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Abstract

We show that the Phillips (1987) unit root tests have nuisance parameter free limiting dis-
tributions when applied to polynomials of integrated processes driven by linear process errors.
This substantially generalizes a similar result of Wagner (2012) allowing only for serially uncor-
related errors. The result is based on novel kernel weighted sum limit results involving powers
of integrated processes. These results allow us also consider additional modifications of the

Phillips (1987) tests applicable to polynomials of integrated processes.
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1 Introduction

This paper generalizes the results of an earlier paper of the second author with the same title
analyzing the asymptotic behavior of the Phillips (1987) unit root tests applied to polynomials of
integrated processes. We show that the Phillips (1987) unit root tests have nuisance parameter free
limiting null distributions also when applied to polynomials of integrated processes driven by linear

process errors and not only in case of serially uncorrelated errors as discussed in Wagner (2012).!

"Wagner (2012) discusses in detail where and why the issue of applying unit root tests to polynomials of integrated
processes arises and for sake of brevity we do not repeat this discussion here. Some literatures where the problem
arises are the environmental Kuznets curve literature (see, e.g., Grossman and Krueger, 1993, Wagner, 2015), the
intensity of use literature (see, e.g., Labson and Crompton, 1993) or the exchange rate target zone literature (see,
e.g., Darvas, 2008, Svensson 1992).



The generalization of the result is based on novel limit results for kernel weighted sums involv-
ing powers of nonstationary processes derived in the related context of cointegrating polynomial

regressions (see Wagner and Hong, 2016) in Stypka et al. (2017).

Utilizing the kernel results allows us to consider also two additional modifications — compared to
the original Phillips (1987) modifications — of the least squares estimate of the first order serial
correlation coefficient and its t-statistic. We thus consider in total six test statistics. The two
modifications remove an “additive bias term” present in the limiting distributions of the Phillips
(1987) statistics in case of a polynomial degree k larger than one. One of the transformations
makes use of It6’s Lemma and simplifies the numerator of the test statistics to the k-th power of a

chi-squared random variable with one degree of freedom.

2 The Test Statistics and Their Limiting Distributions

We consider a polynomial transformation, z;, of an integrated process v, i.e.

T = yrayy e+ aay (1)
where
Yt = Yp-1+ U, (2)

with the details concerning the stationary process u; given in the following assumption.

Assumption 1 The process us is a linear process, i.e. u; = Z;'io e¢, with Z;’ilj\cj] < 00,
> i20¢j # 0 and g is a zero mean i.i.d. process with Eleg|P < oo for some p > max(8,4/(1 — 2b))

with 0 < b < 1/3.

The leading coefficient in (1) can be set equal to one without loss of generality by redefining the

variance of e; appropriately. For later use we define the variance of u; as 02 := E(u?), its long-run

o0

variance wy, == 372 E(upuz—;) and its half long-run variance A, 1= > 22 E(ugui—j).

The objects of interest in this paper are the asymptotic behavior of the estimated first order serial
correlation coefficient, its t-statistic for the null hypothesis that the serial correlation coefficient is
equal to one and of the Phillips (1987)-type unit root tests, based on modifications of the coefficient

estimate and its ¢-statistic. All considered quantities are based on the regression

Ty = pri_1+ v, t=2,...,T. (3)



We denote the OLS coefficient estimator of p from (3) as

N Zthgﬂftht—l 4
p o= Tl (4)
di—a TP

and the t-statistic for the null hypothesis that p =1 as

-1
tp = - = (5)
Vot (St

with 62 := % T: 07 and ¥; := x; — pxs—1. The Phillips (1987) test statistics are given by
v T t=2 "t

Av

Zy = T(—1)— (6)
T12 D iy

) 5\

Z, = 4|2t — v : (7)
W, ~ T
! @oz Do 7

with @, = 62 + 27 K (MLT) LS T hiyty s and A, == (@, — 62), where K(-) is a kernel

function and Mp a bandwidth (specified below in Assumption 2).

2

“, Wy and A, are not estimates

Because v; is not a stationary process for k > 1, it is clear that &
of a variance, long-run variance and half long-run variance. Stypka et al. (2017, Theorem 1 and
Corollary 1) show in the related context of cointegrating polynomial regressions that this type of
kernel weighted sum involving powers of integrated processes (contained in v;) converges weakly
to limits involving integrals of Brownian motions.? These results are key for understanding the
asymptotic behavior of the Phillips (1987) unit root tests applied to polynomials of integrated

processes. Since our adapted results follow using similar arguments as Stypka et al. (2017), we

posit the same assumptions on kernel and bandwidth for the kernel weighted sums as in that

paper.

