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Abstract

Biosimilars are copies of biological medicines that are developed by a competitor
after the patent for the originator drug has expired. Extensive clinical trials are
required to show therapeutic equivalence between the biosimilar and its reference
product before a biosimilar can be sold on the market. However, even after more
than 10 years of experience with biosimilars in Europe, there is still some uncertainty
if the patients who are already taking the reference product can switch between
the biosimilar and its reference product. One convenient way to assess the impact
of switches is the analysis of mixed and self carryover effects: if the products are
switchable, there should not be any difference in the carryover effects. This paper
determines a series of simple designs which are highly efficient for the comparison
of the mixed and self carryover effects of two treatments. The proof of efficiency
is not straightforward because the information matrix of the efficient designs is not
completely symmetric.
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1 Introduction

After the patent of a pharmaceutical product expires, it is possible for competing companies

to produce and sell a copy of the originator product. In the context of small molecule drugs,

this is already well established and the copied products are known as generics. For large

molecule drugs (so-called biologics), however, this is still a fairly new concept with the first

product approved in Europe in 2006 and in the United States in 2015. A copy of a biologic

is called a biosimilar. The development of biosimilars is currently in the focus of attention

because several important patents on biological drugs expired in recent years or will expire

soon (Generics and Biosimilar Initiative 2014).

Due to limited experience with biosimilars in practice, the higher complexity and

the fact that, from a chemical point of view, a biosimilar is only required to be similar

(Schellekens 2004), and not, as for generics, identical, to the originator product, there is

still uncertainty among patients, physicians and health care providers if a patient who is al-

ready taking the originator product should be switched to the biosimilar product or if even

substituting of the treatment at the pharmacy level is acceptable (e.g., Ebbers et al. 2012)

which could lead to multiple switches between the biosimilar and the originator product.

For providing assurance that alternating the treatments, for example, at pharmacy level is

justifiable, it is necessary to confirm that the treatment response during multiple switches

between the biosimilar and its reference product is comparable.

This calls for a crossover study where the units are observed over several periods, with

the possibility of changing the treatment between periods. For gaining market authorisa-

tion as a biosimilar, it would be sufficient to observe the first period only. If in the first

period there is no difference between the treatments, this means that the direct effects are

similar. In later periods, however, there may additionally be carryover effects. One way

of confirming that switching does not influence the efficacy of the treatment is to analyse

the so-called self and mixed carryover effects. The model with mixed and self carryover

effects was introduced by Afsarinejad and Hedayat (2002). It assumes that each treatment

has two different carryover effects, one that is present if a subject stays on the treatment

from the previous period (self carryover effect, continuous treatment) and the other one

that is present if subjects change the treatment (mixed carryover effect, switching). If
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switching has no impact, there should be no differences between the carryover effects of

the treatments.

Kunert and Stufken (2002, 2008) determined optimal crossover designs for estimating

the direct treatment effects in the model with self and mixed carryover effects. The second

article, Kunert and Stufken (2008), dealt with the case of two treatments which is relevant

for our application (biosimilar and originator). However, for showing the switchability of

a biosimilar and its reference product, the direct effects are not of primary interest. When

the question of switchability is addressed, biosimilarity is already confirmed and there is a

strong indication that there is no relevant difference between the treatment effects in the

first period, i.e. between the direct effects. For confirming switchability, we therefore need

to focus on estimating the carryover effects. In this paper, we propose efficient designs for

estimating mixed and self carryover effects.

2 Description of the model

We consider the model that was assumed by Kunert and Stufken (2008). The response yu,r

of subject u in period r is modelled as

yu,r =

 αu + βr + τd(u,r) + ρd(u,r−1) + eu,r, if d(u, r) 6= d(u, r − 1),

αu + βr + τd(u,r) + χd(u,r−1) + eu,r, if d(u, r) = d(u, r − 1).

Here, d(u, r) is the treatment assigned to subject u in period r (1 ≤ u ≤ n, 1 ≤ r ≤ p) by the

design d, αu is the effect of subject u, βr is the effect of period r, τi is the direct effect, ρi the

mixed carryover effect and χi is the self carryover effect of treatment i. No carryover effect

is present in the first period, i.e., ρd(u,0) = χd(u,0) = 0. The errors eu,r, 1 ≤ u ≤ n, 1 ≤ r ≤ p

are assumed to be independent identically distributed with expectation 0 and variance

σ2 > 0.

The set of all designs with t treatments, n subjects and p periods is denoted by Ωt,n,p.

We focus on the case of two treatments (Reference treatment R, Test treatment T ), i.e.

t = 2.

For a given design d ∈ Ω2,n,p we define Td as the design matrix of direct effects, while Sd

is the design matrix of the self carryover effects and Md is the design matrix of the mixed
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carryover effects. We also consider the matrices U = In ⊗ 1p and P = 1n ⊗ Ip, where ⊗

denotes the Kronecker-product of matrices, Is is the (s × s)-identity matrix and 1s is the

s-vector with all entries 1. Then U and P are the design matrices for subject and period

effects, respectively, and the model in vector notation can be written as

y = Tdτ + Sdχ+ Mdρ+ Uα + Pβ + e,

where τ is the vector of direct effects, χ is the vector of self carryover and ρ is the vector of

mixed carryover effects. Further, α, β and e are the vectors of subject effects, period effects

and of the residual errors, respectively. We are interested in the simultaneous estimation

of the 4-dimensional vector of all carryover effects

δ =

 χ

ρ

 .
For a matrix A, we define ω(A) = A(ATA)+AT , where AT is the transpose and

(ATA)+ is the Moore-Penrose generalized inverse. Setting ω⊥(A) = I − ω(A), the infor-

mation matrix for the estimation of δ then is

Cd = [Sd,Md]
Tω⊥([P,U,Td])[Sd,Md].

Note that [Sd,Md]14 = P[0, 1, . . . , 1]T , because each subject in all periods but the first

experiences one of the four carryover effects. Therefore, the information matrix Cd has row

and column sums zero and only contrasts of the carryover effects are estimable.

To compare the performances of the designs, we consider the A-criterion, see e.g.

