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Abstract

We show that the Phillips (1987) unit root tests have nuisance parameter free limiting dis-

tributions when applied to polynomials of integrated processes driven by linear process errors.

This substantially generalizes a similar result of Wagner (2012) allowing only for serially uncor-

related errors. The result is based on novel kernel weighted sum limit results involving powers

of integrated processes. These results allow us also consider additional modifications of the

Phillips (1987) tests applicable to polynomials of integrated processes.
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1 Introduction

This paper generalizes the results of an earlier paper of the second author with the same title

analyzing the asymptotic behavior of the Phillips (1987) unit root tests applied to polynomials of

integrated processes. We show that the Phillips (1987) unit root tests have nuisance parameter free

limiting null distributions also when applied to polynomials of integrated processes driven by linear

process errors and not only in case of serially uncorrelated errors as discussed in Wagner (2012).1

1Wagner (2012) discusses in detail where and why the issue of applying unit root tests to polynomials of integrated

processes arises and for sake of brevity we do not repeat this discussion here. Some literatures where the problem

arises are the environmental Kuznets curve literature (see, e.g., Grossman and Krueger, 1993, Wagner, 2015), the

intensity of use literature (see, e.g., Labson and Crompton, 1993) or the exchange rate target zone literature (see,

e.g., Darvas, 2008, Svensson 1992).
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The generalization of the result is based on novel limit results for kernel weighted sums involv-

ing powers of nonstationary processes derived in the related context of cointegrating polynomial

regressions (see Wagner and Hong, 2016) in Stypka et al. (2017).

Utilizing the kernel results allows us to consider also two additional modifications – compared to

the original Phillips (1987) modifications – of the least squares estimate of the first order serial

correlation coefficient and its t-statistic. We thus consider in total six test statistics. The two

modifications remove an “additive bias term” present in the limiting distributions of the Phillips

(1987) statistics in case of a polynomial degree k larger than one. One of the transformations

makes use of Itô’s Lemma and simplifies the numerator of the test statistics to the k-th power of a

chi-squared random variable with one degree of freedom.

2 The Test Statistics and Their Limiting Distributions

We consider a polynomial transformation, xt, of an integrated process yt, i.e.

xt := ykt + a1y
k−1
t + · · ·+ ak−1yt, (1)

where

yt = yt−1 + ut, (2)

with the details concerning the stationary process ut given in the following assumption.

Assumption 1 The process ut is a linear process, i.e. ut =
∑∞

j=0 εt, with
∑∞

j=1 j|cj | < ∞,∑∞
j=0 cj 6= 0 and εt is a zero mean i.i.d. process with E|ε0|p <∞ for some p > max(8, 4/(1− 2b))

with 0 < b < 1/3.

The leading coefficient in (1) can be set equal to one without loss of generality by redefining the

variance of εt appropriately. For later use we define the variance of ut as σ2
u := E(u2

t ), its long-run

variance ωu :=
∑∞

j=−∞ E(utut−j) and its half long-run variance λu :=
∑∞

j=1 E(utut−j).

The objects of interest in this paper are the asymptotic behavior of the estimated first order serial

correlation coefficient, its t-statistic for the null hypothesis that the serial correlation coefficient is

equal to one and of the Phillips (1987)-type unit root tests, based on modifications of the coefficient

estimate and its t-statistic. All considered quantities are based on the regression

xt = ρxt−1 + vt, t = 2, . . . , T. (3)
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We denote the OLS coefficient estimator of ρ from (3) as

ρ̂ :=

∑T
t=2 xtxt−1∑T
t=2 x

2
t−1

(4)

and the t-statistic for the null hypothesis that ρ = 1 as

tρ :=
ρ̂− 1√

σ̂2
v

(∑T
t=2 x

2
t−1

)−1
, (5)

with σ̂2
v := 1

T

∑T
t=2 v̂

2
t and v̂t := xt − ρ̂xt−1. The Phillips (1987) test statistics are given by

Zρ := T (ρ̂− 1)− λ̂v
1
T 2

∑T
t=2 x

2
t−1

, (6)

Zt :=

√
σ̂2
v

ω̂v
tρ −

λ̂v√
ω̂v

1
T 2

∑T
t=2 x

2
t−1

, (7)

with ω̂v := σ̂2
v + 2

∑MT
h=1K

(
h
MT

)
1
T

∑T−h
t=1 v̂tv̂t−j and λ̂v := 1

2(ω̂v − σ̂2
v), where K(·) is a kernel

function and MT a bandwidth (specified below in Assumption 2).

