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Abstract

A multivariate monitoring procedure is presented to detect changes in the parameter vector of

the dynamic conditional correlation model proposed by Robert Engle in 2002. The benefit of

the proposed procedure is that it can be used to detect changes in both the conditional and

unconditional variance as well as in the correlation structure of the model. The detector is based

on quasi log likelihood scores. More precisely, standardized derivations of quasi log likelihood

contributions of points in the monitoring period are evaluated at parameter estimates calculated

from a historical period. The null hypothesis of a constant parameter vector is rejected if these

standardized terms differ too much from those that were expected under the assumption of a

constant parameter vector. Under appropriate assumptions on moments and the structure of

the parameter space, limit results are derived both under null hypothesis and alternatives. In a

simulation study, size and power properties of the procedure are examined in various scenarios.
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1. Introduction

Recent years brought a lot of research in the fields of modelling volatility and correlation and

testing for structural breaks, as well as in the intersection between both. In particular, the latter is

motivated by the importance of information on structural changes in such parameters for financial

applications. For instance, analysts need the aforementioned information for constructing optimal

portfolios or for anticipating crises. A usual observation here is that volatilities and correlations

increase in turbulent market phases.

While other articles often consider either variances or correlations, see, for instance, Wied and

Galeano (2013) and Pape et al. (2016), among others, this paper aims at monitoring structural

changes in both volatilities and correlations jointly. For that, we consider the well-known Dynamic

Conditional Correlation (DCC) model by Engle (2002) and provide a method to monitor its pa-

rameters which steer the conditional volatilities and correlations. With constant parameters, the

unconditional variances and correlations would be constant. Our method can be used to investigate

if this assumption is realistic in empirical datasets. If the parameters are not constant in the ob-

served period, then parameter estimates based on the constancy assumption are no longer reliable

leading to biased volatilities and correlations forecasts.

We deal with monitoring parameter changes in dynamic conditional correlation models. Thus,

based on an historical period of observations, we receive new data and the problem is to detect the

presence of a changepoint in the model parameters as soon as possible once it has happened. Our

approach is strongly motivated by those found in Chu et al. (1996) and Berkes et al. (2004). On

the one hand, Chu et al. (1996) developed sequential tests of structural stability in linear models.

Particularly, these authors considered two monitoring procedures: the first one is a fluctuation mon-

itoring procedure based on recursive estimation of parameters, while the second one is a CUSUM

monitoring procedure based on recursive residuals. On the other hand, Berkes et al. (2004) proposed

a sequential monitoring scheme to detect changes in the parameters of a Generalized Autoregressive

Conditional Heteroskedasticity (GARCH) model proposed by Bollerslev (1986). In this case, the

sequential changepoint detector depends on quasi likelihood scores, thus not using residuals. Their

idea was to use a historical data set to estimate the model parameters of the GARCH model, that
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are used to evaluate the contributions of the data from the monitoring period to the Gaussian quasi

log likelihood function. Therefore, under the alternative of a parameter change in the monitoring

period, it is expected that the absolute gradient contributions of post break observations tend to

infinity.

The procedure proposed in this paper to monitor changes in the parameters of the DCC model

can be seen as a multivariate extension of the monitoring scheme proposed by Berkes et al. (2004).

Nevertheless, the extension is much more complex than it may seem. On the one hand, models

that allow for dynamic modelling of both the variance and correlation possess a far more complex

structure than other multivariate extensions of the univariate GARCH model. The challenge of

handling the model and its quasi likelihood scores gets even more demanding if a multiplicative

structure of the conditional covariance matrix is postulated as in the DCC model. On the other

hand, the DCC models and their properties are far less well investigated than univariate GARCH

models and especially the classical GARCH model considered by Berkes et al. (2004). For the

models with dynamic conditional correlation, important results like conditions for the existence and

uniqueness of a stationary solution or for the existence of unconditional moments of higher order

have just been proposed recently, see Fermanian and Malongo (2016), or remain to be established

which makes this type of model quite challenging in applications.

Even if we focus on the DCC model due to its enormous popularity for modeling multiple financial

returns, the results of this paper may be extended to models with structure similar to the one of the

DCC model of Engle (2002), e.g., the Conditional Correlation Model (CCC) of Bollerslev (1990),

the DCC model of Tse and Tsui (2002) and the asymmetric generalized dynamic conditional cor-

relation (AG-DCC) model of Capiello et al. (2006), among others. On the contrary, the extension

to other popular multivariate volatility models, e.g., the multivariate extensions of the GARCH

models as proposed by Bollerslev et al. (1988) or the BEKK model proposed by Engle and Kroner

(1995), that ensures the nonnegative definiteness of the conditional covariance matrix under milder

conditions on the parameters, is more complex as the structure of these models is quite different

to the structure of dynamic correlation models.
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The rest of the paper is organized as follows. Section 2 introduces the DCC model proposed by

Engle (2002). Section 3 describes the monitoring problem and presents several assumptions needed

to ensure the existence and uniqueness of a stationary solution of the model under consideration.

Section 4 proposes our monitoring scheme and presents the asymptotic results. The performance

of the procedure in finite samples is investigated by simulation and application to real data in

Sections 5 and 6. Some concluding statements can be found in Section 7.

Additionally, the appendix contains several sections organized as follows. The first section provides

a detailed presentation of the first and second order partial derivations of the contributions of

individual observations to the quasi log likelihood function of the model. The second section

contains the proofs of the theorems and propositions in Section 4. Finally, the last one provides

the proofs of some additional calculation rules.

2. The Dynamic Conditional Correlation Model

2.1. The Model and Basic Assumptions

Let {yt, t ∈ Z} be a sequence of p dimensional random vectors, yt = (y1t, . . . , ypt)′, following a

multivariate GARCH model given by
yt = H

1/2
t εt (2.1)

where
Ht = Cov (yt|Ft−1) (2.2)

is the positive definite conditional covariance matrix of yt given the information set Ft−1 =

σ {yt−1, yt−2, . . .} and {εt, t ∈ Z} a Standard White Noise sequence in R
p, i.e. E (εt) = 0p,

Cov (εt) = Ip, ∀t ∈ Z, and the vectors εt are mutually independent. In the following, 0p, 0p×p

and Ip denote the p dimensional vector of zeros, the (p × p) dimensional matrix of zeros, and the

(p× p) dimensional identity matrix, respectively.

Among all available specifications of the conditional covariance matrix Ht, we focus on the one

determined by the DCC model by Engle (2002), that assumes

Ht = DtRtDt (2.3)
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where Dt = diag
{
h

1/2
1t , . . . , h

1/2
pt

}
, with hit, i = 1, . . . , p, the individual variances, that can be

specified as univariate GARCH(1,1) models for instance:

hit = ωi + αiy
2
i,t−1 + βihi,t−1, i = 1, . . . , p. (2.4)

Furthermore, Rt := Cor (yt|Ft−1) is the conditional correlation matrix of yt which can be decom-

posed as
Rt = Q∗tQtQ

∗
t (2.5)

where Qt is a (p× p) matrix that is recursively determined as

Qt = (1− α− β) Q̄+ αzt−1z
′
t−1 + βQt−1 (2.6)

with zt = D−1
t yt the ’standardized’ vectors. The parameters α and β are nonnegative scalars which

satisfy α+ β < 1 and Q̄ = [q̄ij ]i,j=1,...,p is both the unconditional covariance and correlation matrix

of zt. Since this implies that the main diagonal elements are one, the unknown parameters in the

matrix Q̄ are the entries of ψ = vecl
(
Q̄
)

= (q̄21, . . . , q̄p,p−1)′, where vecl(·) is the operator that

stacks the lower diagonal elements of a matrix into a vector. Finally, the normalizing matrix Q∗t is

given by
Q∗t := diag

{
[Qt]−1/2

11 , . . . , [Qt]−1/2
pp

}
where [Qt]ii denotes the i-th main diagonal entry of the matrix Qt.

In summary, the vector of parameters in the DCC model is given as

θ = (ω1, α1, β1, . . . , ωp, αp, βp, α, β, q̄21, . . . , q̄p,p−1)′

which leads to a total number of d := 1
2 (p+ 1) (p+ 4) unknown parameters in the model. Note

that θ can be decomposed as θ =
(
θ′1,θ

′
2
)′ where

θ1 = (ω1, α1, β1, . . . , ωp, αp, βp)′ =
(
φ′1, . . . , φ

′
p

)′
with φj := (ωj , αj , βj)′, j = 1, . . . , p, is the vector of variance parameters and

θ2 = (α, β, q̄21, . . . , q̄p,p−1)′ =
(
α, β, ψ′

)′
,

is the vector of correlation parameters.
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An important issue in multivariate models with dynamic variance is that the positive definiteness of

the conditional covariance matrix Ht has to be guaranteed for all t ∈ Z almost surely. Proposition 2

in Engle and Sheppard (2001) provides sufficient conditions for this property. Particularly, the

matrix Ht as specified in (2.3), (2.4) and (2.6), is positive definite for all t ∈ Z almost surely, if

Assumption 2.1 is satisfied:

Assumption 2.1. 1. ωi > 0, ∀i ∈ {1, . . . , p}.

2. αi > 0 and βi > 0 with αi + βi < 1 ∀i ∈ {1, . . . , p}, see also Nelson and Cao (1992).

3. hi0 > 0, ∀i ∈ {1, . . . , p}.

4. α > 0 and β > 0 with α+ β < 1.

5. There exists δ1 > 0 with λmin(Q̄) > δ1 where λmin(·) is the smallest eigenvalue of a square

matrix.

6. There exists δ2 > 0 with λmax (Qt) < δ2 ∀t ∈ Z where λmax(·) is the largest eigenvalue of a

square matrix.

Note, that Assumption 2.1.6. is not necessary to verify the positive definiteness of Rt for all t ∈ Z.

This property is implied by the positive definiteness of Qt and Proposition 1 in Engle and Sheppard

(2001). The fact that Qt is positive definite for all t ∈ Z is implied by the decomposition

Qt = 1− α− β
1− β Q̄+ α

∞∑
n=0

βnzt−n−1z
′
t−n−1

and 6.70.(a) in Seber (2008):

λmin (Qt)
a.s.
≥ λmin

(1− α− β
1− β Q̄

)
+ λmin

(
α
∞∑
n=0

βnzt−n−1z
′
t−n−1

)
a.s.
≥ 1− α− β

1− β λmin
(
Q̄
)
>

1− α− β
1− β δ1 > 0.
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However, we use Assumption 2.1.6. to get fixed boundaries for the positive eigenvalues of Rt for

all t ∈ Z. Note that with 6.17.(a) in Seber (2008), we have

max
1≤i≤p

[Qt]ii <
p∑
i=1

[Qt]ii =
p∑
i=1
λi (Qt) ≤ pλmax (Qt)

a.s.
< pδ2 (2.7)

where λmax (Qt) = λ1 (Qt) , . . . , λp (Qt) = λmin (Qt)
a.s.
> 0 are the ordered eigenvalues of Qt.