Pukelsheim (1993, p. 210). For a design d ∈ Ω2,n,p, we define λ1(Cd) ≥ λ2(Cd) ≥ λ3(Cd) ≥

λ4(Cd) as the ordered eigenvalues of Cd. Note that λ4(Cd) = 0, since Cd has row- and

column-sums zero. We then define the A-criterion ϕA as

ϕA(d) =
1(

1
λ1(Cd)

+ 1
λ2(Cd)

+ 1
λ3(Cd)

) .
An A-optimal design d∗ maximizes ϕA(d).
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3 Determination of A-optimal designs

Since the information matrix Cd has row- and column-sums zero, we can rewrite

Cd = B4CdB4 = B4[Sd,Md]
Tω⊥([P,U,Td])[Sd,Md]B4,

where B4 = ω⊥(14).

For two square matrices G ∈ Rk×k and D ∈ Rk×k, we write G ≤ D if D − G is

nonnegative definite. With this notation, we get an immediate upper bound for Cd, namely

Cd ≤ C̃d = B4[Sd,Md]
Tω⊥([U,Td])[Sd,Md]B4,

see Kunert (1983). Equality holds iff

B4[Sd,Md]
Tω⊥([U,Td])P = 0. (1)

Since ω⊥[U,Td] = ω⊥(U)− ω⊥(U)Td(T
T
d ω
⊥(U)Td)

+TT
d ω
⊥(U), the matrix C̃d can be

split up into

C̃d = Cd11 −Cd12C
+
d22C

T
d12,

where

Cd11 = B4[Sd,Md]
Tω⊥(U)[Sd,Md]B4,

Cd12 = B4[Sd,Md]
Tω⊥(U)Td,

and

Cd22 = TT
d ω
⊥(U)Td.

This implies that there is an upper bound for the A-criterion

ϕA(d) ≤ ϕ̃A(d),

where

ϕ̃A(d) =
1(

1
λ1(C̃d)

+ 1
λ2(C̃d)

+ 1
λ3(C̃d)

) .
This bound is easier to treat.

Each subject receives a sequence of treatments. Consider an arbitrary sequence z ∈

{R, T}p = Zp, say. For this sequence, we define
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• Tz is the design matrix for direct effects for this sequence, i.e., the design matrix

for direct effects we would get from a design consisting of one subject only, receiving

sequence z,

• Sz is the design matrix for self carryover effects for this sequence,

• Mz is the design matrix for mixed carryover effects for this sequence.

For a design d ∈ Ω2,n,p, define πd(z) as the proportion of subjects receiving sequence

z, z ∈ Zp. It is clear that all πd(z) ≥ 0 and that
∑

z∈Zp
πd(z) = 1. Since the number

of subjects receiving sequence z ∈ Zp is a natural number or 0, we conclude that πd(z)

must be an integral multiple of 1/n, where n is the number of subjects. It then is often

convenient to allow for approximate designs, for which this restriction is removed.

It is easy to see that the Cdij are linear in the sequences, Cdij = n
∑

z∈Z πd(z)Cij(z),

where

C11(z) = B4[Sz,Mz]
Tω⊥(1p)[Sz,Mz]B4,

C12(z) = B4[Sz,Mz]
Tω⊥(1p)Tz,

C22(z) = TT
z ω
⊥(1p)Tz.

Making use of the linearity of the Cdij, Kushner (1997) introduced a general method for

deriving optimal crossover designs. However, Kushner’s (1997) original method works only

if all Cdij are square matrices, i.e., matrices with the same number of rows and columns.

Since for our problem, Cd12 is a (4×2)-matrix, we have to adapt Kushner’s (1997) method

to our situation.

Proposition 1 Assume X ∈ R2×4 is an arbitrary matrix. Then

C̃d ≤ Cd11 −Cd12X−XTCT
d12 + XTCd22X.

Equality holds if X = Xd, where

Xd = C+
d22C

T
d12.

Proof: Define ∆ = X−Xd. Then

Cd11 −Cd12X−XTCT
d12 + XTCd22X
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= Cd11 −Cd12(∆ + Xd)− (∆ + Xd)
TCT

d12 + (∆−Xd)
TCd22(∆−Xd)

= Cd11 −Cd12Xd −XT
dCT

d12 + XT
dCd22Xd

−Cd12∆−∆TCT
d12 + ∆TCd22∆ + XT

dCd22∆ + ∆TCd22Xd.

Now, by setting Q = ω⊥(U)Td and using that QTω(Q) = QT , we observe that

Cd22Xd = TT
d ω
⊥(U)Td (TT

d ω
⊥(U)Td)

+TT
d ω
⊥(U)[Sd,Md]B4

= TT
d ω
⊥(U)[Sd,Md]B4

= CT
d12.

It follows that

Cd11 −Cd12X−XTCT
d12 + XTCd22X

= Cd11 −Cd12Xd + ∆TCd22∆

≥ Cd11 −Cd12Xd = C̃d.

This completes the proof.

Note that the right-hand side of the inequality in Proposition 1 is linear in the sequences,

Cd11 −Cd12X−XTCT
d12 + XTCd22X (2)

= n
∑
z∈Z

πd(z)
(
C11(z)−C12(z)X−XTCT

12(z) + XTC22(z)X
)
.

As a first step, we can use this proposition to derive an upper bound for the smallest

non-zero eigenvalue. Define

b2 =
1√
2

 1

−1

 .
Then b2b

T
2 = B2. With this notation we get an immediate consequence of Proposition 1.

Proposition 2 Assume k is any 4-dimensional vector, such that kT14 = 0 and x ∈ R.

Then

kT C̃dk ≤ kTCd11k− 2kTCd12b2x+ bT2 Cd22b2x
2.

Equality holds for x = kTCd12C
+
d22b2 = xd, say.
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Proof: For an arbitrary x ∈ R, define J(x) = kTCd11k− 2kTCd12b2x+ bT2 Cd22b2x
2.

Case 1: kTCd12b2 6= 0.

Consider the matrix

X = CT
d12

x

kTCT
d12b2

∈ R2×4.

Then kTXTb2 = x.

It follows from Proposition 1 that

kT C̃dk ≤ kTCd11k− kTCd12Xk− kTXTCT
d12k + kTXTCd22Xk.

