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Abstract

We consider the problem of designing experiments for the estimation of a target in

regression analysis if there is uncertainty about the parametric form of the regression

function. A new optimality criterion is proposed, which minimizes the asymptotic mean

squared error of the frequentist model averaging estimate by the choice of an experimental

design. Necessary conditions for the optimal solution of a locally and Bayesian optimal

design problem are established. The results are illustrated in several examples and it is

demonstrated that Bayesian optimal designs can yield a reduction of the mean squared

error of the model averaging estimator up to 45%.

Keywords: Model selection, model averaging, local misspecification, model uncertainty, optimal

design, Bayesian optimal deigns
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1 Introduction

It is well known that a carefully designed experiment can improve the statistical inference

in regression analysis substantially. Optimal design of experiments is the more efficient the

more knowledge about the underlying regression model is available and an impressive theory

has been developed to construct optimal designs under the assumption of a “given” regression

model [see, for example, the monographs of Pukelsheim (2006), Atkinson et al. (2007) and

Fedorov and Leonov (2013)]. On the other hand, model selection is an important step in any

data analysis and these references also partially discuss the problem of constructing efficient

designs to address model uncertainty in the design of experiment. Because of its importance

this problem has a long history. Early work dates back to Box and Hill (1967); Stigler (1971);

Atkinson and Fedorov (1975) who determined optimal designs for model discrimination by -

roughly speaking - maximizing the power of a test between competing regression models [see

also Ucinski and Bogacka (2005); López-Fidalgo et al. (2007); Wiens (2009); Dette and Titoff

(2009) or Tommasi and López-Fidalgo (2010) for some more recent references]. A different

line of research in this context was initiated by Läuter (1974) who proposed a criterion based

on a product of the determinants of the information matrices in the various models under

consideration, which yields efficient designs for all models under consideration. This criterion

has been used successfully by Dette (1990) to determine efficient designs for a class of polynomial

regression models and by Biedermann et al. (2006) to construct efficient designs for binary

response models, when there is uncertainty about the form of the link function. As these criteria

do not reflect model discrimination, Zen and Tsai (2002); Atkinson (2008); Tommasi (2009)

considered a mixture of Läuter-type and discrimination criteria to construct efficient designs for

model discrimination and parameter estimation. An alternative concept to robust designs with

respect to misspecified models consists in the minimization of the maximal mean squared error

calculated over a class of misspecified models with respect to the design under consideration [see

Wiens (2015) for an overview]. Several authors have worked on this problem and we mention

exemplarily Wiens and Xu (2008) who derive robust prediction and extrapolation designs or

Konstantinou et al. (2017) who analyze robust designs under local alternatives for survival

trials. This list of references is by no means complete and there exist many more papers on this

subject. However, a common feature in most of the literature consists in the fact that either

(at least implicitly) the designs are constructed under the assumption that model selection is

performed by hypotheses testing or designs are determined with “good” properties for a class

of competing models.

On the other hand there exists an enormous amount of literature to perform statistical infer-

ence under model uncertainty, which - to our best knowledge - has not been discussed in the
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context of optimal experimental design. One possibility is to select an adequate model from

a set of candidate models and numerous model selection criteria have been developed for this

purpose [see monographs of Burnham and Anderson (2002), Konishi and Kitagawa (2008) and

Claeskens and Hjort (2008) among others]. These procedures are widely used and have the ad-

vantage to deliver a single model for the statistical analysis, which make them very attractive

for practitoners. However, there exists a well known post-selection problem in this approach

because estimators chosen after model selection behave usually like mixtures of many potential

estimators. For example, if µ is a parameter of interest in a regression model (such as a pre-

diction at a particular point, the area under the curve or a specific quantile of the regression

model) it is known that selecting a single model and ignoring the uncertainty resulting from

the selection process may give confidence intervals for µ with coverage probability smaller than

the nominal value, see for example Chapter 7 in Claeskens and Hjort (2008) for a mathematical

treatment or Bornkamp (2015) for a high-level discussion of this phenomenon.

As an alternative several authors proposed to smooth estimators for the parameter µ across

several models, rather than choosing a specific model from the class under consideration and

performing the estimation in the selected model. This approach takes the additional estimator

variability caused by model uncertainty adequately into account and has been discussed inten-

sively in the Bayesian community, where it is known as “Bayesian model averaging” [see the

tutorial of Hoeting et al. (1999) among many others]. Hjort and Claeskens (2003) pointed out

several problems with this approach. In particular, they mentioned the difficulties to specify

prior probabilities for a class of models and the problem of mixing together many conflicting

prior opinions in the statistical analysis. As an alternative these authors proposed a non-

Bayesian approach, which they call “frequentist model averaging” and developed asymptotic

theory for their method. There exists evidence that model averaging improves the estimation

efficiency [see Breiman (1996) or Raftery and Zheng (2003)], and recently, Schorning et al.

(2016) demonstrated the superiority of model averaging about estimation after model selection

by an information criterion in the context of dose response models. These results have recently

been confirmed by Aoki et al. (2017) and Buatois et al. (2018) in the context of nonlinear mixed

effect models.

The present paper is devoted to the construction of optimal designs if parameters of interest

are estimated under model uncertainty via frequentist model averaging. Section 2 gives a

brief review on model averaging and states the asymptotic properties of this approach under

local alternatives. The asymptotic properties are used in Section 3 to define new optimality

criteria, which directly reflect the goal of model averaging. Roughly speaking, an optimal

design for model averaging estimation minimizes the asymptotic mean squared error of the
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model averaging estimator under local alternatives. In Section 4 we present a numerical study

comparing the optimal designs for model averaging estimation with commonly used designs

and demonstrate that the new designs yield substantially more precise estimates. Further

simulation results which demonstrate that our findings are representative can be found in

Section 6.2. Finally, the proofs of the theoretical results are given in Section 6.1.

2 Model Averaging under local misspecification

Model averaging is a common technique to estimate a parameter of interest, say µ, under

model uncertainty. Roughly speaking this estimate is a weighted average of the estimates in

the competing models under consideration, where different choices for the weights have been

proposed in the literature [see for example Wassermann (2000) or Hansen (2007) for Bayesian

and non-Bayesian model averaging methods]. In this section we briefly describe this concept

and the corresponding asymptotic theory in the present context, such that the results can be

used to construct optimal designs for model averaging estimation. The results follow more or

less from the statements in Hjort and Claeskens (2003) and Claeskens and Hjort (2008) and -

although we use a slightly different notation - any details regarding their derivation are omitted

for the sake of brevity.

We assume that k different experimental conditions, say x1, . . . , xk, are chosen in the de-

sign space X , and that at each experimental condition xi one can observe ni responses, say

yi1, . . . , yini
(i = 1, ..., k). We also assume that for each i = 1, . . . , k the responses yi1, . . . , yini

at experimental condition xi are realizations of independent identically (real valued) random

variables Yi1, . . . , Yini
with unknown density ftrue(·|xi). Therefore the total sample size is given

by n =
∑k

i=1 ni and the experimental design problem consists in the choice of k (number of

different experimental conditions), x1, . . . , xk (the experimental conditions) and the choice of

n1, . . . , nk (the numbers ni of observations taken at each xi), such that the model averaging

estimate is most efficient.