Furthermore, we have

min
1≤i≤p

[Qt]ii >
1− α− β

1− β . (2.8)

Hence, (2.7), (2.8) and 6.95. in Seber (2008) imply boundaries for the eigenvalues of Rt:

λmin (Rt) ≥ λmin (Q∗t )
2 λmin (Qt) ≥

(
max

1≤i≤p
[Qt]ii

)−1 1− α− β
1− β δ1 ≥

1− α− β
1− β

δ1
pδ2

(2.9)

λmax (Rt) ≤ λmax (Q∗t )
2 λmax (Qt) ≤

(
min

1≤i≤p
[Qt]ii

)−1
δ2 ≤

1− β
1− α− β δ2 (2.10)

The results (2.9) and (2.10) will be used extensively throughout the article and the proof section

in the appendix.

2.2. The Estimation of the Model Parameters

Given an observed multivariate time series y1, . . . , yT , the quasi maximum likelihood estimator

(QMLE) of θ, denoted by θ̂T , is obtained by maximizing the Gaussian quasi log likelihood (QLL)

function

LT (θ|y1, . . . , yT ) =
T∑
t=1

lt (θ|y1, . . . , yT ) , (2.11)

with the individual QLL contributions

lt (θ|y1, . . . , yT ) = −1
2
(
p · log 2π + log det (Ht) + y′tH

−1
t yt

)
. (2.12)

Both the one step and the two step quasi maximum likelihood estimator are consistent. The

second one was proposed by Engle and Sheppard (2001) to reduce the calculation time, since the

one step estimation gets computationally expensive even for moderate dimensions of yt. However,
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preliminary simulations showed that the one step QMLE yields considerably better estimates.

Hence, we use the latter one for our simulations and applications.

In the following, we denote the (one step) QMLE calculated from a sample of T observations as θ̂T .

The consistency proof of θ̂T won’t be stated in detail, but is based on the unique optimization

of L(·) which is the limit of the QLL function LT (·) by the true parameter vector θ and on the

uniform convergence of LT (·) to L(·) on the constrained parameter space U which will be defined in

the next section. The first part can be proved along the lines of the proof of Lemma 5.5 in Berkes

et al. (2003) while the uniform convergence can be shown by means of Theorem A.2.2 in White

(1994) and analogously to the approach in Section B.2.3.

3. The Monitoring Problem and Associated Assumptions

Let θt ∈ Rd be the parameter vector of the DCC model at time t. Assume a historical period of

length m that is not affected by any structural change, i.e.

Assumption 3.1. θ1 = . . . = θm with m a positive integer.

We are interested in testing the null hypothesis of a constant parameter vector

H0 : θt = θ, t = 1, . . . ,m,m+ 1, . . .

against the alternative of a change in the vector of parameters at an unknown point in the moni-

toring period

H1 : θt =


θ, t = 1, . . . ,m,m+ 1, . . . ,m+ k∗ − 1

θ∗, t = m+ k∗,m+ k∗ + 1, . . .

with θ =
(
φ′1, . . . , φ

′
p, α, β, ψ

′
)′

the parameters before the change and θ∗ =
(
φ∗′1 , . . . , φ

∗′
p , α

∗, β∗, ψ∗′
)′

the parameter vector after the change where φ∗i = (ω∗i , α∗i , β∗i )′, i = 1, . . . , p, and ψ∗ = vecl
(
Q̄∗
)

with Q̄∗ =
[
q̄∗ij

]
i,j=1,...,p

. Note that the change takes place at the k∗-th point of the monitoring

period which is the (m+ k∗)-th point in the whole time series. Denote the number of unknown

parameters in the constant matrix Q̄ as p− := 1
2p (p− 1).
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Similarly as in Berkes et al. (2003), we assume that there exist constants 0 < u < u and

0 < ρ < 1, such that the parameter space can be constrained to the set U :

U :=
{
u : max

{
t1, . . . , tp, b, a+ b, |q1| , . . . ,

∣∣qp−∣∣} ≤ ρ, λmin
(
FQ̄(u)

)
> δ1,

and u < min {x1, s1, t1, . . . , xp, sp, tp, a, b} ≤ max {x1, s1, t1, . . . xp, sp, tp, a, b} ≤ u}

where u =
(
x1, s1, t1, . . . , xp, sp, tp, a, b, q1, . . . , qp−

)′ is a generic element of the constrained param-

eter space U . The functions FQ̄(u) and FQt(u) are defined as follows:

Definition 3.1. Define for i ∈ {1, . . . , p}, t ∈ Z and u ∈ U :

(i) wit(u) := xi
1− ti

+ si

∞∑
k=1

tk−1
i y2

i,t−k = xi
1− ti

+ si

∞∑
k=0

tki y
2
i,t−k−1.

(ii) FDt(u) := diag
{

w1t(u)1/2, . . . ,wpt(u)1/2
}
.

(iii) FRt(u) := FQ∗t (u)FQt(u)FQ∗t (u) with FQ∗t (u) := diag
{

[FQt(u)]−1/2
11 , . . . , [FQt(u)]−1/2

pp

}
.

(iv) FQt(u) := 1− a− b
1− b FQ̄(u) + a

∞∑
k=1

bk−1zt−k(u)z′t−k(u).

(v) FQ̄(u) :=



1 q1 q2 . . . qp−1

q1 1 qp . . .
...

... qp
. . . qp−−1

...
... 1 qp−

qp−1 . . . qp−−1 qp− 1


.

Note that zt(u) = FDt(u)−1yt which implies zit(u) = yit√
wit(u)

, ∀i = 1, . . . , p.

To enable consistent parameter estimation, we assume throughout the paper:

Assumption 3.2. θ ∈ U .

The QLL function in (2.11) can be written as a function of an arbitrary element of the parameter

space u ∈ U and is given as LT (u) =
T∑
t=1
lt(u) with

lt(u) = −1
2

(
p · log 2π +

p∑
i=1

log wit(u) + log det (FRt(u)) + z′t(u)FRt(u)−1zt(u)
)
. (3.1)
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Note that the functions wit(u) and FQt(u) depend on an infinite past of observations. While the

assumption of an infinite past may be adequate in the context of theoretical considerations, only

finitely many past observations can be obtained in practice. Thus, we need the following terms:

Definition 3.2. Define for i ∈ {1, . . . , p}, t ∈ Z and u ∈ U :

(i) ŵit(u) := xi
1− ti

+ si

t−1∑
k=1

tk−1
i y2

i,t−k = xi
1− ti

+ si

t−2∑
k=0

tki y
2
i,t−k−1.

(ii) F̂Dt(u) := diag
{

ŵ1t(u)1/2, . . . , ŵpt(u)1/2
}
.

(iii) F̂Rt(u) := F̂Q∗t (u)F̂Qt(u)F̂Q∗t (u) with F̂Q∗t (u) := diag
{[

F̂Qt(u)
]−1/2

11
, . . . ,

[
F̂Qt(u)

]−1/2

pp

}
.

(iv) F̂Qt(u) := 1− a− b
1− b FQ̄(u) + a

t−1∑
k=1

bk−1ẑt−k(u)ẑ′t−k(u) with ẑt(u) = F̂Dt(u)−1yt.

(v) L̂T (u) =
T∑
t=1

l̂t(u)

with l̂t(u) = −1
2

(
p · log(2π) +

p∑
i=1

log ŵit(u) + log det
(
F̂Rt(u)

)
+ ẑ′t(u)F̂Rt(u)−1ẑt(u)

)
.

3.1. The Existence of a Unique Stationary Solution

To verify the existence of a stationary and unique solution satisfying the DCC model, we have to

impose some additional assumptions, see Fermanian and Malongo (2016):

Assumption 3.3. max
1≤i≤p

αi + max
1≤i≤p

βi < 1 and |β| < 1.

Note that since E (ztz′t|Ft−1) = Rt, the sequence {ηt, t ∈ Z} with ηt = R
−1/2
t zt consists of indepen-

dent random vectors with E (ηt|Ft−1) = 0p and Cov (ηt|Ft−1) = Ip.

Assumption 3.4.

E
[
ln

(
β2 + α2 4(2p+ 1)√p√

CλCq
‖ηt‖22

)]
< 0

with constants Cλ =
λmin

(
(1− α− β) Q̄

)
1− β2 and Cq =

(1− α− β) min
1≤i≤p

q̄ii

1− β2 .
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Along the lines of Fermanian and Malongo (2016) and taking into account that the volatilities are

modeled as GARCH(1,1) processes, the model equations (2.1)-(2.6) can be written equivalently as

Xt = TtXt−1 + ζt (3.2)

with
Xt :=

(
h1t, . . . , hpt, y

2
1t, . . . , y

2
pt, vecl (Qt)′ , vecl

(
ztz
′
t

)′)′
,

ζt :=
(
ω1, . . . , ωp, ω1z

2
1t, . . . , ωpz

2
pt, (1− α− β) vecl

(
Q̄
)′
, vecl

(
ztz
′
t

)′)′

and Tt =



β1 0 α1 0
. . . . . . 0p×p− 0p×p−

0 βp 0 αp

β1z
2
1t 0 α1z

2
1t 0

. . . . . . 0p×p− 0p×p−

0 βpz
2
pt 0 αpz

2
pt

0p−×p 0p−×p β Ip− α Ip−

0p−×p 0p−×p 0p−×p− 0p−×p−



.

According to Fermanian and Malongo (2016) and for the model defined by (2.1)-(2.6), a stationary

solution of (3.2) exists if Assumption 3.3 is satisfied. If in addition Assumption 3.4 is satisfied, this

stationary solution is unique.

4. The Monitoring Procedure

The following monitoring scheme works along the lines of the univariate approach proposed by

Berkes et al. (2004). Denote by l′t(u) the gradient of the QLL contributions lt (u) with infinite past

in (3.1) and l̂′t(u) the gradient with finite past in Definition 3.2. The explicit form of the gradient

is derived and presented in Section A of the appendix. Note that when the transpose of a vector

and the gradient can be confused, we use T to denote the transpose of a vector.
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Since the asymptotics are carried out under the assumption of a growing length of the historical

period, it may be suitable to define some characteristics as the length of the monitoring period in

terms of m. Besides, this allows for a more adequate comparison of simulation results for different

lengths of the historical period. Hence, we denote the length of the monitoring period as mB.

