
SFB 
823 

Robust discrimination 
between long-range 
dependence and a change  
in mean 

D
iscussion P

aper 

 
Carina Gerstenberger  
 
 

 
Nr. 10/2018 

 
 
 
 
 
 
 
 



 



Robust Discrimination between Long-Range
Dependence and a Change in Mean

Carina Gerstenberger∗

In this paper we introduce a robust to outliers Wilcoxon change-point testing procedure,
for distinguishing between short-range dependent time series with a change in mean at un-
known time and stationary long-range dependent time series. We establish the asymptotic
distribution of the test statistic under the null hypothesis for L1 near epoch dependent
processes and show its consistency under the alternative. The Wilcoxon-type testing pro-
cedure similarly as the CUSUM-type testing procedure of Berkes, Horváth, Kokoszka and
Shao (2006), requires estimation of the location of a possible change-point, and then using
pre- and post-break subsamples to discriminate between short and long-range dependence.
A simulation study examines the empirical size and power of the Wilcoxon-type testing
procedure in standard cases and with disturbances by outliers. It shows that in standard
cases the Wilcoxon-type testing procedure behaves equally well as the CUSUM-type testing
procedure but outperforms it in presence of outliers.

KEYWORDS: Wilcoxon change-point test statistic; change-point; near epoch depen-
dence; long-range dependence

1 Introduction

Since the pioneering work of Hurst (1951), Mandelbrot and Van Ness (1968) and Man-
delbrot and Wallis (1968), the phenomenon of long-range dependence or Hust effect
has been observed in many data sets, e.g. in hydrology, geophysics and economics. A
lively debate also rages over the observed Hurst effect is due to long-range dependence
or nonstationarity. Bhattacharya et al. (1983) showed that the Hurst effect detected
by R/S statistics can be explained not only by long-range dependence, but by presence
of a deterministic trend in short-range dependent data. Giraitis et al. (2001) showed
that some modified R/S statistics reject the hypothesis of short-range dependence for
long-range dependence but also for short-range dependent data in presence of a trend
or change-points. The phenomenon of spurious long-range dependence has also been
discussed in many other papers, see e.g. Granger and Hyung (2004).
A first attempt for distinguishing between long-range dependence and short-range de-
pendence with a monotonic trend was made by Künsch (1986), who showed that the
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periodogram in these two cases behaves differently. A test allowing to distinguish be-
tween a stationary long-range dependent process and short-range dependent process with
a change in mean was introduced by Berkes et al. (2006) and is based on the CUSUM
statistic

Cm,n(k) =
k∑

i=m

Xi −
k −m+ 1

n

n∑
i=1

Xi, m ≤ k ≤ n. (1)

It is well known that the CUSUM statistic is sensitive to outliers since it sums up the
observations. In this paper we introduce a new robust to outliers testing procedure,
which is based on the Wilcoxon change-point test statistic

Wm,n(k) =

k∑
i=m

n∑
j=k+1

(1{Xi≤Xj} − 1/2), m ≤ k ≤ n. (2)

Dehling et al. (2013b, 2015) used this test statistic for testing for changes in the mean
of long-range dependent and short-range dependent processes respectively. In both pa-
pers the simulation studies point out that the Wilcoxon test statistic (2) is more robust
to outliers than the CUSUM statistic (1). Recently, Gerstenberger (2018) showed that
Wilcoxon-type change-point location estimator for a change in mean of short-range de-
pendent data based on test statistic (2) is also robust against outliers.
The new Wilcoxon-type testing procedure suggested in this paper is based on the idea
of Berkes et al. (2006). Firstly, given a sample X1, . . . , Xn, one estimates the location
k̂ of a possible change in mean. Then the test statistic is defined as the maximum
of the Wilcoxon change-point statistic (2) applied to the subsamples X1, . . . , Xk̂ and
Xk̂+1, . . . , Xn.

Wilcoxon-type testing procedure

Assuming that sample X1, . . . , Xn is given, we want to test the hypothesis

H0: Xi = Yi + µi, i = 1, . . . , n is generated by a stationary zero mean short-range
dependent process (Yj) and has a change in mean µ1 = . . . = µk∗ 6= µk∗+1 = . . . = µn at
unknown time k∗,

against the alternative

H1: X1, . . . , Xn is a sample from a stationary long-range dependent process.

To construct the test statistic, first, we estimate the location k∗ of a change-point by a
Wilcoxon-type change-point location estimator

k̂ = min
{
k : max

1≤l<n

∣∣W1,n(l)
∣∣ =

∣∣W1,n(k)
∣∣}, (3)

which is defined as the smallest k for which |W1,n(k)| attains its maximum.
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Next we divide the sample X1, . . . , Xn into subsamples X1, . . . , Xk̂ and Xk̂+1, . . . , Xn,
and set

T (X1, . . . , Xn) = n−3/2 max
1≤k≤n

∣∣W1,n(k)
∣∣.

Then we compute T (X1, . . . , Xk̂) and T (Xk̂+1, . . . , Xn), and denote

Tn,1 := T (X1, . . . , Xk̂) = k̂−3/2 max
1≤k≤k̂

∣∣W1,k̂(k)
∣∣, (4)

Tn,2 := T (Xk̂+1, . . . , Xn) = (n− k̂)−3/2 max
k̂<k≤n

∣∣Wk̂+1,n(k)
∣∣. (5)

Finally, we define the test statistic

Mn = max{Tn,1, Tn,2}. (6)

We show that T (X1, . . . , Xn) allows to discriminate whether the sample has been gener-
ated by a short or long-range dependent stationary process. Hence, if we split the sample
at time k̂, which is close to the true change-point k∗, since k̂/k∗ →p 1 asymptotically we
can assume that X1, . . . , Xk̂ and Xk̂+1, . . . , Xn are samples from a stationary sequence
with a constant mean, see Lemma 4.1 in Section 4. Subsequently, Mn can be used to
test if the samples X1, . . . , Xk̂ and Xk̂+1, . . . , Xn have been generated by a short-range
or long-range dependent stationary process.

The outline of the paper is as follows. Section 2 specifies assumptions allowing to es-
tablish asymptotic distribution of Mn under H0 and consistency under H1. Section 3
compares finite sample performance of the Wilcoxon-type and the CUSUM-type testing
procedure. All proofs are given in Section 4.

2 Definitions, assumptions and main results

In this section we present main assumptions, definitions and main results.
Throughout the paper, C denotes a generic non-negative constant, which may vary from
time to time. The notation an ∼ bn means that sequences an and bn of real numbers

have property an/bn → c, as n → ∞, where c 6= 0.
d−→ and →p stand for convergence

in distribution and probability, respectively. By
d
= we denote equality in distribution.

‖g‖∞ = supx |g(x)| denotes the supremum norm of a function g.

Null hypothesis: short-range dependence with a change in mean

Under the null hypothesis we assume the random variables X1, . . . , Xn follow the change-
point model

Xi =

{
Yi + µ , 1 ≤ i ≤ k∗

Yi + µ+ ∆n , k∗ < i ≤ n,
(7)

where k∗ denotes the unknown location of the change-point in the mean and (Yj) is a
zero-mean stationary short-range dependent process.

3



To cover a wide range of processes, we assume that the underlying process (Yj) can be
written as Yj = f(Zj , Zj−1, Zj−2, . . .), j ∈ Z, where f : RZ → R is a measurable function,
and (Zj) is an absolutely regular (weakly dependent) process.

Definition 2.1. A stationary process (Zj) is called absolutely regular (or β-mixing) if

βk = sup
n≥1

E sup
A∈Gn1

∣∣P (A|G∞n+k

)
− P (A)

∣∣→ 0, (8)

as k →∞, where Gmk is the σ-field generated by random variables Zk, . . . , Zm, k < m.

Absolute regularity or β-mixing implies the weaker property of α-mixing, see e.g. Bradley
(2007).
In addition, we will assume that (Yj) satisfies near epoch dependence condition, i.e. Yj
depends on the near past of (Zj).

Definition 2.2. A stationary process (Yj) is L1 near epoch dependent (L1 NED) on
some stationary process (Zj) with approximation constants ak, k ≥ 0, if

E |Y1 − E(Y1|Gk−k)| ≤ ak, k = 0, 1, 2, . . . (9)

where Gk−k is the σ-field generated by random variables Z−k, . . . , Zk and ak → 0 as
k →∞.

Notice that a linear process or AR process might not be absolutely regular, but it would
be L1 near epoch dependent; see Example 2.1 in Gerstenberger (2018) for linear processes
and Hansen (1991) for GARCH(1,1) processes. More examples of L1 NED processes can
be found in Borovkova et al. (2001), who also discuss more general Lr NED processes,
r ≥ 1.

We need further additional assumptions on the distribution function F of Y1, the mixing
coefficients βk in (8) and ak in (9).

Assumption 1. The process (Yj) in (7) is L1 NED on some absolutely regular process
(Zj) with mixing coefficients βk and approximation constants ak such that

∞∑
k=1

k2(βk +
√
ak) <∞. (10)

Moreover, Y1 has a continuous distribution function F with bounded second derivative,
and variables Y1 − Yk, k ≥ 1 satisfy

P(x ≤ Y1 − Yk ≤ y) ≤ C|y − x|, (11)

for all x ≤ y, where C does not depend on k and x, y.