To measure efficiency and to compare different experimental designs we will use asymptotic

arguments and consider the case limn→∞
ni

n
= ξi ∈ (0, 1) for i = 1, . . . , k. As common in

optimal design theory we collect this information in the matrix

ξ =

{
x1 . . . xk

ξ1 . . . ξk

}
. (2.1)

Following Claeskens and Hjort (2008) we assume that ftrue(·|x) is contained in a set, say S,

of parametric candidate densities which is constructed as follows. The first candidate density
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in S is given by a parametric density fwide(y|x, θ, γ), where the form of fwide is assumed to be

known, θ = (θ1, . . . , θp) ∈ Θ and γ = (γ1, . . . , γq) ∈ Γ denote the unknown parameters, which

vary in a compact parameter space, say Θ × Γ ⊂ Rp × Rq. The second candidate density is

given by the parametric density fnarrow(y|x, θ) = fwide(y|x, θ, γ0), which is obtained by fixing

the parameter value γ to a pre-specified (known) value γ0 ∈ Γ. Throughout the paper, we

will call fwide(y|x, θ, γ) the wide density (model) and fnarrow(y|x, θ) the narrow density (model),

respectively. Additional candidate models are obtained by choosing certain submodels between

the wide density fwide(y|x, θ, γ) and the narrow density fnarrow(y|x, θ). More precisely, for

a chosen subset S ⊂ {1, . . . , q} of indices with cardinality |S|, we introduce the projection

matrices πS ∈ R|S|×q and πSc ∈ R|Sc|×q which map a q-dimensional vector to its components

corresponding to indices in S and Sc, respectively. Using the abbreviations γS = πSγ and

γ0,Sc = πScγ0, we define the candidate density fS(y|x, θ, γS) by

fS(y|x, θ, γS) = fwide(y|x, θ, γS, γ0,Sc). (2.2)

Consequently, for the density fS(y|x, θ, γS) the components of γ with indices in Sc = {1, . . . , q}\
S are fixed to the corresponding components of γ0, while the components with indices in S are

considered as unknown parameters. Note that fnarrow = f∅, fwide = f{1,...q} and that in the

most general case there are 2q possible candidate densities. As we might not be interested

in all possible submodels we assume that the competing models are defined by different sets

S1, . . . , Sr ⊂ {1, . . . , q} (for some r ∈ {1, . . . , 2q}). Thus the class S of candidate models is

given by

S = {fS1(y|x, θ, γS1), . . . , fSr(y|x, θ, γSr)} . (2.3)

Following Hjort and Claeskens (2003), we consider local deviations throughout the paper and

assume that the “true” density is given by

ftrue,n(y|x) = fwide

(
y|x, θ0, γ0 +

δ√
n

)
, (2.4)

where the “true” parameter values are given by θ0 ∈ Θ and γ0 + δ√
n
∈ Γ. Note that the “true”

density is given by the wide density with a varying value of γ which differs from γ0 through

the perturbation term δ√
n
. Thus, for n tending to infinity, it approximates the narrow density

fnarrow(y|x, θ0).

Example 2.1 Consider the case, where fwide(y|x, θ, γ) = fS4(y|x, θ, γ) is a normal density with
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variance σ2 and mean function

ηS4(x, ϑ, γ) = γ1 + ϑ1
xγ2

xγ2 + ϑγ22

, (2.5)

where θT = (σ2, ϑ1, ϑ2), γT = (γ1, γ2) and the explanatory variable x varies in an interval,

say [a, b]. This model is the well known sigmoid Emax model and has numerous applications

in modelling the dependence of biochemical or pharmacological responses on concentration

[see Goutelle et al. (2008) for an overview]. The sigmoid Emax model is especially popular

for describing dose-response relationships in drug development [see MacDougall (2006) among

many others]. The parameters in (2.5) have a concrete interpretation: γ1 is used to model a

Placebo-effect, ϑ1 denotes the maximum effect of x (relative to placebo) and ϑ2 is the value of

x which produces half of the maximum effect. The so-called Hill parameter γ2 characterizes the

slope of the mean function η. The parameter θ is included in every candidate model, whereas

for the narrow model the components are fixed as γ0 = (0, 1)T . Consequently, the narrow

candidate model is a normal density with mean

ηS1(x, ϑ) =
ϑ1x

x+ ϑ2

(2.6)

and variance σ2. In this case, ηS1 is the frequently used Michaelis Menten function, which is

widely utilized to represent an enzyme kinetics reaction, where enzymes bind substrates and

turn them into products [see, for example, Cornish-Bowden (2012)]. The two other candidate

models between are obtained by either fixing γ1 = 0 or γ2 = 1 and the corresponding densities

are normal densities with mean functions

ηS2(x, ϑ, (0, γ2)) = ϑ1
xγ2

xγ2 + ϑγ22

, ηS3(x, ϑ, (γ1, 1)) = γ1 + ϑ1
x

x+ ϑ2

, (2.7)

respectively. The latter model is the well known Emax model which is sometimes also referred

to as the hyperbolic Emax model [see Holford and Sheiner (1981) and MacDougall (2006) among

others]. Finally, under the local misspecification assumption (2.4) the true density ftrue,n(y|x)

corresponds to a normal distribution with mean

ηtrue,n(x) =
δ1√
n

+ ϑ1
x1+δ2/

√
n

x1+δ2/
√
n + ϑ

1+δ2/
√
n

2
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and variance σ2. Typical functionals µ of interest are the area under the curve (AUC)

µ(θ, γ) =

∫
C
η(x, ϑ, γ)dx (2.8)

calculated for a given region C ⊂ R or, for a given α ∈ (0, 1), the “quantile” defined by

µ(ϑ, γ) = inf
{
x ∈ X

∣∣∣ η(x, ϑ, γ)− η(a, ϑ, γ)

η(b, ϑ, γ)− η(a, ϑ, γ)
≥ α

}
. (2.9)

The value defined in (2.9) is well-known as EDα, that is, the effective dose at which 100× α%

of the maximum effect is achieved [see MacDougall (2006) or Bretz et al. (2008)].

As pointed out at the end of Example 2.1 we are interested in the estimation of a quantity,

say µ(θ, γ), where µ : Θ × Γ → R is a differentiable function of the parameter (θ, γ). For this

purpose we fix one model S ∈ S in the set of candidate models defined in (2.3) and use the

estimator µ̂S = µ(θ̂, γ̂S, γ0,Sc), where (θ̂, γ̂S) ∈ Rp+|S| is the maximum-likelihood estimator in

model S. Under the assumption (2.4) of a local misspecification and the common conditions

of regularity [see, for example, Lehmann and Casella (1998), Chapter 6] it can be shown by

adapting the arguments in Hjort and Claeskens (2003) and Claeskens and Hjort (2008) to the

current situation that the resulting estimator µ̂S satisfies

√
n
(
µ̂S − µ(θ0, γ0 + δ√

n
)
)
D−−→ ΛS ∼ N (νS(ξ), τ 2

S(ξ)). (2.10)

Here
D−−→ denotes weak convergence and N (νS(ξ), τ 2

S(ξ)) is a normal distribution with variance

τ 2
S(ξ) = τ 2

S(ξ, θ0, γ0) = cTSJ
−1
S (ξ, θ0, γ0)cS , (2.11)

where cS is the gradient of µ with respect to (θ, γS), that is,

cS = cS(θ0, γ0,S) = ∂
∂(θ,γS)

µ(θ, γS, γ0,SC )|(θ,γS)=(θ0,γ0,S), (2.12)

and JS the information matrix JS in the candidate model fS, that is

JS(ξ, θ0, γ0,S) =

∫
X

∫ (
∂

∂(θ,γS)
fS(y|x, θ0, γ0,S)

)(
∂

∂(θ,γS)
fS(y|x, θ0, γ0,S)

)T
fS(y|x, θ0, γ0,S)

dyξ(dx). (2.13)

The mean νS(ξ) in (2.10) is of the form

νS(ξ) = νS(ξ, δ, θ0, γ0) = cTLS(ξ, θ0, γ0)δ ,
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where

c = c(θ0, γ0) = ∂
∂(θ,γ)

µ(θ, γ)|(θ,γ)=(θ0,γ0)

is the gradient (with respect to the parameters) in the wide model, the matrix LS is defined by

LS(ξ, θ0, γ0) =
(
P T
S J
−1
S (ξ, θ0, γ0,S)PSJ(ξ, θ0, γ0)− I(p+q)×(p+q)

)(0p×q

Iq×q

)
, (2.14)

the matrices JS and PS are given by (2.13) and

PS =

(
Ip×p 0

0 πS

)
, (2.15)

respectively, and J(ξ, θ0, γ0) denotes the information matrix in the wide model fwide.