Assumption 2 The kernel function K(-) satisfies: K(0) = 1, K(-) is continuous at zero, K(0) :=
sup,>o |K(z)| < 0o and [§° K(z)dz < oo, where K(x) = sup,s, [K(y)|. The bandwidth Mp — oo

fulfills My = O(T®), with the same parameter b as in Assumption 1.

2The corresponding results in that paper are conceptually similar to what we need here, but not exactly the same.
Stypka et al. (2017) consider static cointegrating regressions involving powers of integrated processes as regressors,
whereas we consider here a dynamic time series regression involving polynomials of integrated processes as both
dependent variable and (with lag one) as explanatory variable. The structure of the proofs is, however, quite similar

with full details available upon request.



We are now ready to state the first result of the paper:

Proposition 1 Under Assumptions 1 and 2 it holds for T — oo that

k 2k: ldW 2(k— 1)d
Zp fO ( ) f(] T7 (8)
f W )2k dr
Qk 1 k 1 2(k 1)
Zt fO dW fO d , (9)

\/fW 2k 1drfW 2y

with a standard Brownian motion W (r).

Proposition 1 generalizes Wagner (2012, Corollary 1) from the case of u; being serially uncorrelated
to the more general case of u; being a linear process as specified in Assumption 1. The result shows
that the Phillips (1987) unit root tests can be applied to polynomials of integrated processes using
the original formulation of Phillips (1987), when the test decisions are based on the appropriate
critical values simulated from the asymptotic distributions given in Proposition 1, which have been

simulated and tabulated already in Wagner (2012, Table 1) for k£ = 1,2, 3.

The kernel weighted sum limit results allow us to consider also other modifications than the orig-
inal Phillips (1987) modifications that also lead to nuisance parameter free limiting distributions.
We consider two variants: First, we consider modifications of the coefficient and the t-statistic
that remove the additive bias terms, i.e., (’5) fol W(r) Q(k Ddr and 51 fo 2(k=1 . from the
numerators of the limiting distributions given in Proposition 1. Second, we consider modifications

to the test statistics that allow us to use Itd’s Lemma (see, e.g., Theorem 3.3., p. 149 in Karatzas



and Shreve, 1991) to simplify the numerators of the test statistics further to W (1)?*. This leads to

the following four additional test statistics:

i ) 2k + (k — 1), (k — 1)y

Zp = T(p - 1) - 2 1 T 2 = ZP - 2%k 1 T 9 (10)

Tz dt=a TPy T2 dt=a TP

. igt 2%y + (k — 1)@y Z (k — 1), (1)

t = ~p T - - ’
VS S I N Sy

k% -~ 6—2

Zy = T(p-1) (12)

+—U
1 T 2
2ﬁ2t=2mt—1

~2 ~2
zZr o= 2,4 U’”T . (13)
o 2\/@)% > =2 33%—1

Corollary 1 Under Assumptions 1 and 2 it holds for T — oo that

k fiy W(r)*=1dw (r)

% = [ W (r)2kdr a9
1 2k—1

-

7 = 2]01‘4;&7)«?;% (16)

zr = W= . (17)

2/ o W ()26 Ddr [V ()2 dr

Note that in case k = 1 it holds by construction that Z7 = Z, and Z; = Z,. Also, in case k = 1, the

Phillips (1987) test statistics can immediately be rewritten to have ¥ (1)? in the numerator, since,

1
e.g., Z,= fof?/vg()ig;g) = 2}/11/(1/1/1)(27«;21 o The corresponding correction term, in case k = 1, just adds
0 0
asymptotically m. This idea is extended here to k > 1 for Z7* and Z;*. By definition, of
0

course, W (1)?* is the k-th power of a chi-squared random variable with one degree of freedom.

