
= κp

(
1

λp(t)

1

L0

(λp(t/x)
λp(t)

))/κp( 1

λp(t)

)
(b)
= Lα0

(λp(t/x)

λp(t)

)
+

{
hκ,p

(
1

L0

(λp(t/x)
λp(t)

))+ o(1)

}
Bp

( 1

λp(t)

)
(c)
= Lα0

(λp(t/x)

λp(t)

)
+

{
hκ,p

(
1

L0

(
x1/α

))+ o(1)

}
Bp

( 1

λp(t)

)
(d)
= Lα0

(λp(t/x)

λp(t)

)
+

{
hκ,p

(
1

L0

(
x1/α

))+ o(1)

}
Cρ
′/α
p Bp(t

1/α) (3.3)

where all o-terms are uniform in x ∈ [0, T ]d, and where 1/0 is interpreted as ∞ and
converging functions on (0,∞) are naturally extended to (0,∞]. Explanations: (a)
follows from homogeneity of L0, (b) from the fact that the convergence in (3.1) in
uniform on [ε,∞) by Lemma 3.2, (c) from uniform continuity of hκ,p on [ε,∞] and
continuity of L0, and (d) from (3.8) in the proof of Lemma 3.2.

We are next going to show that the first summand on the right-hand side of (3.3) can
be written as

Lα0

(λp(t/x)

λp(t)

)
= Lα0 (x1/α) +Bp(t

1/α)
{
Sp,1(x) + o(1)

}
, (3.4)
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where the o-term is uniform in x ∈ [0, T ]d and where

Sp,1(x) = αLα−1
0 (x1/α)

d∑
j=1

L̇0,j(x
1/α)hλ,p(x

−1
j )

with Sp,1(0) being interpreted as 0 and hλ,p being defined in (3.6) in Lemma 3.2 below.

For that purpose, let ε > 0, and note that we may find δ > 0 such that |Sp,1(x)| ≤ ε/2
for all x ∈ [0, δ]d. Further, note that x 7→ Lα0 (x1/α) is Lipschitz-continuous. Indeed,
using that

zα1 − zα2 = α(z1 − z2)

∫ 1

0
{sz1 + (1− s)z2}α−1 ds

for all z1, z2 ≥ 0 with z1z2 6= 0, we have, for all x,y not both being equal to 0,

|Lα(x1/α)− Lα(y1/α)| = α|L(x1/α)− L(y1/α)|
∫ 1

0 {sL(x1/α) + (1− s)L(y1/α)}α−1 ds

≤ α
∑

j:xjyj>0 |x
1/α
j − y1/α

j |
∫ 1

0 {sx
1/α
j + (1− s)y1/α

j }α−1 ds

=
∑d

j=1 |xj − yj |,

where we used Lipschitz-continuity of L, L(x) ≥ max{x1, . . . , xd} and α ≤ 1.

As a consequence, we further find that

1

Bp(t1/α)

∣∣∣Lα0(λp(t/x)

λp(t)

)
− Lα0 (x1/α)

∣∣∣ ≤ ∑
j:xj>0

1

Bp(t1/α)

∣∣∣(λp(t/xj)
λp(t)

)α
− (x

1/α
j )α

∣∣∣
and each summand on the right-hand side can be written as

α

Bp(t1/α)

∣∣∣λp(t/xj)
λp(t)

− x1/α
j

∣∣∣× ∫ 1

0

{
s
λp(t/xj)

λp(t)
+ (1− s)x1/α

j

}α−1
ds

≤ α

Bp(t1/α)

∣∣∣λp(t/xj)
λp(t)

− x1/α
j

∣∣∣× x1−1/α
j ×

∫ 1

0
(1− s)α−1 ds

where we have used that λp(t/xj)/λp(t) ≥ 0 and α ≤ 1. By (3.6) below, the right-hand
side of the previous display can be written as

O(1)× αxj ×
∫ 1

0
(1− s)α−1 ds

where the O(1) is uniform for xj ∈ (0, δ]. Hence, for sufficiently large t, this expression

can be made smaller than ε/2 uniformly in xj ∈ (0, δ]d by decreasing δ > 0 if necessary.