The frequentist model averaging estimator is now defined by assigning weights gS1 , . . . , gSr ,

with
∑r

i=1 gSi
= 1, to the different candidate models S1, . . . , Sr ∈ S and defining

µ̂mav =
r∑
i=1

gSi
µ̂Si

, (2.16)

where µ̂S1 , . . . , µ̂Sr are the estimators in the different candidate models S1, . . . , Sr ∈ S. The

asymptotic behaviour of the model averaging estimator µ̂mav can be derived from Hjort and

Claeskens (2003). In particular, it can be shown that under assumption (2.4) and the standard

regularity conditions a standardized version of µ̂mav is asymptotically normally distributed, that

is
√
n
(
µ̂mav − µ(θ0, γ0 + δ√

n
)
)
D−−→

r∑
i=1

gSi
ΛSi
∼ N (ν(ξ, δ, θ0, γ0), τ 2(ξ, θ0, γ0)) . (2.17)

Here the mean and variance are given by

ν(ξ, δ, θ0, γ0) =
r∑
i=1

gSi
νSi

(ξ, δ, θ0, γ0), (2.18)

τ 2(ξ, θ0, γ0) =
r∑
i=1

r∑
j=1

gSi
gSj
hTSi

(ξ)J(ξ, θ0, γ0)hSj
(ξ), (2.19)

respectively, J(ξ, θ0, γ0) is the information matrix of the wide model fwide and the vector hS(ξ)

is given by

hS(ξ) = P T
S J
−1
S (ξ, θ0, γ0,S)cS, (2.20)

where we used the notation of cS, JS and PS introduced (2.12), (2.13) and (2.15). The optimal
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design criterion for model averaging, which will be proposed in this paper, is based on an

asymptotic representation of the mean squared error of the estimate µ̂mav derived from (2.17)

and will be carefully defined in the following section.

3 An optimality criterion for model averaging estima-

tion

Following Kiefer (1974) we call the quantity ξ in (2.1) an approximate design on the design space

X . This means that the support points xi define the distinct dose levels where observations are

to be taken and the weights ξi represent the relative proportion of responses at the corresponding

support point xi (i = 1, . . . , k). For an approximate design ξ and given total sample size n

a rounding procedure is applied to obtain integers ni (i = 1, . . . , k) from the not necessarily

integer valued quantities ξin [see, for example Pukelsheim (2006), Chapter 12], which define

the number of observations at xi (i = 1, . . . , k).

If the observations are taken according to an approximate design ξ and an appropriate rounding

procedure is used such that ni/n → ξi as n → ∞, the asymptotic mean squared error of the

model averaging estimate µ̂mav of the parameter of interest µ(θ0, γ0 + δ/
√
n) can be obtained

from the discussion in Section 2, that is

Φmav(ξ, g, δ, θ0, γ0) = ν2(ξ, δ, θ0, γ0) + τ 2(ξ, θ0, γ0) ≈ n ·MSE(µ̂mav), (3.1)

where the variance τ 2(ξ, θ0, γ0) and the bias ν(ξ, δ, θ0, γ0) are defined in equations (2.18) and

(2.19), respectively. Consequently, a “good” design for the model averaging estimate (2.16)

should give “small” values of Φmav. Therefore, for a given finite set S of candidate models fS

of the form (2.2) and weights gS a design ξ∗ is called locally optimal design for model averaging

estimation of the parameter µ, if it minimizes the function Φmav(ξ, g, δ, θ0, γ0) in (3.1) in the

class of all approximate designs on X . Here the term “locally” refers to the seminal paper of

Chernoff (1953) on optimal designs for nonlinear regression models.

Locally model averaging optimal designs address uncertainty only with respect to the model

S but require prior information for the parameters θ0, γ0 and δ. While such knowledge might

be available in some circumstances [see, for example, Dette et al. (2008) or Bretz et al. (2010)]

sophisticated design strategies have been proposed in the literature, which require less precise

knowledge about the model parameters, such as sequential, Bayesian or standardized maximin

optimality criteria [see Pronzato and Walter (1985); Chaloner and Verdinelli (1995) and Dette

(1997) among others]. Any of these methodologies can be used to construct efficient robust
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designs for model averaging and for the sake of brevity we restrict ourselves to Bayesian opti-

mality criteria.

Here we address the uncertainty with respect to the unknown model parameters by a prior dis-

tribution, say π, on Θ×Γ and call a design ξ∗ Bayesian optimal for model averaging estimation

of the parameter µ with respect to the prior π if it minimizes the function

Φπ
mav(ξ) =

∫
Θ×Γ

Φmav(ξ, g, δ, θ, γ)π(dθ, dγ), (3.2)

where the function Φmav is defined in (3.1) (we assume throughout this paper that the integral

exists).

Locally and Bayesian optimal designs for model averaging have to be calculated numerically

in all cases of interest, and we present several examples in Section 4. Next, we state necessary

conditions for Φmav- and Φπ
mav- optimality. The proofs are given in the Section 6.1.

Theorem 3.1 If the design ξ∗ is a locally optimal design for model averaging estimation of the

parameter µ, then the inequality

−2ν(ξ∗, δ, θ0, γ0)D1(ξ∗, x, δ, θ0, γ0)−D2(ξ∗, x, θ0, γ0) ≤ 0 (3.3)

holds for all x ∈ X , where ν(ξ∗, δ, θ0, γ0) is defined by (2.18) and the functions D1 and D2 are

given by

D1(ξ∗, x, δ, θ0, γ0) =
r∑
j=1

gSj
cTP T

Sj
J−1
Sj

(ξ∗, θ0, γ0,Sj
)
(
PSj

J(ξx, θ0, γ0) (3.4)

−JSj
(ξx, θ0, γ0,Sj

)J−1
Sj

(ξ∗, θ0, γ0,Sj
)PSj

J(ξ∗, θ0, γ0)
)(0p

δ

)
,

D2(ξ∗, x, θ0, γ0) =
r∑

i,j=1

gSi
gSj

(
hTSi

(ξ∗){J(ξ∗, θ0, γ0) + J(ξx, θ0, γ0)}hSj
(ξ∗) (3.5)

−2h̃TSi
(ξ∗, ξx)J(ξ∗, θ0, γ0)hSj

(ξ∗)
)
,

where the vector hS(ξ) is defined by (2.20), the vector h̃S(ξ∗, ξ) by

h̃S(ξ∗, ξ) = P T
S J
−1
S (ξ∗, θ0, γ0,S)JS(ξ, θ0, γ0,S)J−1

S (ξ∗, θ0, γ0,S)cS,

and the information matrix JS(ξ, θ0, γ0) by (2.13), respectively. The design ξx denotes the Dirac

measure at the point x ∈ X .
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Moreover, there is equality in (3.3) for every point x in the support of ξ∗.

Theorem 3.2 If a design ξ∗ is Bayesian optimal for model averaging estimation of the param-

eter µ with respect to the prior π, then

dπ(x, ξ∗) =

∫
Θ×Γ

−2ν(ξ∗, δ, θ, γ)D1(ξ∗, x, δ, θ, γ)−D2(ξ∗, x, θ, γ)π(dθ, dγ) ≤ 0 (3.6)

holds for all x ∈ X , where the derivatives D1 and D2 are given by (3.4) and (3.5), respectively.

Moreover, there is equality in (3.6) for every point x in the support of ξ∗.

The derived conditions of Theorem 3.1 and Theorem 3.2 can be used in the following way: If

a numerically calculated design does not satisfy inequality (3.3), it will not be locally optimal

for model averaging estimation of the parameter µ and the search for the optimal design has

to be continued. Note that the functions Φmav and Φπ
mav are not convex and therefore sufficient

conditions for optimality are not available.