Since Cd12 has row-sums 0, we have Cd12b2b
T
2 = Cd12. Since Cd22 has both row- and

column-sums 0, we even have b2b
T
2 Cd22b2b

T
2 = Cd22. Hence

kT C̃dk ≤ kTCd11k− kTCd12b2b
T
2 Xk

−kTXTb2b
T
2 CT

d12k + kTXTb2b
T
2 Cd22b2b

T
2 Xk

= kTCd11k− kTCd12b2x− xbT2 CT
d12k + xbT2 Cd22b2x

= J(x).

Because of Proposition 1, equality holds iff X = Xd = C+
d22C

T
d12, i.e., iff

x = bT2 C+
d22C

T
d12k = xd.

Case 2: kTCd12b2 = 0.

Then J(x) = kTCd11k + bT2 Cd22b2x
2 ≥ kTCd11k. Equality holds if x = 0.

On the other hand, it follows from kTCd12b2 = 0 that kTCd12b2b
T
2 = 0, and, there-

fore, that kTCd12 = 0. Hence, kTCd11k = kT C̃dk. Furthermore, xd = kTCd12C
+
d22b2 =

kTCd12b2b
T
2 C+

d22b2 = 0. This completes the proof.

Proposition 3 Consider an arbitrary design d ∈ Ω2,n,p. Assume k ∈ R4 and x ∈ R are

arbitrarily chosen, with the restriction that kT14 = 0. We then get for the smallest nonzero

eigenvalue of Cd that

λ3(Cd) ≤ n
1

kTk
max
z∈Zp

{kTC11(z)k− 2kTC12(z)b2x+ bT2 C22(z)b2x
2}.
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Proof: It follows from Proposition 2 and Equation 2 that

1

n
kT C̃dk ≤

∑
z∈Zp

πd(z){kTC11(z)k− 2kTC12(z)b2x+ bT2 C22(z)b2x
2}

≤ max
z∈Zp

{kTC11(z)k− 2kTC12(z)b2x+ bT2 C22(z)b2x
2}.

Since

λ3(C̃d) = min
`:`T 14=0

1

`T `
`T C̃d`

and since

λ3(Cd) ≤ λ3(C̃d),

the desired inequality follows.

We use another consequence of Propostion 1 to derive a bound for the trace of C̃d,

where the trace is the sum of the elements on the main diagonal of the matrix.

Proposition 4 Consider any matrix X ∈ R2×4 and define

L = max
z∈Zp

tr
(
C11(z)− 2C12(z)X + XTC22(z)X

)
,

where tr(A) denotes the trace of a matrix A. Then for any design d ∈ Ω2,n,p we have

tr(Cd) ≤ nL.

Proof: Since tr(C̃d) ≥ tr(Cd), it follows directly from Proposition 1 and Equation 2 that

tr(Cd)/n ≤ tr

∑
z∈Zp

πd(z)
(
C11(z)−C12(z)X−XTCT

12(z) + XTC22(z)X
)

≤ max
z∈Zp

(
tr(C11(z))− 2tr(C12(z)X) + tr(XTC22(z)X)

)
= L.

This completes the proof.

How do we choose X in Proposition 4? Assume that there is a design d∗ ∈ Ω2,n,p, for

which we hope that d∗ maximizes the trace of Cd. It follows from Proposition 1 that

tr(Cd∗) ≤ tr(C̃d∗)

= tr
(
Cd∗11 −Cd∗12Xd∗ −XT

d∗C
T
d∗12 + XT

d∗Cd∗22Xd∗
)
.

As an immediate consequence of Proposition 4, we therefore get a sufficient condition that

tr(Cd∗) = maxd∈Ω2,n,p tr(Cd).
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Proposition 5 Assume d∗ ∈ Ω2,n,p is such that for every sequence z ∈ Zp we have

tr
(
C11(z)− 2C12(z)Xd∗ + XT

d∗C22(z)Xd∗
)
≤ tr (Cd∗) /n,

where Xd∗ = C+
d∗22C

T
d∗12, as in Proposition 1. Then tr(Cd∗) = maxd∈Ω2,n,p tr(Cd).

Proof: In Proposition 4 choose X = Xd∗ . Then the conditions of Proposition 5 imply

that L ≤ tr(Cd∗)/n. For any design d ∈ Ω2,n,p it then follows from Proposition 4 that

tr(Cd) ≤ tr(Cd∗).

For any sequence z ∈ Zp, there is a dual sequence z̄ ∈ Zp, where each T in z is replaced

by an R in z̄ and vice versa. A design d ∈ Ω2,n,p is called dual balanced if πd(z) = πd(z̄) for

each pair of dual sequences z and z̄ in Zp.

Proposition 6 If we allow for approximate designs, then for each design d ∈ Ω2,n,p there

is a dual balanced design f ∈ Ω2,n,p, such that

ϕ̃A(f) ≥ ϕ̃A(d).

Proof: The design d has weights πd(z), z ∈ Zp. Consider the dual design d̄ ∈ Ω2,n,p with

weights πd̄(z), z ∈ Zp, where for each z ∈ Zp the dual design d̄ allots the weight that d has

allotted to the dual sequence z̄, i.e. πd̄(z) = πd(z̄). If we define

H2 =

 0 1

1 0

 ,
then Sd̄ = SdH2, Md̄ = MdH2 and Td̄ = TdH2. Therefore,

Cd̄11 =

H2 0

0 H2

Cd11

H2 0

0 H2

 , Cd̄12 =

H2 0

0 H2

Cd12H2

and

Cd̄22 = H2Cd22H2.

This implies that

C̃d̄ =

H2 0

0 H2

Cd11

H2 0

0 H2


10



−

H2 0

0 H2

Cd12H2(H2C
+
d22H2)H2C

T
d12

H2 0

0 H2


=

H2 0

0 H2

 C̃d

H2 0

0 H2

 .

It follows that C̃d̄ has the same eigenvalues as C̃d and, consequently, that ϕ̃A(d̄) = ϕ̃A(d).

Now consider the dual balanced design f which allots to each sequence z the weight

πf (z) = 1
2
πd(z) + 1

2
πd̄(z). It then follows from Proposition 1 of Kunert and Martin (2000)

that

C̃f ≥
1

2
C̃d +

1

2
C̃d̄,

which implies that

ϕ̃A(f) ≥ 1

2
ϕ̃A(d) +

1

2
ϕ̃A(d̄) = ϕ̃A(d),

since the A-criterion is concave and increasing.