Because vt is not a stationary process for k > 1, it is clear that σ̂2
v , ω̂v and λ̂v are not estimates

of a variance, long-run variance and half long-run variance. Stypka et al. (2017, Theorem 1 and

Corollary 1) show in the related context of cointegrating polynomial regressions that this type of

kernel weighted sum involving powers of integrated processes (contained in v̂t) converges weakly

to limits involving integrals of Brownian motions.2 These results are key for understanding the

asymptotic behavior of the Phillips (1987) unit root tests applied to polynomials of integrated

processes. Since our adapted results follow using similar arguments as Stypka et al. (2017), we

posit the same assumptions on kernel and bandwidth for the kernel weighted sums as in that

paper.

Assumption 2 The kernel function K(·) satisfies: K(0) = 1, K(·) is continuous at zero, K̄(0) :=

supx≥0 |K(x)| < ∞ and
∫∞

0 K̄(x)dx < ∞, where K̄(x) = supy≥x |K(y)|. The bandwidth MT → ∞

fulfills MT = O(T b), with the same parameter b as in Assumption 1.

2The corresponding results in that paper are conceptually similar to what we need here, but not exactly the same.

Stypka et al. (2017) consider static cointegrating regressions involving powers of integrated processes as regressors,

whereas we consider here a dynamic time series regression involving polynomials of integrated processes as both

dependent variable and (with lag one) as explanatory variable. The structure of the proofs is, however, quite similar

with full details available upon request.
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We are now ready to state the first result of the paper:

Proposition 1 Under Assumptions 1 and 2 it holds for T →∞ that

Zρ ⇒
k
∫ 1

0 W (r)2k−1dW (r) +
(
k
2

) ∫ 1
0 W (r)2(k−1)dr∫ 1

0 W (r)2kdr
, (8)

Zt ⇒
∫ 1

0 W (r)2k−1dW (r) + k−1
2

∫ 1
0 W (r)2(k−1)dr√∫ 1

0 W (r)2(k−1)dr
∫ 1

0 W (r)2kdr
, (9)

with a standard Brownian motion W (r).

Proposition 1 generalizes Wagner (2012, Corollary 1) from the case of ut being serially uncorrelated

to the more general case of ut being a linear process as specified in Assumption 1. The result shows

that the Phillips (1987) unit root tests can be applied to polynomials of integrated processes using

the original formulation of Phillips (1987), when the test decisions are based on the appropriate

critical values simulated from the asymptotic distributions given in Proposition 1, which have been

simulated and tabulated already in Wagner (2012, Table 1) for k = 1, 2, 3.

The kernel weighted sum limit results allow us to consider also other modifications than the orig-

inal Phillips (1987) modifications that also lead to nuisance parameter free limiting distributions.

We consider two variants: First, we consider modifications of the coefficient and the t-statistic

that remove the additive bias terms, i.e.,
(
k
2

) ∫ 1
0 W (r)2(k−1)dr and k−1

2

∫ 1
0 W (r)2(k−1)dr, from the

numerators of the limiting distributions given in Proposition 1. Second, we consider modifications

to the test statistics that allow us to use Itô’s Lemma (see, e.g., Theorem 3.3., p. 149 in Karatzas
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and Shreve, 1991) to simplify the numerators of the test statistics further to W (1)2k. This leads to

the following four additional test statistics:3

Z∗ρ := T (ρ̂− 1)− 2kλ̂v + (k − 1)ω̂v

2k 1
T 2

∑T
t=2 x

2
t−1

= Zρ −
(k − 1)ω̂v

2k 1
T 2

∑T
t=2 x

2
t−1

, (10)

Z∗t :=

√
σ̂2
v

ω̂v
tρ −

2kλ̂v + (k − 1)ω̂v

2k
√
ω̂v

1
T 2

∑T
t=2 x

2
t−1

= Zt −
(k − 1)ω̂v

2k
√
ω̂v

1
T 2

∑T
t=2 x

2
t−1

, (11)

Z∗∗ρ := T (ρ̂− 1) +
σ̂2
v

2 1
T 2

∑T
t=2 x

2
t−1

, (12)

Z∗∗t :=

√
σ̂2
v

ω̂v
tρ +

σ̂2
v

2
√
ω̂v

1
T 2

∑T
t=2 x

2
t−1

. (13)

