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The nonparametric location–scale mixture cure model

Justin Chown∗, Cédric Heuchenne, and Ingrid Van Keilegom

Abstract. We propose completely nonparametric methodology to investigate location–scale mod-
elling of two–component mixture cure models, where the responses of interest are only indirectly
observable due to the presence of censoring and the presence of so–called long–term survivors that are
always censored. We use covariate-localized nonparametric estimators, which depend on a bandwidth
sequence, to propose an estimator of the error distribution function that has not been considered
before in the literature. When this bandwidth belongs to a certain range of undersmoothing band-
widths, the asymptotic distribution of the proposed estimator of the error distribution function does
not depend on this bandwidth, and this estimator is shown to be root-n consistent. This suggests
that a computationally costly bandwidth selection procedure is unnecessary to obtain an effective
estimator of the error distribution, and that a simpler rule-of-thumb approach can be used instead.
A simulation study investigates the finite sample properties of our approach, and the methodology
is illustrated using data obtained to study the behavior of distant metastasis in lymph-node-negative
breast cancer patients.

Keywords: censored data, cure model, error distribution function, nonparametric regression
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1. Introduction

A common problem faced in medical studies is for some subjects to never experience the event
of interest during the study period. For example, consider a follow–up study examining the harmful
side–effects of a pharmaceutical product. Since side–effects are commonly rare, it is expected that
many subjects involved in the study will not experience the harmful effect of the treatment by the
end of the study, and, therefore, these subjects will be censored at the conclusion of the study. Hence,
these subjects are called long–term survivors. The first known study involving statistical analysis
of data containing long–term survivors dates back to Boag (1949), and this author coined the term
cure model to indicate the data contained a non–trivial proportion of long–term survivors. However,
Farewell (1986) observes that cure models should not be used without clear empirical or biological
need (see Section 2). Results on censored data models should be used in these cases, and studies
involving subjects with censored responses are common. Well known methods can be employed to
study these data (see, for example, Lawless, 1982; Aitkin et al.,1989; Harris and Albert, 1991; Collett,
1994).

We consider the case of observing responses Y that are right censored by another random variable
C, and, hence, observe only the minimum Z = Y ∧ C. Throughout this article, we will assume that
Y and C are only conditionally independent given a covariate X, and, for simplicity, we will assume
the censoring variable C is a continuous random variable. For clarity, we will refer to responses
corresponding to the subpopulation that has survival times that are finite as Yu, which are only
indirectly observed due to the presence of censored values. The purpose of this paper is to study the
heteroskedastic nonparametric regression of Yu given the covariate X:

(1.1) Yu = m(X) + s(X)ε.

Here m is the regression function and s is the scale function (bounded away from zero), which are both
assumed to be smooth. We assume the error ε is a continuous random variable that is independent of
the covariate X and has distribution function F . Identifiability of the components in the cure model

∗Correspondences may be addressed to Justin Chown.
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also requires additional assumptions on the joint distribution of (X,Z, δ), where δ = 1[Y ≤ C] is the
right–censoring indicator. Finally, m is assumed to be a location–type functional and s is assumed
to be a scale–type functional, which imposes additional requirements on the model error ε that are
analogous to the usual zero mean and unit variance assumptions so that we can identify both of m
and s (see Section 2).

From the random sample of data (X1, Z1, δ1), . . . , (Xn, Zn, δn) we will propose nonparametric
function estimators of m, s and F in Section 2, and we study the large sample behavior of these
estimators in Section 2.1. Note, these data also include the cured cases and, therefore, do not directly
correspond with (1.1). Estimating the error distribution function F is particularly important because
many statistical inference procedures depend on functionals of F ; for example, Kolmogorov–Smirnov–
type and Cramér–von–Mises–type statistics. Van Keilegom and Akritas (1999) considered estimation
of F , as well as the functions m and s, from a model similar to (1.1) but without considering cured
subjects, which presents a new and important challenge, and, hence, those results do not directly
apply to the present situation.

We are interested in studying a completely nonparametric statistical methodology for examining
location–scale modelling of data containing long–term survivors. Since the study of this type of data
presented in Boag (1949), the literature on this subject has been divided into two distinct categories.
The original cure model proposed by Boag (1949) is now known as the two–component mixture
cure model (see, for example, Taylor, 1995). We will refer to the second category as simply the
non–mixture cure model (see, for example, Haybittle, 1959, 1965). Several advancements have been
made in the literature when these models are assumed to have a parametric or a semiparametric
form. Kuk and Chen (1992) investigate combining logistic regression methods (used to estimate the
unknown proportion of cured cases) with proportional hazards techniques to obtain estimators of
their model parameters. Taylor (1995) works with a similar model as that of Kuk and Chen (1992) but
proposes an Expectation-Maximization algorithm for simultaneously fitting the model parameters
and estimating the baseline hazard function, and this author also uses simulations to conjecture that
a crucial assumption is required for identifying components of these models (see Section 2). Sy and
Taylor (2000) consider a similar model as that of Kuk and Chen (1992) but investigate an estimation
technique based on the Expectation-Maximization algorithm. Lu (2008) considers the proportional
hazards mixture cure model and proposes a semiparametric estimator of the unknown parameters of
that model by maximizing a so-called nonparametric likelihood function. The estimator is shown to
have minimum asymptotic variance. Lu (2010), the same author as before, investigates an accelerated
failure time cure model (a special case of the two–component mixture cure model) and proposes an
Expectation-Maximization algorithm for fitting the unknown parameters of that model as well as
obtaining an estimator of the unknown error density function using a kernel-smoothed conditional
profile likelihood technique. Xu and Peng (2014) and López-Cheda et al. (2017) consider estimating
the unknown cure fraction in a completely nonparametric setting. Patilea and Van Keilegom (2017)
consider a general approach to modelling the conditional survival function of a subject given that
the subject is not cured by proposing so-called inversion formulae that allows one to express the
conditional survival function of the uncured subjects in terms of the proportion of cured subjects
and the subdistributions of the response and the censoring variable.

A particularly interesting model belonging to the non–mixture case is proposed by Yakovlev and
Tsodikov (1996). Earlier, in a back-and-forth exchange over letters to the editors of Statistics in
Medicine, Andrej Yakovlev very clearly details shortcomings of the two–component mixture cure
model. Specifically, he argues that the two–component mixture cure model implicitly assumes that
there is only a single risk operative in the population, i.e. a single latent variable that determines
whether or not subjects are cured / uncured. Yakovlev argues that, in general, populations have
multiple risk operatives and he proposes what we are referring to as the non–mixture cure model
in his letter to the editors. The exchange between him and the authors Alan Cantor and Jonathan
Shuster can be found in Yakovlev et al. (1994). Sometimes this model is called a promotion time
cure model, and it has gained popularity due to motivations from Biology (in particular cancer
research). Several results on parametric and semiparametric estimation of the unknown parameters
in these models are available in the literature. However, this model is not in the scope of the current
article, and we only mention a few of the notable works in this area. Tsodikov (1998) compares
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likelihood–based fitting techniques for the non–mixture cure model. Later, Tsodikov et al. (2003)
survey the literature and report that, in less than a decade from its introduction, the non–mixture
cure model is already in popular use, and these authors promote use of the non–mixture cure model in
semiparametric and Bayesian settings. Zeng et al. (2006) propose a recursive algorithm for obtaining
maximum likelihood estimates in the non–mixture cure model. Additionally, these authors show their
regression parameter estimators have minimum asymptotic variance. Portier et al. (2017) consider
an extension of the non–mixture cure model.

Recently, efforts have been made to unify the two seemingly distinct categories of cure models.
Sinha et al. (2003) discuss the benefits and disadvantages of the mixture and non–mixture cure
models. Yin and Ibrahim (2005) propose transforming the unknown population survival function
in a manner that is analogous to the Box-Cox transformation for non-normally distributed random
variables.

Our goal is to generally relax the model conditions and investigate an alternative estimation
strategy for the two–component mixture cure model. A popular theme in both modelling categories
is to use proportional hazards methods, where one estimates the baseline hazard function using a
nonparametric estimator. In this case, the proportional hazards model is made additionally flexible
through a nonparametric estimator of the baseline hazard function. The result is a semiparamet-
ric estimation technique (the remaining model parameters are finite dimensional and a likelihood
function is usually required to obtain estimators).

The article is organized as follows. We further discuss model (1.1) and motivate our nonparametric
function estimators in Section 2, and we give asymptotic results on these estimators in Section 2.1. In
Section 3, we investigate the finite sample properties of our proposed estimator of F and we illustrate
the proposed techniques by characterizing a set of data collected to study distant metastasis in
lymph-node-negative breast cancer patients. Our numerical study of the previous results in Section
3.1 shows the finite sample behavior of the estimators proposed in Section 2 is well–described by
the asymptotic statements given in Section 2.1. The proofs of these results and further supporting
technical results are given in Section 4.

2. Estimation of the model parameters

We begin this section with a discussion of the identifiability of the cure model parameters. In the
following, write G for the distribution function of the covariates X and g for the density function of
G, where the support of X is [0, 1]. Let Q be the conditional distribution function of the responses
Y given X and Qu be the conditional distribution function of Yu given X. For both cure models
and censored response models, it is important that we place conditions on the distribution function
Q (and therefore Qu) so that we may identify and estimate the regression model components m and
s and the error distribution function F . Empirical or biological need for using a cure model in the
present situation means the support of the censoring variable C is never contained in the support of
the subpopulation Yu, i.e. we require

(2.1) τ0 = sup
x∈[0, 1]

τu(x) < τC(x), x ∈ [0, 1],

where τu(x) = inf{t ∈ R : 1 − Qu(t |x) = 0} and τC(x) = inf{t ∈ R : P (C > t |X = x) = 0}.
Taylor (1995) uses simulation evidence to conjecture the necessity of (2.1). Xu and Peng (2014) and
López-Cheda et al. (2017) observe that (2.1) leads to identifiability of the cure model components
(see Lemma 1 of López-Cheda et al., 2017); specifically, it is required to identify the conditional
proportion π(X) of cured cases given X as well as the conditional distribution function Qu of Yu
given X. To ensure the distribution of the censoring variable C is identifiable, we will further assume
that the remaining mass of Y beyond τu(X) occurs at Y = ∞, i.e. we assume the conditional
equivalence of the events {Y > t} = {Y =∞}, t ≥ τu(X), given X. This justifies writing

P (Y > t |X) = π(X) + {1− π(X)}P (Yu > t |X), t ∈ R,
where π(X) = P (Y > τu(X) |X) = P (Y = ∞|X) is assumed to be bounded away from zero and
one, i.e. there are finite positive real numbers 0 < πl ≤ πu < 1 satisfying πl ≤ π(X) ≤ πu for every
X. Hence, P (Y > τu(X) |X) = π(X) = P (Y > τ0 |X). This means that (2.1) implies that we only
need an estimator of τ0, which does not depend on X, rather than τu(·).
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To conclude our discussion on identifiability, recall that the regression function m is a location–
type functional and the scale function s is a scale–type functional. This means there are transfor-
mations T and V such that

m = T
(
Qu) = m+ sT (F ) and s = V (Qu) = sV (F ).

Therefore, we can see that the regression model components m and s are identifiable when T (F ) = 0
and V (F ) = 1.

As noted on page 186 in Dabrowska (1987), responses arising from experiments with censored
values are often skewed to the right and, therefore, estimators of the mean (and scale) will be
affected. Beran (1981) proposes using L–type regression functionals, which are more robust to
skewing in the data. To explain the idea, we introduce the score function J and the quantiles
ξu(p |x) = Q−1u (p |x) := inf{y ∈ (−∞, τ0] : Qu(y |x) ≥ p} for p ∈ [0, 1]. Here the score function J

must be nonnegative and satisfy
∫ 1

0
J(p) dp = 1. Throughout this article, we work with the following

definitions of m and s:

m(x) =

∫ 1

0

ξu(p |x)J(p) dp and v(x) =

∫ 1

0

ξ2u(p |x)J(p) dp−m2(x),

where s(x) = v1/2(x) and x ∈ [0, 1]. Hence, for m and s to be identifiable, we will require that F
satisfies ∫ 1

0

ξF (p)J(p) dp = 0 and

∫ 1

0

ξ2F (p)J(p) dp = 1,

where ξF is the quantile function of F , i.e. ξF (p) = inf{t ∈ R : F (t) ≥ p} for p ∈ [0, 1].
With all of the components of the regression model (1.1) identified, we can define our estimators

of the model parameters. To define the estimator of Q, we will introduce further notation. Write
M for the conditional distribution function of the minimum Z given X and M1 for the conditional
subdistribution function of both Z and δ = 1 given X. From the discussion above, we can see that
τM(x) = inf{t ∈ R |P (Z > t |X = x) = 0} = τC(x) > τ0 for every x, which follows by (2.1), and,
hence, we can consistently estimate Q (and therefore Qu) everywhere on the region (−∞, τ0]× [0, 1],
cf. Van Keilegom and Akritas (1999).

Using M and M1, the conditional cumulative hazard function Λ of Y given X may be written as

(2.2) Λ(t |X) =

∫ t

−∞

Q(ds |X)

1−Q(s− |X)
=

∫ t

−∞

M1(ds |X)

1−M(s− |X)
, t ∈ (−∞, τ0].