4 Some efficient designs

For a given sequence z ∈ Zp, it is possible to explicitly give the entries of Cij(z). We define

nR and nT as the number of appearances of treatment R and T in z. Let mRT , mTR be the

number of appearances of the mixed carryover effects of R and T , respectively, and sRR,

sTT the number of appearances of the self carryover effects of R and T in z. Then

STz ω
⊥(1p)Sz =

sRR 0

0 sTT

− 1

p

 s2
RR sRRsTT

sRRsTT s2
TT

 ,

STz ω
⊥(1p)Mz = −1

p

mRT sRR mRT sTT

mTRsRR mTRsTT

 ,

STz ω
⊥(1p)Tz =

sRR 0

0 sTT

− 1

p

sRRnR sRRnT

sTTnR sTTnT


=

1

p

 sRRnT −sRRnT
−sTTnR sTTnR

 ,
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where we have used that nR + nT = p. Similarly,

MT
z ω
⊥(1p)Mz =

mRT 0

0 mTR

− 1

p

 m2
RT mRTmTR

mRTmTR m2
TR

 ,

MT
z ω
⊥(1p)Tz =

 0 mRT

mTR 0

− 1

p

mRTnR mRTnT

mTRnR mTRnT


=

1

p

−mRTnR mRTnR

mTRnT −mTRnT

 .

These (2× 2)- matrices then can be used to determine the (4× 4)-matrix C11(z) and the

(4× 2)-matrix C12(z). The matrix C22(z) is given by:

C22(z) = TT
z ω
⊥(1p)Tz

=

nR 0

0 nT

− 1

p

 n2
R nTnR

nTnR n2
T


=

nR(1− 1
p
nR) −1

p
nTnR

−1
p
nTnR nT (1− 1

p
nT )


=

1

p
nTnR

 1 −1

−1 1


=

2

p
nTnRB2.

The fact that C22(z) is proportional to B2 for any z implies that for any design d there is

a c such that Cd22 = cB2. This is important because we need to determine a g-inverse of

Cd22. Because of the proportionality the g-inverse is given by

C+
d22 =

1

c
B2.

4.1 Designs for p=3

If p = 3, there are 8 possible sequences (see Table 1). We try to find an approximate design

d which maximizes ϕ̃A. Note that ϕ̃A(d) is uniquely determined by the 8 proportions
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Table 1: Possible sequences with three periods (p = 3). It should be noted that z1 and z2,

z3 and z4, z5 and z6, z7 and z8 are pairs of dual sequences.

Sequence mTR mRT sRR sTT nR nT

z1 TTT 0 0 0 2 0 3

z2 RRR 0 0 2 0 3 0

z3 RTT 0 1 0 1 1 2

z4 TRR 1 0 1 0 2 1

z5 RTR 1 1 0 0 2 1

z6 TRT 1 1 0 0 1 2

z7 RRT 0 1 1 0 2 1

z8 TTR 1 0 0 1 1 2

πd(z), z ∈ Z3. We conclude from Proposition 6 that a best design is among the dual-

balanced designs, i.e., πd(z1) = πd(z2) = p1, say, πd(z3) = πd(z4) = p3, πd(z5) = πd(z6) = p5

and πd(z7) = πd(z8) = p7. With this restriction, we get

STd ω
⊥(U)Sd/n =

∑
z

πd(z)STz ω
⊥(13)Sz

=

2
3
(p1 + p3 + p7) 0

0 2
3
(p1 + p3 + p7)

 =
2

3
(p1 + p3 + p7)I2,

STd ω
⊥(U)Md/n =

∑
z

πd(z)STz ω
⊥(13)Mz

=

−1/3p7 −1/3p3

−1/3p3 −1/3p7

 ,

STd ω
⊥(U)Td/n =

∑
z

πd(z)STz ω
⊥(13)Tz

=

 1
3
p3 + 1

3
p7 −1

3
p3 − 1

3
p7

−1
3
p3 − 1

3
p7

1
3
p3 + 1

3
p7

 = (
2

3
p3 +

2

3
p7)B2,

MT
d ω
⊥(U)Md/n =

∑
z

πd(z)MT
z ω
⊥(13)Mz
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=

2
3
(p3 + p7) + 4

3
p5 −2

3
p5

−2
3
p5

2
3
(p3 + p7) + 4

3
p5

 ,

MT
d ω
⊥(U)Td/n =

∑
z

πd(z)MT
z ω
⊥(13)Tz

= −(
2

3
p3 +

4

3
p7 + 2p5)B2,

and

TT
d ω
⊥(U)Td/n =

∑
z

πd(z)TT
z ω
⊥(13)Tz

=
8

3
(p1 · 0 + p3 + p5 + p7) B2.

Combining these results, we have

1

n
C̃d = B4


a b e f

b a f e

e f c d

f e d c

B4,

where

a =
2

3
(p1 + p3 + p7)− p2

3 + p2
7 + 2p3p7

12(p3 + p5 + p7)
,

b =
p2

3 + p2
7 + 2p3p7

12(p3 + p5 + p7)
,

c =
2

3
(p3 + p7) +

4

3
p5 −

p2
3 + 4p2

7 + 9p2
5 + 4p3p7 + 6p3p5 + 12p7p5

12(p3 + p5 + p7)
,

d = −2

3
p5 +

p2
3 + 4p2

7 + 9p2
5 + 4p3p7 + 6p3p5 + 12p7p5

12(p3 + p5 + p7)
,

e = −1/3p7 +
p2

3 + 3p7p3 + 3p3p5 + 2p2
7 + 3p7p5

12(p3 + p5 + p7)
,

f = −1

3
p3 −

p2
3 + 3p7p3 + 3p3p5 + 2p2

7 + 3p7p5

12(p3 + p5 + p7)
.

This matrix has eigenvalues

µ1 =
a− b+ c− d

2
+

√
(e− f)2 +

(
c− d− a+ b

2

)2

,

µ2 =
a− b+ c− d

2
−

√
(e− f)2 +

(
c− d− a+ b

2

)2

,
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µ3 =
a+ b+ c+ d

2
− e− f

and µ4 = 0. With a numerical search, we found that ϕ̃A(d) = 1/(1/µ1 + 1/µ2 + 1/µ3) is

maximized, if

p1 = 0.0951, p3= 0.1033, p5 = 0.1684 and p7= 0.1332.