As a consequence, it remains to show that (3.4) holds uniformly in x ∈ [0, T ]d \ [0, δ]d.
For such x, using the notation from Lemma 3.2 below,

Lα0

(λp(t/x)

λp(t)

)
(a)
= Lα0

(
x1/α +

{
hλ,p(x

−1) + o(1)
}
Bp(t

1/α)
)

(b)
= Lα0 (x1/α) + αLα−1

0 (x1/α + o(1))
d∑
j=1

L̇0,j(x
1/α + o(1))

{
hλ,p(x

−1
j ) + o(1)

}
Bp(t

1/α)
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(c)
= Lα0 (x1/α) + {Sp,1(x) + o(1)}Bp(t1/α),

where the o(1) terms in each line are uniform in x ∈ [0, T ]d \ [0, δ]d. Explanations: (a)
follows from (3.6) below, (b) from a Taylor expansion and (c) from uniform continuity

of L̇0,j on [0, T ]d \ [0, δ]d.

It thus follows from (3.3) and (3.4) that (SO)p is met with

Sp(x) = Cρ
′/α
p hκ,p

(
1/L0

(
x1/α

))
+ Sp,1(x)2.

Next, let m = b. Note that is sufficient to show that the convergence in (2.7) is
uniform on [δ, 1]d. For u ∈ [δ, 1]d, let x = − logu ∈ [0, | log δ|]d. Then, similarly as
before,

−r logC(u1/r) = κb

(
1

λb(r)

1

L0

(λb(r/x)
λb(r)

))/κb( 1

λb(r)

)
= Lα0

(λb(r/x)

λb(r)

)
+

{
hκ,b

(
1

L0

(
x1/α

))+ o(1)

}
C
ρ′/α
b Bb(r

1/α)

for r → ∞, where all o-terms are uniform in u ∈ [δ, 1]d, and where 1/0 is interpreted
as ∞ and converging functions on (0,∞) are naturally extended to (0,∞]. The proof is
now the same as for m = p. �

Lemma 3.2. Let m ∈ {p, b}. Suppose that κm satisfies (3.1) for some Bm ∈ RVρ′m with
ρ′m < 0 and denote by cm 6= 0 the constant in (3.2). Then the convergence in (3.1) is
uniform on sets of the form [ε,∞) for ε > 0. Moreover, there exists a constant Cm > 0
such that, for t→∞,

λm(t) = (Cmt)
−1/α

{
1− 1

α

cm
ρ′m

Cρ
′
m/α
m Bm(t1/α)(1 + o(1))

}
. (3.5)

Finally,

lim
t→∞

1

Bm(t1/α)

{λm(xt)

λm(t)
− x−1/α

}
= −cmα−2Cρ

′/α
m x−1/αx

ρ′m/α − 1

ρ′m/α
=: hλ,m(x) (3.6)

with the latter convergence being uniform on sets of the form [ε,∞), ε > 0.

Proof. The proof of uniformity in (3.1) is similar to the proof of uniformity in (3.6) and
is omitted for the sake of brevity. Since the proof is the same for m = p and m = b,
we occasionally omit the index m. Recall from the discussion following (3.1) that the
functions f(t) = tακ(t) and a(t) = tακ(t)B(t) satisfy

f(tx)− f(t)

a(t)
→ c

xρ
′ − 1

ρ′

where by assumption ρ′ < 0 and c 6= 0. Assume without loss of generality that c >
0, otherwise replace f by −f in the arguments that follow and make corresponding

2Note that, by Lemma 2.2, the function Sp must be homogeneous of order 1 − ρ′p/α. This can also

be verified by some lengthy calculations, using the fact that hκ,p(sx) = sρ
′
p−αhκ,p(x) + x−αhκ,p(s) and

L0(x) =
∑d
j=1 xjL̇0,j(x); the latter follows since L0 is homogenous of order 1.
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adjustments. By part 2 of Theorem B.2.2 in de Haan and Ferreira (2006) the limit
Cm := C := limt→∞ f(t) exists and we have

C − tακ(t) = − c
ρ′
tακ(t)B(t)(1 + o(1)),

which implies

κ(t) = Ct−α
{

1 +
c

ρ′
B(t)(1 + o(1))

}
.