We suppose that both, the unknown change-point k∗ and the magnitude of change ∆n

in (7), depend on the sample size n.
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Assumption 2. a) The change-point k∗ = [nθ], where 0 < θ < 1 is fixed, is propor-
tional to the sample size n.

b) The magnitude of change ∆n in (7) depends on n, and is such that

∆n → 0, n∆2
n →∞, n→∞.

An important step of our testing procedure is the estimation of the location k∗ of the
change-point in mean. Gerstenberger (2018) showed that under Assumptions 1 and 2
the Wilcoxon-type change-point location estimator k̂ in (3) is consistent,

∆2
n

∣∣k̂ − k∗∣∣ = OP (1), as n→∞. (12)

Alternative: long-range dependence

Under alternative H1, the sample X1, . . . , Xn is generated by a stationary long-range
dependent process:

Xi = G(ξi) + µ, i = 1, . . . , n, (13)

where µ is the unknown mean and (ξj) is a stationary long memory Gaussian process
with E(ξ1) = 0, Var(ξ1) = 1 and (non-summable) auto-covariances γk = Cov(ξ1, ξ1+k) ∼
k2d−1c0, where c0 > 0 and d ∈ (0, 1/2). Furthermore, we assume that G : R → R is a
measurable, strictly monotone function such that E(G(ξ1)) = 0.

Main results

The following theorem derives the limit distribution of the test procedure under the null
hypothesis H0. Below, B(t) = W (t)−tW (1) denotes a standard Brownian bridge, where
W (t) is a standard Brownian motion.

Theorem 2.1. Let (Xj) follow the model in (7). Then, under Assumptions 1 and 2,

Mn = max{Tn,1, Tn,2}
d−→ σmax

{
sup

0≤t≤1

∣∣B(1) (t)
∣∣, sup

0≤t≤1

∣∣B(2) (t)
∣∣} =: σZ (14)

where B(1) and B(2) are two independent Brownian bridges,

σ2 =

∞∑
k=−∞

Cov (F (Y0), F (Yk)) , (15)

and F denotes the distribution function of Y1.

Since the limit distribution of Mn depends on the long-run variance σ2, to calculate the
critical values for the test, we need to estimate the long-run variance; see Section 3.

We will compare performance of our test with the CUSUM-type test by Berkes et al.
(2006) defined as

M̃C,n = max{T̃C(X1, . . . , Xk̃C
), T̃C(Xk̃C+1, . . . , Xn)}, (16)
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where
T̃C(X1, . . . , Xn) = (ŝn

√
n)−1 max

1≤k≤n

∣∣C1,n(k)
∣∣,

is based on the CUSUM statistic C1,n(k) in (1). k̃C = min
{
k : max1≤l≤n

∣∣C1,n(l)
∣∣ =∣∣C1,n(k)

∣∣} is a CUSUM-type estimator of k∗ and ŝ2
n is a long-run variance estimator of

σ2
c =

∑∞
k=−∞Cov (Y0, Yk) given in (21). Berkes et al. (2006) showed that under their

assumptions under the null hypothesis, M̃C,n
d−→ Z.

The next theorem establishes consistency of the test Mn, i.e. that the test will detect
long-range dependence with probability tending to 1.

Theorem 2.2. Let (Xj) be as in (13). Then, as n→∞,

Mn →p ∞.

Proofs of Theorem 2.1 and 2.2 are given in Section 4.

3 Simulation Study

In this simulation study we compare the finite sample performance (size and power) of
the Wilcoxon-type testing procedure Mn in (6) with the CUSUM-type testing procedure
M̃C,n of Berkes et al. (2006), given in (16).

Simulation set up
To calculate the empirical size we generate the sample of random variables X1, . . . , Xn

using the change-point model

Xi =

{
Yi + µ , 1 ≤ i ≤ k∗

Yi + µ+ ∆ , k∗ < i ≤ n,
(17)

where Yi = ρYi−1 +εi is an AR(1) process with ρ = 0.4 and standard normal innovations
εi. We set k∗ = [nθ], θ = 0.25, 0.5, 0.75 and ∆ = 0.5, 1, 2.
To evaluate the empirical power of the test we generate a sample X1, . . . , Xn of fractional
Gaussian noise (fGn)

Xi = WH(i+ 1)−WH(i), (18)

where WH(t), H = d + 1/2 ∈ (1/2, 1) is a fractional Brownian motion, see e.g. Man-
delbrot and Van Ness (1968). The sequence (Xj) is a long-range dependent process:
Cov(X1, X1+k) ∼ k2d−1c0 with long-range dependence parameter d ∈ (0, 1/2). We con-
sider d = 0.1, 0.2, 0.3, 0.4.
To analyse the robustness of Wilcoxon and CUSUM testing procedures to outliers, we
replace observations X[0.2n], X[0.4n], X[0.6n], X[0.8n] in the sample (X1, . . . , Xn) (under the
null hypothesis or alternative) by outliers 50X[0.2n], 50X[0.4n], 50X[0.6n] and 50X[0.8n].
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We consider sample sizes n = 200, 500, 1000, 2000, 5000. All simulation results are based
on 10, 000 replications.

Critical values

To analyse the empirical size and power, we need to know the critical values for the tests
Mn and M̃C,n.
By Theorem 2.1, under the null hypothesis,

Mn = max
{
Tn,1, Tn,2

} d−→ σZ.

Hence, if σ̂2(X1, . . . , Xk) is a consistent estimator for the long-run variance σ2 based on
the sample X1, . . . , Xk, then

M̂n = max
{ Tn,1
σ̂(X1, . . . , Xk̂)

,
Tn,2

σ̂(Xk̂+1, . . . , Xn)

}
d−→ Z.

The same asymptotics holds for the CUSUM test: M̃C,n
d−→ Z, see Corollary 2.1 of Berkes

et al. (2006). Thus, the critical value cα for a given significance level α is obtained by
solving

P
(
Z > cα

)
= α. (19)

Since B(1) and B(2) are independent Brownian bridges, (19) reduces to

P
(

sup
0≤t≤1

∣∣B(1)(t)
∣∣ ≤ cα) = (1− α)1/2, (20)

where sup0≤t≤1

∣∣B(1)(t)
∣∣ has the well-known Kolmogorov-Smirnov distribution, and its

quantiles can be found in statistical tables. For α = 5% (20) implies c5% = 1.478.

Estimation of long-run variance

The selection of a long-run variance estimate σ̂ in M̂n has a strong impact on the size
and power properties of the tests in finite samples.

To estimate the long-run variance σ2
c =

∑∞
k=−∞Cov (Y0, Yk) in M̃C,n in (16), Berkes et

al. (2006) suggested to use the Bartlett estimator

ŝ2
n =

1

n

n∑
i=1

(
Xi − X̄n

)2
+ 2

q(n)∑
j=1

(
1− j

q + 1

) 1

n

n−j∑
i=1

(
Xi − X̄n

) (
Xi+j − X̄n

)
, (21)

where X̄n = n−1
∑n

i=1Xi, with the bandwidth q (n) = C log10 (n). Table 1 reports the
empirical size (for θ = 0.5, ∆ = 1) and power (for d = 0.4) in % at significance level
5% of M̃C,n test, with ŝ2

n as in (21) computed with bandwidth 15 log10 (n). It shows
that M̃C,n with Bartlett estimator ŝ2

n is too conservative and has low power against the
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n = 500 1000 2000 5000

emp. size 0.05 0.87 2.48 3.79

power 0.30 7.62 27.44 60.51

Table 1: Empirical size and power of M̃C,n test using the Bartlett estimator.

alternative, which has also been pointed out by Baek and Pipiras (2012) and Preuß et
al. (2017).
In our simulation study to improve the performance of M̃C,n test we proceed as follows.
To estimate σ2

C , instead of ŝ2
n, we use the non-overlapping subsampling estimator of σ2

C

by Carlstein (1986), with block length ln,

σ̂2
C =

1

[n/ln]

[n/ln]∑
i=1

1

ln

( iln∑
j=(i−1)ln+1

Xj −
ln
n

n∑
j=1

Xj

)2

, (22)

which yields better size and power balance for M̃C,n, as seen from Tables 2 and 4. This
estimator has also been used by Dehling et al. (2015) for a CUSUM-type test for changes
in the mean of a short-range dependent process.
In turn, for our test M̂n to estimate σ we shall use the Carlstein type estimator for
long-run variance proposed by Dehling et al. (2013a),

σ̂W =
1

[n/ln]

√
π

2

[n/ln]∑
i=1

1√
ln

∣∣∣∣ iln∑
j=(i−1)ln+1

Fn(Xj)−
ln
n

n∑
j=1

Fn(Xj)

∣∣∣∣, (23)

where Fn (x) = n−1
∑n

i=1 1{Xi≤x}. Note that σ̂W estimates σ, not σ2.
The Carlstein estimator σ̂2

C as well as the estimator σ̂W (23) are subsampling type
estimators and require to choose a suitable block length ln. The choice of ln is widely
discussed in the literature. For AR(1)-processes Carlstein (1986) suggests to use

ln = max
{⌈
n1/3(2ρ/(1− ρ2))2/3

⌉
, 1
}
, (24)

where ρ denotes the autocorrelation coefficient at lag 1. In our simulation study we use
this block length with ρ estimated by the sample autocorrelation coefficient ρ̂ since it
yields good results for the empirical size and power.
In the presence of outliers, we need to robustify further the choice of the block length.
Since the sample autocorrelation is highly sensitive to outliers, we use in (24) a robust
estimator of ρ proposed by Ma and Genton (2000),

ρ̂Q =
Q2
n−1(u+ v)−Q2

n−1(u− v)

Q2
n−1(u+ v) +Q2

n−1(u− v)
,

where Qn = 2.21914{|Xi−Xj |; i < j}(k), which is the k =
(
n
2

)
/4-th order statistic of the(

n
2

)
interpoint distances, is a robust scale estimator introduced by Rousseeuw and Croux
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Figure 1: Histogram of ρ̂(1) and ρ̂Q(1) based on 10,000 replications. Xi is generated by
an AR(1) process with outliers, εi ∼ N(0, 1), ρ = 0.4 and n = 500.