Thus, the variable B indicates how long the monitoring period is compared to the historical period.

Furthermore, for any u ∈ U , define

D(u) := El′t(u)l′t(u)T

and assume

Assumption 4.1. D := D (θ) is a finite and nonsingular matrix.

For a finite and observed sample, we use the estimate

D̂m = 1
m

m∑
t=1

l̂′t(θ̂m)l̂′t(θ̂m)T

and the detector

Vk =
m+k∑
t=m+1

D̂
− 1

2
m l̂′t(θ̂m)

with stopping rule

τm = min
{
k ≤ mB : |Vk| > m

1
2

(
1 + k

m

)
b
(
k

m

)}
, (4.1)

where b(·) is a threshold function and | · | the norm that yields the maximum absolute entry of

vectors and matrices. If τm <∞, a change in the parameters is indicated while τm =∞ signalizes

that the detector did not cross the threshold function in the monitoring period and no changepoint

could be detected. As in Berkes et al. (2004), some moderate conditions are imposed on the form

of the threshold function b(·):

Assumption 4.2. b(·) is continuous on (0,∞) and inf
0<t<∞

b(t) > 0.

To avoid confusion with the model parameters, denote by α̃ ∈ (0, 1) the significance level for testing

the null hypothesis of no parameter change versus the alternative hypothesis of a change during

the monitoring period.
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Therefore, the threshold function b(·) or at least the variable parts of the function should be chosen

such that

lim
m→∞

PH0 {τm <∞} = α̃ and lim
m→∞

PH1 {τm <∞} = 1.

Berkes et al. (2004) choose the threshold function b(·) as a constant that is obtained via simulation.

Preliminary simulations suggested that the empirical size of the proposed multivariate procedure

depends strongly on the length of the monitoring period, i.e. on the parameter B, just as in the

univariate case presented by Berkes et al. (2004). To reduce this effect we include the length of the

monitoring period into the stopping rule (4.1). Moreover, we prefer a curved threshold function to

the linear one that results from choosing b(·) as a constant function. More precisely, we use the

threshold function, that was proposed by Horváth et al. (2004) and also used by Wied and Galeano

(2013) among others, i.e.

b (x) = max
{(

x

1 + x

)γ
, ε

}

where γ ∈ [0, 1/2) is a tuning parameter and ε > 0 a constant that can be chosen arbitrarily small

in applications. A larger value of γ results in a steeper threshold function that tends to detect early

changes in the parameters with a higher probability while a smaller value of the tuning parameter

leads to a lower slope of the threshold function which results in a higher probability to detect

changes that arise later in the monitoring period.

We scale this threshold function by multiplying a constant c = c (α̃) which is obtained via Monte

Carlo simulations such that the probability that the detector crosses the threshold function in the

monitoring period equals the theoretical size α̃.

As a last preparation for our main results, the random vectors yt need to posses eighth moments

and cross moments. Since this property is partly determined by the behaviour of the innovation

vectors, we assume

Assumption 4.3. The innovation vectors εt possess absolute eighth moments and cross moments.

The following proposition provides conditions that allow to pass the existence of these moments on
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to the outcome vectors yt. We denote the vector of conditional variances as ht = (h1t, . . . , hpt)′ and,

adopting the notation of He and Teräsvirta (2004), the vector of squared outcomes as

y
(2)
t =

(
y2

1t, . . . , y
2
pt

)′
. Recall the equity yt = Dtzt with zt ∼ (0, Rt) the ’standardised’ vectors.

Thus, a vector representation of (2.4) is given as

ht = ω +Ay(2)
t−1 +Bht−1 (4.2)

with ω := (ω1, . . . , ωp)′, A := diag {α1, . . . , αp} and B := diag {β1, . . . , βp}.

By the use of Zt := diag {z1t, . . . , zpt}, we have y(2)
t = Z2

t ht which allows for an autoregressive

representation of (4.2):
ht = ω +Ct−1ht−1

with Ct := AZ2
t +B. Note that the unconditional expectation of Ct is time independent under

the stationary conditions 4.3 and 4.4. Denominate by⊗k the k-fold Kronecker product of identical

matrices and assume

Assumption 4.4. λmax
(
E
[⊗

jC0
] )
<∞, ∀j ∈ {1, . . . , 4} .

Proposition 4.1. Let {yt} be a sequence of random vectors that satisfy (2.1)-(2.6) and ηt the

random vectors defined as ηt := R
−1/2
t zt with zt := D−1

t yt. Under Assumptions 2.1, 3.2-3.4, 4.3

and 4.4, the random vectors yt possess eighth moments and cross moments.

The evidence of Proposition 4.1 is the last piece we need for the next proposition that forms the

base for the following theorems:

Proposition 4.2. Under Assumptions 2.1, 3.1-3.4, 4.1 and 4.3-4.4, we have

D̂m →D a.s.

Theorem 4.1. Under H0 and Assumptions 2.1, 3.1-3.4 and 4.1-4.4, we have

lim
m→∞

PH0 {τm <∞} = lim
m→∞

PH0

 sup
1<k≤mB

|Vk|
m1/2

(
1 + k

m

)
b
(
k
m

) ≥ c
 = PH0

(
sup

t∈(0,B]

|G(t)|
(1 + t) b (t) ≥ c

)

where
{
G(t) = (G1(t), . . . , Gd(t))′ , t ∈ [0, B]

}
is a d-variate stochastic process whose component
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processes are d independent mean zero Gaussian processes {Gj(t), t ∈ [0, B]} with covariance func-

tion E (Gj(k)Gj(l)) = min {k, l}+ kl, for j = 1, . . . , d.

Along the lines of Galeano and Wied (2014) or Berkes et al. (2004) and denoting {Wi(t), t ∈ [0,∞)}

for i = 1, . . . , d as d independent one dimensional Standard Brownian Motions, we have that |G(t)|

possesses the same distribution as max
1≤i≤p

∣∣∣(1 + t)Wi

(
t

1+t

)∣∣∣ for all t ∈ Z, which yields

sup
t∈(0,B]

|G(t)|
(1 + t)b(t)

d= sup
t∈(0,B]

max
1≤i≤d

∣∣∣Wi

(
t

1+t

)∣∣∣
b (t)

d= sup
t∈(0,B]

max
1≤i≤d

∣∣∣Wi

(
t

1+t

)∣∣∣
max

{(
t

1+t

)γ
, ε
}

d= sup
s̃∈(0, B

1+B ]
max

1≤i≤d

|Wi (s̃)|
max {s̃γ , ε}

when t = s̃
1−s̃ is substituted. The notation A1

d= A2 indicates that the random variables A1 and

A2 possess the same distribution. Furthermore, choosing s̃ = s(1+B)
B yields

sup
t∈(0,B]

|G(t)|
(1 + t)b(t)

d= sup
s∈( 0,1]

max
1≤i≤d

∣∣∣Wi

(
sB

1+B

)∣∣∣
max

{(
sB

1+B

)γ
, ε
} d=

(
B

1 +B

) 1
2−γ

sup
s∈( 0,1]

max
1≤i≤d

|Wi (s)|
max

{
sγ , ε

(
1+B
B

)γ} .
Thus, we can use Monte Carlo simulations to obtain critical values c = c (α̃) in dependence of the

significance level α̃ based on the equality

PH0

( B

1 +B

)1/2−γ
sup

s∈( 0,1]
max

1≤i≤d

|Wi (s)|
max

{
sγ , ε

(
1+B
B

)γ} ≥ c (α̃)


= 1−

PH0

 sup
s∈(0,1]

|W1(s)|
max

{
sγ , ε

(
1+B
B

)γ} <

(1 +B

B

)1/2−γ
c (α̃)

d = α̃

or alternatively

PH0

 sup
s∈(0,1]

|W1(s)|
max

{
sγ , ε

(
1+B
B

)γ} <

(1 +B

B

)1/2−γ
c (α̃)

 = (1− α̃)
1
d .

Simulations showed that the critical values obtained by using the limit distribution of the detec-

tor and simulating the maximum values of weighted Brownian Motions yield unfeasible high size

distortions in finite samples for medium- and even for large-sized historical periods. As a conse-
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quence, the detector values tend to exceed the values of the scaled threshold function soon after the

beginning of the monitoring period. To extenuate the resulting size distortions, the critical values

can be obtained via Bootstrap type Monte Carlo simulations. Recall that θ̂m is the estimate of the

parameter vector calculated from the historical data. We assume that the underlying DCC process

features a similar behaviour as the process determined by the parameters estimated from the his-

torical period if the latter one is sufficiently large. Hence, we simulate bBT = 199 realisations of a

DCC process whose structure is controlled by θ̂m and denote them as Y ∗(i) :=
{
y
∗(i)
1 , . . . , y

∗(i)
m(B+1)

}
for i ∈ {1, . . . , bBT }. An intuitive approach would be to calculate the detector values

∣∣∣V ∗(i)k

∣∣∣ =
∣∣∣∣∣
m+k∑
t=m+1

[
D̂∗(i)m

]−1/2
l̂
∗(i)′
t

(
θ̂m
)∣∣∣∣∣

from each sample Y ∗(i) with l̂∗(i)′t

(
θ̂m
)
the QLL contributions and

D̂∗(i)m = 1
m

m∑
t=1
l̂
∗(i)′
t

(
θ̂m
) [
l̂
∗(i)′
t

(
θ̂m
)]T

the estimate of Dp based on the first m observations of Y ∗(i). But since we are not interested

in using the exact limit distribution of the detector, the matrix Dp is substituted by the identity

matrix to avoid the additional uncertainty that goes along with the matrix estimation. Further

simulations that are not part of this article showed that this approach yields a remarkable decrease

of the size distortions compared to the use of an estimate of Dp. Denote the resulting detector

as
∣∣∣Ṽ ∗(i)k

∣∣∣ and the maximum of the scaled detector values gained from sample Y ∗(i) as

T ∗(i) := max
1≤k≤[mB]

∣∣∣V ∗(i)k

∣∣∣
m1/2

(
1 + k

m

)
b
(
k
m

) , for i ∈ {1, . . . , bBT } .

The (1 − α̃) quantile of
{
T ∗(1), . . . , T ∗(bBT )

}
can be used as a critical value in finite sample appli-

cations. Although a detailed analysis of these critical values and their properties lies beyond the

scope of this article, they show a satisfying behaviour in simulations.
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Concludingly, we investigate the asymptotic distribution of the detector under a parameter change.

Recall that under the alternative of a structural break at an unknown point in the monitoring

period the parameter vector changes from θ to θ∗ at the k∗-th point of the monitoring period.