To estimate M and M1, we introduce the Nadaraya–Watson weights

Wj(x) = K

(
x−Xj

an

)/{
n∑
k=1

K

(
x−Xk

an

)}
, j = 1, . . . , n,

where K is a given kernel function and {an}n≥1 is a sequence of bandwidth parameters. Later, we
will specify conditions on choosing K and {an}n≥1. Estimates of M and M1 then follow by the
approach of Stone (1977): for (t, x) ∈ (−∞, τ0]× [0, 1],

(2.3) M̂(t |x) =
n∑
j=1

1(Zj ≤ t)Wj(x) and M̂1(t |x) =
n∑
j=1

δj1(Zj ≤ t)Wj(x).

Substituting (2.3) into (2.2) leads to an estimator of Q in the approach of Beran (1981):

(2.4) Q̂(t |x) = 1−
∏
Z(j)<t

{
1−

W(j)(x)∑n
k=jW(k)(x)

}δ(j)
, (t, x) ∈ (−∞, τ0]× [0, 1].

Here Z(1) ≤ . . . ≤ Z(n) is the ascending ordering of Z1, . . . , Zn and both of δ(1), . . . , δ(n) and
W(1)(x), . . . ,W(n)(x) are ordered according to Z(1), . . . , Z(n). For simplicity we will assume that
the data contain no tied responses, which is reasonable because our assumptions imply the responses
Zj are continuous random variables. Otherwise the ordering of the variables indicated above is not

unique and the estimator Q̂ is affected.
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Xu and Peng (2014) propose estimating τ0 by the largest uncensored response Z1
max and then

combining this estimator with (2.4) to form an estimator the unknown proportion π of cured cases,

(2.5) π̂(x) = 1− Q̂(Z1
max |x), x ∈ [0, 1].

The estimator π̂ is shown to be consistent and asymptotically normally distributed. Later, López–
Cheda et al. (2017) generalize this result in two steps. First, these authors show the estimator Z1

max

is strongly consistent for τ0. Second, the estimator π̂ is shown to be a uniformly, strongly consistent
estimator of π.

Turning our attention now to m and s, we can see that the unknown quantiles ξu of the uncured
population must be estimated. It is easy to show the equivalence ξu(p |x) = ξ((1−π(x))p |x) from the
equivalence Q(· |x) = {1 − π(x)}Qu(· |x), with p ∈ [0, 1] and x ∈ [0, 1], where ξ((1 − π(x))p |x) =
inf{y ∈ (−∞, τ0] : Q(y |x) ≥ {1 − π(x)}p}. We can consistently estimate ξ((1 − π(x))p |x) by

ξ̂((1 − π̂(x))p |x), where ξ̂((1 − π̂(x))p |x) = inf{y ∈ (−∞, τ0] : Q̂(y |x) ≥ {1 − π̂(x)}p}. The
resulting estimators of m and s are analogous to those of Van Keilegom and Akritas (1999):

m̂(x) =

∫ 1

0

ξ̂
((

1− π̂(x)
)
p |x

)
J(p) dp and v̂(x) =

∫ 1

0

ξ̂2
((

1− π̂(x)
)
p |x

)
J(p) dp− m̂2(x),

with ŝ(x) = v̂1/2(x), x ∈ [0, 1].
Write τF = inf{t ∈ R : 1 − F (t) = 0} for the largest observable standardized error, which is

finite by (2.1). It follows that {τu(X) − m(X)}/s(X) does not depend on X and τF = {τu(X) −
m(X)}/s(X), for G–almost every X, from standardization. This means we can transfer the support
of F , (−∞, τF ], into the support of Q, (−∞, τu(x)] = (−∞, τF s(x) +m(x)], x ∈ [0, 1], where Q can
be estimated. Note, this is the same transfer of information from F to Q studied in Van Keilegom
and Akritas (1999). However, this implies that we can form an estimator of F using the estimators
of Q, π, m and s, which is new.

Observe the error distribution function F can be written as the average

F (t) = E

[
Q(ts(X) +m(X) |X)

1− π(X)

]
, −∞ < t ≤ τF ,

where we have used the transference mapping t 7→ ts(x) +m(x) for −∞ < t ≤ τF . We arrive at the
proposed estimator of F :

(2.6) F̂(t) =
1

n

n∑
j=1

Q̂(tŝ(Xj) + m̂(Xj) |Xj)

1− π̂(Xj)
, −∞ < t ≤ τF .

Note this estimator is averaging over the local model estimators at each covariate Xj that are not
consistent at the root-n rate but are consistent at slower rates. Nevertheless, we show the estimator
F̂ is root-n consistent for F and satisfies a functional central limit theorem (see Section 2.1).

2.1. Asymptotic results on the nonparametric function estimators. In order to state
our asymptotic results for the estimators introduced in the previous section, we require the following
assumptions:

(A1) The bandwidth an satisfies (na2n)−1 log log(n) = O(1) and na5n log−1(n) = O(1).
(A2) There are real numbers 0 < πl ≤ πu < 1 satisfying πl < π(X) < πu for every X.
(A3) (i) The kernel function K is a symmetric probability density function with support [−1, 1].

(ii) K has bounded second derivative.
(A4) (i) The distribution function G of the covariates X has a density function g that is bounded

and bounded away from zero in [0, 1].
(ii) The density function g has two bounded derivatives.

(A5) (i) There is a continuous nondecreasing function L1 satisfying L1(−∞) = 0 and L1(τ0) <∞
such that

M(t |x)−M(s |x) ≤ L1(t)− L1(s), x ∈ [0, 1], −∞ < s < t ≤ τ0.

(ii) The conditional (sub)distribution functions M and M1 have continuous partial deriva-
tives, with respect to x, Ṁ and Ṁ1, respectively, that are bounded in (−∞, τc]× [0, 1].
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(iii) There are continuous nondecreasing functions L2 and L3 with L2(τ0) <∞, L3(τ0) <∞
and L2(−∞) = L3(−∞) = 0 such that

Ṁ(t |x)− Ṁ(s |x) ≤ L2(t)− L2(s), x ∈ [0, 1], −∞ < s < t ≤ τ0,

and

Ṁ1(t |x)− Ṁ1(s |x) ≤ L3(t)− L3(s), x ∈ [0, 1],−∞ < s < t ≤ τ0.

(iv) The second partial derivatives, with respect to x, of the conditional (sub)distribution
functions M and M1 exist and are bounded in (−∞, τ0]× [0, 1].

(A6) The conditional distribution functions M and M1 admit bounded Lebesgue density func-
tions.

(A7) The (conditional) distribution functions P (Z ≤ t) and P (Z ≤ t | δ = 1) are twice continu-
ously differentiable and bounded away from zero in absolute value on any compact interval
in the region (−∞, τ0], with the density function of P (Z ≤ t | δ = 1) bounded away from
zero at t = τ0.

(A8) (i) The score function J is bounded and nonnegative, and there are constants 0 < pl < pu ≤
1 such that J is bounded away from zero on (pl, pu) but equal to zero on [0, pl]∪ [pu, 1]
(when pu = 1 we only require that J is equal to zero on [0, pl]).

(ii) J is continuously differentiable with bounded derivative J ′.

Assumptions (A3) and (A4) are common assumptions taken for nonparametric regression models,
which guarantee good performance of nonparametric function estimators. Note that Assumptions
(A5) (i) and (iii) are satisfied for many distributions. Suppose that M is the logistic distribution
function with a positive, bounded mean function m(x) and scale function s ≡ 1. Write lm = infxm(x)

and um = supxm(x). Then Assumption (A5) (i) is satisfied by choosing L1(t) =
∫ t
−∞ exp(um−s){1+

exp(lm−s)}−2 ds. When m is also differentiable with a bounded derivative, then bounding functions
L2 and L3 (that are similar to L1) can be chosen to satisfy Assumption (A5) (iii) as well. Assumptions
(A5) (ii) and (iv) and (A6) imply the conditional distribution functions Qu and P (C ≤ t |X) also
meet these conditions and that π must meet Assumptions (A5) (ii) and (iv), when these assumptions
are required; e.g. due to the conditional independence of Y and C given X we can write

1−M(t |X) =
[
π(X) + {1− π(X)}{1−Qu(t |X)}

]
P (C > t |X).

In addition, m and s defined in Section 2 are functionals based on truncated means, which implies the
integrals are restricted to compact subsets of (−∞, τ0]. Therefore, combining the Leibniz integral
rule for differentiation with Assumptions (A5) (ii) and (iv) yields that both m and s are twice
differentiable with bounded derivatives. Assumption (A7) is a technical assumption required for
the consistency of Z1

max for τ0, and many probability distributions satisfy this assumption as well.
Finally, Assumption (A8) is a standard assumption that ensures m and s are well-defined L–type
regression functionals (see page 186 of Dabrowska, 1987).

Define

ζ
(
x, Zj, δj, t

)
=

δj1[Zj ≤ t]

1−M(Zj − |x)
−
∫ t

−∞

1[Zj > s]

{1−M(s− |x)}2
M1(ds |x), j = 1, . . . , n.

Our first result specifies the asymptotic order and expansion of the estimator π̂, which is given in
Theorem 3 of López-Cheda et al. (2017). We offer an alternative proof of this result, which may be
found in Section 4.

Proposition 1. Let Assumptions (A1) – (A7) hold. Then

sup
x∈[0, 1]

∣∣π̂(x)− π(x)
∣∣ = O

(
(nan)−1/2 log1/2(n)

)
, a.s.

Additionally,

π̂(x)− π(x) = −π(x)

g(x)

1

nan

n∑
j=1

K

(
x−Xj

an

)
ζ
(
x, Zj, δj, τ0

)
+R1,n(x),

where supx∈[0, 1] |R1,n(x)| = O((nan)−3/4 log3/4(n)), almost surely.
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In the next two results, the asymptotic orders and expansions of the location estimator m̂ and
the scale estimator ŝ are given.

Proposition 2. Let Assumptions (A1) – (A7) and Assumption (A8) (i) hold. Then

sup
x∈[0, 1]

∣∣∣m̂(x)−m(x)
∣∣∣ = O

(
(nan)−1/2 log1/2(n)

)
, a.s.

Additionally, if Assumption (A8) (ii) holds,

m̂(x)−m(x) = − 1

g(x)nan

n∑
j=1

K

(
x−Xj

an

)∫ τ0

−∞
ζ(x, Zj, δj, y)

1−Q(y |x)

1− π(x)
J
(
Qu(y |x)

)
dy

+
π(x)

1− π(x)

Cm(x)

g(x)nan

n∑
j=1

K

(
x−Xj

an

)
ζ(x, Zj, δj, τ0) +R2,n(x),

where supx∈[0, 1] |R2,n(x)| = O((nan)−3/4 log3/4(n)), almost surely, and

Cm(x) =

∫ τ0

−∞
Qu(y |x)J

(
Qu(y |x)

)
dy.

Proposition 3. Let Assumptions (A1) – (A7) and Assumption (A8) (i) hold. Then

sup
x∈[0, 1]

∣∣∣ŝ(x)− s(x)
∣∣∣ = O

(
(nan)−1/2 log1/2(n)

)
, a.s.

Additionally, if Assumption (A8) (ii) holds,

ŝ(x)− s(x) = − 1

g(x)nan

n∑
j=1

K

(
x−Xj

an

)∫ τ0

−∞
ζ(x, Zj, δj, y)

1−Q(y |x)

1− π(x)

y −m(x)

s(x)
J
(
Qu(y |x)

)
dy

+
π(x)

1− π(x)

Cs(x)

g(x)nan

n∑
j=1

K

(
x−Xj

an

)
ζ(x, Zj, δj, τ0) +R3,n(x),

where supx∈[0, 1] |R3,n(x)| = O((nan)−3/4 log3/4(n)), almost surely, and

Cs(x) =

∫ τ0

−∞
Qu(y |x)

y −m(x)

s(x)
J
(
Qu(y |x)

)
dy.

To continue, it is common in heteroskedastic models to place a restriction on the curvature of
the distribution function of either the responses or the errors (see, for example, Chown, 2016, who
works with finite Fisher information for location and scale). Recall the functions L1, L2 and L3 from
Assumption (A5) (i) and (iii). We will require the function L = L1 +L2 +L3 to satisfy the following
curvature restriction that is analogous to assuming finite Fisher information for location and scale,
i.e. we assume that L has two derivatives such that

(2.7)

∫ τ0

−∞

(
1 + v2

){L′′(v)

L′(v)

}2

L(dv) <∞,
∫ τ0

−∞

(
1 + v2

)
L(dv) <∞ and sup

−∞<t≤τ0

∣∣tL′(t)∣∣ <∞.
Consequently, for sequences of real numbers {un}n≥1 and {vn}n≥1 satisfying un → u and vn → v, as
n→∞ and with u, v ∈ R, (2.7) implies |L(tvn + un)−L(tv+ u)| = O(|un− u|+ |vn− v|), uniformly
in t (see the proof of Theorem 1 in Section 4). Note, (2.7) is also satisfied for many distributions,
which includes the logistic distribution as in the example given above of a distribution satisfying
Assumptions (A5) (i) and (iii). We are now prepared to state the two main results of this section: a

strong uniform representation of the difference F̂− F and the weak convergence of n1/2{F̂− F}.