The ϕ̃A-criterion for a design d̃ with these proportions is ϕ̃A(d̃) = 0.0636n. However,

there are two problems with d̃. Firstly, it takes a very large number of experimental subjects

to construct an exact design with these proportions. Secondly, the true A-criterion of d̃ is

less than the bound: ϕA(d̃) < ϕ̃A(d̃). This is because d̃ does not fulfill Equation 1.

A sufficient condition to fulfill Equation 1 is as follows.

Assume the design d is such that in all periods both direct effects appear in exactly half

of the subjects, and that in each of the periods 2, . . . , p each of the four carryover effects

appears in exactly one quarter of the subjects. This implies that∑
z

πd(z)TT
z =

1

2
121

T
p ,

and ∑
z

πd(z)[Sz, Mz]
T = 14

[
0 1

4
1
4

. . . 1
4

]
.

Now note that

B4[Sd, Md]
Tω⊥([U,Td])P =

(
B4[Sd, Md]

T −Cd12C
+
d22T

T
d

)
ω⊥(U)P

=
(
B4[Sd, Md]

T −Cd12C
+
d22T

T
d

)
(1n ⊗ ω⊥(1p))

= n

(
B4

∑
z

πd(z)[Sz, Mz]
T −Cd12C

+
d22

∑
z

πd(z)TT
z

)
ω⊥(1p).

This implies for our d that

B4[Sd, Md]
Tω⊥([U,Td])P = 0

and, therefore, Cd = C̃d.

It is clear that the design d̃ does not fulfill the sufficient condition: In each period,

the number of subjects receiving a mixed carryover is larger than the number of subjects

receiving a self carryover. The difference is larger in period 3 than in period 2.
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If, instead of the design d̃, we use an exact design d∗ which allots πd∗(z) = 1
8

to all

sequences in Z3, we get ϕ̃A(d∗) = 0.0628n. It is easy to verify that this design d∗ fulfills

the sufficient conditions for Equation 1. Hence, ϕA(d∗) = 0.0628n and it comes very close

to the numerically derived upper bound for the A-criterion (0.0636n).

4.2 Designs for p=1 mod 4

We consider the case that p = 4`+1, where ` is a natural number, and that n is divisible by

four. For this case, consider the exact design d∗ ∈ Ω2,n,p, where one quarter of the subjects

receive the sequence

z1 = [ R T T R R . . . T T R R ],

one quarter of the subjects receive the dual sequence

z̄1 = [ T R R T T . . . R R T T ],

the third quarter of the subjects receive the sequence

z2 = [ R R T T R R . . . T T R ],

and the final quarter of the subjects receive the dual sequence

z̄2 = [ T T R R T T . . . R R T ].

These designs d∗ have some appeal for practice: while the design is not too complicated

from an organizational viewpoint, it is not too obvious for subjects when they receive the

same treatment as in the period before and when a different treatment.

For z1 we get nR = 2` + 1 and nT = 2`, while mRT = mTR = sRR = sTT = `. This

implies that

STz1ω
⊥(1p)Sz1 =

` 0

0 `

− 1

p

`2 `2

`2 `2

 ,

STz1ω
⊥(1p)Mz1 = −1

p

`2 `2

`2 `2

 ,
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STz1ω
⊥(1p)Tz1 =

1

p

(2`+ 1)` −(2`+ 1)`

−2`2 2`2

 ,

MT
z1
ω⊥(1p)Mz1 =

` 0

0 `

− 1

p

`2 `2

`2 `2

 ,

and

MT
z1
ω⊥(1p)Tz1 =

1

p

 −2`2 2`2

(2`+ 1)` −(2`+ 1)`

 .

With straightforward algebra we get

C11(z1) = `B4, C12(z1) =
1

2


` −`

−` `

−` `

` −`

 , and C22(z1) =
4`(2`+ 1)

p
B2.

Since the sequence z2 has the same parameters, nR = 2` + 1, nT = 2` and mRT = mTR =

sRR = sTT = `, we find that all Cij(z2) = Cij(z1).

For the dual sequences z̄1 and z̄2, the roles of R and T are interchanged. Hence nT =

2`+ 1 and nT = 2`, but we also have mRT = mTR = sRR = sTT = `. It then is easy to see

that, again, C11(z̄i) = C11(z1), C12(z̄i) = C12(z1) and C22(z̄i) = C22(z1), for i = 1, 2. This

implies for the design d∗ that

Cd∗11 = n`B4, Cd∗12 =
n

2


` −`

−` `

−` `

` −`

 and Cd∗22 =
4`(2`+ 1)n

p
B2.

We therefore have

C̃d∗ = n`B4 −
n`p

8(2`+ 1)


1 −1 −1 1

−1 1 1 −1

−1 1 1 −1

1 −1 −1 1


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=
n(p− 1)

16(p+ 1)


2p+ 3 −1 −1 −2p− 1

−1 2p+ 3 −2p− 1 −1

−1 −2p− 1 2p+ 3 −1

−2p− 1 −1 −1 2p+ 3

 .

To show that Cd∗ = C̃d∗ , we verify that in each period the direct effect of each treatment

appears in exactly two of the sequences, while in each of the periods 2, . . . , p each of the

four carryover effects appears in exactly one of the four sequences.

This implies that Equation 1 holds, and, therefore, Cd∗ = C̃d∗ . The eigenvalues of Cd∗

are µ1(d∗) = µ2(d∗) = np−1
4

, µ3(d∗) = n p−1
4(p+1)

and 0. The eigenvector corresponding to

µ3(d∗) is k3 = 1
2
[ 1 −1 −1 1 ]T .

The A-criterion of the design d∗ therefore is

ϕA(d∗) = n
p− 1

4 + 4 + 4(p+ 1)
= n

p− 1

4(p+ 3)
.

Note that this cannot be larger than n
4
. Even if the number of periods p goes to ∞, we

have ϕA(d∗)→ n
4
. We will show in the next section that no other design can perform much

better. This is similar to what happens for the estimation of the direct effects in our model

(see Kunert and Stufken 2008): a large number of periods is only of limited use.

5 An upper bound for the A-criterion

In this section we derive an upper bound for the A-criterion for an arbitrary p. We will

find that the class of designs d∗ derived in Section 4.2 is highly efficient. We begin with a

technical lemma.