Remark 3.1 Note that Hjort and Claeskens (2003) also consider model averaging using ran-

dom weights gS1(Yn), . . . , gSr(Yn) depending on the data Yn = (Y11, . . . , Y1n1 , . . . , Yknk
) in the

definition of the estimator µ̂mav in (2.16). Typical examples are smooth AIC-weights

gsmAIC
Sj

(Yn) =
exp(1

2
AIC(Sj|Yn))∑r

i=1 exp(1
2
AIC(Si|Yn))

. (3.7)

which are based on the AIC-scores

AIC(Si|Yn) = 2`Si
(θ̂, γ̂Si

)− 2dSi
,

where `Si
(θ̂, γ̂Si

) denotes the log-likelihood function of model Si evaluated in the maximum

likelihood estimator (θ̂, γ̂Si
) and dSi

is the number of parameters to be estimated in model Si

(i = 1, . . . , r) [see Claeskens and Hjort (2008), Chapter 2]. Moreover, the estimator of the

target µ which is based on model selection by AIC can also be rewritten in terms of a model

averaging estimator by using random weights of the form

gAIC
Sj

(Yn) = I{Sj = SAIC}, (3.8)

where I{A} is the indicator function of the set A and SAIC denotes the model with the greatest

AIC-score among the candidate models. For further choices of model averaging weights see for

example Buckland et al. (1997), Hjort and Claeskens (2003) or Hansen (2007). In general,
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the case of random weights in model averaging estimation is more difficult to handle and in

general the asymptotic distribution is not normal [see Claeskens and Hjort (2008), p. 196]. As

a consequence an explicit calculation of the asymptotic bias and variance is not available.

From the design perspective it therefore seems to be reasonable to consider the case of fixed

weights, for which the asymptotic properties of model averaging estimation under local mis-

specification are well understood and determine efficient designs for this estimation technique.

Moreover, we also demonstrate in Section 4 and in the appendix (see Section 6) that model

averaging estimation with fixed weights often shows a better performance than model averaging

with smooth AIC-weights and that the optimal designs derived under the assumption of fixed

weights also improve the current state of the art for model averaging using random weights.

4 Optimal designs for model averaging

In this section, we investigate the performance of optimal designs for model averaging estimation

of a parameter µ. For this purpose, we consider several examples from the literature, and

compare the Bayesian optimal designs for model averaging estimation of a parameter µ with

commonly used uniform designs by means of a simulation study. Thoughout this paper we use

the cobyla algorithm for the minimization of the criterion Φπ
mav(ξ) defined in (3.2) [see Powell

(1994) for details].

4.1 Estimation of the EDα in the sigmoid Emax model

We consider the situation introduced in Example 2.1, where the underlying density is a normal

distribution with variance σ2 and different regression functions are under consideration for the

mean. More precisely, the set S contains r = 4 candidate models which are defined by the

different mean functions (2.5), (2.6) and (2.7), respectively. The parameter of interest µ is the

ED0.6 defined in (2.9), which is estimated by an appropriate model averaging estimator. The

design space is given by the interval X = [0, 8] and we assume that n = 150 observations can

be taken in the experiment.

We determine a Bayesian optimal design for model averaging estimation of the ED0.6. As the

Emax model is linear in the parameters ϑ1 and γ1, the optimality criterion does not depend

on ϑ1 and γ1 and no prior information is required for these parameters. For the parameters

(ϑ2, γ2) we choose independent uniform priors πϑ2 and πγ2 on the sets {0.79, 1.79, 2.79} and

{1, 2, 3}, respectively, and the variance σ2 is fixed as σ2
0 = 4.5 (note that one can choose a

prior for σ2 as well). Finally, under the local misspecification assumption we set δ such that
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Figure 1: The function dπ in (3.6) evaluated for the design ξ∗A in (4.1) (left panel) and the
design ξ∗B in (4.5) (right panel).

δ/
√
n = δ/

√
150 = (0.1, 1)T .

We first consider equal weights for the model averaging estimator, that is gSi
= 0.25, i =

1, . . . , 4. The Bayesian optimal design for model averaging estimation of the ED0.6 is given by

ξ∗A =

{
0 0.819 1.665 2.669 8

0.105 0.138 0.199 0.273 0.285

}
, (4.1)

and satisfies the necessary condition of optimality in Theorem 3.2 [see the left panel of Figure

1]. Note that the design ξ∗A defined by (4.1) would not be optimal if the inequality was not

satisfied.

In order to investigate the properties of the different designs for model averaging estimation we

have conducted a simulation study, where we compare the Bayesian optimal design (4.1) for

model averaging estimation of the ED0.6 with two uniform designs

ξ1 =

{
0 2 4 6 8

1/5
1/5

1/5
1/5

1/5

}
, (4.2)

ξ2 =

{
0 1 2 3 4 5 6 7 8

1/9
1/9

1/9
1/9

1/9
1/9

1/9
1/9

1/9

}
, (4.3)

which are quite popular in the presence of model uncertainty [see Schorning et al. (2016) and

Bornkamp et al. (2007)]. Note that the design ξ1 is a uniform design with the same number of

support points as the optimal design in (4.1), whereas the design ξ2 is a uniform design with

more support points. Moreover, we also provide a comparison with two estimators commonly
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estimation method
design fixed weights smooth AIC-weights model selection
ξ∗A 0.355 0.508 0.596
ξ1 0.810 0.913 1.017
ξ2 0.637 0.846 0.994

Table 1: The mean squared error of the model averaging estimators with weights gSi
= 0.25,

i = 1, . . . , 4 (left column), with the smooth AIC-weights (3.7) (middle column) and the estimator
based on model-selection (right column). The different rows correspond to different designs.
First row: Bayesian optimal design ξ∗A for model averaging estimation of the ED0.6 defined in
(4.1). Middle row: uniform design ξ1 defined in (4.2). Third row: uniform design ξ2 defined in
(4.3).

used in practice, namely the model averaging estimator based on smooth AIC-weights defined

in (3.7) and the estimator in the model chosen by AIC model selection, which is obtained as a

model averaging estimator (2.16) using the weights in (3.8). For these estimators we also used

observations taken according to the designs ξ∗A, ξ1 and ξ2. As the approximate designs can-

not be implemented directly for n = 150 observations a rounding procedure [see, for example

Pukelsheim (2006), Chapter 12] is applied to determine the number ni of observations taken

at xi such that we have in total
∑k

i=1 ni = 150 observations. For example, the implemented

design obtained from the Bayesian optimal design ξ∗A for model averaging estimation of the

ED0.6 uses n1 = 16, n2 = 21, n3 = 30, n4 = 40 and n5 = 43 observations at the points 0,

0.819, 1.165, 2.669 and 8, respectively, and implementable versions of the designs ξ1 and ξ2 are

obtained similarly.

All results presented here are based on 1000 simulations runs generating in each run 150 ob-

servations of the form

y
(l)
ij = γ1 + ϑ1

xγ2i
xγ2i + ϑγ22

+ σε
(l)
ij , i = 1, . . . , k, j = 1, . . . , ni, (4.4)

for the different designs, where the ε
(l)
ij are independent standard normal distributed random

variables and different combinations of the “true” parameter (ϑT , γT ) = (ϑ1, ϑ2, γ1, γ2) in (4.4)

are investigated whereas σ2 = 4.5 is fixed. In the following discussion we will restrict ourselves

to presenting results for the parameters (ϑ1, ϑ2) = (1.81, 0.79), (γ1, γ2) = (0.1, 2). Note that this

is the parameter combination under local misspecification assumption for θ0 = (4.5, 1.81, 0.79)T ,

γ0 = (0, 1)T and δ/
√

150 = (0.1, 1)T . Further simulation results for other parameter combina-

tions can be found in Section 6.2.1.

In each simulation run, the parameter µ = ED0.6 is estimated by model averaging using the

different designs and the mean squared error is calculated from all 1000 simulation runs. More
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precisely, if µ̂
(l)
mav is the model averaging estimator for the parameter of interest µ = ED0.6 based

on the observations y
(l)
11 , . . . , y

(l)
knk

from model (4.4) with the design ξ, its mean squared error is

given by

MSE(ξ) =
1

1000

1000∑
l=1

(
µ̂(l)

mav − µtrue
)2
,

where µtrue is the ED0.6 in the “true” sigmoid Emax model (4.4) with parameters (ϑT , γT ) =

(1.81, 0.79, 0.1, 2). The simulated mean squared error of the model averaging estimator with

fixed weights gSi
= 0.25, i = 1, . . . , 4 for the different designs ξ∗A, ξ1 and ξ2 is shown in the

left column of Table 1. The middle column of this table shows the mean squared error of the

model averaging estimator with the smooth AIC-weights in (3.7), while the right column gives

the corresponding results for the weights in (3.8), that is estimation of the ED0.6 in the model

identified by the AIC for the different designs. The numbers printed in boldface in each column

correspond to the smallest mean squared error obtained from the three designs.