Theorem 1 (strong uniform representation of F̂ − F ). Let Assumptions (A1) – (A8)
hold. Assume the function L = L1 + L2 + L3, where the functions L1, L2 and L3 are given in
Assumption (A5), is twice differentiable and satisfies (2.7). Finally, let F satisfy (2.7), i.e. F has
finite Fisher information for both location and scale and the error density f is bounded and satisfies
sup−∞<t≤τF |tf(t)| <∞. Then

F̂(t)− F (t) = En(t) +R4,n(t),
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where sup−∞<t≤τF |R4,n(t)| = O((nan)−3/4 log3/4(n)), almost surely, and

En(t) = Tn(t)− f(t)
{
Un + tVn

}
−Wn(t)

with

Tn(t) =
1

n2an

∑
1≤j,k≤n

K

(
Xj −Xk

an

)
1−Q(ts(Xj) +m(Xj) |Xj)

1− π(Xj)

ζ(Xj, Zk, δk, ts(Xj) +m(Xj))

g(Xj)
,

Un =
1

n2an

∑
1≤j,k≤n

K

(
Xj −Xk

an

)
1

g(Xj)

∫ τ0

−∞
ζ(Xj, Zk, δk, y)

1−Q(y |Xj)

1− π(Xj)
J
(
Qu(y |Xj)

)
dy,

Vn =
1

n2an

∑
1≤j,k≤n

K

(
Xj −Xk

an

)
1

g(Xj)

∫ τ0

−∞
ζ(Xj, Zk, δk, y)

1−Q(y |Xj)

1− π(Xj)

y −m(Xj)

s(Xj)
J
(
Qu(y |Xj)

)
dy

and

Wn(t) =
1

n2an

∑
1≤j,k≤n

K

(
Xj −Xk

an

)
π(Xj)

1− π(Xj)

F (t)− f(t){Cm(Xj) + tCs(Xj)}
g(Xj)

ζ(Xj, Zk, δk, τ0).

Theorem 2 (weak convergence of n1/2{F̂ − F}). Under the conditions of Theorem 1, if

the bandwidth sequence {an}n≥1 is chosen such that a2n = o(n−1/2) and (nan)−3/4 log3/4(n) = o(n−1/2)

(e.g., an = O(n−1/4−γ log1/4+γ(n)) for any 0 < γ < 1/12) then n1/2{F̂− F} is asymptotically linear,
i.e.

n1/2{F̂(t)− F (t)} = n−1/2
n∑
j=1

bt(Xj, Zj, δj) +R5,n(t),

where sup−∞<t≤τF |R5,n(t)| = oP (1) and the influence function is

bt(Xj, Zj, δj) =
1−Q(ts(Xj) +m(Xj) |Xj)

1− π(Xj)
ζ
(
Xj, Zj, δj, ts(Xj) +m(Xj)

)
− f(t)

∫ τ0

−∞
ζ
(
Xj, Zj, δj, y

)1−Q(y |Xj)

1− π(Xj)
J
(
Qu

(
y
∣∣Xj

))
dy

− tf(t)

∫ τ0

−∞
ζ
(
Xj, Zj, δj, y

)1−Q(y |Xj)

1− π(Xj)

y −m(Xj)

s(Xj)
J
(
Qu

(
y
∣∣Xj

))
dy

− π(Xj)

1− π(Xj)

[
F (t)− f(t)

{
Cm(Xj) + tCs(Xj)

}]
ζ
(
Xj, Zj, δj, τ0

)
,

with −∞ < t ≤ τF . Consequently, the process {n1/2{F̂(t) − F (t)} : −∞ < t ≤ τF} weakly
converges to a mean zero Gaussian process {Z(t) : −∞ < t ≤ τF} with covariance function
Σ(t, v) = E[bt(X,Z, δ)bv(X,Z, δ)] for −∞ < t, v ≤ τF .

Remark 1 (consequences for the choice of bandwidth). Theorem 2 implies that the

estimator F̂ is a root-n consistent estimator of F only when the bandwidth sequence {an}n≥1 sat-

isfies a2n = o(n−1/2) and (nan)−3/4 log3/4(n) = o(n−1/2), which undersmoothes the estimators Q̂,

m̂, ŝ and π̂. A bandwidth sequence given by an = O(n−1/4−γ log1/4+γ(n)) satisfies a2n = o(n−1/2)

and (nan)−3/4 log3/4(n) = o(n−1/2) for every 0 < γ < 1/12. Note that when γ = 1/12 we have

an = O(n−1/3 log1/3(n)), and this choice does not lead to a root-n consistent estimator because this

bandwidth undersmoothes by too much. Alternatively, when γ = 0 we have an = O(n−1/4 log1/4(n)),
and this choice also does not lead to a root-n consistent estimator because this bandwidth does
not undersmooth by enough. Another interesting consequence highlighted by Theorem 2 is that the
asymptotic behavior of n1/2{F̂ − F} does not depend on the bandwidth sequence {an}n≥1 used to

construct the covariate-localized estimators when a2n = o(n−1/2) and (nan)−3/4 log3/4(n) = o(n−1/2).
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3. Applications of the previous results

Here we investigate the finite sample properties of the proposed estimator F̂ using a simulation
study. Our results indicate good finite sample behavior even at the smaller sample size of 100 with
multiple bandwidth configurations. This is particularly encouraging as we did not need to perform a
computationally costly bandwidth selection procedure. Instead, we consider a variety of bandwidths
of the form Cσ̂Xn

−1/4−γ log1/4+γ(n), with parameters C and γ arbitrarily chosen and σ̂X denoting
the sample standard deviation of the covariates. The results given here reflect the conclusion in
Remark 1: the estimator F̂ shows insensitivity to the choice of bandwidth parameters {an}n≥1 used
to construct the local model estimators when this sequence is chosen to appropriately undersmooth
these estimators. This section is concluded with an illustration of the previous results using a dataset
collected to study the behavior of distant metastasis in lymph-node-negative breast cancer sufferers.

3.1. Numerical study. To study the finite sample performance of the estimator F̂, we con-
ducted simulations of 1000 runs using sample sizes 100, 200, 500 and 1000 under the following data
generation scheme. The covariates X are uniformly distributed on the interval [−1, 1], and the
location and scale functions are chosen as

(3.1) m(x) = 1 + 2x+
5

4
cos
(
πx2
)

and s(x) = 1 +
1

2
cos
(
πx
)
, x ∈ [−1, 1].

For the error distribution, we chose the standard normal distribution that has been truncated at 2,
centered at zero and scaled to satisfy the cure model identifiability requirements (see Section 2). An
initial set of responses Y are then obtained using (1.1).

We work with a cure proportion function given by the logistic distribution function with standard
scaling that has been centered at 7/4, which gives about 16% cured cases on average. Cure indicators
are randomly generated based on this probability function, and whenever a cure indicator is equal to
one we replace the corresponding value of Y with∞. Finally, the censoring variables C are randomly
generated from a mixture distribution of two components with equal mixing probabilities, where one
component distribution is a normal distribution centered at 10 with variation 1/2 and the other
component distribution is a shifted version of (1.1), with m and s as in (3.1) but now m is shifted
up by 1/2 and the model errors are standard normally distributed (no truncation). These choices
result in about 18% censored values for the uncured cases. When we combine the censoring from
both cases (cured and uncured) we expect a typical dataset generated in our simulations to present
with about 31% of censored response values.

The resulting response values Z are taken as the minimum of each Y and C and a censoring
indicator δ is set equal to one whenever Y ≤ C and zero otherwise. Finally, the score function J is
chosen by regions of [0, 1]. In the region (0.0001, 1], J is chosen as the logistic distribution function
with scaling 0.0001, and, in the region [0, 0.0001], J is set equal to 0. This is a smooth approximation
of a step function that nearly integrates to 1.

The bandwidth parameter sequence {an}n≥1 used to construct the covariate-localized model esti-

mators is of the form an = Cσ̂Xn
−1/4−γ log1/4+γ(n), where σ̂X denotes the sample standard deviation

of the covariates X. We investigate four situations: the constant of proportionality C is either 3/4 or
9/8 and the exponent parameter γ is either 1/16 or 1/28. These choices are appropriate for Theorem
2, since 1/28 < 1/16 < 1/12.

We numerically measure the performance of the estimator F̂ in two ways. First, the asymptotic
mean squared errors at t-values −2, −1, 0, 1 and 2 are simulated, where this performance metric is
calculated by first obtaining the simulated mean squared errors and then multiplying these by the
corresponding sample size. Second, the asymptotic integrated mean squared error is simulated, where
this quantity is calculated similarly to the asymptotic mean squared errors but now we integrate over
t. These performance metrics are predicted to be stable from Theorem 2.

The results of the simulated asymptotic mean squared errors are displayed in Table 1, and the
results of the simulated asymptotic mean integrated squared errors are given in Table 2. The values
in Table 1 show the estimator F̂ has asymptotically stable pointwise mean squared errors (at the

t-values −2, −1, 0, 1 and 2), and this metric clearly shows the estimator F̂ to have good performance
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n C, γ −2 −1 0 1 2
100 3/4, 1/16 0.014 0.046 0.078 0.054 0.003

3/4, 1/28 0.014 0.041 0.073 0.051 0.004
9/8, 1/16 0.015 0.030 0.082 0.038 0.006
9/8, 1/28 0.014 0.028 0.079 0.032 0.006

200 3/4, 1/16 0.014 0.040 0.078 0.043 0.005
3/4, 1/28 0.014 0.036 0.070 0.037 0.006
9/8, 1/16 0.016 0.030 0.086 0.030 0.011
9/8, 1/28 0.017 0.026 0.095 0.032 0.009

500 3/4, 1/16 0.015 0.035 0.088 0.040 0.009
3/4, 1/28 0.016 0.036 0.088 0.038 0.010
9/8, 1/16 0.019 0.032 0.099 0.031 0.018
9/8, 1/28 0.020 0.031 0.111 0.029 0.023

1000 3/4, 1/16 0.017 0.043 0.093 0.047 0.012
3/4, 1/28 0.017 0.039 0.101 0.041 0.014
9/8, 1/16 0.019 0.034 0.109 0.032 0.026
9/8, 1/28 0.023 0.032 0.126 0.033 0.033

Table 1. Simulated asymptotic mean squared error values of F̂ at the points −2, −1,
0, 1 and 2.

C, γ
n

100 200 500 1000

3/4, 1/16 0.209 0.189 0.199 0.213
3/4, 1/28 0.195 0.178 0.192 0.206
9/8, 1/16 0.175 0.176 0.197 0.214
9/8, 1/28 0.161 0.179 0.203 0.236

Table 2. Simulated asymptotic integrated mean squared error values of F̂.

on samples as small as 100. The values in Table 2 show a strong mirroring of the conclusions drawn
from Table 1, which indicate that F̂ is a good estimator of F even for samples as small as 100.

We tried other bandwidth configurations and found similar results. However, in some cases,
the performance metrics above were affected. Specifically, choosing the constant of proportionality
C either too large or too small showed the most significant effects while changing the exponent
γ showed no practical effect. We observed that choosing C too large negatively impacted large
sample behavior (n = 1000) and choosing C too small negatively impacted small sample behavior
(n = 100). This effect can be seen in Table 2 for the rows corresponding to C = 9/8, but it is
not very pronounced in this case. This indeed reflects the conclusions of Remark 1 that state the
bandwidth should undersmooth but not undersmooth by too much. Nevertheless, the estimator F̂
does show insensitivity to the choice of bandwidth when this parameter is appropriately chosen. We
therefore expect that a simple rule-of-thumb approach can be an effective strategy for choosing an
appropriate bandwidth, where one (say) compares plots of several estimators of F and chooses a
bandwidth parameter among those that produced very similar estimators of F .

Summing up, we have numerically demonstrated that the estimator F̂ has good finite sample
performance with samples sizes as small as 100. Our numerical results show the bandwidth parameter
sequence {an}n≥1 used to construct the covariate-localized model estimators does not appear to have

strong influence on the behavior of F̂ even at smaller samples. A possible explanation for this behavior
is that we are averaging over the local estimators of F ; see (2.6) for the definition of F̂. The estimator

F̂ shows strong potential for use in applications where the unknown error distribution function F
requires estimation; e.g. testing model assumptions, building confidence intervals / bands, etc.

3.2. Analysis of breast cancer data. In this section we illustrate the estimators of the com-
ponents from model (1.1), i.e. π, m, s and F , using a set of data obtained from frozen samples of
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Figure 1. A plot of the error distribution function estimate (solid black curve) over-
laid by approximate 95% pointwise confidence intervals (dashed curves) and a plausible
truncated normal error distribution (blue dot-dashed curve).

tumour tissue stored at the Erasmus Medical Center (Rotterdam, Netherlands) of patients who were
treated for lymph-node negative breast cancer during 1980–95. It has been observed that about 60%–
70% of patients treated are cured (see page 671 of Wang et al., 2005). These data were collected to
study distant metastasis of lymph-node-negative breast cancer sufferers, where it is desirable to (for
example) identify medical treatments that increase the amount of time before (possible) metastasis
occurs. See Wang et al. (2005) for a complete description of these data.

Our analysis considers three variables measured: the number of days before metastasis was de-
tected (observed or censored), a censoring indicator and the patient’s age (in years). There are 286
original data values, and about 63% of the reported time lengths before metastasis had been detected
were censored at large values (indicating a possible cure effect). The ages of the patients range be-
tween 26 and 83 years with a median age of 52 years. The oldest patient with an uncensored response
is 78 years. Since there were only two (censored) observations for patients older than 80, these cases
were removed because the data was too sparse in this region to obtain good model estimates, and our
analysis considers the remaining 284 patients. We are interested in a nonparametric location-scale
modelling of the log-transformed time length before detectable metastasis by the patient’s age that
accounts for both the presence of censoring and an apparent presence of a cure effect.