Proposition 7 Consider an arbitrary sequence z ∈ Zp , starting with R. Then the design-

matrices Tz, Sz and Mz fulfill the equality

Sz + MzH2 −Tz =


−1 0

0 0
...

...

0 0

 ,

where H2 is as in the proof of Proposition 6.
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Proof The first row of Tz equals [1 0], since the sequence starts with R. The first rows of

both Sz and Mz are [0 0]. Therefore, the first two of Sz + MzH2 −Tz must equal [−1 0].

Now consider the i-th row, for i ≥ 2.

Case 1: The preceding treatment was R, the current treatment is R. Then

the i-th row of Sz is [1 0],

the i-th row of Mz is [0 0],

and

the i-th two of Tz is [1 0].

Hence, the i-th row of Sz + MzH2 −Tz equals [0 0].

Case 2: The preceding treatment was R, the current treatment is T . Then

the i-th row of Sz is [0 0],

the i-th row of Mz is [1 0],

and

the i-th two of Tz is [0 1].

Hence, the i-th row of MzH2 is [0 1] and the i-th row of Sz + MzH2 −Tz equals [0 0].

Case 3: The preceding treatment was T , the current treatment is R. Then

the i-th row of Sz is [0 0],

the i-th row of Mz is [0 1],

and

the i-th two of Tz is [1 0].

Hence, the i-th row of MzH2 is [1 0] and the i-th row of Sz + MzH2 −Tz equals [0 0].

Case 4: The preceding treatment was T , the current treatment is T . Then

the i-th row of Sz is [0 1],

the i-th row of Mz is [0 0],

and

the i-th two of Tz is [0 1].

Hence, the i-th row of Sz + MzH2 −Tz equals [0 0].

This completes the proof.

Proposition 8 Consider an arbitrary sequence z ∈ Zp, choose k = 1
2
[1,−1,−1, 1]T and
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choose x = 1√
2
. Then

kTC11(z)k− 2kTC12(z)b2x+ bT2 C22(z)b2x
2 ≤ p− 1

4p

Proof: Observing that

k =
1√
2

 b2

−b2


we get

kTC11(z)k =
[
bT2 /

√
(2),−bT2 /

√
2
]

B4[Sz,Mz]
Tω⊥(1p)[Sz,Mz]B4

 b2/
√

2

−b2/
√

2


=

1

2
(bT2 STz − bT2 MT

z )ω⊥(1p)(Szb2 −Mzb2).

and

kTC12(z)b2 =
1√
2

(bT2 STz − bT2 MT
z )ω⊥(1p)Tzb2.

Therefore,

kTC11(z)k− 2kTC12(z)b2x+ bT2 C22(z)b2x
2

=
1

2
(bT2 STz − bT2 MT

z )ω⊥(1p)(Szb2 −Mzb2)− 2
1√
2

(bT2 STz − bT2 MT
z )ω⊥(1p)Tzb2x

+bT2 TT
z ω
⊥(1p)Tz12x

2

=
1

2

(
(bT2 STz − bT2 MT

z − b2T
T
z )ω⊥(1p)(Szb2 −Mzb2)

−(bT2 STz − bT2 MT
z − b2T

T
z )ω⊥(1p)Tzb2

)
=

1

2

(
bT2 (STz −MT

z −TT
z )ω⊥(1p)(Sz −Mz −Tz)b2

)
.

If H2 is as in Proposition 7, then H2b2 = −b2. Hence,

(Sz −Mz −Tz)b2 = (Sz + MzH2 −Tz)b2.

Therefore, if the sequence z starts with R, it follows from Proposition 7 that (Sz −Mz −

Tz)b2 = [ 1√
2

0 . . . 0]T . If z starts with T , we get with the same methods that (Sz −Mz −

Tz)b2 = [− 1√
2

0 . . . 0]T .

This implies for any sequence z that

kTC11(z)k− 2kTC12(z)b2x+ bT2 C22(z)b2x
2
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=
1

2

[
1√
2

0 . . . 0
]
ω⊥(1p)


1√
2

0
...

0

 =
p− 1

4p
.

This completes the proof.

Now consider an arbitrary design d ∈ Ω2,n,p. Since kT14 = 0 and kTk = 1, it follows

from Proposition 2 and Proposition 8 that

λ3(d) ≤ nmax
z∈Zp

{kTC11(z)k − 2kTC12(z)b2x+ bT2 C22(z)b2x
2} ≤ n

p− 1

4p
. (3)

Remember that µ3(d∗) = n p−1
4(p+1)

., see Section 4.2. So the smallest nonzero eigenvalue of

d∗ is slightly less than this bound.

We now show that d∗ maximizes the trace of the information matrix.

Proposition 9 Choose X = c
[

B2 −B2

]
, where

c =
p

2(p+ 1)
.

Consider an arbitrary sequence z ∈ Zp which starts with R. Then

tr
(
C11(z)− 2C12(z)X + XTC22(z)X

)
≤ (2p+ 3)(p− 1)

4(p+ 1)
.

Proof: see Appendix.

As an immediate consequence of Proposition 9 we find that a sequence z∗ ∈ Zp attains

the bound for

Gz = tr(C11(z)− 2C12(z)X + XTC22(z)X)

if and only if mRT = mTR and sTT = sRR = p−1
4

. Note that this is only possible if there

is an ` ∈ N such that p = 4`+ 1. The two sequences z1 and z2 from Section 4.2 fulfill this

condition.

For the dual z̄ of a sequence z, observe as in the proof of Proposition 6 that

C11(z̄) =

H2 0

0 H2

C11(z)

H2 0

0 H2

 ,C12(z̄) =

H2 0

0 H2

C12(z)H2,
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and

C22(z̄) = H2C22(z)H2.

The matrix X from Proposition 9 fulfills that

X

H2 0

0 H2

 = H2X = −X.

So we get for a sequence z starting with T that

tr(C11(z))− 2tr(C12(z)X) + tr(XTC22(z)X)

= tr

H2 0

0 H2

C11(z̄)

H2 0

0 H2

− 2 tr

H2 0

0 H2

C12(z̄)H2X


+tr(XTH2C22(z̄)H2X)

= tr

C11(z̄)

H2 0

0 H2

H2 0

0 H2

− 2tr

C12(z̄)(−X)

H2 0

0 H2


+tr

(
(−XT )C22(z̄)(−X)

)
= tr(C11(z̄))− 2tr(C12(z̄)X) + tr(XTC22(z̄)X) ≤ (2p+ 3)(p− 1)

4(p+ 1)
,

because the sequence z̄ starts with R and Proposition 9 can be applied. This implies that

the bound from Proposition 9 also holds for sequences z starting with T .