(1993), u = (X1, . . . , Xn−1) and v = (X2, . . . , Xn). Figure 1 contains the histogram of
estimates ρ̂ and ρ̂Q based on 10,000 replications of sample X1, . . . , X500 with outliers,
generated by an AR(1) model with ρ = 0.4 and i.i.d. standard normal innovations. For
a further discussion on robust estimation of autocorrelation function see Dürre et al.
(2015).

Simulation results

Table 2 reports the empirical size at the 5% significance level based on 10,000 replications
of M̃C,n and M̂n tests, for the model (17) without outliers. The empirical size of M̂n and
M̃C,n slightly exceed the 5% level for large sample size n for θ = 0.5 and ∆ = 0.5, 1, 2.
The size of the tests is more distorted if the change-point is located close to the beginning
or end of the sample, i.e. for θ = 0.25, 0.75. We also consider the situation of no change,
i.e. ∆ = 0, for which the empirical size of both testing procedures is close to the nominal
size. Empirical sizes of M̂n and M̃C,n are comparable in the absence of outliers.

Table 3 reports the empirical size of M̂n and M̃C,n in presence of outliers. While test

M̂n is robust to the outliers, the test M̃C,n becomes too conservative.

Tables 4 and 5 report the empirical power of test M̃C,n and M̂n, for Xi in (18) without
outliers and with outliers, respectively. Table 4 shows that the power of both tests
increases with increasing sample size and dependence parameter d (except power of M̂n

for n = 200, d = 0.4). It shows that in absence of outliers M̂n and M̃C,n have similar
power properties.
Table 5 shows that the empirical size of M̂n is practically not affected by the outliers,
whereas M̃C,n suffers a loss of power.
Since the nominator of the CUSUM-type test is based on partial sums, outliers in the
data have strong impact on the test statistic M̃C,n and hence, one should expect that
it over rejects the true hypothesis H0. Since presence of outliers increases the long-
run variance estimate in (22) in the denominator of the test, this leads to additional
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θ = 0.25 0.5 0.75 0.5

M̃C,n M̂n M̃C,n M̂n M̃C,n M̂n M̃C,n M̂n

n= ∆ = 1 ∆ = 0

200 3.79 3.52 3.90 3.41 4.46 3.92 3.48 2.78
500 8.35 7.71 5.12 4.28 8.47 8.10 4.36 3.89
1000 9.83 9.44 5.11 4.68 10.10 9.49 4.61 4.11
2000 9.45 9.37 5.96 5.23 9.87 9.76 5.10 4.64
5000 8.28 7.77 6.26 5.59 8.51 8.01 5.18 4.91

n= ∆ = 2 ∆ = 0.5

200 5.08 4.68 4.18 3.69 5.85 5.12 3.63 3.03
500 7.32 8.03 5.49 4.67 7.07 7.43 4.54 4.10
1000 7.67 8.05 5.38 4.79 7.15 7.38 4.82 4.46
2000 7.11 7.16 6.03 5.31 6.88 7.15 5.57 4.90
5000 6.30 6.12 6.15 5.58 6.45 6.29 6.01 5.46

Table 2: Empirical size of M̃C,n and M̂n tests at the 5% significance level, 10,000 repli-
cations. Xi follows the model (17) without outliers.

θ = 0.5

M̃C,n M̂n M̃C,n M̂n

n= ∆ = 1 ∆ = 2

200 1.21 3.21 0.60 3.61
500 0.92 4.30 0.56 4.64
1000 0.86 4.72 0.62 4.77
2000 1.35 5.31 0.94 5.26
5000 2.67 5.71 1.95 5.58

Table 3: Empirical size of M̃C,n and M̂n tests at the 5% significance level, 10,000 repli-
cations. Xi follows the model (17) with outliers.

d = 0.1 0.2 0.3 0.4

n= M̃C,n M̂n M̃C,n M̂n M̃C,n M̂n M̃C,n M̂n

200 7.68 5.90 12.28 9.99 14.11 11.50 12.53 9.35

500 14.12 11.53 25.31 22.84 31.52 28.33 32.03 28.42

1000 20.22 16.95 35.37 32.64 46.41 43.11 50.22 46.06

2000 26.67 23.90 49.17 45.95 61.92 58.68 67.50 63.52

5000 35.05 32.68 64.44 61.27 79.67 77.48 85.12 82.63

Table 4: Empirical power of M̃C,n and M̂n tests at the 5% significance level, 10,000
replications. Xi follows the model (18) without outliers.
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d = 0.1 0.2 0.3 0.4

n= M̃C,n M̂n M̃C,n M̂n M̃C,n M̂n M̃C,n M̂n

200 1.63 6.06 2.53 10.06 2.65 11.88 3.62 9.69

500 2.76 11.71 5.02 22.95 7.26 28.60 8.69 28.37

1000 4.10 17.13 10.40 32.60 16.91 43.11 21.96 46.18

2000 8.46 23.88 23.07 45.90 37.05 58.71 47.00 63.68

5000 18.76 32.66 46.78 61.55 68.99 77.54 78.65 82.68

Table 5: Empirical power of M̃C,n and M̂n tests at the 5% significance level, 10,000
replications. Xi follows the model (18) with outliers.

reduction of size and a loss in power.

In general, we conclude that Wilcoxon test M̂n allows discrimination between long-range
dependence and short-range dependence with a change in mean that is robust to outliers.
In absence of outliers it performs equally well as CUSUM test M̃C,n, but outperforms it
in presence of outliers.

4 Proofs

This section contains the proofs of Theorem 2.1, Theorem 2.2 and auxiliary lemmas.

4.1 Proof of Theorem 2.1

Suppose that X1, . . . , Xn follow the model in (7) and Assumptions 1 and 2 are satisfied.
Throughout the proofs without loss of generality, we assume µ = 0 and ∆n > 0.

Proof of Theorem 2.1. We divide the proof into two steps, as in the proof of Theorem
2.1 in Berkes et al. (2006).
First, in Lemma 4.1 below we show that with k̂ as in (3),

Tn(X1, . . . , Xk̂) = Tn(Y1, . . . , Yk̂) + oP (1)

and
Tn(Xk̂+1, . . . , Xn) = Tn(Yk̂+1, . . . , Yn) + oP (1).

Subsequently, in Lemma 4.2 below we prove that(
Tn(Y1, . . . , Yk̂), Tn(Yk̂+1, . . . , Yn)

)
d−→ σ(Z(1), Z(2)),

where Z(i) = sup0≤t≤1 |B(i)(t)|, i = 1, 2. Then, the claim (14) of Theorem 2.1 follows by
the continuous mapping theorem.
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Before proceeding to Lemma 4.1, similarly to the notation Wm,n(k) in (2), we define

Um,n(k) =
k∑

i=m

n∑
j=k+1

(1{Yi≤Yj} − 1/2), m ≤ k ≤ n. (25)

Lemma 4.1. Let X1, . . . , Xn follow the model in (7), and Assumptions 1 and 2 be
satisfied. Let k̂ be defined as in (3). Then,

n−3/2 max
1≤k≤k̂

∣∣W1,k̂(k)
∣∣ = n−3/2 max

1≤k≤k̂

∣∣U1,k̂(k)
∣∣+ oP (1) (26)

n−3/2 max
k̂<k≤n

∣∣Wk̂+1,n(k)
∣∣ = n−3/2 max

k̂<k≤n

∣∣Uk̂+1,n(k)
∣∣+ oP (1) . (27)

Proof. We have to distinguish between two cases, k̂ ≤ k∗ and k̂ > k∗, where k∗ = [nθ].
If k̂ ≤ k∗, then by (7), Xi = Yi, i = 1, . . . , k̂, and hence, W1,k̂(k) = U1,k̂(k), k = 1, . . . , k̂.

In turn, Xi = Yi for i = k̂ + 1, . . . , k∗, and Xi = Yi + ∆n for i = k∗ + 1, . . . , n. Since
1{Yi+∆n≤Yj+∆n} = 1{Yi≤Yj}, Wk̂+1,n(k) can be decomposed into two terms,

Wk̂+1,n(k) =

{
Uk̂+1,n(k) +

∑k
i=k̂+1

∑n
j=k∗+1 1{Yj<Yi≤Yj+∆n}, k̂ < k ≤ k∗

Uk̂+1,n(k) +
∑k∗

i=k̂+1

∑n
j=k+1 1{Yj<Yi≤Yj+∆n}, k∗ < k ≤ n.