We obtain from an = Cσ̂Xn
−1/4−γ log1/4+γ(n), with n = 284 and σ̂X ≈ 12.3 years and choosing

C = 9/8 and γ = 1/28, a bandwidth of 4.51 years. This choice corresponds with our simulations
from the previous section and corresponds with an appropriate choice for Theorem 2. The score
function J is chosen as in the previous section (a smooth approximation of a step function).

Pointwise confidence intervals for F̂ are built using a bootstrap as follows. We begin by sampling
completely at random and with replacement from the ages of the patients (covariates). We then
construct bootstrap uncured responses using model (1.1), where m is replaced by the estimator m̂,

s is replaced by the estimator ŝ and the model errors are sampled independently from F̂ and then
appropriately centered and scaled (see our discussion on identifiability in Section 2). In addition,
a bootstrap cure indicator is independently generated from π̂ for each selected age. When this
indicator is equal to one the associated bootstrap uncured response value is replaced by∞. Bootstrap
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censoring variables are then independently sampled from the local censoring distribution estimators
at each selected age. The bootstrap responses are then obtained by taking the minimum between
the resulting augmented uncured responses (that include ∞ as possible values) and the selected
censoring variable. Whenever a response is not censored we set a bootstrap censoring indicator equal
to one and zero otherwise. The bootstrap distribution of F̂ is simulated on 300 replicate bootstrap
datasets, and we obtain our confidence intervals using the approximate quantiles from the simulated
bootstrap distribution.

The confidence intervals considered in this analysis have approximately 95% coverage.
Figure 1 shows a plot of the error distribution function estimate, which appears to be truncated

near 1.7 and (comparing the solid black curve with the blue dot-dashed curve) this estimate appears

to describe very well a (truncated) normal distribution. In conclusion, the estimator F̂ appears to be
very promising for use in applications, and this estimator does not require a computationally costly
bandwidth selection procedure to be effective.

4. Appendix

From the discussion in Section 2 we observed that (2.1) implies τ0 < τM(x), x ∈ [0, 1]. This
means that we may view our cure model as a special case of right–censored response models. In the
following result, we specify the asymptotic order of the estimators M̂ and M̂1, which follows directly
from Lemma 4.2 of Du and Akritas (2002).

Lemma 1. Let Assumptions (A1) – (A4), (A5) (ii) and (iv) hold. Then

sup
x∈[0, 1]

sup
−∞<t≤τ0

∣∣M̂(t |x)−M(t |x)
∣∣ = O

(
(nan)−1/2 log1/2(n)

)
, a.s.,

and

sup
x∈[0, 1]

sup
−∞≤t≤τ0

∣∣M̂1(t |x)−M1(t |x)
∣∣ = O

(
(nan)−1/2 log1/2(n)

)
, a.s.

In addition, we can specify the asymptotic order for moduli of continuity for the estimators M̂
and M̂1, which follows directly by applications of Lemma 4.4 of Du and Akritas (2002).

Lemma 2. Let Assumptions (A1) – (A5) hold. Set L = L1 +L2 and bn = O((nan)−1/2 log1/2(n)).
Then, almost surely,

sup
x∈[0, 1]

sup
−∞<s,t≤τ0

sup
|L(t)−L(s)|≤bn

∣∣M̂(t |x)−M(t |x)− M̂(s |x) +M(s |x)
∣∣ = O

(
(nan)−3/4 log3/4(n)

)
and, now with L = L1 + L3,

sup
x∈[0, 1]

sup
−∞<s,t≤τ0

sup
|L(t)−L(s)|≤bn

∣∣M̂1(t |x)−M1(t |x)− M̂1(s |x) +M1(s |x)
∣∣ = O

(
(nan)−3/4 log3/4(n)

)
.

In order to specify the asymptotic order and modulus of continuity for the hazard estimator Λ̂,
we need to state a technical result common for censored response models. Define

An(t |x) =

∫ t

−∞

M̂(s− |x)−M(s− |x)

{1−M(s− |x)}2
{
M̂1(ds |x)−M1(ds |x)

}
.

In the following result, we specify the asymptotic order of An. The proof of this result follows along
the same lines as the proof of Proposition 4.1 of Du and Akritas (2002), and it is therefore omitted.

Proposition 4. Let Assumptions (A1) – (A5) hold. Then

sup
x∈[0, 1]

sup
−∞<t≤τ0

∣∣An(t |x)
∣∣ = O

(
(nan)−3/4 log3/4(n)

)
, a.s.

With the results above we can state the asymptotic order and modulus of continuity for the
hazard estimator Λ̂.
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Lemma 3. Let Assumptions (A1) – (A5) hold. Then

sup
x∈[0, 1]

sup
−∞<t≤τ0

∣∣Λ̂(t |x)− Λ(t |x)
∣∣ = O

(
(nan)−1/2 log1/2(n)

)
, a.s.

Set L = L1 + L2 + L3 and bn = O((nan)−1/2 log1/2(n)). Then

sup
x∈[0, 1]

sup
−∞<s,t≤τ0

sup
|L(t)−L(s)|≤bn

∣∣Λ̂(t |x)− Λ(t |x)− Λ̂(s |x) + Λ(s |x)
∣∣ = O

(
(nan)−3/4 log3/4(n)

)
, a.s.

Proof. Beginning with the first assertion, we can write Λ̂(t |x)−Λ(t |x) = R1(t |x)+R2(t |x)+
R3(t |x), where

R1(t |x) =

∫ t

−∞

M̂(s− |x)−M(s− |x)

{1− M̂(s− |x)}{1−M(s− |x)}
M1(ds |x),

R2(t |x) =

∫ t

−∞

M̂1(ds |x)−M1(ds |x)

1−M(s− |x)

and

R3(t |x) =

∫ t

−∞

{
M̂(s− |x)−M(s− |x)

{1− M̂(s− |x)}{1−M(s− |x)}

}{
M̂1(ds |x)−M1(ds |x)

}
.

Condition (2.1) implies that M(t |x) < 1 for all t ∈ (−∞, τ0] and all x ∈ [0, 1]. In addi-

tion, the assumptions of Lemma 1 are satisfied, which implies that supx∈[0, 1] sup−∞<t≤τ0 |M̂(t |x) −
M(t |x)| = O((nan)−1/2 log1/2(n)), almost surely. Combining these results, it is easy to see that

supx∈[0, 1] sup−∞<t≤τ0 |R1(t |x)| = O((nan)−1/2 log1/2(n)), almost surely. Using integration by parts,
we can write R2(t |x) as

M̂1(t |x)−M1(t |x)

1−M(t− |x)
−
∫ t

−∞

M̂1(s |x)−M1(s |x)

{1−M(s− |x)}2
M(ds |x).

Similar to the first term, both of the terms in the display above have the order O((nan)−1/2 log1/2(n)),
almost surely. The assumptions of Proposition 4 are satisfied. Combining the statement of this result
with the uniform, strong consistency of M̂ for M , it follows that supx∈[0, 1] sup−∞<t≤τ0 |R3(t |x)| =

O((nan)−3/4 log3/4(n)) = o((nan)−1/2 log1/2(n)), almost surely. This concludes the proof of the first
assertion. The second assertion follows by similar arguments and is therefore omitted. �

With the results above on the cumulative hazard estimator Λ̂, we can state the asymptotic orders
of the strong, uniform consistency and modulus of continuity of the Beran estimator Q̂. In addition,
the uniform, strong i.i.d. representation of the Beran estimator Q̂ is given.

Lemma 4 (properties of the Beran estimator Q̂). Let Assumptions (A1) – (A6) hold.
Then

sup
x∈[0, 1]

sup
−∞<t≤τ0

∣∣Q̂(t |x)−Q(t |x)
∣∣ = O

(
(nan)−1/2 log1/2(n)

)
, a.s.

Set L = L1 + L2 + L3 and bn = O((nan)−1/2 log1/2(n)). Then

sup
x∈[0, 1]

sup
−∞<s,t≤τ0

sup
|L(t)−L(s)|≤bn

∣∣Q̂(t |x)−Q(t |x)− Q̂(s |x) +Q(s |x)
∣∣ = O

(
(nan)−3/4 log3/4(n)

)
, a.s.

Finally, with ζ defined in Section 2.1,

Q̂(t |x)−Q(t |x) =
1−Q(t |x)

g(x)nan

n∑
j=1

K

(
x−Xj

an

)
ζ(x, Zj, δj, t) +Rn(t |x),

where supx∈[0, 1] supt∈(−∞, τ0] |Rn(t |x)| = O((nan)−3/4 log3/4(n)), almost surely.

Proof. Write, as in the proof of Theorem 3.2 of Du and Akritas (2002),

Q̂(t |x)−Q(t |x) = {1−Q(t |x)}
∫ t

−∞

1−Q(t− |x)

1−Q(t |x)
d
(
Λ̂(t |x)− Λ(t |x)

)
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+ {1−Q(t |x)}
∫ t

−∞

Q(t− |x)− Q̂(t− |x)

1−Q(t |x)
d
(
Λ̂(t |x)− Λ(t |x)

)
.

Since Yu is a continuous random variable, it follows that 1 − Q(t − | x) = 1 − Q(t |x) and the first

term on the right-hand side in the display above is equal to {1−Q(t |x)}{Λ̂(t |x)−Λ(t |x)}, which,

by the first statement of Lemma 3, has the order O((nan)−1/2 log1/2(n)), almost surely, uniformly
over (t, x) ∈ (−∞, τ0] × [0, 1]. Following the arguments in the proof of Theorem 3.2 of Du and

Akritas (2002), the second term has the order O((nan)−3/4 log3/4(n)), almost surely, uniformly over
(t, x) ∈ (−∞, τ0] × [0, 1] (see the decomposition of (B)/Sx(t) into expressions (5.5)–(5.8) in that
article, where these expressions are shown to have the desired order). This completes the proof of
the first assertion. The second assertion follows by a similar argument and is therefore omitted.
Finally, the last assertion follows directly by an application of Theorem 3.2 of Du and Akritas
(2002). �

López-Cheda et al. (2017) give the asymptotic order of strong consistency of Z1
max for τ0, which

we restate here for convenience.

Lemma 5 (Lemma 5 of López-Cheda et al. (2017)). Let Assumption (A7) hold. Then

nα
(
τ0 − Z1

max

)
= o(1), a.s., α ∈ (0, 1).

Note, for a sequence of bandwidths an satisfying an → 0, as n→∞, such that na5n log−1(n) = O(1),
it follows that

τ0 − Z1
max = o

(
(nan)−3/4 log3/4(n)

)
, a.s.

We can now state the proof of Proposition 1 from Section 2.1.

Proof of Proposition 1. Beginning with the first assertion, we can write π̂(x) − π(x) =
R1(x) +R2(x) +R3(x), where

R1(x) = Q(τ0 |x)− Q̂(τ0 |x),

R2(x) = Q̂(τ0 |x)−Q(τ0 |x)− Q̂(Z1
max |x) +Q(Z1

max |x)

and
R3(x) = Q(τ0 |x)−Q(Z1

max |x)

The assumptions of Lemma 4 are satisfied, and the first statement of this result implies that
supx∈[0, 1] |R1(x)| = O((nan)−1/2 log1/2(n)), almost surely. Since the assumptions of Lemma 5 are

satisfied, we obtain the desired supx∈[0, 1] |R2(x)| = O((nan)−3/4 log3/4(n)), almost surely, by com-
bining the statement of Lemma 5 with the second statement of Lemma 4. Finally, combining the
result of Lemma 5 with the fact that Q has a bounded density shows that supx∈[0, 1] |R3(x)| =

o((nan)−3/4 log3/4(n)), almost surely. This finishes the proof of the first assertion. The second asser-
tion follows from applying the third statement of Lemma 4 to R1(x). �

Next we give sketches of the proofs of Proposition 2 and Proposition 3 from Section 2.1 that
follow along the same lines of arguments given in the proofs of Proposition 3, Proposition 6 and
Proposition 7 of Akritas and Van Keilegom (2001).

Proof of Proposition 2. We begin with proving the first assertion that ‖m̂ −m‖∞ has the

order O((nan)−1/2 log1/2(n)), almost surely, writing ‖·‖∞ for the supremum norm. Following the pro-
cedure in the proof of Proposition 3 from Akritas and Van Keilegom (2001), write I(q) =

∫ q
0
J(p) dp.

We have that m̂(x)−m(x) is equal to∫ 1

0

ξ̂
({

1− π̂(x)
}
p
∣∣x)J(p) dp−

∫ 1

0

ξ({1− π(x)}p |x)J(p) dp

=

∫ 1

0

∫ τ0

−∞
1

[
Q̂(t |x)

1− π̂(x)
≤ p

]
J(p) dt dp−

∫ 1

0

∫ τ0

−∞
1

[
Q(t |x)

1− π(x)
≤ p

]
J(p) dt dp

=

∫ τ0

−∞

{
I

(
Q(t |x)

1− π(x)

)
− I
(
Q̂(t |x)

1− π̂(x)

)}
dt,(4.1)
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where we have used that I(1) =
∫ 1

0
J(p) dp = 1 in the second equality. Since the score function J is

bounded, it follows that I is Lipschitz continuous (with constant ‖J‖∞) and ‖m̂−m‖∞ is bounded
by [

inf
x∈[0, 1]

inf
pl≤p≤pu

q
(
ξ({1− π(x)}p |x) |x

)]−1
sup

pl≤p≤pu
J(p) sup

x∈[0, 1]
sup

−∞<t≤τ0

∣∣∣∣ Q̂(t |x)

1− π̂(x)
− Q(t |x)

1− π(x)

∣∣∣∣,
where the first two terms are finite. The last term is easily shown to be of orderO((nan)−1/2 log1/2(n)),
almost surely, using the first statement of Lemma 4 and the first statement of Proposition 1. This
completes the proof of the first assertion.