Therefore, we need to impose further assumptions on the parameters of the post break period that

resemble Assumptions 3.3, 3.4 and 4.4:

Assumption 4.5. max
1≤i≤p

α∗i + max
1≤i≤p

β∗i < 1 and |β∗| < 1.

Assumption 4.6.

E

[
ln

(
[β∗]2 + [α∗]2

4(2p+ 1)√p√
C∗λC

∗
q

‖ηt‖22

)]
< 0

with constants C∗λ =
λmin

(
(1− α∗ − β∗) Q̄∗

)
1− [β∗]2

and C∗q =
(1− α∗ − β∗) min

1≤i≤p
q̄∗ii

1− [β∗]2
.

Assumption 4.7. λmax
(
E
[⊗

jC
∗
0

] )
<∞, ∀j ∈ {1, . . . , 4},

where C∗
t := A∗Z2

t +B∗ with A∗ := diag
{
α∗1, . . . , α

∗
p

}
and B∗ := diag

{
β∗1 , . . . , β

∗
p

}
.

Theorem 4.2. Under the alternative of a structural break and Assumptions 3.1-3.4 and 4.1-4.7,

we have
lim
m→∞

PH1 {τm <∞} = 1.

Since it takes some time until the influence of the post break observations on the detector is

strong enough to indicate the presence of a changepoint, it has to be assumed that in general

the changepoint location is not consistent with the first hitting time τm. Thus, once the sheer

presence of a change in the parameter vector is signalized, the position of the changepoint has to

be estimated. A possible estimator works analogously to the estimators in Wied et al. (2012) and

in Wied and Galeano (2013) and is defined as

k̂ := arg max
1≤k≤τm−1

k
√
τm

∣∣∣∣∣ 1
τm − 1

m+τm−1∑
t=m+1

l̂′t

(
θ̂m
)
− 1
k

m+k∑
t=m+1

l̂′t

(
θ̂m
)∣∣∣∣∣ . (4.3)

Though a detailed analysis of its properties lies beyond the scope of this paper, estimators of this

type showed satisfactory behaviour in simulations and applications which is why we use (4.3) to

estimate the location of the changepoint throughout the next sections.
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5. Simulations

This section is devoted to the investigation of the procedure’s performance under various simulation

settings. Under the null as well as under alternative hypotheses, some parameters have to be

specified. First, we choose the length of the historical period as m ∈ {500, 1.000, 2.000}. In

terms of trading days this equals roughly 2, 4 and 8 years, respectively. We assume that the

length of the monitoring period is considerably smaller than the length of the historical period with

B ∈ {0.1, 0.2, . . . , 0.5}. The dimension of the random vectors is p ∈ {3, 5} and the tuning parameter

is chosen as γ ∈ {0, 0.2, 0.4}. These values support the ability of the monitoring procedure to detect

early or later appearing structural breaks. In any case, we simulated 1.000 time series and applied

our procedure to them. Note that all of the simulations are carried out for a significance level

of α̃ = 0.05.

5.1. Simulations Under the Null Hypothesis

First, we investigate the behaviour under the null hypothesis of no structural break in the pa-

rameter vector. For each vector component, we choose all of the variance parameters either as

φi = (0.01, 0.05, 0.9)′ or as φi = (0.01, 0.2, 0.7)′ for all i ∈ {1, . . . , p} where the second case indicates

a stronger effect of single shocks on the volatility of future observations. The correlation structure

is determined by the parameters (α, β) = (0.05, 0.9) and the constant unconditional correlation

matrix Q̄p which is defined as

Q̄3 =


1 0.5 0.1

0.5 1 0.5

0.1 0.5 1

 and Q̄5 =



1 0.5 0.3 0.2 0.1

0.5 1 0.5 0.3 0.2

0.3 0.5 1 0.5 0.3

0.2 0.3 0.5 1 0.5

0.1 0.2 0.3 0.5 1


.

The results from Table 1 suggest that the empirical size increases with B which is plausible since

larger values of this parameter imply a growing length of the monitoring period and thus more

uncertainty. While larger values of m and γ reduce the size distortions, higher dimensions tend

to increase the probability to commit a type I error. Especially the influence of variations in the
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length of the historical period and the dimension are as expected. Furthermore, the empirical size

is distinctly higher when the variance parameters are chosen as φi = (0.01, 0.05, 0.9)′. This result

was expectable, since the sum αi + βi is closer to one, i.e. we are closer to a unit root process than

in the second scenario. Note that the direction of the effects may not be the decribed one for all of

the scenarios since we only did a relatively small number of replications due to the high demand of

computational ressources.

φi = (0.01, 0.05, 0.9)′ φi = (0.01, 0.2, 0.7)′
m = 500 1.000 2.000 m = 500 1.000 2.000

p = 3

B = 0.1
γ = 0 0.124 0.088 0.068 0.068 0.077 0.047
γ = 0.2 0.133 0.084 0.074 0.067 0.070 0.052
γ = 0.4 0.116 0.082 0.070 0.064 0.058 0.066

B = 0.2
γ = 0 0.150 0.101 .0.094 0.069 0.057 0.088
γ = 0.2 0.151 0.086 0.091 0.069 0.077 0.087
γ = 0.4 0.118 0.080 0.083 0.065 0.060 0.060

B = 0.3
γ = 0 0.177 0.111 0.089 0.120 0.087 0.081
γ = 0.2 0.151 0.094 0.073 0.095 0.075 0.083
γ = 0.4 0.143 0.084 0.086 0.071 0.054 0.069

B = 0.4
γ = 0 0.213 0.113 0.118 0.106 0.109 0.104
γ = 0.2 0.193 0.120 0.105 0.110 0.098 0.106
γ = 0.4 0.147 0.094 0.072 0.077 0.066 0.063

B = 0.5
γ = 0 0.197 0.118 0.141 0.129 0.110 0.122
γ = 0.2 0.179 0.135 0.097 0.100 0.109 0.115
γ = 0.4 0.166 0.111 0.090 0.086 0.073 0.073

p = 5

B = 0.1
γ = 0 0.139 0.093 0.079 0.080 0.085 0.062
γ = 0.2 0.141 0.104 0.067 0.071 0.066 0.047
γ = 0.4 0.117 0.093 0.072 0.070 0.048 0.060

B = 0.2
γ = 0 0.153 0.099 0.083 0.079 0.080 0.082
γ = 0.2 0.161 0.112 0.085 0.088 0.081 0.068
γ = 0.4 0.148 0.083 0.073 0.074 0.069 0.059

B = 0.3
γ = 0 0.181 0.109 0.087 0.102 0.118 0.116
γ = 0.2 0.161 0.110 0.098 0.087 0.098 0.090
γ = 0.4 0.148 0.087 0.085 0.074 0.064 0.071

B = 0.4
γ = 0 0.181 0.117 0.122 0.121 0.106 0.125
γ = 0.2 0.199 0.109 0.111 0.102 0.108 0.101
γ = 0.4 0.151 0.114 0.088 0.073 0.079 0.086

B = 0.5
γ = 0 0.198 0.111 0.131 0.152 0.126 0.140
γ = 0.2 0.186 0.111 0.123 0.122 0.120 0.118
γ = 0.4 0.182 0.107 0.107 0.092 0.084 0.059

Table 1: Empirical size for various parameter combinations.
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5.2. Simulations Under Various Alternatives

In this section we investigate the performance of the proposed procedure confronted with different

types of structural breaks. More precisely, first we simulate changes in the variance parameters

followed by changes in the unconditional correlation matrix Q̄.

Since the results under the null showed a strong dependency on the length of the monitoring period,

the simulations under alternative scenarios will be limited to the case of monitoring periods with

length 0.2m. This choice of B yields small deviations between the empirical and the theoretical

size as the results from Table 1 suggest. Since the length of the monitoring period depends on m,

we define the location of the changepoint k∗ in terms of m as k∗ = [mBλ∗] where [·] is the largest

integer smaller than a given real number and the fraction λ∗ is chosen from {0.05, 0.3, 0.5}. This

indicates changes located at the beginning or later in the monitoring period.

5.2.1. Changes in the Variance Parameters

We establish two settings of changes in the variance parameters. First of all, we assume that

φi = (0.01, 0.05, 0.9)′ changes to φ∗i = (0.005, 0.2, 0.7)′ followed by a change from φi = (0.01, 0.2, 0.7)′

to φ∗ = (0.05, 0.05, 0.9)′ for all i ∈ {1, . . . , p}. These settings will be denoted as Scenario 1 and 2.

Note that next to the actual variation in the parameters which implies a change in the conditional

variance structure, Scenario 1 contains a decrease in the unconditional variances of all componenents

while Scenario 2 implies a variance increase. The results for Scenario 1 can be taken from Tables 2

and 3 and those for Scenario 2 from Tables 4 and 5.

The power depends positively on the length of the historical period and negatively on the dimension

of the random vectors. While the first result was expectable the negative influence of p on the

power may be explained by the fact that the share of the 3p variance parameters in the group of

all parameters decreases with growing dimension. Thus, changes in the variance parameters might

be harder to detect if p gets large. The ability to detect parameter changes is distinctly higher

for changes located at the begin of the monitoring period than for later ones which is a typical

property of sequential monitoring schemes, see e.g. Wied and Galeano (2013) or Pape et al. (2016).

Furthermore, parameter changes that lead to decreased unconditional variance can be detected
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Empirical first hitting times Estimated changepoint location
λ∗ m γ Power Mean SD Q0.25 Q0.5 Q0.75 Mean SD Q0.25 Q0.5 Q0.75

0.05

500 0 0.973 44.87 14.49 35 42 51 18.05 10.39 11 16 23

(k∗ = 5) 0.2 0.971 40.28 15.77 30 38 48 16.08 9.76 9 14 21
0.4 0.971 40.24 18.28 29 38 50 16.03 10.32 9 14 21

1.000 0 1.000 60.40 15.46 51 57 68 24.40 11.71 17 22 29

(k∗ = 10) 0.2 0.999 52.88 16.09 42 50 60 21.18 10.53 14 19 26
0.4 1.000 47.09 19.83 36 45 56 19.20 11.89 12 17 24

0.3

500 0 0.916 66.47 15.56 58 66 77 31.62 9.50 27 31 36

(k∗ = 30) 0.2 0.891 63.86 17.27 54 64 75 30.46 10.17 26 30 35
0.4 0.849 64.25 22.60 54 68 79 31 12.26 26 31 38

1.000 0 0.998 110.78 20.19 97 109 122 60.59 12.06 55 60 66

(k∗ = 60) 0.2 0.998 107.62 22.10 94 106 119 59.84 13.31 55 60 66
0.4 0.994 107.05 29.89 94 108 123 58.73 17.64 54 60 66

0.5

500 0 0.724 77.82 17.47 70.75 81 91 43.54 13.39 38 47 51

(k∗ = 50) 0.2 0.703 76.83 19.48 70 81 90 42.58 14.30 36 47 52
0.4 0.558 71.13 28.28 66 80 91 39.39 17.75 31 46 52

1.000 0 0.965 148.56 22.61 135 149 163 92.07 20.31 87 97 103

(k∗ = 100) 0.2 0.972 148.36 24.02 136 149 162 93.03 19.56 88 97 103
0.4 0.931 150.02 36.68 140 156 172 92.43 24.40 90 98 104

Table 2: Power against changes in the parameters that imply a variance decrease (Scenario 1) and
properties of the first hitting times τm and estimated changepoints k̂ for p = 3.