We therefore have a bound for the trace of the information matrix of any design d ∈

Ω2,n,p, namely

tr(Cd) ≤ tr(C̃d) ≤ n
∑
z∈Zp

πd(z)tr
(
C11(z)− 2C12(z)X + XTC22(z)X

)
≤ n

(2p+ 3)(p− 1)

4(p+ 1)
.

This helps to derive a bound for the A-criterion of any design.

Proposition 10 Assume the design d ∈ Ω2,n,p has an information matrix with eigenvectors

µ1 ≥ µ2 ≥ µ3, with the side-conditions that

µ1 + µ2 + µ3 ≤ A, andµ3 ≤ q,

where q ≤ A/3. Then we have for the A-criterion of the design that

ϕA(d) ≤ q(A− q)
A+ 3q

.
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Proof: For given µ2 and µ3, we have that µ1 ≤ A− µ2 − µ3. Hence,

ϕA(d) =
1

1
µ1

+ 1
µ2

+ 1
µ3

≤ 1
1

A−µ2−µ3 + 1
µ2

+ 1
µ3

.

Holding µ3 fixed, this bound is maximal if µ2 = A− µ2 − µ3, i.e. if µ2 = (A− µ3)/2. This

implies that

ϕA(d) ≤ 1
2

A−µ3 + 2
A−µ3 + 1

µ3

.

This bound, however, gets maximal if µ3 gets as near to (A − µ3)/2 as possible, which

means that µ3 = q. This gives

ϕA(d) ≤ 1
2

A−q + 2
A−q + 1

q

,

which completes the proof.

For any d ∈ Ω2,n,p we have concluded from Proposition 9 that the sum of the three

eigenvalues, i.e. the trace of Cd, cannot be more than A = n (2p+3)(p−1)
4(p+1)

, while we get

from inequality (3) that µ3(d) ≤ np−1
4p
. We therefore conclude from Proposition 10 that the

A-criterion of the design fulfills

ϕA(d) ≤ n
(p− 1)(2p2 + 2p− 1)

4p(2p2 + 6p+ 3)
= ϕ∗A,

say.

Remember that the A-criterion of the design d∗ from Section 4.2 is

ϕA(d∗) = n
p− 1

4(p+ 3)
.

This means that the efficiency of the design d∗ is at least

ϕA(d∗)

ϕ∗A
=

2p3 + 6p2 + 3p

2p3 + 8p2 + 5p− 3
,

which equals 0.88 for p = 5 and 0.92 for p = 10. If p→∞, the efficiency goes to 1.

Appendix: Proof of Proposition 9

Define

Gz = tr(C11(z))− 2tr(C12(z)X) + tr(XTC22(z)X).
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Then

Gz = tr

B4

 STz ω
⊥(1p)Sz STz ω

⊥(1p)Mz

MT
z ω
⊥(1p)Sz MT

z ω
⊥(1p)Mz

B4


−2c tr

B4

 STz ω
⊥(1p)Tz

MT
z ω
⊥(1p)Tz

[ B2 −B2

]
+c2tr

 B2

−B2

TT
z ω
⊥(1p)Tz

[
B2 −B2

]
= tr(STz ω

⊥(1p)Sz) + tr(MT
z ω
⊥(1p)Mz)

−1

4
1T2
(
STz ω

⊥(1p)Sz + STz ω
⊥(1p)Mz + MT

z ω
⊥(1p)Sz + MT

z ω
⊥(1p)Mz

)
12

−2c tr(ST2 ω
⊥(1p)TzB2) + 2c tr(MT

z ω
⊥(1p))TzB2)

+2c2 tr(B2T
T
z ω
⊥(1p)TzB2),

where we have used that tr(A1A2) = tr(A2A1) and that
[

B2 −B2

]
B4 =

[
B2 −B2

]
.

We split Gz up into several parts. First of all,

1

4
1T2
(
STz ω

⊥(1p)Sz + STz ω
⊥(1p)Mz + MT

z ω
⊥(1p)Sz + MT

z ω
⊥(1p)Mz

)
12

=
1

4
1T2 (STz + MT

z )ω⊥(1p)(Sz + Mz)12

=
1

4
[ 0 1 . . . 1 ]ω⊥(1p)


0

1
...

1

 =
p− 1

4p
.

Further, we have

tr(STz ω
⊥(1p)Sz)− 2c tr(ST2 ω

⊥(1p)TzB2) + c2 tr(B2T
T
z ω
⊥(1p)TzB2)

= tr
(
(Sz − cTzB2)Tω⊥(1p)(Sz − cTzB2)

)
= tr

(
(Sz − cTzB2)T (Sz − cTzB2)

)
− 1

p
1Tp (Sz − cTzB2)(Sz − cTzB2)T1p

and

tr(MT
z ω
⊥(1p)Mz) + 2c tr(MT

z ω
⊥(1p))TzB2) + c2 tr(B2T

T
z ω
⊥(1p)TzB2)

= tr
(
(Mz + cTzB2)Tω⊥(1p)(Mz + cTzB2)

)
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= tr
(
(Mz + cTzB2)T (Mz + cTzB2)

)
− 1

p
1Tp (Mz + cTzB2)(Mz + cTzB2)T1p.

Since z starts with R, the first row of Sz − cTzB2 equals [ −c/2 c/2 ]. The i-th row

(i ≥ 2) of Sz − cTzB2 equals

• [ 1− c/2, c/2 ], if z(i− 1) = R, z(i) = R,

• [ c/2, −c/2 ], if z(i− 1) = R, z(i) = T ,

• [ −c/2, c/2 ], if z(i− 1) = T, z(i) = R,

• [ c/2, 1− c/2 ], if z(i− 1) = T, z(i) = T .

On the other hand, the first row of Mz + cTzB2 is [ c/2 −c/2 ]. For i ≥ 2 the i-th

row of Mz + cTzB2 equals

• [ c/2, −c/2 ], if z(i− 1) = R, z(i) = R,

• [ 1− c/2, c/2 ], if z(i− 1) = R, z(i) = T ,

• [ c/2, 1− c/2 ], if z(i− 1) = T, z(i) = R,

• [ −c/2, c/2 ], if z(i− 1) = T, z(i) = T .