Turning now to the second assertion, we can use the procedure in the proof of Proposition 6 of
Akritas and Van Keilegom (2001); i.e. we can write m̂(x)−m(x) as

(4.2)

∫ τ0

−∞

{
Q(t |x)

1− π(x)
− Q̂(t |x)

1− π̂(x)

}
J
(
Qu(t |x)

)
dt+O

(
(nan)−1 log(n)

)
, a.s.,

using a Taylor expansion of I in the right-hand side of (4.1) and the fact that J ′ is bounded. The
difference term from (4.2) becomes

(4.3)
Q(t |x)− Q̂(t |x)

1− π(x)
−Qu(t |x)

π̂(x)− π(x)

1− π(x)
+O

(
(nan)−1 log(n)

)
, a.s.,

where we have used that Q(t |x) = {1−π(x)}Qu(t |x). The third statement of Lemma 4 implies the
first term in (4.3) is equal to

(4.4) −1−Q(t |x)

1− π(x)

1

g(x)nan

n∑
j=1

K

(
x−Xj

an

)
ζ(x, Zj, δj, t) +O

(
(nan)−3/4 log3/4(n)

)
.

Applying the second statement of Proposition 1 shows the second term in (4.3) is equal to

(4.5) − π(x)

1− π(x)

Qu(t |x)

g(x)nan

n∑
j=1

K

(
x−Xj

an

)
ζ(x, Zj, δj, τ0) +O

(
(nan)−3/4 log3/4(n)

)
.

Note, the order terms in the displays above hold uniformly over (t, x) ∈ (−∞, τ0] × [0, 1]. The
result then follows by combining (4.4) and (4.5) with the approximation (4.3) under the integral in
(4.2). �

Proof of Proposition 3. Beginning with the first assertion, write v̂(x)− v(x) as

(4.6)

∫ 1

0

ξ̂2
((

1− π̂(x)
)
p |x

)
J(p) dp−

∫ 1

0

ξ2
(
(1− π(x))p |x

)
J(p) dp− m̂2(x) +m2(x).

Since m̂2(x)−m2(x) = 2m(x){m̂(x)−m(x)}+{m̂(x)−m(x)}2, it follows from the first statement of

Proposition 2 that ‖m̂2−m2‖∞ = O((nan)−1/2 log1/2(n)), almost surely. With some technical effort,
the difference of integrals in (4.6) can be shown to be equal to∫ τ0

0

{
I

(
Q(
√
t |x)

1− π(x)

)
− I
(
Q̂(
√
t |x)

1− π̂(x)

)}
dt−

∫ ∞
0

{
I

(
Q(−
√
t |x)

1− π(x)

)
− I
(
Q̂(−
√
t |x)

1− π̂(x)

)}
dt,

where I(q) =
∫ q
0
J(p) dp, q ∈ [0, 1]. It therefore follows from similar lines of argument to those in the

proof of Proposition 2 that the difference of integrals in (4.6) is of the order O((nan)−1/2 log1/2(n)),
almost surely, uniformly in x ∈ [0, 1]. Combining this statement with the statement ‖m̂2 −m2‖∞ =

O((nan)−1/2 log1/2(n)), almost surely, from above, we can see that ‖v̂−v‖∞ = O((nan)−1/2 log1/2(n)),
almost surely. The first assertion then follows from the fact that

(4.7) ŝ(x)− s(x) +
1

2s(x)

{
ŝ(x)− s(x)

}2
=

1

2s(x)

{
v̂(x)− v(x)

}
.

To prove the second assertion, combine (4.6) with (4.7) to obtain the approximation for ŝ(x)−s(x):

1

2s(x)

{∫ 1

0

ξ̂2
((

1− π̂(x)
)
p |x

)
J(p) dp−

∫ 1

0

ξ2
(
(1− π(x))p |x

)
J(p) dp

}
(4.8)
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− m(x)

s(x)

{
m̂(x)−m(x)

}
+O

(
(nan)−1 log(n)

)
,

where we have again used that m̂2(x) −m2(x) = 2m(x){m̂(x) −m(x)} + {m̂(x) −m(x)}2 and the
order term holds almost surely, uniformly in x ∈ [0, 1]. As above, with additional technical effort,
the difference of integrals in (4.8) can be shown to be equal to

2

∫ τ0

−∞

{
I

(
Q(y |x)

1− π(x)

)
− I
(
Q̂(y |x)

1− π̂(x)

)}
y dy.

Therefore, one can then work with an expansion similar to (4.2) in the proof of Proposition 2 to
derive an approximation of the first term in (4.8), i.e.

(4.9)

∫ τ0

−∞

{
Q(y |x)− Q̂(y |x)

1− π(x)
−Qu(y |x)

π̂(x)− π(x)

1− π(x)

}
J
(
Qu(y |x)

) y

s(x)
dy +O

(
(nan)−1 log(n)

)
,

where the order term holds almost surely, uniformly in x ∈ [0, 1]. The result then follows by
combining the approximations (4.4) and (4.5) from the proof of Proposition 2 with (4.9) for the first
term in (4.8) and applying the second statement of Proposition 2 to the second term in (4.8). �

With the asymptotic properties of Q̂, π̂, m̂ and ŝ fully described, we can state the proof of our
first main result: a strong uniform representation for the difference F̂− F .

Proof of Theorem 1. We can write F̂(t)− F (t) as

1

n

n∑
j=1

Q̂(tŝ(Xj) + m̂(Xj) |Xj)

1− π̂(Xj)
− 1

n

n∑
j=1

Q(ts(Xj) +m(Xj) |Xj)

1− π(Xj)

=
1

n

n∑
j=1

Q̂(ts(Xj) +m(Xj) |Xj)−Q(ts(Xj) +m(Xj) |Xj)

1− π(Xj)

+ F (t)
1

n

n∑
j=1

π̂(Xj)− π(Xj)

1− π(Xj)
+ f(t)

1

n

n∑
j=1

{
t
ŝ(Xj)− s(Xj)

s(Xj)
+
m̂(Xj)−m(Xj)

s(Xj)

}

+
1

n

n∑
j=1

Q̂(tŝ(Xj) + m̂(Xj)

1− π(Xj)

{π̂(Xj)− π(Xj)}2

1− π̂(Xj)

+
1

n

n∑
j=1

{{
Q̂
(
tŝ(Xj) + m̂(Xj)

∣∣Xj

)
−Q

(
tŝ(Xj) + m̂(Xj)

∣∣Xj

)
− Q̂(ts(Xj) +m(Xj) |Xj) +Q(ts(Xj) +m(Xj) |Xj)

}/{
1− π(Xj)

}}

×
{
π̂(Xj)− π(Xj)

1− π(Xj)

}

+
1

n

n∑
j=1

Q̂(ts(Xj) +m(Xj) |Xj)−Q(ts(Xj) +m(Xj) |Xj)

1− π(Xj)

π̂(Xj)− π(Xj)

1− π(Xj)

+
1

n

n∑
j=1

{
F

(
t+ t

ŝ(Xj)− s(Xj)

s(Xj)
+
m̂(Xj)−m(Xj)

s(Xj)

)
− F (t)

}
π̂(Xj)− π(Xj)

1− π(Xj)

+
1

n

n∑
j=1

{
Q̂
(
tŝ(Xj) + m̂(Xj)

∣∣Xj

)
−Q

(
tŝ(Xj) + m̂(Xj)

∣∣Xj

)
− Q̂(ts(Xj) +m(Xj) |Xj) +Q(ts(Xj) +m(Xj) |Xj)

}/{
1− π(Xj)

}
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+
1

n

n∑
j=1

{
F

(
t+ t

ŝ(Xj)− s(Xj)

s(Xj)
+
m̂(Xj)−m(Xj)

s(Xj)

)
− F (t)

− f(t)

{
t
ŝ(Xj)− s(Xj)

s(Xj)
+
m̂(Xj)−m(Xj)

s(Xj)

}}
.

We can therefore write

R4,n(t) = F̂(t)− F (t)− En(t) =
10∑
i=1

Di,n(t),

where En(t) is defined in the statement of the theorem and

D1,n(t) =
1

n

n∑
j=1

Q̂(tŝ(Xj) + m̂(Xj) |Xj)

1− π(Xj)

{π̂(Xj)− π(Xj)}2

1− π̂(Xj)
,

D2,n(t) =
1

n

n∑
j=1

{{
Q̂
(
tŝ(Xj) + m̂(Xj)

∣∣Xj

)
−Q

(
tŝ(Xj) + m̂(Xj)

∣∣Xj

)
− Q̂(ts(Xj) +m(Xj) |Xj) +Q(ts(Xj) +m(Xj) |Xj)

}/{
1− π(Xj)

}}
×
{
π̂(Xj)− π(Xj)

1− π(Xj)

}
,

D3,n(t) =
1

n

n∑
j=1

Q̂(ts(Xj) +m(Xj) |Xj)−Q(ts(Xj) +m(Xj) |Xj)

1− π(Xj)

π̂(Xj)− π(Xj)

1− π(Xj)
,

D4,n(t) =
1

n

n∑
j=1

{
F

(
t+ t

ŝ(Xj)− s(Xj)

s(Xj)
+
m̂(Xj)−m(Xj)

s(Xj)

)
− F (t)

}
π̂(Xj)− π(Xj)

1− π(Xj)
,

D5,n(t) =
1

n

n∑
j=1

{
Q̂
(
tŝ(Xj) + m̂(Xj)

∣∣Xj

)
−Q

(
tŝ(Xj) + m̂(Xj)

∣∣Xj

)
− Q̂(ts(Xj) +m(Xj) |Xj) +Q(ts(Xj) +m(Xj) |Xj)

}/{
1− π(Xj)

}
,

D6,n(t) =
1

n

n∑
j=1

{
F

(
t+ t

ŝ(Xj)− s(Xj)

s(Xj)
+
m̂(Xj)−m(Xj)

s(Xj)

)
− F (t)

− f(t)

{
t
ŝ(Xj)− s(Xj)

s(Xj)
+
m̂(Xj)−m(Xj)

s(Xj)

}}
,

D7,n(t) =
1

n

n∑
j=1

Rn(ts(Xj) +m(Xj) |Xj)

1− π(Xj)
,

where Rn is given in the third statement of Lemma 4,

D8,n(t) = F (t)
1

n

n∑
j=1

R1,n(Xj)

1− π(Xj)
,

where R1,n is given in the second statement of Proposition 1,

D9,n(t) = f(t)
1

n

n∑
j=1

R2,n(Xj)

s(Xj)
,

where R2,n is given in the second statement of Proposition 2, and

D10,n(t) = tf(t)
1

n

n∑
j=1

R3,n(Xj)

s(Xj)
,
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where R3,n is given in the second statement of Proposition 3.
The assumptions of Proposition 1 are satisfied, and the first statement of this result gives ‖π̂ −

π‖∞ = O((nan)−1/2 log1/2(n)), almost surely. Combining this statement with the facts that ‖π‖∞ < 1
and that |D1,n(t)| is bounded by [1 − ‖π‖∞]−1[1 − ‖π̂‖∞]−1‖π̂ − π‖2∞ shows that ‖D1,n‖∞ is of the

order O((nan)−1 log(n)) = o((nan)−3/4 log3/4(n)), almost surely.
We can see that |D2,n(t)| is bounded by

sup
x∈[0, 1]

sup
−∞<t≤τF

∣∣∣Q̂(tŝ(x) + m̂(x)
∣∣x)−Q(tŝ(x) + m̂(x)

∣∣x)(4.10)

− Q̂(ts(x) +m(x) |x) +Q(ts(x) +m(x) |x)
∣∣∣

×
[
1− ‖π‖∞

]2
sup
x∈[0, 1]

∣∣∣π̂(x)− π(x)
∣∣∣,

and we have already used that ‖π‖∞ < 1 and ‖π̂ − π‖∞ = O((nan)−1/2 log1/2(n)), almost surely.
Hence, we only need to treat the first term in (4.10), which we do by using the modulus of continuity

for the Beran estimator Q̂ given in the second statement of Lemma 4. The assumptions of Lemma
4 are satisfied. However, in order to use the second statement of this result, we need to show the
related result

sup
x∈[0, 1]

sup
−∞<t≤τF

∣∣∣L(tŝ(x) + m̂(x)
)
− L

(
ts(x) +m(x)

)∣∣∣ = O
(
(nan)−1/2 log1/2(n)

)
, a.s.

This is equivalent to showing

(4.11) sup
x∈[0, 1]

sup
−∞<t≤τ0

∣∣∣∣L(t+t ŝ(x)− s(x)

s(x)
+
m̂(x)−m(x)

s(x)

)
−L(t)

∣∣∣∣ = O
(
(nan)−1/2 log1/2(n)

)
, a.s.