We observe that model averaging always yields a smaller mean squared error than estimation

in the model identified by the AIC. For example, if the design ξ∗A is used, the mean squared

error of the estimator based on model selection is 0.596, whereas it is 0.355 and 0.508 for

the model averaging estimator using fixed weights and smooth AIC-weights, respectively (see

the first row in Table 1). The situation for the non-optimal uniform designs is similar. These

results (and also further simulation results presented in Section 6.2.1) coincide with the findings

of Schorning et al. (2016), Aoki et al. (2017) and Buatois et al. (2018) and indicate that

model averaging usually yields more precise estimates of the target than estimators based on

model selection. Moreover, model averaging estimation with fixed weights shows a substantially

better performance than the model averaging estimator with data driven weights. Note that

Wagner and Hlouskova (2015) observed a similar effect in the context of principal components

augmented regressions.

Compared to the uniform designs ξ1 and ξ2 the optimal design ξ∗A in (4.1) yields a reduction

of the mean squared error by 56% and 44% for model averaging estimation with fixed weights.

Moreover, this design also reduces the mean squared error of model averaging estimation with

smooth AIC-weights (by 44% and 40%) and for estimation in the model identified by the AIC

(by 41% and 40%).

As a further example we consider the model averaging estimator (2.16) of the parameter ED0.6

for the four models in Example 2.1 with non-equal weights, that is gS1 = 0.1 , gS2 = 0.1,

gS3 = 0.3 and gS4 = 0.5. The Bayesian optimal design for model averaging estimation of the
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estimation method
design fixed weights smooth AIC-weights model selection
ξ∗B 0.476 0.502 0.582
ξ1 0.915 0.900 1.014
ξ2 0.869 0.949 1.067

Table 2: The mean squared error of the model averaging estimators with weights gS1 = 0.1, gS2 =
0.1, gS3 = 0.3 and gS4 = 0.5 (left column), with the smooth AIC-weights (3.7) (middle column)
and the estimator based on model-selection (right column). The different rows correspond to
different designs. First row: Bayesian optimal design ξ∗B for model averaging estimation of the
ED0.6 defined in (4.5). Middle row: uniform design ξ1 defined in (4.2). Third row: uniform
design ξ2 defined in (4.3).

ED0.6 is then given by

ξ∗B =

{
0 0.809 1.665 2.691 8

0.152 0.120 0.175 0.279 0.274

}
. (4.5)

The necessary condition is depicted in the right panel of Figure 1. A comparison of the designs

ξ∗A and ξ∗B in (4.1) and (4.5) shows that the support points are similar, but that there appear

substantial differences in the weights.

In the simulation study of this model averaging estimator we consider the same parameters

as in the previous example. The corresponding results can be found in Table 2 and show a

similar but less pronounced picture as for the model averaging estimator with uniform weights.

Model averaging always shows a better performance than estimation in the model selected by

the AIC (improvement between 10% and 19% using fixed weights and between 11% and 14%

using smooth AIC-weights). Moreover, for the designs ξ∗B and ξ2 we observe an improvement

when using fixed weights instead of smooth AIC-weights for model averaging, but for the design

ξ1 there is in fact no improvement. A comparison of the results in Table 1 and 2 shows that

for all designs non-uniform weights for model averaging estimation yield a larger mean squared

error than uniform weights.

The Bayesian optimal design ξ∗B for model averaging estimation of the ED0.6 improves the

designs ξ1 and ξ2 by 48% and 45%, respectively, if model averaging with fixed (non-uniform

weights) is used, and by 43%− 47% for model averaging estimation with smooth AIC-weights

and estimation in the model selected by the AIC.

Simulation results for further parameter combinations in the sigmoid Emax model can be found

in Table 5 and 6 in Section 6.2.1. These results show a very similar picture as described in the

previous paragraphs. We observe that in all considered scenarios model averaging estimation
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yields a smaller simulated mean squared error than estimation in a model identified by the AIC,

independently of the design and parameters under consideration. Bayesian optimal designs for

model averaging estimation of the ED0.6 yield a substantially more precise estimation than the

uniform designs in almost all cases. We refer to Section 6.2.1 for more details.

4.2 Estimation of the AUC in the logistic regression model

In this section we consider the logistic regression model

ηS4(x, ϑ, γ) = γ1 +
ϑ1

1 + exp[(ϑ2 − x)/γ2]
, x ≥ 0 (4.6)

which is frequently used in dose-response modeling or modeling population growth [see, for

example, Zwietering et al. (1990)]. This means we consider a normal distribution with variance

σ2 and mean (function) given by (4.6). The design space is given by X = [0, 8] and we are

interested in the estimation of the area under the curve (AUC) defined in (2.8), where the

region C and the design space X coincide. In model (4.6) the value η(0, ϑ, γ) is the Placebo-

effect, ϑ1 denotes the maximum effect (relative to placebo) of the drug and ϑ2 > 0 is the

dose which produces half of the maximum effect. The parameter γ2 characterizes the slope

of the mean function η. We assume that the parameter θ = (σ2, ϑ1, ϑ2)T is included in every

candidate model, whereas the components of the parameter γ = (γ1, γ2)T can be fixed to the

corresponding components of γ0 = (0, 1)T , such that there are r = 4 competing models in the

candidate set S, that is

ηS1(x, ϑ) =
ϑ1

1 + exp[(ϑ2 − x)]
, (4.7)

ηS2(x, ϑ, (0, γ2)T ) =
ϑ1

1 + exp[(ϑ2 − x)/γ2]
, (4.8)

ηS3(x, ϑ, (γ1, 1)T ) = γ1 +
ϑ1

1 + exp[(ϑ2 − x)]
. (4.9)

and ηS4 defined by (4.6). As the parameters γ1 and ϑ1 appear linear in the model only the

prior distributions for γ2 and ϑ2 have to be specified, which are chosen as independent uniform

priors supported on the sets {3, 4, 5} and {5/6, 1, 7/6}, respectively. The variance σ2 is fixed

as σ2
0 = 4.5 and δ is chosen such that δT/

√
150 = (0.015,−1/6).

The Bayesian optimal design for model averaging estimation of the AUC with equal weights
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estimation method
design fixed weights smooth AIC model selection
ξ∗C 1.659 1.880 2.074
ξ1 1.961 2.080 2.196
ξ2 1.687 1.763 1.838

Table 3: The mean squared error of the model averaging estimators with weights gSi
= 0.25,

i = 1, . . . , 4 (left column), with the smooth AIC-weights (3.7) (middle column) and the estimator
based on model-selection (right column). The different rows correspond to different designs.
First row: Bayesian optimal design ξ∗C for model averaging estimation of the AUC defined in
(4.10). Middle row: uniform design ξ1 defined in (4.2). Third row: uniform design ξ2 defined
in (4.3).

gSi
= 0.25, i = 1, . . . , 4, has been calculated numerically and is given by

ξ∗C =

{
0 2.585 4.332 5.419 8

0.094 0.258 0.239 0.204 0.206

}
. (4.10)

The performance of the different designs is again evaluated by means of a simulation study

generating data from the model

y
(l)
ij = γ1 +

ϑ1

1 + exp[(ϑ2 − x)/γ2]
+ σε

(l)
ij , i = 1, ..., k, j = 1, ..., ni, (4.11)

where ε
(l)
ij are standard normal distributed random variables and n =

∑k
i=1 ni = 150 observa-

tions can be taken. We focus on the case ϑT = (ϑ1, ϑ2) = (−1.73, 4), γT = (0.015, 0.833) and

σ2 = 4.5 which corresponds to a local misspecification, where θT0 = (4.5,−1.73, 4), γT0 = (0, 1)

and δT/
√

150 = (0.015,−1/6). Further results for other parameter choices show a similar pic-

ture and are given and discussed in Section 6.2.2 of the appendix.