Empirical first hitting times Estimated changepoint location
λ∗ m γ Power Mean SD Q0.25 Q0.5 Q0.75 Mean SD Q0.25 Q0.5 Q0.75

0.05

500 0 0.927 44.46 13.82 36 42 50 17.23 9.07 11 15 22

(k∗ = 5) 0.2 0.913 39.51 15.13 30 37 45 15.31 8.99 9 13 19
0.4 0.892 38.88 16.83 29 37 48 15.46 10.01 9 13 20

1.000 0 0.997 60.62 14.83 51 58 67 23.61 11.11 16 21 28

(k∗ = 10) 0.2 0.997 51.60 14.42 42 49 59 20.66 10.31 14 18 25
0.4 0.996 47.04 18.90 37 45 57 18.85 11.01 12 17 24

0.3

500 0 0.859 66.82 15.25 58 67 77 32.15 9.05 27 31 37

(k∗ = 30) 0.2 0.848 64.89 16.99 56 65 76 31.01 10.60 26 30 37
0.4 0.806 64.09 22.07 55 66 78 30.23 11.81 25.25 30 37

1.000 0 0.993 108.95 17.86 97 107 119 59.93 12.89 54 60 65

(k∗ = 60) 0.2 0.992 106.35 20.53 94 106 118 58.72 13.69 54 59 64
0.4 0.992 107.68 28.43 97 109 123 58.45 16.38 54 60 66

0.5

500 0 0.680 79.04 16.92 73 82 91 43.53 12.98 37 46 51

(k∗ = 50) 0.2 0.673 76.54 20.58 70 82 91 42.48 14.36 37 46 51
0.4 0.553 70.67 30.36 65 82 93 38.90 18.00 31 46 51

1.000 0 0.973 147.58 22.32 136 148 161 91.81 19.18 86 96 102

(k∗ = 100) 0.2 0.972 145.77 25.43 135 148 161 90.26 21.93 84 97 102
0.4 0.947 148.30 38.44 139 155 169 90.00 25.49 87 97 103

Table 3: Power against changes in the parameters that imply a variance decrease (Scenario 1) and
properties of the first hitting times τm and estimated changepoints k̂ for p = 5.

much more reliably than changes that entail variance increases. This property underlines the results

under the null which suggested a stronger tendency of the detector to cross the threshold function if
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Empirical first hitting times Estimated changepoint location
λ∗ m γ Power Mean SD Q0.25 Q0.5 Q0.75 Mean SD Q0.25 Q0.5 Q0.75

0.05

500 0 0.768 64.97 19.92 51 66 80 24.62 16.68 12 20 32

(k∗ = 5) 0.2 0.702 56.90 23.55 39.25 57 75 21.57 15.39 10 17 29
0.4 0.558 49.34 29.99 21.25 48 75.75 20.44 17.00 7 15 29

1.000 0 0.974 116.05 32.61 95 114 138 39.92 30.82 16 29 55

(k∗ = 10) 0.2 0.955 107.65 38.44 80 107 133 36.77 30.67 14 26 49
0.4 0.810 107.81 49.94 72 109.5 146 39.06 35.14 14 25 53

0.3

500 0 0.527 76.44 15.92 65 79 90 32.30 11.46 27 32 37

(k∗ = 30) 0.2 0.482 73.28 18.45 61 76 88 31.38 12.84 25 31 36
0.4 0.271 62.76 27.40 46 68 85 29.00 14.92 20 30 36

1.000 0 0.809 151.87 28.70 130 155 176 58.77 15.35 52 60 65

(k∗ = 60) 0.2 0.727 145.37 33.39 121 149 172 55.86 16.11 48 59 65
0.4 0.457 142.46 47.80 122 153 179 54.78 22.12 46 59 65

0.5

500 0 0.346 81.76 14.91 72 84 95 44.04 15.42 36 48.5 54

(k∗ = 50) 0.2 0.292 76.91 19.49 70 81 92 40.72 16.24 29 46 52
0.4 0.172 58.26 35.67 18 72 87.25 32.97 23.10 6.75 39.5 52

1.000 0 0.505 167.32 24.59 153 172 187 86.40 22.86 74 94 102

(k∗ = 100) 0.2 0.445 161.34 32.89 146 168 184 83.36 25.98 71 91 101
0.4 0.221 138.81 61.53 122 164 182 74.26 37.55 52 90 101

Table 4: Power against changes in the parameters that imply a variance increase (Scenario 2) and
properties of the first hitting times τm and estimated changepoints k̂ for p = 3.

Empirical first hitting times Estimated changepoint location
λ∗ m γ Power Mean SD Q0.25 Q0.5 Q0.75 Mean SD Q0.25 Q0.5 Q0.75

0.05

500 0 0.738 67.80 19.61 54 70.50 83 25.32 17.10 12.25 20 34

(k∗ = 5) 0.2 0.644 60.38 23.72 43 62.5 80 23.15 17.21 11 18 31
0.4 0.409 46.89 30.46 15 49 72 18.67 16.67 6 13 26

1.000 0 0.964 127.63 32.68 105 127 151 43.43 31.97 18 33 62

(k∗ = 10) 0.2 0.935 117.04 39.51 90 116 145 38.39 31.36 15 27 54
0.4 0.704 112.02 55.44 73 120 157.25 41.77 37.69 14 27 59

0.3

500 0 0.491 76.75 16.17 66 80 89 30.91 11.62 25.5 31 36

(k∗ = 30) 0.2 0.394 72.05 20.39 59.25 73 89 30.59 12.72 24 31.5 36
0.4 0.193 56.33 34.87 30 64 88 25.09 17.89 8 29 34

1.000 0 0.742 155.38 29.41 137 159 178 58.46 15.89 53 60 65

(k∗ = 60) 0.2 0.671 149.38 33.91 128 154 176 57.44 15.32 51 60 65
0.4 0.363 135.31 58.76 114.5 151 181 53.02 26.20 43.5 59 65

0.5

500 0 0.292 79.91 14.59 70 82 92 41.55 15.36 31 46.5 53

(k∗ = 50) 0.2 0.265 76.12 19.48 65 81 91 39.81 15.82 29 46 52
0.4 0.127 46.23 36.34 4.5 56 78 25.44 21.42 2 24 48

1.000 0 0.461 166.82 23.85 150 171 186 83.79 21.66 71 91 100

(k∗ = 100) 0.2 0.384 160.36 33.85 144.75 169 185 82.73 24.10 68.75 90.5 101
0.4 0.175 125.46 71.73 64.5 156 182 65.53 39.96 31.5 80 99

Table 5: Power against changes in the parameters that imply a variance increase (Scenario 2) and
properties of the first hitting times τm and estimated changepoints k̂ for p = 5.

the initial variance parameters are chosen as φi = (0.01, 0.05, 0.9)′ rather than φi = (0.01, 0.2, 0.7)′.

In addition and consistently with the results under the null, the power decreases with the tuning
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parameter γ. This result occurs as well if the structural break is located at a later point in the

monitoring period and should be detected with a higher value of γ more easily.

The results concerning the estimated changepoint locations in Tables 2-5 suggest that the position

of changepoints located at a fraction of λ∗ = 0.3 of the monitoring period can be estimated without

large distortions while earlier and later changes respectively are systematically placed too early

and late respectively in the dataset. Note that the results for the estimated changepoint locations

depend strongly on the properties of the first hitting times since these define the length of the

subsample that is used to locate the changepoint.

5.2.2. Changes in the Correlation Parameters

Another possible alternative scenario is a change in the correlation structure. We assume that the

variance parameters as well as α and β stay constant while the unconditional covariance matrix

changes from Q̄ = Ip to Q̄∗ where the latter one is a matrix whose main diagonal entries are equal

to one while all of the diagonal entries are ∆ with ∆ ∈ {0.1, . . . , 0.9}. The variance parameters

and α and β are chosen as in Section 5.1.
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Figure 1: Power against correlation changes.
Black: φi = (0.01, 0.05, 0.9)′, for i = 1, . . . , p; Gray: φi = (0.01, 0.2, 0.7)′, for i = 1, . . . , p.
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The power results for changes at fraction λ∗ = 0.05 of the monitoring period are illustrated in

Figure 1 for simulated time series of dimension 3 or 5, a historical period consisting of 1.000 data

points and tuning parameter γ = 0.2. The results reveal problems to detect correlation changes

of moderate magnitude for both choices of the vector of variance parameters. However, the power

curve has a large slope for higher values and converges to one. While smaller changes in the

correlation parameters can be detected more frequently if the variance parameters are chosen as

φi = (0.01, 0.05, 0.9)′ rather than φi = (0.01, 0.2, 0.7)′, the opposite is true for larger values of ∆.

The fact that some of the power results are quite low suggests that the QLL function seems to be

very flat in some regions such that several kinds of parameter changes are hardly detectable.

6. Empirical Results

To investigate the performance of the proposed monitoring scheme under real conditions, we apply

the procedure to a group of asset returns. We choose the assets of some insurance companies that

are listed at different stock exchanges in Europe. More precisely, we use the log returns of the assets

of Allianz (abbreviated by All), AXA , Generali (Gen), ING and Munich Re (MRe) due to the fact

that a conjoint modeling seems to be adequate for the returns of assets from the same industrial

sector and monetary area. As Engle (2002) argued, the DCC model is well-suited to model the

typical features of multivariate time series of asset returns. Since Bollerslev (1986) stated that even

GARCH models of order (1,1) are capable of explaining the behaviour of log returns very well, we

use GARCH(1,1) models for the univariate conditional variance equations (2.4), which is in line

with our approach in Section 2.

Since the results in Table 1 suggest that the size increases considerably with the length of the

monitoring period and hence with B, we monitor the data under the use of a stepwise approach.