To see that (4.11) holds, recall the sequences of real numbers {un}n≥1 and {vn}n≥1 introduced in
the discussion following (2.7). It follows that |L(t+ t(vn − v) + un − u)− L(t)| is bounded by∣∣un − u∣∣ sup

−∞<t≤τ0

∣∣∣L′(t)∣∣∣+
∣∣vn − v∣∣ sup

−∞<t≤τ0

∣∣∣tL′(t)∣∣∣(4.12)

+ sup
−∞<t≤τ0

∣∣∣L(t+ t(vn − v) + un − u
)
− L

(
t+ t(vn − v)

)
− (un − u)L′

(
t+ t(vn − v)

)∣∣∣
+ sup
−∞<t≤τ0

∣∣∣L(t+ t(vn − v)
)
− L(t)− (vn − v)tL′(t)

∣∣∣.
The terms in the first line of (4.12) are easily seen to be of the order O((vn − v) + (un − u)), as
desired. The quantity inside the absolute brackets in the second line of the same display is equal to

(4.13) (un − u)

∫ 1

0

{
L′
(
t+ t(vn − v) + p(un − u)

)
− L′

(
t+ t(vn − v)

)}
dp.

We will now use (2.7) to show that (4.13) is of the order O(|un − u|2). Let −∞ < a < b ≤ τ0. It
follows from the fact that L is nondecreasing that (1 + a2)|L′(b)− L′(a)| is bounded by∣∣∣(1 + b2

)
L′(b)−

(
1 + a2

)
L′(a)

∣∣∣ =

∣∣∣∣ ∫ b

a

(
1 + w2

)
L′′(w) dw + 2

∫ b

a

wL′(w) dw

∣∣∣∣.
The triangle inequality in combination with (2.7) implies that the right-hand side of the display
above is further bounded by∫ b

a

(
1 + w2

)∣∣∣∣L′′(w)

L′(w)

∣∣∣∣L(dw) + 2 sup
−∞<t≤τ0

∣∣tL′(t)∣∣∣∣b− a∣∣
≤

{{∫ 1

0

(
1 +

(
a+ p(b− a)

)2){L′′(a+ p(b− a))

L′(a+ p(b− a))

}2

L′
(
a+ p(b− a)

)
dp

×
∫ 1

0

(
1 +

(
a+ p(b− a)

)2)
L′
(
a+ p(b− a)

)
dp

}1/2

+ 2 sup
−∞<t≤τ0

∣∣∣tL′(t)∣∣∣}∣∣b− a∣∣



THE NONPARAMETRIC MIXTURE CURE MODEL 19

≤

{{∫ τ0

−∞

(
1 + w2

){L′′(w)

L′(w)

}
L(dw)

∫ τ0

−∞

(
1 + w2

)
L(dw)

}1/2

+ 2 sup
−∞<t≤τ0

∣∣∣tL′(t)∣∣∣}∣∣b− a∣∣,
where the middle inequality follows from Hölder’s inequality and the final inequality follows by the
facts that the integrands are nonnegative and [a, b] ⊂ (−∞, τ0]. This means that we can find a
constant C > 0 such that

(4.14)
∣∣∣L′(b)− L′(a)

∣∣∣ ≤ C
|b− a|
1 + a2

, −∞ < a, b ≤ τ0.

Setting a = min{t + t(vn − v), t + t(vn − v) + p(un − u)} and b = max{t + t(vn − v), t + t(vn −
v) + p(un− u)} in (4.14) implies that |L′(t+ t(vn− v) + p(un− u))−L′(t+ t(vn− v))| is bounded by

(4.15) C sup
−∞<t≤τ0

sup
0≤p≤1

|p|
1 + (min{t+ t(vn − v), t+ t(vn − v) + p(un − u)})2

∣∣un − u∣∣.
It follows for (4.13) to be of the order O(|un − u|2), and, hence, the term in the second line of
(4.12) is also of the order O(|un − u|2) = o(|un − u|). A similar argument shows the term in the
third line of (4.12) is of the order O(|vn − v|2) = o(|vn − v|), where the fraction in (4.14) becomes
|p|t2/(1 + t2(min{1, 1 + vn − v})2), which is bounded for all n where −1 6= vn − v. This shows the
desired result

(4.16) sup
−∞<t≤τ0

∣∣∣L(t+ t(vn − v) + (un − u))− L(t)
∣∣∣ = O

(
|vn − v|+ |un − u|

)
.

Since the assumptions of Proposition 2 and Proposition 3 are satisfied, combining the first state-
ments of these results with the fact that s is bounded away from zero and (4.16) establishes the
desired (4.11). We can therefore apply the second statement of Lemma 4 to see that the first

term of (4.10) is of the order O((nan)−3/4 log3/4(n)). It then follows that ‖D2,n‖∞ is of the order

O((nan)−5/4 log5/4(n)) = o((nan)−3/4 log3/4(n)), almost surely.
We can use the first statements of Lemma 4 and Proposition 1 to treatD3,n(t), since this remainder

term is bounded in absolute value by[
1− ‖π‖∞

]2
sup
x∈[0, 1]

sup
−∞<t≤τ0

∣∣Q̂(t |x)−Q(t |x)
∣∣ sup
x∈[0, 1]

∣∣π̂(x)− π(x)
∣∣.

Therefore, ‖D3,n‖∞ is of the order O((nan)−1 log(n)) = o((nan)−3/4 log3/4(n)), almost surely.
Since F satisfies (2.7), with F in place of L, f in place of L′ and f ′ in place of L′′, the same

argument used to verify (4.11) can be used to show

sup
x∈[0, 1]

sup
−∞<t≤τF

∣∣∣∣F(t+ t
ŝ(x)− s(x)

s(x)
+
m̂(x)−m(x)

s(x)

)
− F (t)

∣∣∣∣ = O
(
(nan)−1/2 log1/2(n)

)
, a.s.

This fact combined with the result ‖π̂ − π‖∞ = O((nan)−1/2 log1/2(n)), almost surely, from the first
statement of Proposition 1, and the fact that |D4,n(t)| is bounded by[

1− ‖π‖∞
]−1

sup
x∈[0, 1]

sup
−∞<t≤τF

∣∣∣∣F(t+ t
ŝ(x)− s(x)

s(x)
+
m̂(x)−m(x)

s(x)

)
− F (t)

∣∣∣∣ sup
x∈[0, 1]

∣∣∣π̂(x)− π(x)
∣∣∣

shows that ‖D4,n‖∞ is of the order O((nan)−1 log(n)) = o((nan)−3/4 log3/4(n)), almost surely.
Similar to the arguments for the remainder term D2,n(t), we can apply the second statement of

Lemma 4 and the fact that ‖π‖∞ < 1 to treat the remainder term D5,n(t), since |D5,n(t)| is bounded
by [1− ‖π‖∞]−1 multiplied by

sup
x∈[0, 1]

sup
−∞<t≤τF

∣∣∣Q̂(tŝ(x)+ m̂(x)
∣∣x)−Q(tŝ(x)+ m̂(x)

∣∣x)− Q̂(ts(x)+m(x) |x)+Q(ts(x)+m(x) |x)
∣∣∣.

Therefore, ‖D5,n‖∞ is of the order O((nan)−3/4 log3/4(n)), almost surely, because we have already

shown that the quantity in the display above is O((nan)−3/4 log3/4(n)), almost surely, using the

modulus of continuity of the Beran estimator Q̂ given in the second statement of Lemma 4.
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We can write the remainder term D6,n(t) as the sum

1

n

n∑
j=1

{
F

(
t+ t

ŝ(Xj)− s(Xj)

s(Xj)
+
m̂(Xj)−m(Xj)

s(Xj)

)
− F

(
t+ t

ŝ(Xj)− s(Xj)

s(Xj)

)

− f
(
t+ t

ŝ(Xj)− s(Xj)

s(Xj)

)
m̂(Xj)−m(Xj)

s(Xj)

}

+
1

n

n∑
j=1

{
F

(
t+ t

ŝ(Xj)− s(Xj)

s(Xj)

)
− F (t)− tf(t)

ŝ(Xj)− s(Xj)

s(Xj)

}

+
1

n

n∑
j=1

{
f

(
t+ t

ŝ(Xj)− s(Xj)

s(Xj)

)
− f(t)

}
m̂(Xj)−m(Xj)

s(Xj)
.

Hence, |D6,n(t)| is bounded by the sum of the quantities

sup
x∈[0, 1]

sup
−∞<t≤τF

∣∣∣∣F(t+ t
ŝ(x)− s(x)

s(x)
+
m̂(x)−m(x)

s(x)

)
− F

(
t+ t

ŝ(x)− s(x)

s(x)

)
(4.17)

− f
(
t+ t

ŝ(x)− s(x)

s(x)

)
m̂(x)−m(x)

s(x)

∣∣∣∣,
(4.18) sup

x∈[0, 1]
sup

−∞<t≤τF

∣∣∣∣F(t+ t
ŝ(x)− s(x)

s(x)

)
− F (t)− tf(t)

ŝ(x)− s(x)

s(x)

∣∣∣∣
and

(4.19)

[
inf

x∈[0, 1]
s(x)

]−1
sup
x∈[0, 1]

sup
−∞<t≤τF

∣∣∣∣f(t+ t
ŝ(x)− s(x)

s(x)

)
− f(t)

∣∣∣∣ sup
x∈[0, 1]

∣∣∣m̂(x)−m(x)
∣∣∣.

Since F satisfies (2.7), analogous arguments to those that are used to show the second and third
terms of (4.12) are of the orders O(|un − u|2) and O(|vn − v|2), respectively, combined with the
first statements of Proposition 2 and Proposition 3 show the bounds (4.17) and (4.18) are both of

the order O((nan)−1 log(n)) = o((nan)−3/4 log3/4(n)), almost surely. Also, a similar argument that
is used to find the bound (4.15) combined with the first statement of Proposition 3 can be used to

show the second term in (4.19) is of the order O((nan)−1/2 log1/2(n)), almost surely. The third term

in (4.19) has the order O((nan)−1/2 log1/2(n)), almost surely, from the first statement of Proposition

2. Therefore, we can see that ‖D6,n‖∞ is of the order O((nan)−1 log(n)) = o((nan)−3/4 log3/4(n)),
almost surely.

The assumptions of Lemma 4 are satisfied, and it follows from the third statement of this result
that ‖Rn‖∞ is of the order O((nan)−3/4 log3/4(n)), almost surely. It then follows that ‖D7,n‖∞ is also

of the order O((nan)−3/4 log3/4(n)), almost surely, because |D7,n(t)| is bounded by [1−‖π‖∞]−1‖Rn‖∞.
Since |D8(t)| is bounded by [1−‖π‖∞]−1‖R1,n‖∞, it follows from the second statement of Proposition

1 for ‖D8‖∞ to be of the order O((nan)−3/4 log3/4(n)), almost surely. The second statement from

Proposition 2 shows that ‖D9‖∞ is of the order O((na
−3/4
n log3/4(n)), almost surely, which follows from

the fact that |D9(t)| is bounded by ‖f‖∞[infx∈[0, 1] s(x)]−1‖R2,n‖∞. Similarly, the second statement

of Proposition 3 shows that ‖D10,n‖∞ is of the order O((nan)−3/4 log3/4(n)), almost surely, which
concludes the proof. �

Before we can prove of our second main result we need to state the asymptotic order of the mean
of the process {En(t) : −∞ < t ≤ τF} introduced in Theorem 1.

Lemma 6. Under the conditions of Theorem 1 it follows that

sup
−∞<t≤τF

∣∣∣E[En(t)
]∣∣∣ = O

(
a2n
)
.

Proof. Recall from the statement of Theorem 1 that En(t) = Tn(t)− f(t){Un + tVn} −Wn(t).
Hence, the assertion follows from showing ‖E[Tn]‖∞ = O(a2n), |E[Un]| = O(a2n), |E[Vn]| = O(a2n) and
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‖E[Wn]‖∞ = O(a2n). We will only show the result that ‖E[Tn]‖∞ = O(a2n) because the remaining
statements follow by similar lines of argument.

Write

1−Q(ts(v + anw) +m(v + anw) | v + amw)

1− π(v + anw)
− 1−Q(ts(v) +m(v) | v)

1− π(v)

= anw

∫ 1

0
π̇(v + anwp) dp

{1− π(v + anw)}{1− π(v)}
,

where π̇ is the first derivative of the function π with respect to its argument. Additionally, write

E
[
ζ
(
v + anw,Z, δ, ts(v + anw) +m(v + anw)

) ∣∣∣X = v, X ′ = v + anw
](4.20)

= −anw
∫ ts(v)+m(v)

−∞

1

1−M(s− | v)
Ṁ1(ds | v)− anw

∫ ts(v)+m(v)

−∞

Ṁ(s− | v)

{1−M(s− | v)}2
M1(ds | v)

+ anw

∫ ts(v+anw)+m(v+anw)

ts(v)+m(v)

∫ 1

0
Ṁ(s− | v + anwp) dp

{1−M(s− | v + anw)}{1−M(s− | v)}
M1(ds | v)

− anw
∫ ts(v+anw)+m(v+anw)

ts(v)+m(v)

∫ 1

0
Ṁ(s− | v + anwp) dp

{1−M(s− | v + anw)}2
M1(ds | v + anw)

− anw
∫ ts(v+anw)+m(v+anw)

ts(v)+m(v)

∫ 1

0
Ṁ(s− | v + anwp) dp

{1−M(s− | v + anw)}{1−M(s− | v)}
M1(ds | v + anw)

− anw
∫ 1

0

{∫ ts(v+anw)+m(v+anw)

ts(v)+m(v)

1

1−M(s− | v)
Ṁ1(ds | v + anwq)

}
dq

− a2nw2

∫ ts(v)+m(v)

−∞

∫ 1

0
p{
∫ 1

0
M̈(s− | v + anwpq) dq} dp
{1−M(s− | v)}2

M1(ds | v)

− a2nw2

∫ ts(v)+m(v)

−∞

{
∫ 1

0
Ṁ(s− | v + anwp) dp}2

{1−M(s− | v + anw)}{1−M(s− | v)}2
M1(ds | v)

− a2nw2

∫ ts(v)+m(v)

−∞

{
∫ 1

0
Ṁ(s− | v + anwp) dp}2

{1−M(s− | v + anw)}2{1−M(s− | v)}
M1(ds | v)

− a2nw2

∫ 1

0

{∫ ts(v)+m(v)

−∞

∫ 1

0
Ṁ(s− | v + anwp) dp

{1−M(s− | v + anw)}2
Ṁ1(ds | v + anwq)

}
dq

− a2nw2

∫ 1

0

{∫ ts(v)+m(v)

−∞

∫ 1

0
Ṁ(s− | v + anwp) dp

{1−M(s− | v + anw)}{1−M(s− | v)}
Ṁ1(ds | v + anwq)

}
dq

− a2nw2

∫ 1

0

p

{∫ 1

0

{∫ ts(v)+m(v)

−∞

1

1−M(s− | v)
M̈1(ds | v + anwpq)

}
dq

}
dp.