The limiting distributions given in Proposition 1 and Corollary 1 can be simulated and tabulated.
Table 1 and Figure 1 display the results for k£ = 1,2, 3, based on 50,000 replications using stan-

dard normally distributed time series of length 1,000 to approximate the functionals of Brownian

3In our context It&’s Lemma results in W(1)%* = 2k fol W (r)*=dw (r) + k(2k — 1) fol W (r)2*=Vdr. Note also
that the modification of the OLS estimate and the ¢-statistic used in Z;* and Z;* has been used in a different context,
for k = 1, to develop fixed-b inference for the Phillips and Perron (1988) unit root tests already in Vogelsang and
Wagner (2013, p. 617). It has not been used there to consider different unit root tests, however.



k [ 0.0I0 0.025 0.050 0.500 0.950 0.975 0.990 Mean Std.Dev
Panel A: Coefficient Statistic Z),

T 1T -13.698 -10.623 -8239 -0.885 1.282 T.613 2.023 -1.816 3.204
2 -21.977 -17.163 -13.574 -2.236  2.870 4.233 6.413 -3.369 5.351
3 -36.523  -28.565 -22.674 -4.509 4.174 6.935 11.603 -6.245 8.800
Panel B: ¢-Statistic

1 -2.588 -2.262 -1.965 -0.513 1.285 1.635 2.064 -0.430 0.988
2 -3.350 -2.931 -2.590  -0.946 1.781 2.522 3.434 -0.736 1.343
3 -4.445 -3.890 -3.405 -1.396 1.857  2.951 4.416 -1.176 1.657
Panel C: Coefficient Statistic Z;

T 1 -13.698 -10.623 -8239 -0.885 1.282 T.613 2.023 -1.816 3.204
2 | -33.215 -26.192 -20.696 -3.788 2.038  3.221 5.089 -5.815 7.559
3 | -60.688 -47.690 -38.109 -8.249 2.213  4.638 8.609 -11.805 13.476
Panel D: ¢-Statistic

T -2.588 -2.262 -1.965 -0.513 1.285 T1.635 2.064 -0.430 0.988
2 -4.998 -4.389 -3.900 -1.551 1.359 2.121 3.036 -1.445 1.598
3 -7.193 -6.335 -5.635  -2.494  1.120 2.194 3.629 -2.422 2.068
Panel E: Coefficient Statistic Z%*

1 0.00T 0.003 0.013 0.779 2.786 3.420 4.235 0.996 0.937
2 0.000 0.000 0.000 0.657  5.691 7.655 10.533 1.487 2.220
3 0.000 0.000 0.000 0.450 8.791 12.478 18.077 1.971 3.790
Panel F: #-Statistic Z7*

1 0.000 0.001 0.005 0.445 1.824 2.133 2511 0.620 0.604
2 0.000 0.000 0.000 0.267  2.674  3.373 4.301 0.674 0.959
3 0.000 0.000 0.000 0.136  3.104 4.161 5.533 0.671 1.192

Table 1: Simulated percentiles, mean and standard deviation of the limiting distributions given in

Proposition 1 and Corollary 1 for k£ =1, 2, 3.

motions. By definition, the first two panels displaying the values for Z, and Z;, correspond to

Wagner (2012, Table 1).%

The distributions of Z,, Z;, Z; and Z; shift to the left with increasing variances as k increases.
This behavior is less pronounced for the distributions of Z7* and Z;*. As can be seen in Figure 1
the fitted densities corresponding to Z;* and Z;™ are extremely steep in the vicinity of zero, which
makes the simulation of small quantiles like 1% or 5% typically used for testing more imprecise
than for the other distributions. This will be seen to detrimentally effect the performance of these

two tests below.

Given the different variants of Phillips-type tests, the next question is which one to use. We address
this question by plotting local asymptotic power (LAP) type curves. To be precise, we simulate
data according to

c
Y = (1_*)%71-*-615, t=1,...

T (18)

where yg = 0, the &; are i.i.d. standard normally distributed, 7" = 1000 and we consider a grid
of 41 values of ¢ € [0,80] with mesh two. For each value of ¢ we calculate 50,000 test statistics.

The corresponding empirical rejection probabilities are then plotted as a function of ¢ and we refer

4MATLAB code to simulate these distributions is available upon request. The densities plotted in Figure 1 are

estimated using Gaussian kernels with bandwidth according to the rule of thumb of Silverman (1986).
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Figure 1: Densities corresponding to the limiting distributions given in Proposition 1 and Corol-
lary 1. The upper graphs display the densities corresponding to the coefficient statistics and the

lower graphs display the densities corresponding to the t-statistics.



to these results as “empirical” LAP. In all simulations long-run and half-long run variances are

estimated using the Bartlett kernel and the Andrews (1991) bandwidth rule.