If k̂ > k∗, similar argument yields, Wk̂+1,n(k) = Uk̂+1,n(k), for k = k̂ + 1, . . . , n and

W1,k̂(k) =

{
U1,k̂(k) +

∑k
i=1

∑k̂
j=k∗+1 1{Yj<Yi≤Yj+∆n}, 1 ≤ k ≤ k∗

U1,k̂(k) +
∑k∗

i=1

∑k̂
j=k+1 1{Yj<Yi≤Yj+∆n}, k∗ < k ≤ k̂.

(28)

Proof of (26). For k̂ ≤ k∗, equation (26) holds trivially, since W1,k̂(k) = U1,k̂(k), k =

1, . . . , k̂.
For k̂ > k∗, equation (28) yields,

∣∣∣W1,k̂(k)− U1,k̂(k)
∣∣∣ ≤ k∗∑

i=1

k̂∑
j=k∗+1

1{Yj<Yi≤Yj+∆n} =: I1,k̂(k
∗),

for all 1 ≤ k ≤ k̂. Hence, using Lemma 4.3 i),∣∣∣n−3/2 max
1≤k≤k̂

∣∣W1,k̂(k)
∣∣− n−3/2 max

1≤k≤k̂

∣∣U1,k̂(k)
∣∣∣∣∣ ≤ n−3/2I1,k̂(k

∗).

Thus, property (26) holds if n−3/2I1,k̂(k
∗) = oP (1).

By Lemma 4.5 below, n−3/2I1,k̂(k
∗) = n−3/2k∗(k̂ − k∗)Θ∆n + oP (1), where Θ∆n =

E
(
1{Y ′2<Y ′1≤Y ′2+∆n}

)
and Y ′1 and Y ′2 are independent copies of Y1. The distribution func-

tion F of Y1 has bounded second derivative. Hence, as n→∞,

Θ∆n = E 1{Y ′2<Y ′1≤Y ′2+∆n} = P
(
Y ′2 < Y ′1 ≤ Y ′2 + ∆n

)
=

∫
R

(F (y + ∆n)− F (y)) dF (y) = ∆n

(∫
R
f2 (y) dy + o(1)

)
. (29)
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Furthermore, by (12), ∆2
n|k̂ − k∗| = OP (1) and by Assumption 2, k∗/n ∼ θ and n∆2

n →
∞, as n→∞. This yields

n−3/2k∗|k̂ − k∗|Θ∆n ≤ C
∆2
n

∣∣k̂ − k∗∣∣
n1/2∆n

= oP (1).

This completes the proof of (26). The proof of (27) follows using similar argument.

Lemma 4.2. Let (Yj) satisfy Assumption 1 and let Assumption 2 hold. Then,(
T (Y1, . . . , Yk̂), T (Yk̂+1, . . . , Yn)

)
d−→
(
σ sup

0≤t≤1

∣∣B(1) (t)
∣∣, σ sup

0≤t≤1

∣∣B(2) (t)
∣∣), (30)

where B(1) and B(2) are independent Brownian bridges, and σ is given in (15).

Proof. To prove Lemma 4.2 we will use the idea of the proof of Theorem 3 of Dehling
et al. (2015).
Recall that T (Y1, . . . , Yk̂) = k̂−3/2 max1≤k≤k̂ |U1,k̂(k)| and similarly T (Yk̂+1, . . . , Yn) =

(n− k̂)−3/2 maxk̂<k≤n |Uk̂+1,n(k)|. Note that the terms U1,k̂(k) and Uk̂+1,n(k) defined in

(25) can be written as a second order U-statistic

Ua,b (k) =

k∑
i=a

b∑
j=k+1

(h (Yi, Yj)−Θ) , a ≤ k < b,

with kernel function h (x, y) = 1{x≤y} and constant Θ = Eh(Y ′1 , Y
′

2) = 1/2, where Y ′1
and Y ′2 are independent copies of Y1.
By applying Hoeffding’s decomposition of U-statistics to Ua,b(k), the kernel function h
can be written as the sum

h (x, y) = Θ + h1 (x) + h2 (y) + g (x, y) , (31)

where h1 (x) = Eh (x, Y ′2)−Θ = 1/2− F (x) ,

h2 (y) = Eh
(
Y ′1 , y

)
−Θ = F (y)− 1/2, g (x, y) = h (x, y)− h1 (x)− h2 (y)−Θ.

Therefore,

Ua,b(k) =

k∑
i=a

b∑
j=k+1

(h1 (Yi) + h2 (Yj) + g (Yi, Yj)) =: sa,b(k) + va,b(k),

where

sa,b(k) = (b− k)
k∑
i=a

h1 (Yi) + (k− a+ 1)
b∑

j=k+1

h2 (Yj) , va,b(k) =
k∑
i=a

b∑
j=k+1

g (Yi, Yj) .

13



Note that

va,b(k) =
k∑
i=1

b∑
j=1

g (Yi, Yj)−
k∑
i=1

k∑
j=1

g (Yi, Yj)−
a−1∑
i=1

b∑
j=1

g (Yi, Yj) +
a−1∑
i=1

k∑
j=1

g (Yi, Yj) .

Thus, Lemma 4.4 below yields

n−3/2 max
a≤k≤b

∣∣va,b(k)
∣∣ ≤ 4n−3/2 max

1≤k≤n
max

1≤l≤n

∣∣∣ k∑
i=1

l∑
j=1

g (Yi, Yj)
∣∣∣ = oP (1).

Furthermore, by Lemma 4.3 ii),

max
a≤k≤b

∣∣Ua,b(k)
∣∣ = max

a≤k≤b

∣∣sa,b(k)
∣∣+ max

a≤k≤b

∣∣va,b(k)
∣∣ = max

a≤k≤b

∣∣sa,b(k)
∣∣+ oP (n3/2).

It remains to show that

k̂−3/2 max
1≤k≤k̂

∣∣s1,k̂(k)
∣∣ d−→ σ sup

0≤t≤1

∣∣B(1) (t)
∣∣,

(n− k̂)−3/2 max
k̂<k≤n

∣∣sk̂+1,n(k)
∣∣ d−→ σ sup

0≤t≤1

∣∣B(2) (t)
∣∣,

where B(1) and B(2) are independent Brownian bridges. By Slutsky’s Lemma this implies
(30). Note that h1(x) = −h2(x). Hence,

s1,k̂(k) = (k̂ − k)

k∑
i=1

h1(Yi) + k

k̂∑
j=k+1

h2(Yj)

= k̂n1/2
{ 1

n1/2

k∑
i=1

h1 (Yi)−
k

k̂

1

n1/2

k̂∑
i=1

h1 (Yi)
}

=: k̂n1/2Γ
(1)
k

and

sk̂+1,n(k) = (n− k)

k∑
i=k̂+1

h1(Yi) + (k − k̂)

n∑
j=k+1

h1(Yj)

= (n− k̂)n1/2
{ 1

n1/2

k∑
i=k̂+1

h1 (Yi)−
k − k̂
n− k̂

1

n1/2

n∑
i=k̂+1

h1 (Yi)
}

= (n− k̂)n1/2
{ 1

n1/2

( k∑
i=1

h1 (Yi)−
k̂∑
i=1

h1 (Yi)
)
− k − k̂
n− k̂

1

n1/2

( n∑
i=1

h1 (Yi)−
k̂∑
i=1

h1 (Yi)
)}

=: (n− k̂)n1/2Γ
(2)
k .

Corollary 4.1 below implies convergence of finite dimensional distribution of the partial
sum process, (

1

n1/2

[nt]∑
i=1

h1 (Yi)

)
0≤t≤1

d−→ (σW (t))0≤t≤1 ,
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where W (t) is a Brownian motion and σ as in (15). By the Skorokhod-Wichura-Dudley
representation (see e.g., Shorack and Wellner (2009), Theorem 4 on page 47) there exists
a series of Brownian motions Wn (t), t ∈ [0, 1], such that

sup
0≤t≤1

∣∣∣n−1/2

[nt]∑
i=1

h1 (Yi)− σWn (t)
∣∣∣ = oP (1) .

Set

Γ
(1)
W,k = Wn

(k
n

)
− k

k̂
Wn

( k̂
n

)
, Γ

(2)
W,k =

(
Wn

(k
n

)
−Wn

( k̂
n

))
− k − k̂
n− k̂

(
Wn(1)−Wn

( k̂
n

))
.

Thus,

max
1≤k≤k̂

∣∣Γ(1)
k − σΓ

(1)
W,k

∣∣ = oP (1), max
k̂<k≤n

∣∣Γ(2)
k − σΓ

(2)
W,k

∣∣ = oP (1).

Consistency of k̂ in (12), ∆2
n|k̂− k| = OP (1), and Assumption 2, n∆2

n →∞, as n→∞,
yield ∣∣∣ k̂

n
− θ
∣∣∣ = oP (1).