The mean squared error of the model averaging estimator with equal weights gSi
= 0.25

(i = 1, . . . , 4) for the different designs is given in the left column of Table 3, while the middle

and right column show the corresponding results for the model averaging estimator with smooth

AIC-weights and the estimator based on model selection, respectively. We observe again that

model averaging improves the estimation of the target AUC in all cases under consideration.

For fixed weights this improvement varies between 8% and 20% (depending on the design),

while the improvement achieved by model averaging with smooth AIC-weights varies between

4% and 9%. The model averaging estimator with fixed (equal) weights performs substantially

better than the procedure with smooth AIC-weights.

In the case of fixed weights the Bayesian optimal design ξ∗C for model averaging estimation of
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estimation method
design fixed weights smooth AIC model selection
ξ∗D 1.764 1.723 1.835
ξ1 2.059 2.041 2.129
ξ2 1.841 1.801 1.883

Table 4: The mean squared error of the model averaging estimators with weights gS1 = 0.1, gS2 =
0.1, gS3 = 0.1 and gS4 = 0.7 (left column), with the smooth AIC-weights (3.7) (middle column)
and the estimator based on model-selection (right column). The different rows correspond to
different designs. First row: Bayesian optimal design ξ∗D for model averaging estimation of the
AUC defined in (4.12). Middle row: uniform design ξ1 defined in (4.2). Third row: uniform
design ξ2 defined in (4.3).

the AUC yields a 15% improvement of the the uniform design ξ1 but only a 2% improvement

of the design ξ2. On the other hand, if model averaging estimates with smooth AIC-weights

or model selection weights are used, the uniform design ξ2 shows the best performance. This

observation can be explained by the fact that the design ξ∗C has not been constructed for this

purpose. Consequently, although this design performs very well in many cases, it cannot be

guaranteed that the design ξ∗C is close to the optimal design for model averaging estimation of

the AUC with smooth AIC-weights or for the estimation in a model selected by the AIC. Nev-

ertheless, model averaging with fixed weights and the corresponding Bayesian optimal design

yields the smallest mean squared error in all considered scenarios.

Next we consider a model averaging estimator with (non-uniform) weights gS1 = 0.1, gS2 = 0.1,

gS3 = 0.1, and gS4 = 0.7 for the models (4.7), (4.8), (4.9) and (4.6), respectively. The cor-

responding Bayesian optimal design for model averaging estimation of the AUC with these

weights is is given by

ξ∗D =

{
0 2.418 4.259 5.777 8

0.122 0.284 0.197 0.253 0.145

}
. (4.12)

The mean squared error of the model averaging estimators for different designs is given in the

left column of Table 4, where we use the same parameters as in the previous example. The

middle and right column show the simulated mean squared error for model averaging estimation

with smooth AIC-weights and the estimator based on model selection, respectively. We observe

a similar behaviour as described in Section 4.1: model averaging performs better than model

selection but in this situation model averaging based on smooth AIC-weights results in a slightly

smaller mean squared error than model averaging based on fixed weights (the estimator with

fixed weights yields an increase of the mean squared error of about 2%). For all three estimators
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the mean squared error from the Bayesian optimal design ξ∗D defined in (4.12) is smaller than

the ones obtained from the designs ξ1 and ξ2.

Further simulation results using other parameter combinations can be found in Table 7 (model

averaging estimator with equal weights) and Table 8 (model averaging estimator with non-

uniform weights) in the appendix and show a similar picture as described in the previous

paragraphs. For example, model averaging shows a better performance than estimation in a

model identified by the AIC, independently of the design under consideration. In most cases

the Bayesian optimal design for model averaging estimation of the AUC yields a substantial

improvement compared to the uniform designs, even when it is used for model averaging with

smooth AIC-weights or for estimation after model selection (see Section 6.2.2 for more details).

5 Conclusions

In this paper we studied the problem of constructing efficient designs for parametric regression

if model averaging is used to estimate a target under model uncertainty. We have developed

a new optimality criterion which determines a design such that the asymptotic mean squared

error of the estimator of the target (under local deviation from the assumed model) becomes

minimal by the choice of the experimental design. The results are illustrated by means of a

simulation study in the problem of estimating the effective dose and the area under the curve.

The optimal designs yield a substantial reduction of the mean squared error of the frequentist

model averaging estimate.

The optimal designs constructed for model averaging with fixed weights also improve model

averaging estimates with smooth AIC-weights and estimates in a model selected by an infor-

mation type criterion. However, it remains an open and very challenging question for future

research to determine optimal designs for estimation methods of this type. The asymptotic

distribution of these estimators is complicated and has to be simulated in general for each

design under consideration, which is computationally very demanding. A further interesting

direction of future research in this context consists in the construction and investigation of

adaptive designs, which proceed in several steps, updating the information about the models

and their parameters sequentially.
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sions and frequentist model averaging. Jahrbücher für Nationalökonomie und Statistik, 235(6):642–

662.

Wassermann, L. (2000). Bayesian model selection and model averaging. Journal of Mathematical

Psychology, 44:92–107.

Wiens, D. (2015). Robustness of design. In Dean, A., Morris, M., Stufken, J., and Bingham, D.,

editors, Handbook of Design and Analysis of Experiments. CRC press, Boca Raton.

Wiens, D. P. (2009). Robust discrimination designs. Journal of the Royal Statistical Society, Ser. B,

71(4):805–829.

Wiens, D. P. and Xu, X. (2008). Robust prediction and extrapolation designs for misspecified gen-

eralized linear regression models. Journal of Statistical Planning and Inference, 138(1):30 – 46.

International Conference on Design of Experiments (ICODOE).

Zen, M.-M. and Tsai, M.-H. (2002). Some criterion-robust optimal designs for the dual problem

of model discrimination and parameter estimation. Sankhya: The Indian Journal of Statistics,

64:322–338.
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6 Appendix

6.1 Proof of Theorem 3.1 and Theorem 3.2

Theorem 3.1 is a special case of Theorem 3.2, since the Bayesian model averaging optimality

criterion reduces to the local model averaging optimality criterion with respect to the pa-

rameter (θT0 , γ
T
0 , δ

T ) by choosing a one-point prior. Following the arguments in Pukelsheim

(2006)[Chapter 11] and assuming that integration and differentiation are interchangeable, a

Bayesian optimal design ξ∗ for model averaging estimation of the parameter µ satisfies the

inequality

−DΦmav(ξ∗)(ξx − ξ∗) = −
∫

Θ×Γ

DΦmav(ξ∗, g, δ, θ, γ)(ξx − ξ∗)π(dθ, dγ) ≤ 0 (A.1)

for all x ∈ X , where DΦmav(ξ∗, g, δ, θ0, γ0)(ξx − ξ∗) denotes the directional derivative of the

function Φmav evaluated in the optimal design ξ∗ in direction ξx − ξ∗ and ξx denotes the Dirac

measure at the point x ∈ X . Note that in the particular case of the model averaging optimality

criterion, the corresponding function Φπ
mav(ξ) is not convex and therefore the necessary condition

in (A.1) is not sufficient.

We now calculate an explicit expression of the derivative using the chain rule

DΦmav(ξ∗, g, δ, θ, γ)(ξx − ξ∗) = 2ν(ξ∗)D1(ξ∗, x, δ, θ, γ) +D2(ξ∗, x, θ, γ), (A.2)

where D1(ξ∗, x, δ, θ, γ) is the directional derivative of the bias function ν defined by (2.18) and

D2(ξ∗, x, θ, γ) is the directional derivative of the variance function τ 2 defined by (2.19).