Corollary 1 Under Assumptions 1 and 2 it holds for T →∞ that

Z∗ρ ⇒
k
∫ 1

0 W (r)2k−1dW (r)∫ 1
0 W (r)2kdr

, (14)

Z∗t ⇒
∫ 1

0 W (r)2k−1dW (r)√∫ 1
0 W (r)2(k−1)dr

∫ 1
0 W (r)2kdr

, (15)

Z∗∗ρ ⇒ W (1)2k

2
∫ 1

0 W (r)2kdr
, (16)

Z∗∗t ⇒ W (1)2k

2k
√∫ 1

0 W (r)2(k−1)dr
∫ 1

0 W (r)2kdr
. (17)

Note that in case k = 1 it holds by construction that Z∗ρ = Zρ and Z∗t = Zt. Also, in case k = 1, the

Phillips (1987) test statistics can immediately be rewritten to have W (1)2 in the numerator, since,

e.g., Zρ =
∫ 1
0 W (r)dW (r)∫ 1
0 W (r)2dr

= W (1)2−1

2
∫ 1
0 W (r)2dr

. The corresponding correction term, in case k = 1, just adds

asymptotically 1

2
∫ 1
0 W (r)2dr

. This idea is extended here to k > 1 for Z∗∗ρ and Z∗∗t . By definition, of

course, W (1)2k is the k-th power of a chi-squared random variable with one degree of freedom.

The limiting distributions given in Proposition 1 and Corollary 1 can be simulated and tabulated.

Table 1 and Figure 1 display the results for k = 1, 2, 3, based on 50,000 replications using stan-

dard normally distributed time series of length 1,000 to approximate the functionals of Brownian

3In our context Itô’s Lemma results in W (1)2k = 2k
∫ 1

0
W (r)2k−1dW (r) + k(2k − 1)

∫ 1

0
W (r)2(k−1)dr. Note also

that the modification of the OLS estimate and the t-statistic used in Z∗∗
ρ and Z∗∗

t has been used in a different context,

for k = 1, to develop fixed-b inference for the Phillips and Perron (1988) unit root tests already in Vogelsang and

Wagner (2013, p. 617). It has not been used there to consider different unit root tests, however.
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k 0.010 0.025 0.050 0.500 0.950 0.975 0.990 Mean Std.Dev.
Panel A: Coefficient Statistic Zρ
1 -13.698 -10.623 -8.239 -0.885 1.282 1.613 2.023 -1.816 3.204
2 -21.977 -17.163 -13.574 -2.236 2.870 4.233 6.413 -3.369 5.351
3 -36.523 -28.565 -22.674 -4.509 4.174 6.935 11.603 -6.245 8.800
Panel B: t-Statistic Zt
1 -2.588 -2.262 -1.965 -0.513 1.285 1.635 2.064 -0.430 0.988
2 -3.350 -2.931 -2.590 -0.946 1.781 2.522 3.434 -0.736 1.343
3 -4.445 -3.890 -3.405 -1.396 1.857 2.951 4.416 -1.176 1.657
Panel C: Coefficient Statistic Z∗

ρ
1 -13.698 -10.623 -8.239 -0.885 1.282 1.613 2.023 -1.816 3.204
2 -33.215 -26.192 -20.696 -3.788 2.038 3.221 5.089 -5.815 7.559
3 -60.688 -47.690 -38.109 -8.249 2.213 4.638 8.609 -11.805 13.476
Panel D: t-Statistic Z∗

t
1 -2.588 -2.262 -1.965 -0.513 1.285 1.635 2.064 -0.430 0.988
2 -4.998 -4.389 -3.900 -1.551 1.359 2.121 3.036 -1.445 1.598
3 -7.193 -6.335 -5.635 -2.494 1.120 2.194 3.629 -2.422 2.068
Panel E: Coefficient Statistic Z∗∗

ρ
1 0.001 0.003 0.013 0.779 2.786 3.420 4.235 0.996 0.937
2 0.000 0.000 0.000 0.657 5.691 7.655 10.533 1.487 2.220
3 0.000 0.000 0.000 0.450 8.791 12.478 18.077 1.971 3.790
Panel F: t-Statistic Z∗∗

t
1 0.000 0.001 0.005 0.445 1.824 2.133 2.511 0.620 0.604
2 0.000 0.000 0.000 0.267 2.674 3.373 4.301 0.674 0.959
3 0.000 0.000 0.000 0.136 3.104 4.161 5.533 0.671 1.192

Table 1: Simulated percentiles, mean and standard deviation of the limiting distributions given in

Proposition 1 and Corollary 1 for k = 1, 2, 3.

motions. By definition, the first two panels displaying the values for Zρ and Zt, correspond to

Wagner (2012, Table 1).4

The distributions of Zρ, Zt, Z
∗
ρ and Z∗t shift to the left with increasing variances as k increases.