Therefore, by the continuity of Brownian motion Wn and using the continuous mapping
theorem,

∣∣Wn

(
k̂/n

)
−Wn (θ)

∣∣ = oP (1). Hence,

max
1≤k≤k̂

∣∣Γ(1)
W,k

∣∣ = sup
0≤t≤θ

∣∣∣Wn (t)− t

θ
Wn (θ)

∣∣∣+ oP (1)

and

max
k̂<k≤n

∣∣Γ(2)
W,k

∣∣ = sup
θ<t≤1

∣∣∣(Wn (t)−Wn (θ)
)
− t− θ

1− θ

(
Wn (1)−Wn (θ)

)∣∣∣+ oP (1)

d
= sup

θ<t≤1

∣∣∣Wn (t− θ)− t− θ
1− θ

Wn (1− θ)
∣∣∣,

since Brownian motions have stationary increments and Wn(0) = 0. Finally,

(k̂/n)−1/2 max
1≤k≤k̂

∣∣Γ(1)
k

∣∣ =
σ

θ1/2
sup

0≤t≤θ

∣∣∣Wn (t)− t

θ
Wn (θ)

∣∣∣+ oP (1)
d
= σ sup

0≤t≤1

∣∣B(1) (t)
∣∣,

since Brownian motions are scale invariant, i.e. θ−1/2Wn(t)
d
= Wn(t/θ), and

((n− k̂)/n)−1/2 max
k̂<k≤n

∣∣Γ(2)
k

∣∣ d= σ

(1− θ)1/2
sup
θ<t≤1

∣∣∣Wn (t− θ)− t− θ
1− θ

Wn (1− θ)
∣∣∣

d
=

σ

(1− θ)1/2
sup

0<t≤1−θ

∣∣∣Wn (t)− t

1− θ
Wn (1− θ)

∣∣∣ d= σ sup
0≤t≤1

∣∣B(2) (t)
∣∣.

The increments of Brownian motions are independent, thus B(1) and B(2) are indepen-
dent. This proves the lemma.
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Concept of 1-continuity

Before we state the auxiliary results, we recall the concept of 1-continuity, which was
introduced by Borovkova et al. (2001).

To study the asymptotic behaviour of the Wilcoxon test

W1,n(k) =

k∑
i=1

n∑
j=k+1

(1{Xi≤Xj} − 1/2)

we need to show that the function h(x, y) = 1{x≤y} is 1-continuous. Then the variables
(h(Yi, Yj)) retain some characteristics of the variables (Yi, Yj).

Definition 4.1. (Borovkova et al. (2001))
We say that the kernel h (x, y) is 1-continuous with respect to a distribution of a station-
ary process (Yj) if there exists a function φ(ε), ε ≥ 0 such that φ (ε)→ 0, ε→ 0, and for
all ε > 0 and k ≥ 1

E
(∣∣h (Y1, Yk)− h

(
Y ′1 , Yk

)∣∣ 1{|Y1−Y ′1 |≤ε}) ≤ φ (ε) , (32)

E
(∣∣h (Yk, Y1)− h

(
Yk, Y

′
1

)∣∣ 1{|Y1−Y ′1 |≤ε}) ≤ φ (ε) ,

and

E
(∣∣h (Y1, Y

′
2

)
− h

(
Y ′1 , Y

′
2

)∣∣ 1{|Y1−Y ′1 |≤ε}) ≤ φ (ε) , (33)

E
(∣∣h (Y ′2 , Y1

)
− h

(
Y ′2 , Y

′
1

)∣∣ 1{|Y1−Y ′1 |≤ε}) ≤ φ (ε) ,

where Y ′2 is an independent copy of Y1 and Y ′1 is any random variable that has the same
distribution as Y1.

For a univariate function g(x), the 1-continuity property is defined as follows.

Definition 4.2. The function g (x) is 1-continuous with respect to a distribution of a
stationary process (Yj) if there exists a function φ(ε), ε ≥ 0 such that φ (ε)→ 0, ε→ 0,
and for all ε > 0

E
(∣∣g (Y1)− g

(
Y ′1
)∣∣ 1{|Y1−Y ′1 |≤ε}) ≤ φ (ε) , (34)

where Y ′1 is any random variable that has the same distribution as Y1.

The following remark states functions h(x, y) = 1{x≤y}, h1(x), h2(x) and g(x, y) appear-
ing in the Hoeffding decomposition (31) are 1-continuous functions.

Remark 4.1. Let (Yj) be a stationary process, Y1 has continuous distribution function
F with bounded second derivative and the variables Y1 − Yk, k ≥ 1 satisfy (11).
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i) The function h(x, y) = 1{x≤y} is 1-continuous function (i.e. satisfies (32) and (33))
with respect to the distribution of (Yj) with function φ(ε) = Cε, for some C > 0,
see e.g. Corollary 4.1 of Gerstenberger (2018).

ii) Lemma 2.15 of Borovkova et al. (2001) yields that if a general function h(x, y)
satisfies (32) and (33) with some function φ(ε) then Eh(x, Y ′2), where Y ′2 is an
independent copy of Y1, satisfies the condition in (34) with the same function φ(ε).
Hence, h1(x) = Eh (x, Y ′2)− 1/2 and h2(x) = Eh (Y ′2 , y)− 1/2 are 1-continuous.

iii) The function g(x, y) = h(x, y) − h1(x) − h2(x) − 1/2 is 1-continuous (satisfies (32)
and (33)), since h and h1 satisfy (32), (33) and (34) with φ(ε) = Cε, for some C > 0.
In particular,

E
(
|g(Y1, Yk)− g(Y ′1 , Yk)|1{|Y1−Y ′1 |≤ε}

)
≤ E

(
|h(Y1, Yk)− h(Y ′1 , Yk)|1{|Y1−Y ′1 |≤ε}

)
+ E

(
|h1(Y1)− h1(Y ′1)|1{|Y1−Y ′1 |≤ε}

)
≤ 2φ(ε)

and similarly, E
(
|g(Yk, Y1)− g(Yk, Y

′
1)|1{|Y1−Y ′1 |≤ε}

)
≤ 2φ(ε).

Auxiliary results

The following lemma yields maximum inequalities used in the proofs of Lemma 4.1 and
Lemma 4.2.

Lemma 4.3. Let (ak) and (bk) be two sequences of real numbers and ck = ak+bk. Then,

i)
∣∣maxk |ak| −maxk |bk|

∣∣ ≤ maxk |ak − bk|

ii) maxk |ak| −maxk |bk| ≤ maxk |ck| ≤ maxk |ak|+ maxk |bk|.

Proof. We start with the proof of i). Assume that maxk |ak| ≥ maxk |bk| and define
k̃ = arg maxk |ak|. Note that |bk̃| ≤ maxk |bk|. Then,∣∣max

k
|ak| −max

k
|bk|
∣∣ = max

k
|ak| −max

k
|bk| ≤ |ak̃| − |bk̃| ≤

∣∣|ak̃| − |bk̃|∣∣ ≤ |ak̃ − bk̃|
≤ max

k
|ak − bk|.

For maxk |ak| ≤ maxk |bk| the proof follows a similar argument using k̃ = arg maxk |bk|.

Proof of ii). It is obvious that maxk |ck| = maxk |ak+bk| ≤ maxk |ak|+maxk |bk|. Define
k̃ = arg maxk |ak|. Then

max
k
|ak + bk| ≥ max

k
(|ak| − |bk|) ≥ |ak̃| − |bk̃| ≥ max

k
|ak| −max

k
|bk|,

which finishes the proof.
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The following lemma derives the functional central limit theorem for partial sum pro-
cesses of (h1(Yj)).

Corollary 4.1. Suppose that the assumptions of Lemma 4.2 hold. Then,(
1

n1/2

[nt]∑
i=1

h1 (Yi)

)
0≤t≤1

d−→ (σW (t))0≤t≤1 ,

where W (t) is a Brownian motion and σ is given in (15).

Proof. Wooldridge and White (1988) in Corollary 3.2 established a functional central
limit theorem for partial sum process

∑k
i=1 Ỹi, k ≥ 1, for a process (Ỹj) which is L2

NED on a strongly mixing process (Z̃j). Therefore, Corollary 4.1 is proved, by showing
that (h1(Yj)) is L2 NED on a strongly mixing process.
By Proposition 2.11 of Borovkova et al. (2001), if (Yj) is L1 NED on a stationary
absolutely regular process (Zj) with approximation constants ak and g(x) is 1-continuous
with function φ, then (g(Yj)) is also L1 NED on (Zj) with approximation constants a′k =
φ
(√

2ak
)

+2
√

2ak||g||∞. By Remark 4.1 ii), h1(x) = 1/2−F (x) is 1-continuous function
with φ(ε) = Cε. Thus, the processes (h1(Yj)) is L1 NED processes with approximation
constants a′k = C

√
ak ≥ φ

(√
2ak
)

+ 2
√

2ak||h1||∞.
Observe that the variables ηk := h1(Y1) − E(h1(Y1)|Gk−k) satisfy the L1 NED condition
(9) with a′k. To show L2 NED for (h1(Yj)) note that by definition of h1, Eh1(Y1) = 0
and |h1(Y1)| ≤ C <∞. Thus,

E η2
k ≤ E

(
|ηk| · (|h1(Y1)|+ |E(h1(Y1)|Gk−k)|)

)
≤ C E |ηk| ≤ Ca′k.