Note that C ≥ 0 since κ(t) ≥ 0 and that C 6= 0 since otherwise Theorem B.2.2 in de Haan
and Ferreira (2006) would imply −1/B(t) = −f(t)/a(t) → −c/ρ′, which contradicts
B(t) = o(1). Next note that 1/t = κ(1/λ(t)) for all sufficiently large t. Hence, by the
previous display,

t−1 = λ(t)αC
{

1 +
c

ρ′
B(1/λ(t))(1 + o(1))

}
. (3.7)

Since λ(t) = o(1) (by definition of λ), we first obtain t−1 = λ(t)αC(1 + o(1)), i.e. λ(t) =

(tC)−1/α(1 + o(1)). By regular variation of B combined with the Uniform Convergence
Theorem (see Theorem B.1.4 in de Haan and Ferreira, 2006) we obtain

Bm(1/λm(t)) = Bm(t1/α)Cρ
′
m/α
m (1 + o(1)), (3.8)

where we added the indices for ease of reference. After plugging this into (3.7) and
rearranging terms, a Taylor expansion implies that

λ(t) = (Ct)−1/α
{

1 +
c

ρ′
Cρ
′/αB(t1/α)(1 + o(1)

}−1/α

= (Ct)−1/α
{

1− c

αρ′
Cρ
′/αB(t1/α)(1 + o(1)

}
,

and hence (3.5) follows. The fact that (3.6) holds for any fixed x follows from (3.5) by
straightforward calculations.

Hence it remains to prove that the convergence in (3.6) is actually uniform. Letting

f(t) := −cα−2Cρ
′/αt1/αλ(t) and a(t) := t1/αλ(t)B(t1/α), the claim can be equivalently

formulated as

lim
t→∞

f(tx)− f(t)

a(t)
=
xρ
′/α − 1

ρ′/α

uniformly in x ∈ [ε,∞). It follows from the properties of λ established earlier that

f(∞) = limt→∞ f(t) = −cα−2C(ρ′−1)/α exists. Let a0(t) = |ρ′/α|{f(∞) − f(t)} and
note that limt→∞ a0(t)/a(t) = 1 by Theorem B.2.2 in de Haan and Ferreira (2006).
Moreover, by Theorem B.2.18 in that reference, we can find, for any δ > 0, some t0 > 0
such that, for all t ≥ t0,

sup
x≥ε

∣∣∣f(tx)− f(t)

a0(t)
− xρ

′/α − 1

ρ′/α

∣∣∣ ≤ δ sup
x≥ε

max{xρ′/(2α), x3ρ′/(2α)} = δε3ρ′/(2α).

In other words,

lim
t→∞

sup
x≥ε

∣∣∣f(tx)− f(t)

a0(t)
− xρ

′/α − 1

ρ′/α

∣∣∣ = 0.
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The decomposition

f(tx)− f(t)

a(t)
− xρ

′/α − 1

ρ′/α
=
a0(t)

a(t)

{f(tx)− f(t)

a0(t)
− xρ

′/α − 1

ρ′/α

}
+
{a0(t)

a(t)
− 1
}xρ′/α − 1

ρ′/α

then implies the assertion. �

4. Consequences for estimation precision

In this section, we illustrate the consequences of the results in the previous sections
for estimating multivariate extremal dependence. Suppose X1, . . . ,Xn is a finite sample
from a distribution with continuous marginal cdfs and copula C such that (2.1) or,
equivalently, (2.2) is met. For the sake of a clear exposition, we will concentrate on the
bivariate case and on estimating the Pickands dependence function A(t) = L(1 − t, t)
based on one estimation method from the BM and POT approach, respectively.

For the POT approach, we concentrate on the empirical stable tail dependence func-
tion, evaluated at the point (1− t, t), defined as

Âp(t) =
1

k

n∑
i=1

1(F̂n,1(Xi,1) > 1− (1− t) kn or F̂n,2(Xi,2) > 1− t kn),

where F̂n,j denotes the jth marginal empirical cdf, for j = 1, 2. Let

An(t) =
1− C(1− (1− t)k/n, 1− tk/n)

k/n
=

P(U1 > 1− (1− t)k/n or U2 > 1− tk/n)

k/n

denote the pre-asymptotic version of A(t), where (U1, U2) ∼ C. The asymptotic analysis

of Âp is based on the bias-variance type decomposition
√
k{Âp(t)−A(t)} =

√
k{Âp(t)−An(t)}+

√
k{An(t)−A(t)}.