This behavior is less pronounced for the distributions of Z∗∗ρ and Z∗∗t . As can be seen in Figure 1

the fitted densities corresponding to Z∗∗ρ and Z∗∗t are extremely steep in the vicinity of zero, which

makes the simulation of small quantiles like 1% or 5% typically used for testing more imprecise

than for the other distributions. This will be seen to detrimentally effect the performance of these

two tests below.

Given the different variants of Phillips-type tests, the next question is which one to use. We address

this question by plotting local asymptotic power (LAP) type curves. To be precise, we simulate

data according to

yt =
(

1− c

T

)
yt−1 + εt, t = 1, . . . , T, (18)

where y0 = 0, the εt are i.i.d. standard normally distributed, T = 1000 and we consider a grid

of 41 values of c ∈ [0, 80] with mesh two. For each value of c we calculate 50,000 test statistics.

The corresponding empirical rejection probabilities are then plotted as a function of c and we refer

4MATLAB code to simulate these distributions is available upon request. The densities plotted in Figure 1 are

estimated using Gaussian kernels with bandwidth according to the rule of thumb of Silverman (1986).
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Figure 1: Densities corresponding to the limiting distributions given in Proposition 1 and Corol-

lary 1. The upper graphs display the densities corresponding to the coefficient statistics and the

lower graphs display the densities corresponding to the t-statistics.
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to these results as “empirical” LAP. In all simulations long-run and half-long run variances are

estimated using the Bartlett kernel and the Andrews (1991) bandwidth rule.

A process yt as given in (18) is called near integrated by, e.g., Phillips (1987) when c > 0. Consid-

ering near integrated alternatives is the basis for local asymptotic power analysis in unit root and

cointegration analysis. Here we just perform this type of LAP curve simulations without providing

fully fledged formal derivations of local asymptotic power curves. Performing these derivations in

full detail is beyond the scope of this paper as they would require one to generalize a number of

results from the integrated to the near integrated case. Back-of-the-envelope calculations indicate

that usual local asymptotic power results involving Ornstein-Uhlenbeck in place of Wiener processes

can be obtained, and the corresponding results are displayed in Figure 3 in the Appendix.5

Figure 2 carries two messages. First, empirical LAP is virtually identical and marginally decreasing

with increasing k for the original Phillips statistics Zρ and Zt and the Z∗ρ - and Z∗t -modifications.

Empirical LAP is very low – in fact lower than size for k = 2, 3 – for Z∗∗ρ and Z∗∗t . This effect

is partly driven by the shape of the tests’ distributions discussed above that render decisions very

sensitive. To assess the uncertainty introduced by simulating LAP empirically it is informative

to consider “analytical” LAP as displayed in Figure 3 in the Appendix, based on the mentioned

back-of-the-envelope calculations. This figure shows a “more typical” LAP shape also for Z∗∗ρ and

Z∗∗t . Nevertheless, also LAP based on asymptotic results shows that these two tests have distinctly

lower power than the other four tests.

3 A Small Simulation Assessment

To assess the finite sample performance of the different test variants we simulate data generated

according to:

yt = yt−1 + ut, (19)

ut = γut−1 + εt, (20)

5In a bit more detail, the following results need to be generalized from the integrated to the near integrated

case: First, the functional central limit theorem involving powers of integrated processes and the stationary error

term, T− k+1
2

∑T
t=2 y

k
t−1ut ⇒

∫ 1

0
Bu(r)kdBu(r)+λuk

∫ 1

0
Bu(r)k−1dr, needs to be extended to the case when yt is near

integrated. The corresponding limit is key for the limit of T (ρ̂ − 1). Second, limit results for kernel weighted sums

involving v̂t = ∆ykt − (ρ̂ − 1)ykt−1 need to be extended from the integrated to the near integrated case. For Zρ this

leads, e.g., to Zρ ⇒ −ck+
k
∫ 1
0 Jc(r)