A process y; as given in (18) is called near integrated by, e.g., Phillips (1987) when ¢ > 0. Consid-
ering near integrated alternatives is the basis for local asymptotic power analysis in unit root and
cointegration analysis. Here we just perform this type of LAP curve simulations without providing
fully fledged formal derivations of local asymptotic power curves. Performing these derivations in
full detail is beyond the scope of this paper as they would require one to generalize a number of
results from the integrated to the near integrated case. Back-of-the-envelope calculations indicate
that usual local asymptotic power results involving Ornstein-Uhlenbeck in place of Wiener processes

can be obtained, and the corresponding results are displayed in Figure 3 in the Appendix.®

Figure 2 carries two messages. First, empirical LAP is virtually identical and marginally decreasing
with increasing k for the original Phillips statistics Z, and Z; and the Z7- and Z;-modifications.
Empirical LAP is very low — in fact lower than size for k£ = 2,3 — for Z,* and Z;*. This effect
is partly driven by the shape of the tests’ distributions discussed above that render decisions very
sensitive. To assess the uncertainty introduced by simulating LAP empirically it is informative
to consider “analytical” LAP as displayed in Figure 3 in the Appendix, based on the mentioned
back-of-the-envelope calculations. This figure shows a “more typical” LAP shape also for Z;* and
Z7*. Nevertheless, also LAP based on asymptotic results shows that these two tests have distinctly

lower power than the other four tests.

3 A Small Simulation Assessment

To assess the finite sample performance of the different test variants we simulate data generated

according to:

Y¢ = Ye—1 T+ U, (19)

Uy = YU—1 + E¢, (20)

°In a bit more detail, the following results need to be generalized from the integrated to the near integrated
case: First, the functional central limit theorem involving powers of integrated processes and the stationary error
term, T S U U = fol Bu(r)*dBu(r) + Auk fol Bu(r)*7'dr, needs to be extended to the case when y; is near
integrated. The corresponding limit is key for the limit of T(5 — 1). Second, limit results for kernel weighted sums

involving 9, = AyF — (p- 1)yf,1 need to be extended from the integrated to the near integrated case. For Z, this
kL Te ()22~ 1aw (r)+(5) L Je ()2 Dar
leads, e.g., to Z, = —ck + —2 B JC(T)(;Qd;’

Je(r) == [y e aw (s).

in case of near integrated alternatives where as usual
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Figure 2: “Empirical” local asymptotic power (LAP) for the six considered test statistics. The
upper row displays LAP for the coefficient statistics and the lower row displays LAP for the ¢-

statistics. The horizontal axis displays the value of c.

where ¢; are i.i.d. standard normally distributed and v € {0,0.3,0.6,0.8} governs the amount of
serial correlation in uy. The sample sizes considered are T' € {100, 200, 500, 1000} with again 50,000
replications. We consider z; = yF for k = 1,2,3 and in Table 2 we display the empirical rejection

probabilities at the 5% nominal level.

The table shows that increasing k leads to an increasing tendency of under-rejections, more clearly
visible for larger values of v and smaller values of T'. This effect is extremely pronounced for Z;*
and Z;*, where the empirical null rejection probabilities go down to essentially zero even for v =0
and T" = 1000. These results, however, combine two effects. First, an increasing ~ implies larger
serial correlation in the first difference of y;. In case v = 1, y; is actually a process integrated

of order two. Now, for a fixed value of v < 1 increasing k has a similar effect as letting v tend