Here M̈ is the second partial derivative of M with respect to x and M̈1 is the second partial derivative
of M1 with respect to x. For large enough n, E[Tn(t)] is equal to∫ 1

0

{∫ 1

−1
E
[
ζ
(
v + anw,Z, δ, ts(v + anw) +m(v + anw)

) ∣∣∣X = v, X ′ = v + anw
]
K(w) dw

}
(4.21)

× 1−Q(ts(v) +m(v) | v)

1− π(v)
dv

+ an

∫ 1

0

{∫ 1

−1
E
[
ζ
(
v + anw,Z, δ, ts(v + anw) +m(v + anw)

) ∣∣∣X = v, X ′ = v + anw
]

×
∫ 1

0
π̇(v + anws) ds

{1− π(v + anw)}{1− π(v)}
wK(w) dw

}
dv.
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Since the first two terms on the right-hand side of (4.20) depend only on w multiplied by a quantity
not depending on w, the kernel function K having mean zero implies the associated terms in (4.21)
are equal to zero, while the remaining terms in the right-hand side of (4.20) are easily shown to
be of the order O(a2n). The assertion then follows by combining the right-hand side of (4.20) with
expression (4.21), and observing the remaining nonzero terms are all of the order O(a2n) or o(a2n). �

To continue we will introduce some notation. Write H for a class of measurable functions and
let ρ be a pseudometric for H. As is in Definition 2.1.5 of van der Vaart and Wellner (1996), we will
call N(ε,H, ρ) the covering number of H, which is the minimum number of balls {g : ρ(g, h) < ε}
of radius ε that is required to cover H. Note that the centers of the balls need not belong to H, but
are required to have finite length under ρ. We will call the logarithm of the covering number the
entropy. Also as in Definition 2.1.6 of van der Vaart and Wellner (1996), when given two functions
satisfying hl ≤ hu we will call the collection of functions from H satisfying hl ≤ h ≤ hu a bracket,
and an ε-bracket when the length of hu−hl under ρ is smaller than ε. We will then call the minimum
number of ε-brackets required to cover H the bracketing number of H, and write N[ ](ε,H, ρ). As in
the definition of the covering number, the bracketing functions hl ≤ hu need not belong to H but
are required to have finite lengths under ρ.

It is common to let the pseudometric ρ be a scaled Lq(P )–metric for some q ≥ 1 (ρLq(P )(h, g) ∝
[
∫
|h−g|q dP ]1/q) or a scaled supremum metric (see ‖ ·‖∞ introduced at the beginning of Section 2).

A function H such that |h| ≤ H for every h ∈ H is called an envelope function for H, and this
function is useful for scaling the pseudometric ρ. When

∫
Hq dP <∞ it is helpful to think of H as

a subset of the class Lq(P ), writing Lq(P ) for the class of measurable functions with finite length
under the Lq(P )–metric. Covering numbers and bracketing numbers are very helpful in understanding

asymptotic properties of the process {n−1/2{F̂(t) − F (t)} : −∞ < t ≤ τF}, which depends on the
index set −∞ < t ≤ τF and a bandwidth sequence {an}n≥1. We conclude this section with the proof

of our second main result: the weak convergence of n1/2{F̂− F}.

Proof of Theorem 2. The conditions of Theorem 1 are satisfied with (nan)−3/4 log3/4(n) =

o(n−1/2), and we can write F̂(t) − F (t) = En(t) + oP (n−1/2), −∞ < t ≤ τF , where the process
En(t) = Tn(t)− f(t){Un + tVn} −Wn(t) depends on the random quantities Tn(t), Un, Vn and Wn(t)
given in Theorem 1. Since En(t) is not centered and the conditions of Lemma 6 are satisfied with

a2n = o(n−1/2), we center the process En(t) to obtain F̂(t) − F (t) = En(t) − E[En(t)] + oP (n−1/2) =
Tn(t)−E[Tn(t)]−f(t){Un−E[Un]+ t{Vn−E[Vn]}}−{Wn(t)−E[Wn(t)]}+oP (n−1/2). The assertion
follows if each of Tn(t)−E[Tn(t)], Un −E[Un], Vn −E[Vn] and Wn(t)−E[Wn(t)] are asymptotically
linear and satisfy appropriate central limit theorems. We will prove only that Tn(t) − E[Tn(t)] is
asymptotically linear, uniformly in −∞ < t ≤ τF , and satisfies a functional central limit theorem.
The remaining statements can be shown using similar and easier arguments that have been omitted
for brevity.

We will now introduce some notation. As in Pakes and Pollard (1989), we will call a class of
functions H a Euclidean class with envelope function H (with respect to the Lq(P )–metric) when
there are constants C1, C2 > 0 such that the covering numbers N(ε,H, Lq(P )) satisfy

N
(
ε,H, Lq(P )

)
≤ C2ε

−C1 , 0 < ε ≤ 1.

The constants C1 and C2 cannot depend on P . Note, Sherman (1994) requires that the envelope H
satisfies

∫
H2 dP <∞. This condition is always satisfied for uniformly bounded H, and in this case

we do not mention the distribution P .
To show that Tn(t)−E[Tn(t)] is asymptotically linear, we will apply results from Sherman (1994),

who studies weak convergence of degenerate U -processes of order k ≥ 1. Using the Hoeffding
decomposition of a U -process, this author is able to obtain several useful results concerning tightness
properties of these processes. Corollary 7 of Sherman (1994) states that k-th order U -processes
indexed by a Euclidean class of mean zero functions is asymptotically tight at the root-n rate, i.e.
OP (n−1/2).
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The class of mean zero functions associated to Tn(t)− E[Tn(t)] is T = T1 − T2 with T1 equal to{
((X,Z, δ), (X ′, Z ′, δ′)) 7→1

a
K

(
X −X ′

a

)
1−Q(ts(X) +m(X) |X)

1− π(X)

ζ(X,Z ′, δ′, ts(X) +m(X))

g(X)

: 0 < a < 1, −∞ < t ≤ τF

}
and T2 = {((X,Z, δ), (X ′, Z ′, δ′)) 7→ E[fa,t((X,Z, δ), (X

′, Z ′, δ′))] : fa,t ∈ T1}. We can see that the
amount of entropy residing in the class T2 is proportional to that residing in the class T1, which can
be decomposed into the product of three classes:

K =

{
U = X −X ′ 7→ 1

a
K

(
U

a

)
: 0 < a < 1

}
,

S =

{
X 7→ 1−Q(ts(X) +m(X) |X)

1− π(X)
: −∞ < t ≤ τF

}
=

{
X 7→ π(X)

1− π(X)
+ 1− F (t) : −∞ < t ≤ τF

}
and

Z =

{
((X,Z, δ), (X ′, Z ′, δ′)) 7→ ζ(X,Z ′, δ′, ts(X) +m(X))

g(X)
: −∞ < t ≤ τF

}
.

We can conclude that T is a Euclidean class when we have shown that K, S and Z are each Euclidean
classes. The class K is Euclidean by Lemma 22 of Nolan and Pollard (1987) with constant envelope
‖K‖∞.

We will now show that the class S is Euclidean. Let ε > 0. Since F is a continuous distribution
function, we can partition the (infinite length) interval [−∞, τF ] into segments [ti, ti+1] satisfying
maxi |F (ti+1) − F (ti)| ≤ ε by taking an ε-net of [0, 1], consisting of O(ε−1) many links, and using
the quantile F−1 to define the corresponding points ti, i = 1, . . . , O(ε−1), that partition the interval
[−∞, τF ]. Monotonicity of F motivates the following brackets for a function from S:

π(X)

1− π(X)
+ 1− F (ti+1) ≤

π(X)

1− π(X)
+ 1− F (t) ≤ π(X)

1− π(X)
+ 1− F (ti), ti ≤ t ≤ ti+1.

Working with the supremum metric, we find the maximal length of our brackets is maxi |F (ti+1) −
F (ti)| ≤ ε as desired. Therefore, the number of brackets required to cover S with respect to the
supremum metric, N[ ](ε,S, ‖ · ‖∞), is O(ε−1). Hence, there is a constant C > 0 such that N[ ](ε,S, ‖ ·
‖∞) ≤ Cε−1, and it follows that S is Euclidean with constant envelope ‖π‖∞/(1− ‖π‖∞) + 1.

To show that the class Z is Euclidean, we write Z = Z1−Z2 as a difference of two classes, where

Z1 =

{(
(X,Z, δ), (X ′, Z ′, δ′)

)
7→ δ′1[Z ′ ≤ ts(X) +m(X)]

{1−M(Z ′ − |X)}g(X)
: −∞ < t ≤ τF

}
and Z2 is equal to{(

(X,Z, δ), (X ′, Z ′, δ′)
)
7→
∫ ts(X)+m(X)

−∞

1[Z ′ > u]

{1−M(Z ′ − |X)}2g(X)
M1(du |X) : −∞ < t ≤ τF

}
.

We can therefore conclude that Z is a Euclidean class when we have shown that both Z1 and Z2 are
each Euclidean classes.

Letting ε > 0, as before with the class S, we can partition [−∞, τF ] into segments using points
ti, i = 1, . . . , O(ε−2), such that

max
i

sup
0≤x≤1

∣∣∣M1
(
ti+1s(x) +m(x) |x

)
−M1

(
tis(x) +m(x) |x

)∣∣∣ ≤ [1− ‖M‖∞]2[ inf
0≤x≤1

g(x)

]2
ε2.

Also similar to the above arguments, monotonicity of the indicator function motivates the following
brackets for a function from Z1:

δ′1[Z ′ ≤ tis(X) +m(X)]

{1−M(Z ′ − |X)}g(X)
≤ δ′1[Z ′ ≤ ts(X) +m(X)]

{1−M(Z ′ − |X)}g(X)
≤ δ′1[Z ′ ≤ ti+1s(X) +m(X)]

{1−M(Z ′ − |X)}g(X)
,
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when ti ≤ t ≤ ti+1. The squared length of the proposed brackets in the L2(P ⊗ P )–metric satisfies

E

[{
δ′1[Z ′ ≤ ti+1s(X) +m(X)]

{1−M(Z ′ − |X)}g(X)
− δ′1[Z ′ ≤ tis(X) +m(X)]

{1−M(Z ′ |X)}g(X)

}2
]

≤
[
1− ‖M‖∞

]−2[
inf

0≤x≤1
g(x)

]−2
sup

0≤x≤1

∣∣∣M1
(
ti+1s(x) +m(x) |x

)
−M1

(
tis(x) +m(x) |x

)∣∣∣
≤ ε2, i = 1, . . . , O

(
ε−2
)
.

Since Z1 has the constant envelope (1−‖M‖∞)−1[inf0≤x≤1 g(x)]−1, it then follows for the number of
brackets required to cover Z1, N[ ](ε,Z1, L2(P ⊗ P )), is O(ε−2). Hence, Z1 is Euclidean. The class
Z2 can also be shown to be Euclidean by a similar (and easier) argument, which is omitted. We
conclude that the class Z is Euclidean as desired.

Therefore, T is Euclidean and the requirements for Corollary 7 of Sherman (1994) are satisfied.
We can decompose Tn(t) into

χn(t) =
1

n(n− 1)an

∑
j 6=k

K

(
Xj −Xk

an

)
1−Q(ts(Xj) +m(Xj) |Xj)

1− π(Xj)

ζ(Xj, Zj, δj, ts(Xj) +m(Xj))

g(Xj)
,

and a remainder term Tn(t)− χn(t) that is equal to

1

nan

1

n

n∑
j=1

K(0)
1−Q(ts(Xj) +m(Xj) |Xj)

1− π(Xj)

ζ(Xj, Zj, δj, ts(Xj) +m(Xj))

g(Xj)
− 1

n
χn(t),

with −∞ < t ≤ τF . Therefore, up to symmetry in the kernel, χn(t) − E[χn(t)] is a 2nd-order de-
generate U -process. Note, from the discussion on page 439 of Sherman (1994), the kernel function
characterizing the process χn(t) − E[χn(t)] need not be symmetric in its arguments in order for
the conclusions from Sherman (1994) to hold because the corresponding U -process is given by sym-
metrizing the kernel function. We can therefore apply Corollary 7 of Sherman (1994) to see that both
‖χn − E[χn]‖∞ = OP (n−1/2) and the remainder satisfies ‖Tn − E[Tn] − χn + E[χn]‖∞ = oP (n−1/2).
However, χn(t)− E[χn(t)] is not asymptotically linear.