In each step, we only use the first [mB] observations following the historical period as monitoring

period. If a changepoint is detected in this subsample, we cut off all of the observations before the

estimated location of the structural break and use the following m data points as new historical

period followed by a monitoring period of [mB] points. If no changepoint can be detected in the

monitoring period we cut off the first [mB] observations of the previous historical period and use
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γ = 0.2, B = 0.2, m = 500 γ = 0.2, B = 0.2, m = 1000
τm k̂ τm k̂

2000/06/09 2000/05/22 2004/01/27 2003/12/22
2002/10/15 2002/10/10 2008/01/21 2008/01/04
2006/03/01 2005/12/05 2012/12/04 2012/10/15
2008/05/28 2008/05/22
2010/08/04 2010/06/09
2012/07/26 2012/07/05
2014/07/09 2014/07/07

Table 6: First hitting times and estimated changepoint locations.

the following m data points as new historical period. The results for γ = 0.2, B = 0.2 and different

lengths of the historical period can be taken from Table 6. Additionally, the estimated changepoint

locations for m = 1.000 are visualized in Figure 2 with two of the monitored time series. The figure

shows that the time series of asset returns are splitted up into calm and more turbulent phases.

The estimated changepoint locations in Table 6 can be linked to important economic events of the
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Figure 2: Log returns of the Allianz and Generali assets with the detected changepoints for
m = 1.000 from Table 6 (dashed gray lines).
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last two decades. The changepoint in 2002 marks the end of the crisis caused by the bursting of

the dotcom bubble and the start of a calmer period that was interrupted in 2008 by the financial

crisis followed by the debt crisis. The last changepoint might signalize the beginning of a recovery

phase of the stock markets.

1998/05/11 2003/12/23 2008/01/07 2012/10/16
-2003/12/22 -2008/01/04 -2012/10/15 -2016/10/25

ω̂All 0.00002 0.00002 0.00001 <0.00001
ω̂AXA 0.00001 0.00002 <0.00001 <0.00001
ω̂Gen 0.00002 0.00003 <0.00001 <0.00001
ω̂ING 0.00002 0.00001 0.00002 0.00001
ω̂MRe 0.00001 0.00001 0.00002 0.00009
α̂All 0.099 0.072 0.083 0.034
α̂AXA 0.085 0.040 0.095 0.045
α̂Gen 0.096 0.097 0.058 0.028
α̂ING 0.082 0.113 0.093 0.125
α̂MRe 0.120 0.063 0.117 0.072
β̂All 0.879 0.811 0.905 0.944
β̂AXA 0.887 0.920 0.895 0.936
β̂Gen 0.877 0.786 0.941 0.967
β̂ING 0.900 0.806 0.900 0.667
β̂MRe 0.853 0.703 0.883 0.924∥∥θ̂1
∥∥

2
0.182 0.171 0.167 0.140

α̂ 0.011 0.022 0.032 0.013
β̂ 0.988 0.978 0.883 0.986
q̂All,AXA 0.422 0.597 0.779 0.778
q̂All,Gen 0.401 0.442 0.536 0.406
q̂All,ING 0.519 0.523 0.774 0.697
q̂All,MRe 0.651 0.505 0.745 0.704
q̂AXA,Gen 0.424 0.487 0.579 0.538
q̂AXA,ING 0.621 0.470 0.761 0.762
q̂AXA,MRe 0.457 0.510 0.666 0.607
q̂Gen,ING 0.468 0.245 0.511 0.442
q̂Gen,MRe 0.366 0.366 0.439 0.256
q̂ING,MRe 0.513 0.435 0.645 0.475∥∥θ̂2
∥∥

2
2.698 2.532 3.027 2.908∥∥θ̂∥∥

2
2.704 2.537 3.032 2.911

Table 7: Model parameters estimated from the data between successive detected changepoints
for m = 1.000 from Table 6 and the euclidical norm of the estimated parameter vectors and the
estimated vectors of variance and correlation parameters.

Estimates of the model parameters calculated from the data between two sucessive changepoints

can be taken from Table 7. To measure the magnitude of the changes in the estimated parameters,

the table also contains the euclidian norm of the parameter vectors estimated from the subsamples

as well as the euclidian norm of the estimated vectors of variance and correlation parameters,
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respectively. The largest change in the parameters in terms of the euclidian norm can be found

between the period before the financial crisis and the period of the crisis itself. A large part of this

phenomenon seems to be caused by the fact that the correlation of asset returns tends to increase

in times of crisis, see Sandoval Jr. and De Paula Franca (2012) among others.

7. Conclusion

We present a method to detect changes in the parameter vector of the DCC model proposed by

Engle (2002) which is based on quasi log likelihood scores and allows to detect changes in the

conditional and unconditional variance and covariance structure. We analyze the size and power

properties of the presented procedure and apply it to a group of log returns that belong to the

assets of several insurance companies. In applications it turns out as a heavy problem that the

assumption of a historical period which is free from structural breaks cannot be checked with a

known retrospective method. The search for a solution for this problem is left as a task for future

research.
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APPENDIX

A. The Partial Derivations of the DCC QLL Function

A.1. Notation and Transformation Matrices

Recall that the QLL function of the DCC model introduced in Section 2.1is given as:

LT (θ) =
T∑
t=1

lt (θ)

with lt(θ) = −1
2
(
p · log 2π + log det (Ht) + y′tH

−1
t yt

)
= −1

2
(
p · log 2π + 2 log det (Dt) + log det (Rt) + z′tR

−1
t zt

)

As argued in Hafner and Herwatz (2008), it is sufficient to look at the lower diagonal entries of Rt

in detail since the latter one is a symmetric matrix with ones on the main diagonal. Throughout

the next sections, several matrices are used to interchange the position of the entries in vectors and

matrices, see for instance Hafner and Herwatz (2008) or Lütkepohl (1996):

• vec(·): the vec operator that stacks the entries of a matrix into a vector.

• vech(·): the vech operator that stacks the diagonal and lower diagonal entries of a symmetric

matrix into a vector.

• vecl(·): the vecl operator that stacks the lower diagonal entries of a symmetric matrix into a

vector.

• Kmn, the commutation matrix: vec (A′) = Kmn · vec(A) for a (m× n) matrix A.

• Dp, the duplication matrix: Dp · vech(A) = vec(A) for a symmetric (p× p) matrix A.

• D+
p , the Moore Penrose inverse of Dp. In general, this is not the elimination matrix Lp with

Lp · vec(A) = vech(A) which is some generalized inverse.

• Dp,−, the matrix that results after deleting those columns from Dp that refer to the main

diagonal entries of a symmetric (p× p) matrix A when Dp is multiplied by vech(A).

30



• D+
p,−, the Moore Penrose inverse of Dp,−. This matrix is obtained when those rows that refer

to the main diagonal elements of a symmetric (p× p) matrix A in vector vech(A) are deleted

from D+
p . Note, that for a symmetric (p× p) matrix A, we have vecl (A) = D+

p,−vec (A).

• The number of lower diagonal elements of a (k × k) matrix is denoted by p+ = 1
2(k + 1)k if

the main diagonal entries are included and by p− = 1
2(k − 1)k if they are excluded.

A.2. Some Calculation Rules for Matrices

The following rules will be needed throughout the next sections:

CR1 For the transformation matrices, we have

D+
p,− = 1

2 (Dp,−)′ .

The proof of this statement can be found in Section C.

CR2 Lütkepohl (1996), 10.4.2(1): X ∼ (m,m) symmetric:

∂vec(X)
∂vech(X)′ = Dm ⇒ ∂vec(X)

∂vecl(X)′ = Dm,−
CR1= 2

(
D+
m,−

)′
.

CR3 For symmetric matrices X ∼ (m,m) and Y (X) ∼ (n, n), we have

∂vech (Y (X))
∂vecl(X)′ = ∂Lnvec (Y (X))

∂vec(X)′
∂vec(X)
∂vecl(X)′ = Ln

∂vec (Y (X))
∂vec(X)′ Dm,−.

This is a direct consequence of CR2.

CR4 For symmetric (n× n) matrices X and Y (X), we have

∂vec(XYX)
∂vec(X)′ = (X ⊗X) ∂vec (Y )

∂vec (X)′
+ (XY ⊗ In + In ⊗XY )

The proof of this statement can be found in Section C.
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A.3. The First Order Derivations with Respect to the Variance Parameters

Since the conditional correlation matrix Rt does not depend on the variance parameters, the par-

tial derivations of the QLL contributions with respect to θ1 are similar to (3.2) in Nakatani and

Teräsvirta (2007):

∂lt (θ)
∂θ1

= −∂ log detDt

∂θ1
− 1

2
∂y′tH

−1
t yt

∂θ1
= −1

2
∂vec (Dt)′

∂θ1
vec

(
2D−1

t −D−1
t R−1

t ztz
′
t − ztz′tR−1

t D−1
t

)
.

Using vjt =
(
1, y2

jt, hjt
)′

yields that the partial derivations of the non zero diagonal entries of Dt

with respect to φi = (ωi, αi, βi)′ are given as:

git := ∂h
1/2
it

∂φi
= 1

2h
−1/2
jt

(
vj,t−1 + βj

∂hj,t−1
∂φj

)
and

∂h
1/2
jt

∂φi
= 03, for i 6= j.

Thus, we have

∂vec (Dt)′

∂θ1
=



g1t 03×p 03 03×p . . . 03 03×p 03

03 03×p g2t 03×p . . . 03 03×p 03
...

...
...

...
...

...
...

03 03×p 03 03×p . . . gp−1,t 03×p 03

03 03×p 03 03×p . . . 03 03×p gpt


.

Note that for theoretical considerations we use representations that depend on an infinite past of

observations yt while for simulation or parameter estimation we use the recursive form based on

starting values for time t = 0.

• ∂hit
∂ωi

= 1 + βi
∂hi,t−1
∂ωi

= 1
1− βi

• ∂hit
∂αi

= y2
i,t−1 + βi

∂hi,t−1
∂αi

=
∞∑
n=0

βni y
2
i,t−n−1

• ∂hit
∂βi

= hi,t−1 + βi
∂hi,t−1
∂βi

=
∞∑
n=0

βni hi,t−n−1 = ωi

(1− βi)3 + αi

∞∑
n=0

βni

∞∑
k=0

βki y
2
i,t−n−k−2

Starting values for estimation or simulation can be chosen as in the ccgarch package in R where

h0 = (h10, . . . , hp0)′ is chosen as
(
s2
1, . . . , s2

p

)′
with s2

j = 1
T

T∑
t=1
y2
jt, j = 1, . . . , p.