k=1 k=2 k=3
nel A: Coefficient Statistic Z,
.040 043 049 050 | .02T 033 .045 048 [ .009 024 .038 .04
.047 .051 .055 .055 | .012 .026 .042 .048 | .005 .014 .031 .040
.029  .042 .052 .055 .001 .004 .024 .038 .001 .001 .011 .025
.006 .020 .042 .051 .000 .000 .005 .021 .000 .000 .001 .007
1 B: t-Statistic Z
.040 .043 .049 .050 .019 .030 .042 .045 .006 .0I9 .033 .040
.047 .051 .055 .056 | .010 .023 .039 .045 | .004 .011 .025 .035
.030 .041 .052 .055 | .002 .004 .022 .035 | .001 .001 .007 .020
.008 .019 .041 .051 | .001 .000 .004 .018 | .000 .000 .000 .005
I C: Coefficient Statistic Z7
040 043 049 050 | .022° 034 044 048 [ .0I0 024 038 .046
.047 .051 .055 .055 | .013 .026 .042 .048 | .006 .015 .031 .041
.029  .042 .052 .055 .001 .004 .025 .038 .001 .002 011 .025
.006 .020 .042 .051 .000 .000 .005 .021 .001 .000 .001 .008
I D: ¢-Statistic Z7
.040  .043 .049 .050 021 032 .044 047 008 .022 .036 .043
.047  .051 .055 .056 011 025  .041 .047 005 .013 .029 .039
.030 .041 .052 .055 .001 .004 .024 .037 .001 .001 .010 .023
.008 .019 .041 .051 | .000 .000 .004 .020 | .000 .000 .001 .007
[ E: Coefficient Statistic Z7*
046  .042 044 047 | .004 00T 000 000 [ .00T .000 .000 .000
.052 .042 .041 .043 | .006 .002 .000 .000 | .002 .000 .000 .000
.051 .038 .032 .032 | .007 .002 .000 .000 | .003 .000 .000 .000
.033 .025 .019 .017 | .005 .001 .000 .000 | .002 .000 .000 .000
I F: ¢-Statistic Z7~
044039 044 047 | .004 00T .000 000 [ .00T 000 .000 .000
.052 .041 .039 .043 | .006 .002 .000 .000 | .002 .000 .000 .000
.051 .037 .030 .030 | .007 .002 .000 .000 | .003 .000 .000 .000
.033 .025 .018 .015 | .005 .001 .000 .000 | .002 .000 .000 .000

=}
)

=}
)

B
)

=}
)

coocgyeooe,g oo, yooc,g oo Yooy
oowgBlooowd ¥ ooc:wog oowd BloowdPloowd
o

Table 2: Empirical null rejection probabilities at the 5% nominal level of the null hypothesis p = 1
for the simulated data using the critical values given in Table 1. The block-columns correspond
to the powers k = 1,2,3 with the four different sample sizes T = 100, 200, 500, 1000 within the

block-columns. The six panels correspond to the six considered test statistics.
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closer to one, i.e., first order serial correlation in x; is increased. Second, the approximation quality
of the empirical null distribution to the asymptotic null distribution is poor at the boundaries of
the distributions, leading to size distortions in particular at small significance levels. To gauge this
second effect, see Table 3 in the Appendix which displays 50% empirical null rejection probabilities.
The table shows that, as expected, the approximation of the (nuisance parameter dependent) finite
sample distribution to the asymptotic null distributions is better in the center of the distributions,
here exemplified at the median. The combination of the two effects leads to the observed under-
rejections. The effects are stronger for Z;* and Z;™ tests, where additionally the “complicated”
shape of the distributions renders the simulation of quantiles of the limiting distribution more
sensitive than for the other test statistics that have more standard-shaped distributions. This

aspect has already been seen when comparing “empirical” and “analytical” LAP of Z;* and Z;*.

4 Summary and Conclusions

We have shown that the coefficient and t-statistic Phillips (1987) unit root tests have nuisance
parameter free limiting distributions when applied to polynomial of integrated processes driven by
linear process errors. This result, based on kernel weighted sum limit results, closes the — from
today’s perspective — incomplete analysis in Wagner (2012). In addition to the two standard tests
we have considered four additional tests based on different modifications to remove additive bias
terms. It turns out that the behavior of the modified Z7 and Zj statistics is very similar to that
of the original Z, and Z; statistics with respect to both LAP and empirical null rejections. The

modifications using It6’s Lemma, Z;* and Z;*, perform significantly worse.
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Appendix: Proofs

Proof of Proposition 1:

The arguments in the proofs are unchanged if instead of z; only the leading term ¥ is considered
in the regression (3):

yr = pyr o+, (21)

where we keep for brevity unchanged notation for p and v;. That it suffices to consider (21) stems
from the fact that asymptotically only the highest order terms matter, as discussed briefly already

in Wagner (2012) and as can be seen in more detail also in Stypka et al. (2017). Thus, we consider

T
po= T ok
D=2 Vit

Under Assumption 1 and — used later — Assumption 2, the asymptotic behavior of the OLS estimator

and its t-statistic are derived in Wagner (2012, Proposition 1, p. 300), i.e

A k‘fo Qk; LdB,(r) + (k(Qk;— DAy + ( ) )fo 2(k—1) gpr
T(p-1) = Jo Bu(r)?dr |
kfol Bu(T)Qk—ldB (T‘) + (k(Qk‘ - 1))\u + ( ) ) fO 2 1)d7’
t, = ’

P kau\/fo r)2(k=1) drf By (r)2kdr

1/2 . . . . :
where B, (r) = wy/ W (r) is Brownian motion with variance wy,.