We consider these derivatives separately starting with D1(ξ∗, x, δ, θ, γ), for which we obtain

D1(ξ∗, x, δ, θ, γ) =
r∑
j=1

gSj
cTDLSj

(ξ∗, θ, γ)(ξx − ξ∗)δ, (A.3)

where DLSj
(ξ∗, θ, γ)(ξx − ξ∗) denotes the derivative of the function LSj

defined in (2.14) and

is therefore given by

DLSj
(ξ∗, θ, γ)(ξx − ξ∗) =P T

Sj
J−1
Sj

(ξ∗, θ, γSj
)
(
PSj

J(ξx, θ, γ)

−JSj
(ξx, θ, γSj

)J−1
Sj

(ξ∗, θ, γSj
)PSj

J(ξ∗, θ, γ)
)(0p×q

Iq×q

)
.

(A.4)

Here we used that the derivative of the inverse of the information matrix, J−1
S (ξ∗), in direction

ξ∗ − ξx is of the form

DJ−1
S (ξ∗, θ, γS)(ξx − ξ∗) = J−1

S (ξ∗, θ, γS)− J−1
S (ξ∗, θ, γS)JS(ξx, θ, γS)J−1

S (ξ∗, θ, γS), (A.5)
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for an arbitrary S ⊂ {1, . . . , q}. Combining (A.3) and (A.4) follows in the representation of D1

given in (3.4).

The derivative D2(ξ∗, x, θ, γ) is of the form

D2(ξ∗, x, θ, γ) =
r∑

i,j=1

gSi
gSj

(
2DhTSi

(ξ∗)(ξx − ξ∗)J(ξ∗, θ, γ)hSj
(ξ∗)

+hTSi
(ξ∗){J(ξ∗, θ, γ) + J(ξx, θ, γ)}hSj

(ξ∗)
)
,

(A.6)

where DhS(ξ∗)(ξx − ξ∗) denotes the derivative of hS defined by (2.20) for an aribitrary subset

S ⊂ {1, . . . , q}. Using (A.5) DhS(ξ∗)(ξx − ξ∗) is given by

DhS(ξ∗)(ξx − ξ∗) = hS(ξ∗)− h̃S(ξ∗, ξx) (A.7)

where h̃S is defined by

h̃S(ξ∗, ξx) = P T
S J
−1
S (ξ∗, θ, γS)JS(ξx, θ, γS)J−1

S (ξ∗, θ, γS)cS.

Combining (A.6) and (A.7) results in the representation of D2 given in (3.5). Finally, the

necessary condition in (3.3) follows by the combination of (A.1) and (A.2).

To prove that there holds equality in (3.6) for all support points x of the design ξ∗, assume that

there exists at least one support point x0 of the design ξ∗, such that the inequality in (3.6) is

strict. Then, we have∫
X

∫
Θ×Γ

(−2ν(ξ∗, δ, θ, γ)D1(ξ∗, x, δ, θ, γ)−D2(ξ∗, x, θ, γ))π(dθ, dγ)ξ∗(dx) < 0.

On the other hand, since
∫
X J(ξx, θ, γ)ξ∗(dx) = J(ξ∗, θ, γ) and

∫
X h̃S(ξ∗, ξx)ξ

∗(dx) = hS(ξ∗), we

have ∫
X
D1(ξ∗, x, δ, θ, γ)ξ∗(dx) = 0 and

∫
X
D2(ξ∗, x, θ, γ)ξ∗(dx) = 0,

such that∫
X

∫
Θ×Γ

−2ν(ξ∗, δ, θ, γ)D1(ξ∗, x, δ, θ, γ)−D2(ξ∗, x, θ, γ)π(dθ, dγ)ξ∗(dx)

=

∫
Θ×Γ

{
−2ν(ξ∗, δ, θ, γ)

∫
X
D1(ξ∗, x, δ, θ, γ)ξ∗(dx)−

∫
X
D2(ξ∗, x, θ, γ)ξ∗(dx)

}
π(dθ, dγ) = 0,

which is a contradiction. Consequently, equality in (3.6) must hold whenever x is a support

point of the design ξ∗.
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Parameter design estimation method
(ϑ, γ) fixed weights smooth AIC model selection

ξ∗A 0.818 1.065 1.180
(1.81,0.79,0,1) ξ1 1.339 1.526 1.660

ξ2 1.207 1.549 1.791
ξ∗A 0.718 0.957 1.059

(1.81,0.79,0.1,1) ξ1 1.238 1.413 1.535
ξ2 1.045 1.406 1.695
ξ∗A 0.394 0.533 0.639

(1.81,0.79,0,2) ξ1 0.788 0.823 0.915
ξ2 0.659 0.852 0.975
ξ∗A 0.355 0.508 0.596

(1.81,0.79,0.1,2) ξ1 0.810 0.913 1.017
ξ2 0.637 0.846 0.994
ξ∗A 0.732 0.953 1.103

(1.81,1.79,0,2) ξ1 1.374 1.570 1.767
ξ2 1.119 1.437 1.660
ξ∗A 0.777 1.121 1.453

(1.81,1.79,0.1,2) ξ1 1.166 1.384 1.532
ξ2 0.985 1.222 1.415
ξ∗A 0.449 0.513 0.623

(1.81,1.79,0,3) ξ1 0.988 1.144 1.250
ξ2 0.762 0.908 1.049
ξ∗A 0.464 0.598 0.713

(1.81,1.79,0.1,3) ξ1 0.932 1.182 1.314
ξ2 0.724 0.892 1.061

Table 5: The mean squared error of the model averaging estimators of the ED0.6 with weights
gSi

= 0.25, i = 1, . . . , 4 (left column), with the smooth AIC-weights (3.7) (middle column) and
the estimator based on model-selection (right column). The different rows correspond to different
parameter combinations. Within each parameter combination the different rows correspond to
different designs. First row: Bayesian optimal design ξ∗A for model averaging estimation of the
ED0.6 defined in (4.1). Middle row: uniform design ξ1 defined in (4.2). Third row: uniform
design ξ2 defined in (4.3).

6.2 Additional simulation results

6.2.1 Estimation of the ED0.6

In this section we present further simulation results for the estimation of the ED0.6 in the

sigmoid Emax model. Data is generated from the model (4.4) where n = 150 observations

are taken according to the designs ξ∗A, ξ∗B, ξ1 and ξ2 defined in Section 4.1. Different param-

eters (ϑ, γ) are considered to demonstrate that the results in Section 4.1 are representative.

The simulated mean squared error for the model averaging estimates of the ED0.6 can be

found in Table 5 (uniform weights gSi
= 0.25, i = 1, . . . , 4) and Table 6 (non-uniform weights

gS1 = 0.1, gS2 = 0.1, gS3 = 0.3 and gS4 = 0.5). In the left and middle column we display the

results for the model averaging estimator of the ED0.6 with fixed weights and with smooth
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Parameter design estimation method
(ϑ, γ) fixed weights smooth AIC model selection

ξ∗B 0.864 0.849 1.012
(1.81,0.79,0,1) ξ1 1.504 1.498 1.605

ξ2 1.382 1.450 1.631
ξ∗B 0.914 0.937 1.112

(1.81,0.79,0.1,1) ξ1 1.493 1.497 1.613
ξ2 1.306 1.310 1.491
ξ∗B 0.540 0.536 0.600

(1.81,0.79,0,2) ξ1 0.967 0.967 1.048
ξ2 0.834 0.861 1.004
ξ∗B 0.476 0.502 0.582

(1.81,0.79,0.1,2) ξ1 0.915 0.900 1.014
ξ2 0.869 0.949 1.067
ξ∗B 0.904 0.873 1.038

(1.81,1.79,0,2) ξ1 1.292 1.329 1.506
ξ2 1.362 1.338 1.611
ξ∗B 0.875 0.931 1.091

(1.81,1.79,0.1,2) ξ1 1.382 1.410 1.573
ξ2 1.350 1.368 1.599
ξ∗B 0.516 0.532 0.619

(1.81,1.79,0,3) ξ1 1.129 1.144 1.251
ξ2 0.836 0.813 0.927
ξ∗B 0.578 0.560 0.615

(1.81,1.79,0.1,3) ξ1 1.130 1.171 1.304
ξ2 0.800 0.851 1.023

Table 6: The mean squared error of the model averaging estimators of the ED0.6 with weights
gS1 = 0.1, gS2 = 0.1, gS3 = 0.3 and gS4 = 0.5 (left column), with the smooth AIC-weights
(3.7) (middle column) and the estimator based on model-selection (right column). The different
rows correspond to different parameter combinations. Within each parameter combination the
different rows correspond to different designs. First row: Bayesian optimal design ξ∗B for model
averaging estimation of the ED0.6 defined in (4.5). Middle row: uniform design ξ1 defined in
(4.2). Third row: uniform design ξ2 defined in (4.3).