Hence, vj0 =
(
1, s2

j , s2
j

)′
, j = 1, . . . , p and

(
∂h10
∂φ1

, . . . ,
∂hp0
∂φp

)′
= 0p×3.
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A.4. The First Order Derivations with Respect to the Correlation Parameters

Throughout this section, we consider the partial derivations of the QLL contributions with respect

to those parameters that determine the correlation structure of the DCC model. Similar to (3.3)

in Nakatani and Teräsvirta (2007), we have

∂lt(θ)
∂θ2

= −1
2
∂ log detRt

∂θ2
− 1

2
∂y′tD

−1
t R−1

t D−1
t yt

∂θ2
= −1

2
∂vecl (Rt)′

∂θ2

∂vec (Rt)′

∂vecl (Rt)
∂ log detRt
∂vec (Rt)

= −1
2
∂vecl (Rt)′

∂θ2

∂vec (Rt)′

∂vecl (Rt)
∂vec

(
R−1
t

)′
∂vec (Rt)

∂vec
(
D−1
t R−1

t D−1
t

)′
∂vec

(
R−1
t

) ∂y′tD
−1
t R−1

t D−1
t yt

∂vec
(
D−1
t R−1

t D−1
t

)
= −1

2
∂vecl (Rt)′

∂θ2
2D+

p,−vec
(
R−1
t

)
− 1

2
∂vecl (Rt)′

∂θ2
2D+

p,−(−1)
(
R−1
t ⊗R−1

t

) (
D−1
t ⊗D−1

t

)
vec

(
yty
′
t

)
= −∂vecl (Rt)′

∂θ2
D+
p,−

[
vec

(
R−1
t

)
−
(
R−1
t ⊗R−1

t

) (
D−1
t ⊗D−1

t

)
(yt ⊗ yt)

]
= −∂vecl (Rt)′

∂θ2
vecl

(
R−1
t

[
Ip − ztz′tR−1

t

])
.

The second equality results from an extensive use of the chain rule, see 10.2.1(6) in Lütkepohl

(1996). The third one uses 10.3.1(8), 10.3.3(10), 10.4.1(3), 10.4.2(1) and 10.6(1) in Lütkepohl (1996)

and CR1 from Section A.2. The remaining equalities utilize CR2 and simple matrix computations.

In the following, we consider the partial derivations of the lower diagonal entries of Rt with respect

to the correlation parameters in detail. According to Hafner and Herwatz (2008), we have

∂vecl (Rt)
∂θ′2

= D+
p,−

∂vec (Rt)
∂θ′2

= D+
p,−

∂vec (Rt)
∂vech (Qt)′

∂vech (Qt)
∂θ′2

(A.1)

where

∂vec (Rt)
∂vech (Qt)′

= ∂vec (Rt)
∂vec (Q∗t )

′
∂vec (Q∗t )
∂vech (Q∗t )

′
∂vech (Q∗t )
∂vech (Qt)′

CR2= ∂vec (Q∗tQtQ∗t )
∂vec (Q∗t )

′ Dp
∂vech (Q∗t )
∂vech (Qt)′

. (A.2)

With a slight difference to Section 4.3 in Hafner and Herwatz (2008), the derivation of vec (Q∗tQtQ∗t )

with respect to vec (Q∗t ) is given as

∂vec(Q∗tQtQ∗t )
∂vec(Q∗t )′

CR4= (Q∗t ⊗Q∗t )
∂vec (Qt)
∂vec (Q∗t )

′ + (Q∗tQt ⊗ Ip + Ip ⊗Q∗tQt) (A.3)
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and the derivation of vech (Q∗t ) with respect to vech (Qt) as

∂vech (Q∗t )
∂vech (Qt)′

= −1
2diag

{
vech

(
Q
− 3

2
t

)}
· diag {vech (Ip)}

with qij,t = [Qt]ij and Q
−3/2
t :=

[
q
−3/2
ij,t

]
i,j=1,...,p

. Thus, (A.2) and (A.3) imply

∂vecl (Rt)
∂θ′2

= D+
p,−

[
(Q∗t ⊗Q∗t )

∂vec (Qt)
∂vec (Q∗t )

′ + (Q∗tQt ⊗ Ip + Ip ⊗Q∗tQt)
]

Dp
∂vech (Q∗t )
∂vech (Qt)′

∂vech (Qt)
∂θ′2

=
[
D+
p,− (Q∗t ⊗Q∗t ) Dp + D+

p,− (Q∗tQt ⊗ Ip + Ip ⊗Q∗tQt) Dp
∂vech (Q∗t )
∂vech (Qt)′

]
∂vech (Qt)

∂θ′2
.

The derivation of vech (Qt) with respect to θ2 can be split up into:

∂vech (Qt)
∂α

= −vech(Q̄) + vech
(
zt−1z

′
t−1
)

+ β
∂vech (Qt−1)

∂α
= − 1

1− β vech(Q̄) +
∞∑

n=0
βnvech

(
zt−n−1z

′
t−n−1

)
∂vech (Qt)

∂β
= −vech(Q̄) + vech (Qt−1) + β

∂vech (Qt−1)
∂β

= − 1
1− β vech(Q̄) +

∞∑
n=0

βnvech (Qt−n−1)

∂vech (Qt)
∂vecl

(
Q̄
) = (1− α− β)∂vech(Q̄)

∂vecl(Q̄)′
+ α

∂vech
(
zt−1z

′
t−1
)

∂vecl(Q̄)′
+ β

∂vech (Qt−1)
∂vecl(Q̄)′

CR3= 1− α− β
1− β LpDp,− .

As in the ccgarch package, we fix the initial values of
(
∂vech(Q0)

∂α , ∂vech(Q0)
∂β

)
as (0, 0).

A.5. The Second Order Partial Derivations with Respect to θ

Along the lines of Nakatani and Teräsvirta (2007), the Hessian of the QLL contributions can be

split up into several blocks:

∂2lt(θ)
∂θ∂θ′

=

 ∂2lt(θ)
∂θ1∂θ

′
1

∂2lt(θ)
∂θ1∂θ

′
2

∂2lt(θ)
∂θ2∂θ

′
1

∂2lt(θ)
∂θ2∂θ

′
2

 .

A.5.1. The Calculation of ∂2lt(θ)
∂θ1∂θ

′
1

Taking into account that the conditional correlation matrix Rt does not depend on the variance

parameters, the upper left block of the Hessian is given analogously to (3.6) in Nakatani and

Teräsvirta (2007):
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∂2lt(θ)
∂θ1∂θ

′
1

= −1
2
∂

∂θ′1

(
∂vec (Dt)′

∂θ1
vec

(
2D−1

t −D−1
t R−1

t ztz
′
t − ztz′tR−1

t D−1
t

))

= −1
2
∂vec (Dt)′

∂θ1

[
−2
(
D−1
t ⊗D−1

t

)
+
(
ztz
′
t ⊗D−1

t R−1
t D−1

t

)
+
(
D−1
t R−1

t D−1
t ⊗ ztz′t

)
+
(
D−1
t ⊗D−1

t R−1
t ztz

′
t

)
+
(
D−1
t R−1

t ztz
′
t ⊗D−1

t

)
+
(
ztz
′
tR
−1
t D−1

t ⊗D−1
t

)
+
(
D−1
t ⊗ ztz′tR−1

t D−1
t

)] ∂vec (Dt)
∂θ′1

+
[1

2
(
vec

(
D−1
t R−1

t ztz
′
t

)
⊗ I3p

)
+ 1

2
(
vec

(
ztz
′
tR
−1
t D−1

t

)
⊗ I3p

)
−
(
vec

(
D−1
t

)
⊗ I3p

)] ∂2vec (Dt)′

∂θ1∂θ
′
1
.

A closer look at the individual parts of the derivation yields

∂2vec (Dt)′

∂θ1∂θ
′
1

= ∂

∂θ′1
vec

(
∂vech (Dt)′

∂θ1
D′p

)
= (Dp ⊗ I3p)

∂

∂θ′1
vec

(
∂vech (Dt)′

∂θ1

)
.

Denote the non zero derivation blocks of the main diagonal entries of Dt as

g
(2)
it := ∂2h

1/2
it

∂φi∂φ′i
.

Thus, the second order derivations of vech (Dt) are given as

∂

∂θ′1
vec
(
∂vech (Dt)′

∂θ1

)
=



g
(2)
1t 03×3p2 03×3 03×3p(p−1) . . . 03×3 03×6p 03×3

03×3 03×3p2 g
(2)
2t 03×3p(p−1) . . . 03×3 03×6p 03×3

...
...

...
...

...
...

...

03×3 03×3p2 03×3 03×3p(p−1) . . . g
(2)
p−1,t 03×6p 03×3

03×3 03×3p2 03×3 03×3p(p−1) . . . 03×3 03×6p g
(2)
pt


.

Note, that with Vit := ∂vit
∂φ′i

=
(
03,03,

∂hit
∂φi

)′
, we have

g
(2)
it = −1

4
1
h

3/2
it

∂hit
∂φ′i

(
vi,t−1 + βi

∂hi,t−1
∂φi

)
+ 1

2
1
h

1/2
it

(
Vi,t−1 + βi

∂2hi,t−1
∂φi∂φ′i

)

with
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• ∂2hit

(∂ωi)2 = βi
∂2hi,t−1

(∂ωi)2 = 0 • ∂2hit

∂ωi∂αi
= βi

∂2hi,t−1

∂ωi∂αi
= 0 • ∂2hit

∂ωi∂βi
= ∂hit

∂ωi
+ βi

∂2hi,t−1

∂ωi∂βi
= 1

(1− βi)2

• ∂2hit

(∂αi)2 = βi
∂2hi,t−1

(∂αi)2 = 0 • ∂2hit

∂αi∂βi
= ∂hit

∂αi
+ βi

∂2hi,t−1

∂αi∂βi
=
∞∑

n=0
nβn−1

i y2
i,t−n−1

• ∂2hit

(∂βi)2 = 2∂hi,t−1

∂βi
+ βi

∂2hi,t−1

(∂βi)2 = 2
∞∑

n=0
βn

i

∂hi,t−n−2

∂βi
= 2ωi

(1− βi)4 + 2αi

∞∑
n=0

βn
i

∞∑
k=0

βk
i

∞∑
l=0

βl
iy

2
i,t−n−k−l−2.

Analogously to the approach in Section A.3, a vector of zeros can be chosen as starting value for

the recursive calculation of the second order partial derivations of the conditional variances with

respect to the variance parameters.