The last inequality holds, because by L1 NED of (h1(Yj)), E |h1(Y1)−E(h1(Y1)|Gk−k)| ≤
a′k. Therefore, the process (h1(Yj)) is also L2 NED on (Zj) with approximation constant

a′k = Ca
1/2
k . Moreover, absolute regularity of (Zj) implies the process (Zj) is also strong

mixing. Assumption (10) yields a′k = O(k−1/2) and βk = O(k−2). Thus, (h1(Yj))
satisfies the conditions of Corollary 3.2 of Wooldridge and White (1988) which implies(

1

n1/2

[nt]∑
i=1

h1 (Yi)

)
0≤t≤1

d−→ (σW (t))0≤t≤1 ,

where W (t) is a Brownian motion and σ2 =
∑∞

k=−∞Cov(F (Y1), F (Yk)).

Next we show that the contribution of g(x, y) of the Hoeffding decomposition (31) is
negligible.

Lemma 4.4. Suppose that the assumptions of Lemma 4.2 hold. Then,

n−3/2 max
1≤k≤n

max
1≤l≤n

∣∣∣ k∑
i=1

l∑
j=1

g(Yi, Yj)
∣∣∣ = oP (1). (35)
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Proof. We first prove for 1 ≤ q ≤ p ≤ n, 1 ≤ h ≤ l ≤ n,

E
(∣∣∣n−3/2

p∑
i=q+1

l∑
j=h+1

g(Yi, Yj)
∣∣∣2) ≤ C

n3
(p− q)(l − h). (36)

Proof of (36) Lemma 1 of Dehling et al. (2015) showed if f is a 1-continuous bounded
degenerate kernel function and φf (ε) satisfies

∞∑
k=1

k(β(k) +
√
ak + φf (ak)) <∞, (37)

then

E
( k∑
i=1

n∑
j=k+1

f(Yi, Yj)
)2
≤ Ck(n− k), 1 ≤ k ≤ n. (38)

The proof of Lemma 1 in Dehling et al. (2015) shows that (38) can be extended to (36).
Hence, to complete the proof, we need to verify that g(x, y) satisfies the assumptions of
Lemma 1 of Dehling et al. (2015).
By the Hoeffding decomposition (31), g(x, y) = h(x, y) + F (x)− F (y)− 1/2. Note that
EF (Y1) = 1/2, thus E g(x, Y1) = E g(Y1, y) = 0, i.e. g(x, y) is a degenerate kernel.
Furthermore, g(x, y) is bounded, since h(x, y) = 1{x≤y} and F (x) are bounded. By
Remark 4.1 iii) g(x, y) is 1-continuous with φ(ε) = Cε, the latter satisfies (37) because
of condition (10). This completes the proof of (36).

Proof of (35) To prove the lemma, we use Theorem 10.2 of Billingsley (1999), which states
that if the increments of partial sums Si =

∑i
j=1 ζi of random variables ζi, i = 1, 2, . . .

are bounded in probability, in particular if there exist α > 1, β > 0 and non-negative
numbers un,1, . . . , un,n such that

P
(
|Sj − Si| ≥ ε

)
≤ 1

εβ

( j∑
l=i+1

un,l

)α
,

for ε > 0, 0 ≤ i ≤ j ≤ n, then for all ε > 0, n ≥ 2,

P

(
max

1≤k≤n
|Sk| ≥ ε

)
≤ K

εβ

( n∑
l=1

un,l

)α
,

where K > 0 depends only on α and β.
Denote

Gn(l) = n−3/2 max
1≤k≤n

∣∣∣ k∑
i=1

l∑
j=1

g(Yi, Yj)
∣∣∣,
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with Gn(0) = 0 and define random variables ζi = Gn(i)−Gn(i− 1), where ζ0 = 0. Note
that Si =

∑i
j=1 ζi = Gn(i) and by Lemma 4.3 i) for 1 ≤ h ≤ l ≤ n,

P (|Sl − Sh| ≥ ε) ≤ P
(
n−3/2 max

1≤k≤n

∣∣∣ k∑
i=1

l∑
j=1

g(Yi, Yj)−
k∑
i=1

h∑
j=1

g(Yi, Yj)
∣∣∣ ≥ ε)

= P
(
n−3/2 max

1≤k≤n

∣∣∣ k∑
i=1

l∑
j=h+1

g(Yi, Yj)
∣∣∣ ≥ ε).

Let us now define

S̃k =
k∑
i=1

(
n−3/2

l∑
j=h+1

g(Yi, Yj)
)
.

Note that for 1 ≤ q ≤ p ≤ n,

∣∣S̃p − S̃q∣∣ = n−3/2
∣∣∣ p∑
i=q+1

l∑
j=h+1

g(Yi, Yj)
∣∣∣.

By Markov inequality and (36),

P
(∣∣S̃p − S̃q∣∣ ≥ ε) ≤ 1

ε2
E
(∣∣S̃p − S̃q∣∣2) ≤ 1

ε2
C

n3
(p− q)(l − h) ≤ 1

ε2

( p∑
t=q+1

un,t

)4/3
,

where un,t = C3/4

n9/4 (l − h). Hence, S̃i satisfies assumption of Theorem 10.2 of Billingsley
(1999) with β = 2, α = 4/3. Thus, for any fixed ε > 0,

P
(

max
1≤k≤n

∣∣S̃k∣∣ ≥ ε) ≤ K

ε2

( n∑
t=1

C3/4

n9/4
(l − h)

)4/3

≤ 1

ε2

(
(l − h)

C3/4

n5/4

)4/3

and moreover

P (|Sl − Sh| ≥ ε) ≤ P
(

max
1≤k≤n

∣∣S̃k∣∣ ≥ ε) ≤ 1

ε2

( l∑
t=h+1

un,t

)4/3

,

where un,t = C3/4

n5/4 . Therefore, Si satisfies assumption of Theorem 10.2 of Billingsley
(1999) with β = 2, α = 4/3. Finally, for any fixed ε > 0, as n→∞,

P
(
n−3/2 max

1≤l≤n
max

1≤k≤n

∣∣∣ k∑
i=1

l∑
j=1

g(Yi, Yj)
∣∣∣ ≥ ε)

= P
(

max
1≤l≤n

∣∣Sl∣∣ ≥ ε) ≤ K

ε2

( n∑
t=1

C3/4

n5/4

)4/3

≤ K

ε2
1

n1/3
→ 0,

which proves the lemma.
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In the following we state auxiliary results to deal with the terms

Ũ1,k̂(k
∗) :=

k∗∑
i=1

k̂∑
j=k∗+1

1{Yj<Yi≤Yj+∆n}, k̂ ≥ k∗,

and

Ũk̂+1,n(k∗) :=

k∗∑
i=k̂+1

n∑
j=k∗+1

1{Yj<Yi≤Yj+∆n}, k̂ < k∗

appearing in the proof of Lemma 4.1.
Note that the terms Ũ1,k̂(k

∗) and Ũk̂+1,n(k∗) can be written as a second order U-statistic

Ũa,b (k) =

k∑
i=a

b∑
j=k+1

hn (Yi, Yj) , a ≤ k < b,

with kernel function hn (x, y) = 1{y<x≤y+∆n}.

Applying Hoeffding’s decomposition of U-statistics (Hoeffding (1948)) to Ũa,b(k), de-
composes the kernel function hn into the sum

hn (x, y) = Θ∆n + h1,n (x) + h2,n (y) + gn (x, y) , (39)

with Θ∆n = E
(
1{Y ′2<Y ′1≤Y ′2+∆n}

)
,

h1,n (x) = Ehn
(
x, Y ′2

)
−Θ∆n = F (x)− F (x−∆n)−Θ∆n ,

h2,n (y) = Ehn
(
Y ′1 , y

)
−Θ∆n = F (y + ∆n)− F (y)−Θ∆n ,

gn (x, y) = hn (x, y)− h1,n (x)− h2,n (y)−Θ∆n ,

where Y ′1 and Y ′2 are independent copies of Y1.

Lemma 4.5. Suppose that the assumptions of Lemma 4.1 hold. Then,

n−3/2
∣∣∣Ũ1,k̂(k

∗)− k∗(k̂ − k∗)Θ∆n

∣∣∣ = oP (1) (40)

and
n−3/2

∣∣∣Ũk̂+1,n(k∗)− (k∗ − k̂)(n− k∗)Θ∆n

∣∣∣ = oP (1) , (41)

where Θ∆n = E
(
1{Y ′2<Y ′1≤Y ′2+∆n}

)
and Y ′1 and Y ′2 are independent copies of Y1 .

Proof. Let us start with the proof of (40). The Hoeffding decomposition (39) yields

Ũ1,k̂(k
∗)− k∗(k̂ − k∗)Θ∆n =

k∗∑
i=1

k̂∑
j=k∗+1

(h1,n (Yi) + h2,n (Yj) + gn (Yi, Yj))

= (k̂ − k∗)
k∗∑
i=1

h1,n (Yi) + k∗
k̂∑

j=k∗+1

h2,n (Yj) +

k∗∑
i=1

k̂∑
j=k∗+1

gn (Yi, Yj) .
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Therefore,

n−3/2
∣∣∣Ũ1,k̂(k

∗)− k∗(k̂ − k∗)Θ∆n

∣∣∣
≤ n−3/2

∣∣∣(k̂ − k∗) k∗∑
i=1

h1,n (Yi) + k∗
k̂∑

j=k∗+1

h2,n (Yj)
∣∣∣+ n−3/2

∣∣∣ k∗∑
i=1

k̂∑
j=k∗+1

gn (Yi, Yj)
∣∣∣.