2k−1dW (r)+(k2)
∫ 1
0 Jc(r)

2(k−1)dr∫ 1
0 Jc(r)

2kdr
in case of near integrated alternatives where as usual

Jc(r) :=
∫ r
0
e−c(r−s)dW (s).
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Figure 2: “Empirical” local asymptotic power (LAP) for the six considered test statistics. The

upper row displays LAP for the coefficient statistics and the lower row displays LAP for the t-

statistics. The horizontal axis displays the value of c.

where εt are i.i.d. standard normally distributed and γ ∈ {0, 0.3, 0.6, 0.8} governs the amount of

serial correlation in ut. The sample sizes considered are T ∈ {100, 200, 500, 1000} with again 50,000

replications. We consider xt = ykt for k = 1, 2, 3 and in Table 2 we display the empirical rejection

probabilities at the 5% nominal level.

The table shows that increasing k leads to an increasing tendency of under-rejections, more clearly

visible for larger values of γ and smaller values of T . This effect is extremely pronounced for Z∗∗ρ

and Z∗∗t , where the empirical null rejection probabilities go down to essentially zero even for γ = 0

and T = 1000. These results, however, combine two effects. First, an increasing γ implies larger

serial correlation in the first difference of yt. In case γ = 1, yt is actually a process integrated

of order two. Now, for a fixed value of γ < 1 increasing k has a similar effect as letting γ tend

9



100 200 500 1000 100 200 500 1000 100 200 500 1000
γ k = 1 k = 2 k = 3
Panel A: Coefficient Statistic Zρ
0.0 .040 .043 .049 .050 .021 .033 .045 .048 .009 .024 .038 .045
0.3 .047 .051 .055 .055 .012 .026 .042 .048 .005 .014 .031 .040
0.6 .029 .042 .052 .055 .001 .004 .024 .038 .001 .001 .011 .025
0.8 .006 .020 .042 .051 .000 .000 .005 .021 .000 .000 .001 .007
Panel B: t-Statistic Zt
0.0 .040 .043 .049 .050 .019 .030 .042 .045 .006 .019 .033 .040
0.3 .047 .051 .055 .056 .010 .023 .039 .045 .004 .011 .025 .035
0.6 .030 .041 .052 .055 .002 .004 .022 .035 .001 .001 .007 .020
0.8 .008 .019 .041 .051 .001 .000 .004 .018 .000 .000 .000 .005
Panel C: Coefficient Statistic Z∗

ρ
0.0 .040 .043 .049 .050 .022 .034 .044 .048 .010 .024 .038 .046
0.3 .047 .051 .055 .055 .013 .026 .042 .048 .006 .015 .031 .041
0.6 .029 .042 .052 .055 .001 .004 .025 .038 .001 .002 .011 .025
0.8 .006 .020 .042 .051 .000 .000 .005 .021 .001 .000 .001 .008
Panel D: t-Statistic Z∗

t
0.0 .040 .043 .049 .050 .021 .032 .044 .047 .008 .022 .036 .043
0.3 .047 .051 .055 .056 .011 .025 .041 .047 .005 .013 .029 .039
0.6 .030 .041 .052 .055 .001 .004 .024 .037 .001 .001 .010 .023
0.8 .008 .019 .041 .051 .000 .000 .004 .020 .000 .000 .001 .007
Panel E: Coefficient Statistic Z∗∗

ρ
0.0 .046 .042 .044 .047 .004 .001 .000 .000 .001 .000 .000 .000
0.3 .052 .042 .041 .043 .006 .002 .000 .000 .002 .000 .000 .000
0.6 .051 .038 .032 .032 .007 .002 .000 .000 .003 .000 .000 .000
0.8 .033 .025 .019 .017 .005 .001 .000 .000 .002 .000 .000 .000
Panel F: t-Statistic Z∗∗

t
0.0 .044 .039 .044 .047 .004 .001 .000 .000 .001 .000 .000 .000
0.3 .052 .041 .039 .043 .006 .002 .000 .000 .002 .000 .000 .000
0.6 .051 .037 .030 .030 .007 .002 .000 .000 .003 .000 .000 .000
0.8 .033 .025 .018 .015 .005 .001 .000 .000 .002 .000 .000 .000

Table 2: Empirical null rejection probabilities at the 5% nominal level of the null hypothesis ρ = 1

for the simulated data using the critical values given in Table 1. The block-columns correspond

to the powers k = 1, 2, 3 with the four different sample sizes T = 100, 200, 500, 1000 within the

block-columns. The six panels correspond to the six considered test statistics.
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closer to one, i.e., first order serial correlation in xt is increased. Second, the approximation quality

of the empirical null distribution to the asymptotic null distribution is poor at the boundaries of

the distributions, leading to size distortions in particular at small significance levels. To gauge this

second effect, see Table 3 in the Appendix which displays 50% empirical null rejection probabilities.