First, it follows from simple adaptations of the results in Huang (1992) that
√
k{Âp(t)−An(t)}

is asymptotically centered normal (in fact, even functional weak convergence holds),
provided that k →∞ and k = o(n) as n→∞ and that some mild regularity conditions
on L are met. Moreover, if (SO)p is met, the dominating bias term satisfies

√
k{An(t)−A(t)} =

√
kαp(n/k)

An(t)−A(t)

αp(n/k)
=
√
kαp(n/k){Sp(1− t, t) + o(1)}

as n → ∞. Hence, in the typical case αp(t) = ctρp for some ρp < 0, choosing k

proportional to n−2ρp/(1−2ρp) leads to the best convergence rate for this estimator, with
the resulting rate being of order nρp/(1−2ρp). Under additional assumptions, Drees and
Huang (1998) proved that this is the minimax-optimal convergence rate.

Next, consider the block maxima method. For some block size r ∈ {1, . . . , n}, decom-
pose the data into k = bn/rc disjoint blocks of size r, that is, let the ith block maxima
in coordinate j be defined as

Mr,i,j = max{Xt,j : t = (i− 1)r + 1, . . . , ir}.
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By (2.1), the copula of the i.i.d. sample (Mr,i,1,Mr,i,2), i = 1, . . . , k, is approximately
given by C∞, whence A can be estimated by any method of choice, like the Pickands
or CFG-estimator. For simplicity, we concentrate on the madogram whose asymptotic
behavior can be immediately deduced from the results in Bücher and Segers (2014). Let

Ûi,j = Ĝk,j(Mr,i,j), where Ĝk,j denotes the jth marginal empirical cdf of the sample of
block maxima. The madogram-based estimator for A is defined as

Âb(t) =
ν̂(t)

1− ν̂(t)
, ν̂(t) =

1

k

k∑
i=1

max{Û1/(1−t)
i,1 , Û

1/t
i,2 },

which is motivated by the fact that

A(t) =
ν(t)

1− ν(t)
, ν(t) = E[max(U

1/(1−t)
1 , U

1/t
2 )].

Under Condition (SO)b it can be shown that the best rate of convergence which can

be attained by this estimator is nρb/(1−2ρb). We sketch a proof: first, by some simple
calculations, one may write

ν(t) = 1−
∫ 1

0
C∞(y1−t, yt) dy, ν̂(t) = 1−

∫ 1

0
Ĉb(y

1−t, yt) dy, (4.1)

where Ĉb denotes the empirical cdf of the sample (Û1,1, Û1,2), . . . , (Ûk,1, Ûk,2), i.e., the
empirical copula of the sample of block maxima. Second, by Corollary 3.6 in Bücher
and Segers (2014), the process

√
k{Ĉb(u)− Cr(u)}

converges weakly to a centred Gaussian process, provided r → ∞, r/n → 0 and some
regularity conditions on C∞ are met. Under Condition (SO)b, the decomposition

√
k{Ĉb(u)− C∞(u)} =

√
k{Ĉb(u)− Cr(u)}+

√
k{Cr(u)− C∞(u)}

=
√
k{Ĉb(u)− Cr(u)}+

√
kαb(r){Sb(u) + o(1)}

then shows that we obtain a proper (possibly non-centred) limit process if we choose

r such that
√
kαb(r) is converging. In the typical case αb(t) = ctρb , choosing r pro-

portional to n1/(1−2ρb) leads to the optimal convergence rate nρb/(1−2ρb). By standard
arguments based on the continuous mapping theorem and (4.1), the convergence rate of

the empirical copula easily transfers to Âb.

We illustrate the results in the preceding two paragraphs with three example models
from the Archimax family. The parameter L0 is chosen as the stable tail dependence
function from the Gumbel copula (also known as the symmetric logistic model), that is,

L0(x1, x2) = (xθ1 + xθ2)1/θ.