To continue, approximate χn(t)−E[χn(t)] by its Hájek projection. For large enough n, a function
ηa,t ∈ T1 has the Hájek projection ha,t = h1,a,t + h2,a,t, where

h1,a,t(Xj, Zj, δj) = E
[
ηa,t((X,Z, δ), (Xj, Zj, δj)) | (Xj, Zj, δj)

]
=

∫ 1

−1

1−Q(ts(Xj + au) +m(Xj + au) |Xj + au)

1− π(Xj + au)

× ζ(Xj + au, Zj, δj, ts(Xj + au) +m(Xj + au))K(u) du

and

h2,a,t(Xj, Zj, δj) = E
[
ηa,t((Xj, Zj, δj), (X,Z, δ)) | (Xj, Zj, δj)

]
=

1−Q(ts(Xj) +m(Xj) |Xj)

1− π(Xj)

×
∫ 1

−1
E
[
ζ(Xj, Z, δ, ts(Xj) +m(Xj)) |Xj, X = Xj + au

]g(Xj + au)

g(Xj)
K(u) du.

The Hájek projection of χn(t)−E[χn(t)] is then given by n−1
∑n

j=1 han,t(Xj, Zj, δj)−E[han,t(X,Z, δ)],
where the bandwidth parameter an appears in place of a.

From Lemma 6 of Sherman (1994), it follows that the class of Hájek projections, i.e.{
(X,Z, δ) 7→ ha,t(X,Z, δ)− E

[
ha,t(X,Z, δ)

]
: 0 ≤ a < 1, −∞ < t ≤ τF

}
,
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is Euclidean from the fact that T is Euclidean. We can therefore apply Corollary 4 (ii) of Sherman
(1994) to see that

sup
t∈R

∣∣∣χn(t)− E
[
χn(t)

]
− 1

n

n∑
j=1

han,t(Xj, Zj, δj) + E
[
han,t(X,Z, δ)

]∣∣∣ = OP (n−1) = oP (n−1/2).

Define the function ψt = h0,t = h1,0,t, since h2,0,t ≡ 0 and E[h1,0,t(X,Z, δ)] = 0. If we can show that

(4.22) sup
t∈R

∣∣∣∣ 1n
n∑
j=1

han,t(Xj, Zj, δj)− E
[
han,t(X,Z, δ)

]
− 1

n

n∑
j=1

ψt(Xj, Zj, δj)

∣∣∣∣ = oP (n−1/2),

then Tn(t)− E[Tn(t)] is asymptotically linear with influence function

ψt(X,Z, δ) =
1−Q(ts(X) +m(X) |X)

1− π(X)
η(X,Z, δ, ts(X) +m(X)).

When Tn(t) − E[Tn(t)] is asymptotically linear we can describe the weak convergence of Tn(t) −
E[Tn(t)] by a mean zero Gaussian process with known covariance structure.

To complete the argument that Tn(t)−E[Tn(t)] is asymptotically linear, we need to more closely
examine the space of Hájek projections and rewrite

H =

{
(X,Z, δ) 7→

∫ 1

−1

{
faw,t(X,Z, δ)− E

[
faw,t(X,Z, δ)

]}
K(w) dw : faw,t ∈ S ′ ⊗Z ′

}
,

where the classes S ′ and Z ′ are related to the classes S and Z above with

S ′ =
{
X 7→ π(X + b)

1− π(X + b)
+ 1− F (t) : −∞ < t ≤ τF , −1 < b < 1

}
and Z ′ = Z ′1 −Z ′2 with

Z ′1 =

{
(X,Z, δ) 7→ δ1[Z ≤ ts(X + b) +m(X + b)]

{1−M(Z − |X + b)}g(X + b)
: −∞ < t ≤ τF , −1 < b < 1

}
and

Z ′2 =

{
(X,Z, δ) 7→

∫ ts(X+b)+m(X+b)

−∞

1[Z > u]

{1−M(Z − |X + b)}2g(X + b)
M1(du |X + b)

: −∞ < t ≤ τF , −1 < b < 1

}
.

Therefore, the amount of entropy residing in the class H depends on the amounts of entropy residing
in the classes S ′ and Z ′.

Write S ′ = O +P as a sum of classes, with O = {X 7→ π(X + b)/{1− π(X + b)} : −1 < b < 1}
and P = {X 7→ 1−F (t) : −∞ < t ≤ τF}. Let ε > 0 and set bi, i = 1, . . . , O(ε−1), as the grid points
for an ‖π′‖−1∞ (1− ‖π‖∞)2ε-net of (−1, 1). Assumption (A5) implies that

sup
0≤x≤1

∣∣∣∣ π(x+ b)

1− π(x+ b)
− π(x+ bi)

1− π(x+ bi)

∣∣∣∣ ≤ ε,

whenever bi ≤ b ≤ bi+1, i = 1, . . . , O(ε−1). Since O has constant envelope ‖π‖∞/(1 − ‖π‖∞), it
follows that N(ε,O, ‖ · ‖∞) = O(ε−1) and therefore N[ ](ε,O, ‖ · ‖∞) = O(ε−1) (see the note in the
parentheses near the top of page 84 of van der Vaart and Wellner, 1996). Repeating the steps above
for showing the class S satisfies N[ ](ε,S, ‖ · ‖∞) = O(ε−1) yields that N[ ](ε,P , ‖ · ‖∞) = O(ε−1) as
well. Therefore, there is a constant C > 0 not depending on ε such that

(4.23) N[ ](ε,S ′, L2(P )) ≤ Cε−2, ε > 0.

Similarly, write Z ′1 = I ⊗ D as a product of classes, with I = {(X,Z, δ) 7→ δ1[Z ≤ ts(X + b) +
m(X + b)] : −∞ < t ≤ τF , −1 < b < 1} and D = {(X,Z, δ) 7→ δ/{{1−M(Z− |X + b)}g(X + b)} :
−1 < b < 1}. Now setM = {X 7→ m(X+b) : −1 < b < 1} and V = {X 7→ s(X+b) : −1 < b < 1}.
Since Assumption (A5) implies that both of m and s are twice differentiable with bounded derivatives,
it is easy to show that N[ ](ε,M, ‖·‖∞) = O(ε−1) and N[ ](ε,V , ‖·‖∞) = O(ε−1) for any ε > 0. We can
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therefore choose brackets ml
i < mu

i , i = 1, . . . , O(ε−2), for m and brackets slj < suj , j = 1, . . . , O(ε−2),
for s such that

‖mu
i −ml

i‖∞ ≤
1

2‖m1‖∞
ε2 and ‖suj − slj‖∞ ≤

1

2

[
sup

0≤x≤1
sup

−∞<t≤τ0
|tm1(t |x)|

]−1
ε2.

Proceeding along similar lines as the proof of Lemma A.1 of Van Keilegom and Akritas (1999) shows
that N[ ](ε, I, L2(P )) = O(ε−6). It is easy to show that D satisfies N[ ](ε,D, L2(P )) = O(ε−2). It then
follows that N[ ](ε,Z ′1, L2(P )) = O(ε−8).

The class Z ′2 is treated similarly to Z ′1 above, and, with additional technical effort, one shows
that N[ ](ε,Z ′2, L2(P )) = O(ε−6). Combining this result with the order for the bracketing numbers
N[ ](ε,Z ′1, L2(P )) of Z ′1 above implies that there is a constant C > 0 not depending on ε such that

(4.24) N[ ](ε,Z ′, L2(P )) ≤ Cε−14, ε > 0.

Combining (4.23) and (4.24) shows the class S ′ ⊗ Z ′ satisfies N[ ](ε,S ′ ⊗ Z ′, L2(P )) = O(ε−16).
Since H has the constant envelope U = 2‖K‖∞[‖π‖∞/(1 − ‖π‖∞) + 1]‖η‖∞, we can see that
N[ ](ε,H, L2(P )) = O(ε−16) as well. Therefore, only one bracket is required when ε > U . Other-
wise, there are constants C1, C2 > 0 not depending on ε such that∫ U

0

√
logN[ ](ε,H, L2(P )) dε ≤ C1 + C2

∫ 1

0

√
log(1/ε) dε <∞.

It then follows that the class H is Donsker.
From Corollary 2.3.12 of van der Vaart and Wellner (1996), the class of empirical processes

indexed by the Donsker class H is asymptotically equicontinuous in the sense that, for any ε > 0,

(4.25) lim
α↓0

lim sup
n→∞

P

(
sup

h1,h2∈H : Var(h1−h2)<α

∣∣∣∣n−1/2 n∑
j=1

{
h1(Xj, Zj, δj)− h2(Xj, Zj, δj)

}∣∣∣∣ > ε

)
= 0.

We can see that (4.25) implies the desired (4.22) if we can show that han,t−h0,t satisfies the variation
condition under the norm inside the probability statement in (4.25), where the norm inside the
probability statement is restricted to the subclass of functions from H with {an}n≥1 in place of
0 ≤ a < 1.

Write han,t − h0,t = h1,an,t − h1,0,t + h2,an,t, and observe that∣∣h2,an,t(Xj, Zj, δj)
∣∣ =

1−Q(ts(Xj) +m(Xj) |Xj)

1− π(Xj)

×
∣∣∣∣ ∫ 1

−1
E
[
η
(
Xj, Z, δ, ts(Xj) +m(Xj)

) ∣∣∣Xj, X = anu
]g(Xj + anu)

g(Xj)
K(u) du

∣∣∣∣
≤ 2‖K‖∞

(
1− ‖π‖∞

)−1 ‖g‖∞
inf0≤x≤1 g(x)

× sup
−∞<t≤τF

sup
−1<u<1

∣∣∣E[η(Xj, Z, δ, ts(Xj) +m(Xj)
) ∣∣∣Xj, X = Xj + anu

]∣∣∣
= O(an), a.s.,

which follows from the facts that E[η(Xj, Z, δ, ts(Xj) + m(Xj)) |Xj, X = x] is both bounded and
differentiable in x and that E[η(Xj, Z, δ, ts(Xj) + m(Xj)) |Xj] = 0. The variance of han,t − h1,0,t
satisfies

E

[{
h1,an,t(X,Z, δ)− h1,0,t(X,Z, δ) + h2,an,t(X,Z, δ)− E

[
h1,an,t(X,Z, δ)

]
− E

[
h2,an,t(X,Z, δ)

]}2
]

≤ 2E

[{
h1,an,t(X,Z, δ)− h1,0,t(X,Z, δ)

}2
]

+ 4E2
[
h1,an,t(X,Z, δ)

]
+ 8E

[
h22,an,t(X,Z, δ)

]
+ 16E2

[
h2,an,t(X,Z, δ)

]
= 2E

[{
h1,an,t(X,Z, δ)− h1,0,t(X,Z, δ)

}2
]

+ 4E2
[
h1,an,t(X,Z, δ)

]
+O

(
a2n
)
,
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and the quantity E[{h1,an,t(X,Z, δ)− h1,0,t(X,Z, δ)}2] is equal to

E

[{∫ 1

−1

{
1−Q(ts(X + anu) +m(X + anu) |X + anu)

1− π(X + anu)

× ζ
(
X + anu, Z, δ, ts(X + anu) +m(X + anu)

)
− 1−Q(ts(X) +m(X) |X)

1− π(X)
ζ
(
X,Z, δ, ts(X) +m(X)

)}
K(u) du

}2
]

= O(an), −∞ < t ≤ τF ,

which follows from the facts that both

sup
0≤x≤1

sup
−1<u<1

∣∣∣∣1−Q(ts(x+ anu) +m(x+ anu) |x+ anu)

1− π(x+ anu)
− 1−Q(ts(x) +m(x) |x)

1− π(x)

∣∣∣∣
= sup

0≤x≤1
sup
−1<u<1

∣∣∣∣ π(x+ anu)

1− π(x+ anu)
− π(x)

1− π(x)

∣∣∣∣
= O(an)

and

sup
−∞<t≤τF

sup
−1<u<1

∣∣∣∣E[{ζ(X + anu, Z, δ, ts(X + anu) +m(X + anu)
)
− ζ
(
X,Z, δ, ts(X) +m(X)

)}2
]

is of the order O(an). Similarly, conclude that E2[h1,an,t(X,Z, δ)] = O(a2n), uniformly in −∞ < t ≤
τF . Therefore, the variance of han,t − h0,t is asymptotically negligible, and we can apply (4.25) to
obtain the desired (4.22). We conclude that Tn(t)− E[Tn(t)] is asymptotically linear with influence
function

ψt(X,Z, δ) =
1−Q(ts(X) +m(X) |X)

1− π(X)
ζ
(
X,Z, δ, ts(X) +m(X)

)
, −∞ < t ≤ τF .

It follows that the process {Tn(t)−E[Tn(t)] : −∞ < t ≤ τF} weakly converges to a mean zero Gauss-
ian process {ZT (t) : −∞ < t ≤ τF} with covariance function ΣT (t, v) = E[ψt(X,Z, δ)ψv(X,Z, δ)] for
−∞ < t, v ≤ τF . The assertion then follows by finding similar conclusions for the random quantities
Un − E[Un], Vn − E[Vn] and Wn(t)− E[Wn(t)]. �
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