AIC-weights, respectively, while the right column shows the results for estimation of the ED0.6

in the model selected via AIC.

We observe from Table 5 that model averaging estimation always yields a smaller mean squared

error than estimation after model selection via AIC. Model averaging estimation with fixed

weights results in a reduction of the mean squared error by 14%-47% whereas smooth AIC-

weights reduce the mean squared error by 7%-23%. Moreover, model averaging with fixed

weights shows a better performance than model averaging with data driven smooth AIC-

weights. Table 6 shows similar results for model averaging estimation with non-uniform weights,

but the difference between model averaging estimation with fixed weights and data driven

weights is less substantial. Moreover, there are also a few parameter combinations where using

non-uniform fixed weights yields a slight increase of the mean squared error (about 1 − 3%)
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Parameter design estimation method
(ϑ, γ) fixed weights smooth AIC model selection

ξ∗ 1.559 1.741 1.871
(-1.73,4,0,1) ξ1 1.886 1.963 2.030

ξ2 1.880 1.959 2.042
ξ∗ 1.503 1.658 1.802

(-1.73,4,0.015,1) ξ1 2.060 2.140 2.222
ξ2 1.831 1.917 1.981
ξ∗ 1.630 1.825 1.986

(-1.73,4,0,0.833) ξ1 2.042 2.139 2.230
ξ2 1.681 1.811 1.883
ξ∗ 1.659 1.880 2.074

(-1.73,4,0.015,0.833) ξ1 1.961 2.080 2.196
ξ2 1.687 1.763 1.838
ξ∗ 1.442 1.637 1.762

(-1.73,5,0,0.833) ξ1 1.671 1.815 1.925
ξ2 1.659 1.846 1.996
ξ∗ 1.517 1.773 1.953

(-1.73,5,0.015,0.833) ξ1 1.690 1.820 1.924
ξ2 1.629 1.764 1.884
ξ∗ 1.389 1.688 1.873

(-1.73,5,0,0.667) ξ1 1.672 1.823 1.955
ξ2 1.511 1.691 1.807
ξ∗ 1.421 1.687 1.839

(-1.73,5,0.015,0.667) ξ1 1.649 1.870 2.040
ξ2 1.626 1.792 1.907

Table 7: The mean squared error of the model averaging estimators of the AUC with weights
gSi

= 0.25, i = 1, . . . , 4 (left column), with the smooth AIC-weights (3.7) (middle column) and
the estimator based on model-selection (right column). The different rows correspond to different
parameter combinations. Within each parameter combination the different rows correspond to
different designs. First row: Bayesian optimal design ξ∗C for model averaging estimation of the
AUC defined in (4.10). Middle row: uniform design ξ1 defined in (4.2). Third row: uniform
design ξ2 defined in (4.3).

compared to smooth AIC-weights.

Next we compare the optimal designs ξ∗A and ξ∗B with the uniform designs ξ1 and ξ2 which

yield a reduction of the mean squared error of the model averaging estimator of the ED0.6 with

fixed weights by 21%-56% and by 28%-54%, respectively. For model averaging estimation with

smooth AIC-weights the optimal designs ξ∗A and ξ∗B reduce the mean squared error by 8%-55%

and 28%-53%, respectively. Finally, for estimation of the ED0.6 in the model identified by the

AIC the optimal designs reduce the mean squared error in almost all considered cases.
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Parameter design estimation method
(ϑ, γ) fixed weights smooth AIC model selection

ξ∗ 1.913 1.851 1.956
(-1.73,4,0,1) ξ1 2.159 2.128 2.213

ξ2 1.942 1.918 1.989
ξ∗ 1.890 1.843 1.951

(-1.73,4,0.015,1) ξ1 2.042 2.018 2.106
ξ2 1.935 1.912 1.959
ξ∗ 1.662 1.604 1.702

(-1.73,4,0,0.833) ξ1 1.964 1.934 2.025
ξ2 1.832 1.807 1.875
ξ∗ 1.764 1.723 1.835

(-1.73,4,0.015,0.833) ξ1 2.059 2.041 2.129
ξ2 1.841 1.801 1.883
ξ∗ 1.863 1.771 1.886

(-1.73,5,0,0.833) ξ1 1.881 1.818 1.930
ξ2 1.842 1.813 1.942
ξ∗ 1.689 1.617 1.761

(-1.73,5,0.015,0.833) ξ1 2.006 1.944 2.083
ξ2 1.700 1.670 1.815
ξ∗ 1.671 1.590 1.716

(-1.73,5,0,0.667) ξ1 1.833 1.769 1.925
ξ2 1.818 1.768 1.920
ξ∗ 1.745 1.665 1.816

(-1.73,5,0.015,0.667) ξ1 1.896 1.824 1.957
ξ2 1.649 1.626 1.779

Table 8: The mean squared error of the model averaging estimators of the AUC with weights
gS1 = 0.1, gS2 = 0.1, gS3 = 0.1 and gS4 = 0.7 (left column), with the smooth AIC-weights
(3.7) (middle column) and the estimator based on model-selection (right column). The different
rows correspond to different parameter combinations. Within each parameter combination the
different rows correspond to different designs. First row: Bayesian optimal design ξ∗D for model
averaging estimation of the AUC defined in (4.12). Middle row: uniform design ξ1 defined in
(4.2). Third row: uniform design ξ2 defined in (4.3).

6.2.2 Estimation of the AUC

In this section we present further simulation results for model averaging estimation of the AUC

in the logistic model. We generate data from the model (4.11) where n = 150 observations

are taken according to the designs ξ1 and ξ2, ξ∗C , ξ∗D defined in Section 4.2. To validate the

findings in Section 4.2 for other choices of the parameter we consider further scenarios for the

parameter (ϑ, γ) and simulate the mean squared error of the model averaging estimators of

the AUC. The results can be found in Table 7 (uniform weights gSi
= 0.25, i = 1, . . . , 4) and

Table 8 (non-uniform weights gS1 = 0.1, gS2 = 0.1, gS3 = 0.1 and gS4 = 0.7). In the left column

of these tables we display the results of the model averaging estimator of the AUC with fixed

weights, while the middle and right column show the mean squared error of the model averaging
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estimator with smooth AIC-weights and the estimator based on model selection, respectively.

As in Section 4.2 we observe that the mean squared error of model averaging estimators is

always smaller than the mean squared error of estimators after model selection via AIC (im-

provement: 7%-26% with uniform weights, 1%-7% with non-uniform weights and 2%-10% with

smooth AIC-weights). Model averaging estimation of the AUC with uniform weights yields

a reduction of the mean squared error by 4%-18% (depending on the design and parameters)

compared to model averaging estimation with smooth AIC-weights [see Table 7]. On the other

hand non-uniform weights yield a slight increase of the mean squared error [see Table 8].

We observe from Table 7 that the Bayesian optimal designs improve the uniform designs for

model averaging estimation of the AUC with uniform weights in all scenarios under consider-

ation (improvement: 2%-27%). For the estimator with non-uniform weights the improvement

varies between 1%-16%, although there are a few parameter combinations with no improvement

[see Table 8]. For model averaging with data driven weights the optimal design ξ∗C (constructed

for fixed weights) improves the uniform design ξ2 in roughly half of the scenarios under consid-

eration and the the Bayesian optimal design ξ∗D determined for non-uniform weights performs

better than ξ1 and ξ2 in most cases.
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