Throughout, we fix θ = log(2)/ log(3/2) such that A0(1/2) = A0(1/2, 1/2) = 3/4 and
λ = 1/2. We consider the following three Archimedean generators

ψ1(x) = (1− x+ x2/4)1(x ∈ [0, 1/2]) + (15/16− 3x/4)1(x ∈ (1/2, 5/4]),

ψ2(x) = (1− x+ x2/2)1(x ∈ [0, 1/2]) + (7/8− x/2)1(x ∈ (1/2, 7/4]),

ψ3(x) = (1− x+ x3/6)1(x ∈ [0, 1/2]) + (23/24− 7x/8)1(x ∈ (1/2, 23/21]),
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which are continuously differentiable on their respective supports. The second order
expansions of the associated functions κb and κp at ∞ are given by

Generator ρ′p ρ′b Expansion κp Expansion κb

ψ1 −1 −1 1
x −

1
4x2

1
x + 1

4x2
+O(x−3)

ψ2 −1 −2 1
x −

1
2x2

1
x −

1
6x3

+O(x−4)

ψ3 −2 −1 1
x −

1
6x3

1
x + 1

2x2
+O(x−3)

Note the symmetry between the expansions of κb(ψ2) and κp(ψ3). By Proposition 3.1,
the corresponding second order parameters ρm = ρm(ψj),m ∈ {b, p}, of the associated
archimax copulas are given by ρ = ρ′/α = ρ′ and thus

ρb(ψj) =


−1 , j = 1

−2 , j = 2

−1 , j = 3

ρp(ψj) =


−1 , j = 1

−1 , j = 2

−2 , j = 3.

Hence, if either the threshold k (POT-estimator) or the block size r (BM-estimator) is
chosen at the best attainable rate of convergence as indicated at the beginning of this
section, one would expect that estimators behave similarly for j = 1 (convergence rate

n−1/3), that the BM-estimator outperforms the POT-estimator for j = 2 (convergence

rate n−2/5 vs. n−1/3), and vice versa for j = 3.

Let Γb = {1, 2, 3, . . . , 30} denote a set of block sizes, and let Γp = Γp(n) = {k =
bpnc : p ∈ {0.01, 0.02, . . . , 0.39, 0.4}} denote a set of thresholds. In Table 1, we state the
relative efficiency

RE =
minr∈Γb MSE(Âb,r(1/2))

mink∈Γp MSE(Âp,k(1/2))

of the best (optimal choice of r) BM-estimator Âb(1/2) = Âb,r(1/2) to the best (optimal

choice of k) POT-estimator Âp(1/2) = Ap,k(1/2), considered as estimators for A(1/2) =
3/4, for four different sample sizes n = 1000, 2000, 5000, 10000. The values are calculated
based on 3000 Monte Carlo repetitions. Simulated samples from the Archimax copulas
are generated by the algorithm described in Section 5.2 in Charpentier et al. (2014). The
results perfectly match the expected behavior: for model ψ1, the relative efficiencies are
close to 1 (in fact, they are all slightly above 1), while they are decreasing for ψ2 and
increasing for ψ3.

Sample size n ψ1 ψ2 ψ3

1000 1.214 0.233 3.253
2000 1.127 0.198 3.751
5000 1.141 0.147 4.104

10000 1.088 0.123 4.762

Table 1. Relative efficiencies for estimating A0(1/2, 1/2) based on
Monte Carlo Simulation. Values below 1 indicate that the BM-estimator
is more efficient.
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As a further illustration, Figure 1 depicts variance, squared bias and MSE as a function
of the block size r (BM-estimator) or the threshold parameter k (POT-estimator) for
fixed sample size n = 5000; again based on 3000 Monte Carlo replications. The following
observation can be made estimator-wise: the variance curves behave similarly for all
models, while the squared bias curve is much smaller for the respective model with
ρm = −2 than for the other two models.
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Figure 1. Variance, Squared Bias and MSE for estimating A0(1/2, 1/2)
based on Monte Carlo Simulation (3000 repetitions, Sample Size n =
5000).
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