Note that the indicator function hn(x, y) = 1{y<x≤y+∆n} is bounded. Furthermore, by
(29), Θ∆n ∼ C∆n, thus

|h1,n(x)| ≤ |F (x)− F (x−∆n)−Θ∆n | ≤ C∆n + Θ∆n ≤ C∆n, (42)

|h2,n(x)| ≤ |F (x+ ∆n)− F (x)−Θ∆n | ≤ C∆n + Θ∆n ≤ C∆n,

where C > 0 is a constant. Hence, gn (x, y) = hn (x, y) − h1,n (x) − h2,n (y) − Θ∆n

is bounded. Since Eh1,n(Y1) = 0 and Eh2,n(Y1) = 0, gn(x, y) is a degenerate kernel,
i.e. E gn(x, Y1) = E gn(Y1, y) = 0. hn(x, y) satisfies (32) and (33) with φhn(ε) = Cε,
see e.g. Corollary 4.1 of Gerstenberger (2018). Then, with similar argument as in
Remark 4.1, h1,n and h2,n are 1-continuous and therefore, gn(x, y) is 1-continuous with
function φgn(ε) = Cε satisfying (37). Hence, gn(x, y) satisfies the conditions on g(x, y)
in Lemma 4.4, which yields

n−3/2
∣∣∣ k∗∑
i=1

k̂∑
j=k∗+1

gn (Yi, Yj)
∣∣∣ ≤ 2 max

1≤k≤n
max

1≤k≤n
n−3/2

∣∣∣ k∑
i=1

l∑
j=1

gn (Yi, Yj)
∣∣∣ = oP (1).

Thus, it remains to show n−3/2
∣∣(k̂ − k∗)∑k∗

i=1 h1,n (Yi) + k∗
∑k̂

j=k∗+1 h2,n (Yj)
∣∣ = oP (1).

By (42), we receive the following inequality

n−3/2
∣∣∣(k̂ − k∗) k∗∑

i=1

h1,n (Yi) + k∗
k̂∑

j=k∗+1

h2,n (Yj)
∣∣∣

≤ n−3/2C(k̂ − k∗)k∗∆n = C
k∗

n

∆2
n|k̂ − k∗|
n1/2∆n

= oP (1),

where we used the consistency of k̂ in (12), ∆2
n|k̂ − k∗| = OP (1), and Assumption 2,

k∗/n ∼ θ and n∆2
n →∞ as n→∞. This completes the proof of (40).

The proof of (41) follows using similar argument.

4.2 Proof of Theorem 2.2

Under the alternative we consider observations X1, . . . , Xn with Xi = G(ξi) + µ, i =
1, . . . , n. Note that the indicator function 1{x≤y} is invariant under strictly increasing
functions, i.e. 1{G(ξi)≤G(ξj)} = 1{ξi≤ξj}, if G is strictly increasing. For G being a strictly
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decreasing function, observe that 1{G(ξi)≤G(ξj)} = 1 − 1{ξi≤ξj}. Therefore, for G being
strictly monotone,

∣∣∣ k∑
i=1

n∑
j=k+1

(1{Xi≤Xj} − 1/2)
∣∣∣ =

∣∣∣ k∑
i=1

n∑
j=k+1

(1{ξi≤ξj} − 1/2)
∣∣∣.

Thus, to prove Theorem 2.2 it is sufficient to consider Tn,1 and Tn,2 in (4), (5) applied to
the stationary Gaussian process (ξj), i.e. Tn,1(ξ1, . . . , ξk̂) and Tn,2(ξk̂+1, . . . , ξn), instead
of Tn,1(X1, . . . , Xk̂) and Tn,2(Xk̂+1, . . . , Xn).

Before we prove that the test Mn tends to infinity in probability under the alterna-
tive, we will consider the limit distribution of Tn,1(ξ1, . . . , ξk̂) and Tn,2(ξk̂+1, . . . , ξn) in

Lemma 4.7, using a different normalization nd+3/2cd, where c2
d = c0

d(2d+1) , c0 > 0. Note

that in the following we always assume d ∈ (0, 1/2). By (WH(t))0≤t≤1 we denote a frac-
tional Brownian motion process with Hurst parameter H = d+ 1/2, that is a mean zero
Gaussian process with auto-covariances Cov(WH(t),WH(s)) = (t2H +s2H−|t−s|2H)/2.

Lemma 4.6. Assume that the assumptions of Theorem 2.2 hold. Then, for 0 ≤ s ≤ t ≤
1,

1

nd+3/2cd

[ns]∑
i=1

n∑
j=[nt]+1

(1{ξi≤ξj} − 1/2)
d−→ 1

2
√
π

(
s(WH(1)−WH(t))− (1− t)WH(s)

)
,

where WH , H = d+ 1/2 is a standard fractional Brownian motion, c2
d = c0

d(2d+1) , c0 > 0

and d ∈ (0, 1/2).

In the proof of Lemma 4.6 we apply the empirical process non-central limit theorem
of Dehling and Taqqu (1989), which uses the Hermite expansion of 1{G(ξ)≤x} − F (x).
Before proceeding to the proof, we will have a brief look at this concept.

Hermite expansion: Since function g(ξ) = 1{G(ξ)≤x} − F (x) is a measurable function
with E g(ξ) = 0 and E g2(ξ) < ∞, ξ ∼ N(0, 1), i.e. g ∈ L2(R, N), we could represent g
by its Hermite expansion

g(ξ) =

∞∑
i=1

Jk(x)

k!
Hk(ξ),

where the equality means convergence in the L2 sense. The k-th order Hermite polyno-
mial is given by

Hk(ξ) = (−1)keξ
2/2 d

k

dξk
e−ξ

2/2,

and the coefficients are given by Jk(x) = E(1{G(ξ)≤x}Hk(ξ)), with J1(x) = E(ξ11{ξ1≤x}) =
−ϕ(x), where ϕ(x) denotes the standard normal density function. The Hermite rank is
defined as m = min{k ≥ 0 : Jk 6= 0}, the smallest k for which the term in the Hermite
expansion is not zero. Since J1(x) 6= 0 for some x ∈ R, we have Hermite rank m = 1.

23



Hermite process: The limit process Zm(t) in Theorem 1.1 of Dehling and Taqqu (1989)
is called m-th order Hermite process and is defined e.g. in Taqqu (1978). If m = 1, Z1(t)
is the standard Gaussian fractional Brownian motion.

Proof of Lemma 4.6. Dehling et al. (2013b) have shown in their Theorem 1 that

(
1

nd+3/2cd

[ns]∑
i=1

n∑
j=[ns]+1

(1{Xi≤Xj} − 1/2)

)
0≤s≤1

d−→
(

1

m!
(Zm(s)− sZm(1))

∫
R
Jm(x)dF (x)

)
0≤s≤1

for Xi = G(ξi), where G : R → R is a measurable function (that might not be strictly
monotone), F is the continuous distribution of Xi, m is the Hermite rank of the class
functions 1{G(ξi)≤x} − F (x), and Jm(x), Hm and (Zm(s))s∈[0,1] are given above.

Following the proof of Theorem 1 of Dehling et al. (2013b) we will show

(
1

nd+3/2cd

[ns]∑
i=1

n∑
j=[nt]+1

(1{Xi≤Xj} − 1/2)

)
0≤s≤t≤1

d−→
(

1

m!

(
(1− t)Zm(s)− s(Zm(1)− Zm(t)

) ∫
R
Jm(x)dF (x)

)
0≤s≤t≤1

. (43)

Since F is a continuous distribution function,
∫
R F (x)dF (x) = 1/2. Denote Fk(x) =

1
k

∑k
i=1 1{Xi≤x} and Fk+1,n(x) = 1

n−k
∑n

i=k+1 1{Xi≤x}. Then,

[ns]∑
i=1

n∑
j=[nt]+1

(1{Xi≤Xj} − 1/2) = [ns](n− [nt])
(∫

R

(
F[ns](x)− F (x)

)
dF[nt]+1,n(x)

)
+ [ns](n− [nt])

(∫
R
F (x)d

(
F[nt]+1,n − F

)
(x)
)
.

Integration by parts yields,∫
R
F (x)d

(
F[nt]+1,n − F

)
(x) = −

∫
R

(
F[nt]+1,n − F

)
(x)dF (x).

Hence,

[ns]∑
i=1

n∑
j=[nt]+1

(1{Xi≤Xj} − 1/2) = [ns](n− [nt])

∫
R

(F[ns](x)− F (x))dF[nt]+1,n(x)

− [ns](n− [nt])

∫
R

(F[nt]+1,n(x)− F (x))dF (x).
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With the same argument as used in Dehling et al. (2013b), we show that

[ns](n− [nt])

nd+3/2cd

∫
R

(F[ns](x)− F (x))dF[nt]+1,n(x)− (1− t)
m!

∫
R
Jm(x)Zm(s)dF (x)→ 0

(44)

[ns](n− [nt])

nd+3/2cd

∫
R

(F[nt]+1,n(x)− F (x))dF (x)− s

m!