The table shows that, as expected, the approximation of the (nuisance parameter dependent) finite

sample distribution to the asymptotic null distributions is better in the center of the distributions,

here exemplified at the median. The combination of the two effects leads to the observed under-

rejections. The effects are stronger for Z∗∗ρ and Z∗∗t tests, where additionally the “complicated”

shape of the distributions renders the simulation of quantiles of the limiting distribution more

sensitive than for the other test statistics that have more standard-shaped distributions. This

aspect has already been seen when comparing “empirical” and “analytical” LAP of Z∗∗ρ and Z∗∗t .

4 Summary and Conclusions

We have shown that the coefficient and t-statistic Phillips (1987) unit root tests have nuisance

parameter free limiting distributions when applied to polynomial of integrated processes driven by

linear process errors. This result, based on kernel weighted sum limit results, closes the – from

today’s perspective – incomplete analysis in Wagner (2012). In addition to the two standard tests

we have considered four additional tests based on different modifications to remove additive bias

terms. It turns out that the behavior of the modified Z∗ρ and Z∗t statistics is very similar to that

of the original Zρ and Zt statistics with respect to both LAP and empirical null rejections. The

modifications using Itô’s Lemma, Z∗∗ρ and Z∗∗t , perform significantly worse.
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Appendix: Proofs

Proof of Proposition 1:

The arguments in the proofs are unchanged if instead of xt only the leading term ykt is considered

in the regression (3):

ykt = ρykt−1 + vt, (21)

where we keep for brevity unchanged notation for ρ and vt. That it suffices to consider (21) stems

from the fact that asymptotically only the highest order terms matter, as discussed briefly already

in Wagner (2012) and as can be seen in more detail also in Stypka et al. (2017). Thus, we consider

ρ̂ :=

∑T
t=2 y

k
t y

k
t−1∑T

t=2 y
2k
t−1

. (22)

Under Assumption 1 and – used later – Assumption 2, the asymptotic behavior of the OLS estimator

and its t-statistic are derived in Wagner (2012, Proposition 1, p. 300), i.e.

T (ρ̂− 1) ⇒
k
∫ 1

0 Bu(r)2k−1dBu(r) +
(
k(2k − 1)λu +

(
k
2

)
σ2
u

) ∫ 1
0 Bu(r)2(k−1)dr∫ 1

0 Bu(r)2kdr
,

tρ ⇒
k
∫ 1

0 Bu(r)2k−1dBu(r) +
(
k(2k − 1)λu +

(
k
2

)
σ2
u

) ∫ 1
0 Bu(r)2(k−1)dr

kσu

√∫ 1
0 Bu(r)2(k−1)dr

∫ 1
0 Bu(r)2kdr

,

where Bu(r) = ω
1/2
u W (r) is Brownian motion with variance ωu.

It thus remains to establish the asymptotic behavior of σ̂2
v , λ̂v and ω̂v, which can be derived using

similar arguments as in Stypka et al. (2017, Theorem 1 and Corollary 1). More precisely it can be

shown that

1

T k−1

(
σ̂2
v

λ̂v
ω̂v

)
⇒

(
σ2
u
λu
ωu

)
k2

∫ 1

0
Bu(r)2(k−1)dr, (23)

which in conjunction with 1
Tk+1

∑T
t=2 y

2k
t−1 ⇒

∫ 1
0 Bu(r)2kdr leads upon combining and simplifying

the terms to the results for Zρ and Zt.
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Proof of Corollary 1:

The result for Z∗ρ and Z∗t is straightforward since the terms additionally subtracted in (10) and (11)

converge exactly to the second terms in the numerators of the Zρ and Zt statistics (divided by the

denominator) given in (8) and (9).