This implies that we can rewrite

(Sz − cTzB2)T (Sz − cTzB2) =

 c2

4
− c2

4

− c2

4
c2

4

+ sRR

 (1− c
2
)2 c

2
(1− c

2
)

c
2
(1− c

2
) c2

4


+mRT

 c2

4
− c2

4

− c2

4
c2

4

+mTR

 c2

4
− c2

4

− c2

4
c2

4


+sTT

 c2

4
c
2
(1− c

2
)

c
2
(1− c

2
) (1− c

2
)2


and

tr
(
(Sz − cTzB2)T (Sz − cTzB2)

)
= (1 +mRT +mTR)

c2

2
+
(
sRR + sTT

)
(
c2

4
+ (1− c

2
)2).
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Similarly,

tr
(
(Mz + cTzB2)T (Mz + cTzB2)

)
= (1 + sRR + sTT )

c2

2
+
(
mRT +mTR

)
(
c2

4
+ (1− c

2
)2).

Noting that sRR + sTT +mRT +mTR = p− 1, we get

tr
(
(Sz − cTzB2)T (Sz − cTzB2)

)
+ tr

(
(Mz + cTzB2)T (Mz + cTzB2)

)
= (p+ 1)

c2

2
+ (p− 1)(

c2

4
+ (1− c

2
)2)

=
3p3 + 4p2 − 2p− 4

4(p+ 1)2
.

Note that all terms considered so far turn out to be the same for any sequence z ∈ Zp.

On the other hand

(Sz − cTzB2)T1p

=

 − c
2

c
2

+ sRR

 1− c
2

c
2

+mRT

 c
2

− c
2

+mTR

 − c
2

c
2

+ sTT

 c
2

1− c
2


=

 sRR − c
2

(1 + sRR − sTT − (mRT −mTR))

sTT + c
2

(1 + sRR − sTT − (mRT −mTR))


and, similarly,

(Mz + cTzB2)T1p

=

 c
2

− c
2

+ sRR

 c
2

− c
2

+mRT

 1− c
2

c
2

+mTR

 c
2

1− c
2

+ sTT

 − c
2

c
2


=

 mRT + c
2

(1 + sRR − sTT − (mRT −mTR))

mTR − c
2

(1 + sRR − sTT − (mRT −mTR))

 .
These formulas get slightly clearer if we reparametrize. Define s = sTT , ds = sRR−sTT ,m =

mTR and dm = mRT −mTR. With this notation, we get

1Tp (Sz − cTzB2)(Sz − cTzB2)T1p + 1Tp (Mz + cTzB2)(Mz + cTzB2)T1p

= (s+ ds −
c

2
(1 + ds − dm))2 + (s+

c

2
(1 + ds − dm))2

+(m− c

2
(1 + ds − dm))2 + (m+ dm +

c

2
(1 + ds − dm))2

= F (s, ds, dm),
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say. Note that m is not an independent parameter. Due to sRR+sTT +mRT +mTR = p−1,

we have

m =
p− 1− 2s− ds − dm

2
.

We minimize F by choosing s, ds and dm. As a first step, we leave ds and dm constant and

determine an s∗ minimizing F (., ds, dm).

The partial derivative of F with respect to s equals

∂F

∂s
= 2(s+ ds + s−m−m− dm) = 2(4s+ 2ds − (p− 1)),

where we have used that the partial derivative of m with respect to s is −1. Hence, the

derivative of F is zero if

s =
p− 1− 2ds

4
= s∗(ds),

say. It is negative if s < s∗(ds) and positive if s > s∗(ds). This implies that (for given ds

and dm) the function F is minimal if s = s∗(ds).

Note that there are only two possible values for dm. The sequence starts with R. If it

also ends with an R, then mRT = mTR and, hence, dm = 0. If, however, the sequence ends

with a T , then dm = 1. No other values of dm are possible.

To derive the minimum of F , we consider the two possibilities for dm separately.

Case 1: dm = 1. The derivative of F (s∗(ds), ds, 1) with respect to ds equals

ds(p
2 + 2p+ 2) + p(p+ 1)

2(p+ 1)2
.

Hence the derivative is zero for

ds = − p(p+ 1)

p2 + 2p+ 2
∈ (−1, 0).

It is negative for smaller ds and positive for larger ds. Since ds must be an integer, the

minimum of F for Case 1 must therefore be either F (s∗(−1),−1, 1) or F (s∗(0), 0, 1). Since

F (s∗(0), 0, 1) =
p2 − 2p+ 3

4
>
p4 − p2 + 4p+ 5

4(p+ 1)2
= F (s∗(−1),−1, 1),

the minimum for Case 1 is F (s∗(−1),−1, 1).

Case 2: dm = 0. The derivative of F (s∗(ds), ds, 0) with respect to ds equals

ds(p
2 + 2p+ 2)− p
2(p+ 1)2

.
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Hence, the derivative is zero if

ds =
p

p2 + 2p+ 2
∈ (0, 1).

Again, it is negative for smaller ds and positive for larger ds. Hence, the minimum for Case

2 must be either F (s∗(0), 0, 0) or F (s∗(1), 1, 0). Since,

F (s∗(0), 0, 0) =
p4 − p2 + 1

4(p+ 1)2
<

p4 + 3

4(p+ 1)2
= F (s∗(1), 1, 0),

the minimum for Case 2 is F (s∗(0), 0, 0).

Comparing the two cases, we find that F (s∗(0), 0, 0) < F (s∗(−1),−1, 1). Therefore we

have shown that

min
s,ds,dm

F (s, ds, dm) =
p4 − p2 + 1

4(p+ 1)2
.

Combining the results for the three terms, we conclude for any z ∈ Zp that

Gz ≤ −p− 1

4p
+

3p3 + 4p2 − 2p− 4

4(p+ 1)2
− F (s∗(0), 0, 0)

p

= −(p− 1)(p+ 1)2

4p(p+ 1)2
+

3p4 + 4p3 − 2p2 − 4p

4p(p+ 1)2
− p4 − p2 + 1

4p(p+ 1)2

=
(2p+ 3)(p− 1)

4(p+ 1)
.

This completes the proof.
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