∫
R
Jm(x)(Zm(1)− Zm(t))dF (x)→ 0,

(45)

almost surely, uniformly in 0 < s ≤ t < 1.

Let us start with (44). We can write

[ns](n− [nt])

nd+3/2cd

∫
R

(F[ns](x)− F (x))dF[nt]+1,n(x)− (1− t)
m!

∫
R
Jm(x)Zm(s)dF (x)

=
(n− [nt])

n

∫
R

[ns]

nd+1/2cd
(F[ns](x)− F (x))dF[nt]+1,n(x)− (1− t)

∫
R
Jm(x)

Zm(s)

m!
dF (x)

=
(n− [nt])

n

∫
R

( [ns]

nd+1/2cd
(F[ns](x)− F (x))− Jm(x)

Zm(s)

m!

)
dF[nt]+1,n(x)

+
(n− [nt])

n

∫
R
Jm(x)

Zm(s)

m!
d
(
F[nt]+1,n − F

)
(x)

+
((n− [nt])

n
− (1− t)

)∫
R
Jm(x)

Zm(s)

m!
dF (x). (46)

The empirical process non-central limit theorem of Dehling and Taqqu (1989) yields(
d−1
n [ns]

(
F[ns](x)− F (x)

))
x∈[−∞,∞],s∈[0,1]

d−→
(
J(x)Z(s)

)
x∈[−∞,∞],s∈[0,1]

,

where J(x) = Jm(x), Z(x) = Zm(x)/m! and d2
n ∼ n2d+1c2

d.
Dehling et al. (2013b) argue that applying the Skorohod-Dudley-Wichura representation
yields almost sure convergence, i.e.

sup
s,x

∣∣d−1
n [ns]

(
F[ns](x)− F (x)

)
− J(x)Z(x)

∣∣→ 0 a.s. (47)

Thus, the first term on the right-hand side of (46) converges to 0 almost surely, uniformly
in 0 < s ≤ t < 1.
Furthermore, we note that

(n− [nt])

n

∫
R
J(x)Z(s)d

(
F[nt]+1,n − F

)
(x)

= Z(s)
[(n− [nt])

n

∫
R
J(x)dF[nt]+1,n(x)− (n− [nt])

n

∫
R
J(x)dF (x)

]
= Z(s)

[ 1

n

n∑
i=[nt]+1

J(Xi)−
(n− [nt])

n
E(J(Xi))

]

= Z(s)
1

n

n∑
i=1

(
J(Xi)− E(J(Xi))

)
− Z(s)

1

n

[nt]∑
i=1

(
J(Xi)− E(J(Xi))

)
.
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By the ergodic theorem, 1
n

∑[nt]
i=1

(
J(Xi)−E(J(Xi))

)
→ 0 almost surely for all 0 ≤ t ≤ 1.

Therefore, the second term on the right-hand side of (46) converges to 0 almost surely,
uniformly in 0 < s ≤ t < 1.
Also the third term on the right-hand side of (46) converges to 0, since, as n → ∞,(
(n − [nt])/n − (1 − t)

)
→ 0, and

∫
R Jm(x)Zm(s)

m! dF (x) is bounded. This finishes the
proof of (44).
Note that

F[nt]+1,n(x) =
n

n− [nt]
Fn(x)− [nt]

n− [nt]
F[nt](x),

and hence,

(n− [nt])
(
F[nt]+1,n(x)− F (x)

)
= n

(
Fn(x)− F (x)

)
− [nt]

(
F[nt](x)− F (x)

)
.

Then the proof of (45) follows using again (47). Thus, (43) is shown.
Note that this result holds for Xi = G(ξi), but in our lemma we consider Xi = ξi, where
(ξj) is a stationary mean zero Gaussian process with auto-covariances γk ∼ k2d−1c0,
d ∈ (0, 1/2). In this case, J1(x) = −ϕ(x), where ϕ(x) denotes the standard normal
density function and

∫
R J1(x)dF (x) = − 1

2
√
π

, since F is the normal distribution function.

Furthermore, J1(x) 6= 0 for all x and hence, we have Hermite rank m = 1. Therefore,
(Z1(s)) denotes the standard fractional Brownian motion process (WH(s)). Thus, the
limit in (43) equals

1

2
√
π

(
s(WH(1)−WH(t))− (1− t)WH(s)

)
,

which proves the lemma.

Lemma 4.7. Assume that the assumptions of Theorem 2.2 hold. Then,

[
1

nd+3/2cd
max

1≤k≤k̂

∣∣∣ k∑
i=1

k̂∑
j=k+1

(1{ξi≤ξj} − 1/2)
∣∣∣, 1

nd+3/2cd
max
k̂<k≤n

∣∣∣ k∑
i=k̂+1

n∑
j=k+1

(1{ξi≤ξj} − 1/2)
∣∣∣]

d−→
[

ζ

2
√
π

sup
0≤t≤ζ

∣∣WH(t)− t

ζ
WH(ζ)

∣∣,
1− ζ
2
√
π

sup
ζ≤t≤1

∣∣WH(t)−WH(ζ)− t− ζ
1− ζ

(WH(1)−WH(ζ))
∣∣],

where c2
d = c0

d(2d+1) , c0 > 0, d ∈ (0, 1/2), WH is a standard fractional Brownian motion,

H = d+ 1/2 and

ζ = inf
{
t ≥ 0 : sup

0≤s≤1
|WH(s)− sWH(1)| = |WH(t)− tWH(1)|

}
. (48)
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Proof. Denote for 0 ≤ s ≤ t ≤ 1

Ũn(s, t) =
1

nd+3/2cd

[ns]∑
i=1

n∑
j=[nt]+1

(1{ξi≤ξj} − 1/2),

W̃H(s, t) = − 1

2
√
π

(
(1− t)WH(s)− s(WH(1)−WH(t))

)
and note that by Lemma 4.6, (Ũn(s, t))s,t

d−→ (W̃H(s, t))s,t. Furthermore, we denote

Ũn,1(t) =
1

nd+3/2cd
max

1≤k≤nt

∣∣∣ k∑
i=1

nt∑
j=k+1

(1{ξi≤ξj} − 1/2)
∣∣∣,

Ũn,2(t) =
1

nd+3/2cd
max
nt<k≤n

∣∣∣ k∑
i=nt+1

n∑
j=k+1

(1{ξi≤ξj} − 1/2)
∣∣∣,

W̃H,1(t) =
t

2
√
π

sup
0≤s≤t

∣∣WH(s)− s

t
WH(t)

∣∣,
W̃H,2(t) =

1− t
2
√
π

sup
t≤s≤1

∣∣(WH(s)−WH(t))− 1− s
1− t

(WH(1)−WH(t))
∣∣.

Since

k∑
i=1

nt∑
j=k+1

(1{ξi≤ξj} − 1/2) =

k∑
i=1

n∑
j=k+1

(1{ξi≤ξj} − 1/2)−
k∑
i=1

n∑
j=nt+1

(1{ξi≤ξj} − 1/2),

we can write Ũn,1(t) = sup0≤s≤t |Ũn(s, s)−Ũn(s, t)| and with a similar argument Ũn,2(t) =

supt≤s≤1 |Ũn(s, s) − Ũn(t, s)|. Note that W̃H,1(t) = sup0≤s≤t |W̃H(s, s) − W̃H(s, t)| and

W̃H,2(t) = supt≤s≤1 |W̃H(s, s) − W̃H(t, s)|. Thus, the same continuous mapping trans-

forms Ũn(s, t) into the vector (k̂/n, Ũn,1(t), Ũn,2(t)) and W̃H(s, t) into (ζ, W̃H,1(t), W̃H,2(t)),
where ζ is given in (48). Hence, by the continuous mapping theorem and Lemma 4.6(

k̂/n, Ũn,1(t), Ũn,2(t)
)

d−→
(
ζ, W̃H,1(t), W̃H,2(t)

)
.

Applying the mapping (z, x(t), y(t)) 7→ (x(z), y(z)) to both vectors finishes the proof.

Proof of Theorem 2.2. By Lemma 4.7,

Tn,1 = k̂−3/2 max
1≤k≤k̂

∣∣∣ k∑
i=1

k̂∑
j=k+1

(1{ξi≤ξj} − 1/2)
∣∣∣

=
nd+3/2cd

k̂3/2

1

nd+3/2cd
max

1≤k≤k̂

∣∣∣ k∑
i=1

k̂∑
j=k+1

(1{ξi≤ξj} − 1/2)
∣∣∣ =

nd+3/2cd

k̂3/2
OP (1).
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Similar argument yields Tn,2 = nd+3/2cd
(n−k̂)3/2

OP (1). Thus, to prove Theorem 2.2 it remains

to show nd+3/2cd
k̂3/2

→p ∞ and nd+3/2cd
(n−k̂)3/2

→p ∞. The proof of Lemma 4.7 yields k̂/n
d−→ ζ,

where ζ is given in (48), and hence, (n/k̂)3/2 = OP (1) and (n/(n− k̂))3/2 = OP (1). Since
d > 0, nd →∞ as n→∞. Thus, Tn,1 →p ∞ and Tn,2 →p ∞. This finishes the proof of
Theorem 2.2.
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