It thus remains to establish the asymptotic behavior of 52 )\ and @,, which can be derived using

similar arguments as in Stypka et al. (2017, Theorem 1 and Corollary 1). More precisely it can be

1 5'12} o 1
T Ay = Ny | B /0 By (r) 25 Vgr, (23)
Wy Wy

which in conjunction with ﬁ ZtT:2 yf’fl = fol B, (r)*dr leads upon combining and simplifying

shown that

SN

the terms to the results for Z, and Z;.

13



Proof of Corollary 1:

The result for Z; and Z} is straightforward since the terms additionally subtracted in (10) and (11)
converge exactly to the second terms in the numerators of the Z, and Z; statistics (divided by the
denominator) given in (8) and (9).

Let us therefore consider the two remaining statistics Z7* and Z;* in some more detail. It suffices

to consider, e.g., Z;*, since the arguments are entirely analogous for both:

L RSy BB + (2K = DA+ (5)02) fy Bu(r)6dr
o fol By (r)%kdr
ko2 [ Bu(r)2<k*1>dr
2]01 (r)2kdr
2k [y Bu(r)®'dBu(r) + (2k(2k — 1))\ + (k(k — 1) + k2)02) [} By(r)** Dar
B 2f0 r)2kdr
2k fy Bu(r)**'dBu(r )+2k(2k— 1) wwfo r)2=L gy
B 2f0 r)2kdr
_ B(l)% B W(l)% (24)
2 [Y B, (r)2dr 2 [} W, (r)2dr’

using By (r) = w}/QW(r), Wy = 2\, + 02 and Itd’s Lemma.

14
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Figure 3: “Analytical” local asymptotic power (LAP) for the six considered test statistics. The
upper row displays LAP for the coefficient statistics and the lower row displays LAP for the ¢-

statistics. The horizontal axis displays the value of c.
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k=1 k=2 k=3
nel A: Coefficient Statistic Z,
490 496 493 500 AT 495 .496 501 451 482 493 500
526  .526 518 519 502 517 517 .519 464 499  .509 515
528 531  .524 524 | 472 .503 514 519 | .391 463 .495  .507
505 523 626 .527 | .373 .465 504 516 | .234 377 .465  .494
] B: t-Statistic Z¢
492 496 494 50T AT8 A95 497 502 A57 490 500 507
523 525 516 518 | 496 .513 515 517 | .463 501  .513  .520
523 527 522 522 | 459 .497 510 516 | .379 463 .497 513
.492 516 .522 524 337 .450  .495 511 201 364  .466 .496
I C: Coefficient Statistic Z7
490 496 493 500 479 493 495 .500 451 478,490 A97
526  .526 518 519 .506 521 518 .519 466 497  .507 513
528 531  .524  .524 | 481 .509 516 .520 | .398 .464 .493  .506
505 523 626 .527 | .391 .470 507 518 | .256 .383 .465  .493
1 D: ¢-Statistic Z7
492 496 494 501 Arr 494 496 501 450 482 492 499
523 525 516 .518 | .500 .516 .516 .518 | .462 498 .508 .514
523 527 .22 522 | 468 .502 514 519 | .386 .461 .494  .507
.492 516 522 524 .360 .460 .501 .514 226 .371 .462 .493
1 E: Coefficient Statistic Z7*
496 501 .502 501 477491 497 498 434 478 493 496
498 503 .502 .500 460 484 494 .496 349 446 487 494
481 495 .500 .499 .392 457 486 .492 191 332 457 484
409 459 485 493 | 251 .366  .459 482 | .066 .164 .352  .446
el F: t-Statistic Z7~
494 501 498 499 478 490 497 A97 A57 482 494 497
.b13 515 509  .509 | 475 .490 .499 501 | .397 471 .493  .496
.504 512 511 511 426 473 493 .498 190 379 477 .489
453 491 .504 .509 .261 407 474 .490 043  .148  .399 471

=}
)

=}
)

=}
)

=}
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Table 3: Empirical null rejection probabilities at the 50% nominal level of the null hypothesis
p = 1 for the simulated data using the critical values given in Table 1. For further explanations see

caption of Table 2.

16









	Leere Seite
	Leere Seite