Let us therefore consider the two remaining statistics Z∗∗ρ and Z∗∗t in some more detail. It suffices

to consider, e.g., Z∗∗ρ , since the arguments are entirely analogous for both:

Z∗∗ρ ⇒
k
∫ 1

0 Bu(r)2k−1dBu(r) +
(
k(2k − 1)λu +

(
k
2

)
σ2
u

) ∫ 1
0 Bu(r)2(k−1)dr∫ 1

0 Bu(r)2kdr

+
k2σ2

u

∫ 1
0 Bu(r)2(k−1)dr

2
∫ 1

0 Bu(r)2kdr

=
2k
∫ 1

0 Bu(r)2k−1dBu(r) +
(
2k(2k − 1)λu + (k(k − 1) + k2)σ2

u

) ∫ 1
0 Bu(r)2(k−1)dr

2
∫ 1

0 Bu(r)2kdr

=
2k
∫ 1

0 Bu(r)2k−1dBu(r) + 2k(2k − 1)ωu
1
2

∫ 1
0 Bu(r)2(k−1)dr

2
∫ 1

0 Bu(r)2kdr

=
B(1)2k

2
∫ 1

0 Bu(r)2kdr
=

W (1)2k

2
∫ 1

0 Wu(r)2kdr
, (24)

using Bu(r) = ω
1/2
u W (r), ωu = 2λu + σ2

u and Itô’s Lemma.
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Figure 3: “Analytical” local asymptotic power (LAP) for the six considered test statistics. The

upper row displays LAP for the coefficient statistics and the lower row displays LAP for the t-

statistics. The horizontal axis displays the value of c.
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100 200 500 1000 100 200 500 1000 100 200 500 1000
γ k = 1 k = 2 k = 3
Panel A: Coefficient Statistic Zρ
0.0 .490 .496 .493 .500 .478 .495 .496 .501 .451 .482 .493 .500
0.3 .526 .526 .518 .519 .502 .517 .517 .519 .464 .499 .509 .515
0.6 .528 .531 .524 .524 .472 .503 .514 .519 .391 .463 .495 .507
0.8 .505 .523 .526 .527 .373 .465 .504 .516 .234 .377 .465 .494
Panel B: t-Statistic Zt
0.0 .492 .496 .494 .501 .478 .495 .497 .502 .457 .490 .500 .507
0.3 .523 .525 .516 .518 .496 .513 .515 .517 .463 .501 .513 .520
0.6 .523 .527 .522 .522 .459 .497 .510 .516 .379 .463 .497 .513
0.8 .492 .516 .522 .524 .337 .450 .495 .511 .201 .364 .466 .496
Panel C: Coefficient Statistic Z∗

ρ
0.0 .490 .496 .493 .500 .479 .493 .495 .500 .451 .478 .490 .497
0.3 .526 .526 .518 .519 .506 .521 .518 .519 .466 .497 .507 .513
0.6 .528 .531 .524 .524 .481 .509 .516 .520 .398 .464 .493 .506
0.8 .505 .523 .526 .527 .391 .470 .507 .518 .256 .383 .465 .493
Panel D: t-Statistic Z∗

t
0.0 .492 .496 .494 .501 .477 .494 .496 .501 .450 .482 .492 .499
0.3 .523 .525 .516 .518 .500 .516 .516 .518 .462 .498 .508 .514
0.6 .523 .527 .522 .522 .468 .502 .514 .519 .386 .461 .494 .507
0.8 .492 .516 .522 .524 .360 .460 .501 .514 .226 .371 .462 .493
Panel E: Coefficient Statistic Z∗∗

ρ
0.0 .496 .501 .502 .501 .477 .491 .497 .498 .434 .478 .493 .496
0.3 .498 .503 .502 .500 .460 .484 .494 .496 .349 .446 .487 .494
0.6 .481 .495 .500 .499 .392 .457 .486 .492 .191 .332 .457 .484
0.8 .409 .459 .485 .493 .251 .366 .459 .482 .066 .164 .352 .446
Panel F: t-Statistic Z∗∗

t
0.0 .494 .501 .498 .499 .478 .490 .497 .497 .457 .482 .494 .497
0.3 .513 .515 .509 .509 .475 .490 .499 .501 .397 .471 .493 .496
0.6 .504 .512 .511 .511 .426 .473 .493 .498 .190 .379 .477 .489
0.8 .453 .491 .504 .509 .261 .407 .474 .490 .043 .148 .399 .471

Table 3: Empirical null rejection probabilities at the 50% nominal level of the null hypothesis

ρ = 1 for the simulated data using the critical values given in Table 1. For further explanations see

caption of Table 2.
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