A.5.2. The Calculation of ∂2lt(θ)
∂θ1∂θ

′
2
and ∂2lt(θ)

∂θ2∂θ
′
1

Analogously to (3.9) and (3.10) in Nakatani and Teräsvirta (2007) under limitation to the partial

derivations of the lower diagonal entries of Rt with respect to the correlation parameters, the off

diagonal blocks of the Hessian equal

∂2lt(θ)
∂θ1∂θ

′
2

= −1
2
∂

∂θ′2

(
∂vec (Dt)′

∂θ1
vec

(
2D−1

t −D−1
t R−1

t ztz
′
t − ztz′tR−1

t D−1
t

))

= 1
2
∂vec (Dt)′

∂θ1

∂vec
(
D−1
t R−1

t ztz
′
t

)
∂θ′2

+
∂vec

(
ztz
′
tR
−1
t D−1

t

)
∂θ′2


= 1

2
∂vec (Dt)′

∂θ1

[(
ztz
′
t ⊗D−1

t

)
+
(
D−1
t ⊗ ztz′t

)] ∂vec
(
R−1
t

)
∂vec (Rt)′

∂vec (Rt)
∂vecl (Rt)′

∂vecl (Rt)
∂θ′2

CR2= −∂vec (Dt)′

∂θ1

[(
ztz
′
tR
−1
t ⊗D−1

t R−1
t

)
+
(
D−1
t R−1

t ⊗ ztz′tR−1
t

)] (
D+
p,−

)′ ∂vecl (Rt)
∂θ′2

∂2lt(θ)
∂θ2∂θ

′
1

=
[
∂2lt(θ)
∂θ1∂θ

′
2

]′
= −∂vecl (Rt)′

∂θ2
D+
p,−

[(
R−1
t ztz

′
t ⊗R−1

t D−1
t

)
+
(
R−1
t D−1

t ⊗R−1
t ztz

′
t

)] ∂vec (Dt)
∂θ′1

.
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A.5.3. The Calculation of ∂2lt(θ)
∂θ2∂θ

′
2

Finally, the lower right block of the Hessian is given as

∂2lt(θ)
∂θ2∂θ

′
2

= − ∂

∂θ′2

(
∂vecl (Rt)′

∂θ2
vecl

(
R−1
t

))
+ ∂

∂θ′2

(
∂vecl (Rt)′

∂θ2
vecl

(
R−1
t ztz

′
tR
−1
t

))

= −∂vecl (Rt)′

∂θ2

∂vecl
(
R−1
t

)
∂θ′2

−
∂vecl

(
R−1
t ztz

′
tR
−1
t

)
∂θ′2


−
[(

vecl
(
R−1
t

)′
⊗ Ip−+2

)
−
(

vecl
(
R−1
t ztz

′
tR
−1
t

)′
⊗ Ip−+2

)]
∂

∂θ′2
vec

(
∂vecl (Rt)′

∂θ2

)

= ∂vecl (Rt)′

∂θ2
D+
p,−

[(
R−1
t ⊗R−1

t

)
−
(
R−1
t ztz

′
tR
−1
t ⊗R−1

t

)
−
(
R−1
t ⊗R−1

t ztz
′
tR
−1
t

)]
Dp,−

∂vecl (Rt)
∂θ′2

+
[(

vecl
(
R−1
t

)′
⊗ Ip−+2

)
+
(

vecl
(
R−1
t ztz

′
tR
−1
t

)′
⊗ Ip−+2

)]
∂

∂θ′2
vec

(
∂vecl (Rt)′

∂θ2

)
.

A closer look at the second order partial derivations of the entries of the conditional correlation

matrix with respect to the correlation parameters yields

∂

∂θ′2
vec

(
∂vecl (Rt)′

∂θ2

)
= ∂

∂θ′2
vec

(
∂vech (Qt)′

∂θ2
D′p (Q∗t ⊗Q∗t )

(
D+
p,−

)′)

+ ∂

∂θ′2
vec

(
∂vech (Qt)′

∂θ2

∂vech (Q∗t )
′

∂vech (Qt)
D′p (QtQ∗t ⊗ Ip + Ip ⊗QtQ∗t )

(
D+
p,−

)′)
. (A.4)

With 10.5.5(4) of Lütkepohl (1996) the first summand of (A.4) equals

(
D+
p,− ⊗

∂vech (Qt)′

∂θ2
D′p

)
∂vec (Q∗t ⊗Q∗t )

∂θ′2
+
(
D+
p,− (Q∗t ⊗Q∗t ) Dp ⊗ Ip−+2

) ∂

∂θ′2
vec

(
∂vech (Qt)′

∂θ2

)
.

Furthermore, 10.5.5(7) of Lütkepohl (1996) gives

∂vec (Q∗t ⊗Q∗t )
∂θ′2

= (Ip ⊗ Kpp ⊗ Ip)
[
∂vec (Q∗t )
∂θ′2

⊗ vec (Q∗t ) + vec (Q∗t )⊗
∂vec (Q∗t )
∂θ′2

]
with ∂vec (Q∗t )

∂θ′2
= Dp

∂vech (Q∗t )
∂vech (Qt)′

∂vech (Qt)
∂θ′2

.
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Note that
∂

∂θ′2
vec

(
∂vech (Qt)′

∂θ2

)
= Kp+,p−+2

∂

∂θ′2
vec

(
∂vech (Qt)

∂θ′2

)

and that ∂
∂θ′2

vec
(
∂vech(Qt)

∂θ′2

)
can be split up into several block matrices:


∂2vech(Qt)

(∂α)2
∂2vech(Qt)
∂α∂β

∂2vech(Qt)
∂α∂vecl(Q̄)′

∂2vech(Qt)
∂α∂β

∂2vech(Qt)
(∂β)2

∂2vech(Qt)
∂β∂vecl(Q̄)′

vec
(

∂2vech(Qt)
∂α∂vecl(Q̄)′

)
vec

(
∂2vech(Qt)′

∂β∂vecl(Q̄)′
)

∂

∂vecl(Q̄)′ vec
(
∂vech(Qt)′

∂vecl(Q̄)′
)



=


β ∂

2vech(Qt−1)
(∂α)2

∂vech(Qt−1)
∂α + β ∂

2vech(Qt−1)
∂α∂β − 1

1−βLpDp,−

∂vech(Qt−1)
∂α + β ∂

2vech(Qt−1)
∂α∂β 2∂vech(Qt−1)

∂β + β ∂
2vech(Qt−1)

(∂β)2 −2−α−2β
(1−β)2 LpDp,−

− 1
1−β vec (LpDp,−) −2−α−2β

(1−β)2 vec (LpDp,−) 0p+p−×p−

 .

With the use of 10.5.5(4) in Lütkepohl (1996), the second summand of (A.4) equals

(
D+
p,− ⊗

∂vech (Qt)′

∂θ2

∂vech (Q∗t )
′

∂vech (Qt)
D′p

)
∂vec (QtQ∗t ⊗ Ip + Ip ⊗QtQ∗t )

∂θ′2

+
(
D+
p,− [Q∗tQt ⊗ Ip + Ip ⊗Q∗tQt] Dp ⊗ Ip−+2

) ∂

∂θ′2
vec

(
∂vech (Q∗t )

′

∂θ2

)

with

∂vec (QtQ∗t ⊗ Ip + Ip ⊗QtQ∗t )
∂θ′2

= (Ip ⊗ Kpp ⊗ Ip)
[
∂vec (Q∗tQt)

∂θ′2
⊗ vec (Ip) + vec (Ip)⊗

∂vec (Q∗tQt)
∂θ′2

]

and ∂vec (Q∗tQt)
∂θ′2

= (Ip ⊗Q∗t )
∂vec (Qt)
∂θ′2

+ (Qt ⊗ Ip)
∂vec (Q∗t )
∂θ′2

=
[
(Ip ⊗Qt) Dp

∂vech (Q∗t )
∂vech (Qt)′

+ (Q∗t ⊗ Ip) Dp

]
∂vech (Qt)

∂θ′2
.
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B. The Proofs of the Lemmas and Theorems

B.1. The Proof of Proposition 4.1

Denote yt := vec
(
y

(2)
t y

(2)′
t

)
with y(2)

t =
(
y2

1t, . . . , y
2
pt

)′
, ht := vec (hth′t) and Y t := E [yty′t]. Thus,

the existence of the eighth moments and cross moments of yt is implied by Y t <∞.

Note, that with 7.2(7) in Lütkepohl (1996), we have

yty′t = vec
(
Z2
t hth

′
tZ

2
t

)
vec

(
Z2
t hth

′
tZ

2
t

)′
=
[⊗

2Z
2
t

]
hth′t

[⊗
2Z

2
t

]
(B.1)

⇒ vec
[
yty′t

]
=
[⊗

4Z
2
t

]
vec

[
hth′t

]
(B.2)

where ⊗k denotes the k-fold Kronecker product of identical matrices. This yields

vec (Y t) = E
([⊗

4Z
2
t

]
vec

[
hth′t

])
. (B.3)

In the (extended) CCC model that is considered by He and Teräsvirta (2004), the random vectors zt

are i.i.d. and independent of ht which allows for a simple factorization of the expectation in (B.3).

Unfortunately, in the model with dynamic conditional correlation this does not work anymore. To

enable the factorization, we use the independent random vectors ηt := R
−1/2
t zt with ηt ∼ (0, Ip).

Denote R1/2
t := [r̃ij,t]i,j=1,...,p and note that

zit =
p∑
j=1

r̃ij,tηjt and z2
it =

p∑
j=1

p∑
k=1

r̃ij,tr̃ik,tηjtηkt .

Note that all entries of R1/2
t are bounded by one in modulus since the i-th main diagonal of R1/2

t R
1/2
t

is
p∑
j=1

r̃2
ij,t and equal one for all i, j ∈ {1, . . . , p}. This property yields

z2
it <

p∑
j=1

p∑
k=1
|ηjtηkt| =: z̃2

t ∀i ∈ {1, . . . , p} .

Thus, using the independence of ηt and ht , we have for (B.3):

vec (Y t) ≤ E
([
z̃2
t

]4)
E
(
vec

[
hth′t

] )
. (B.4)
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First, we will argue why the first factor in B.4 is finite. Repeated substitution yields

ηt = R
−1/2
t zt = R

−1/2
t D−1

t yt = R
−1/2
t D−1

t [DtRtDt]1/2 εt.

Thus, the entries of ηt are weighted sums of the random variables ε1t, . . . , εpt whose eighth moments

and cross are finite by Assumption 4.3. This implies that E
([
z̃2
t

]4) is finite if this property applies

to the weights. The latter one is implied by Lemmas B.7 and B.14 and with the arguments of the

proof of Lemma B.13 in Section B.2

The finiteness of the second factor on the righthand side of (B.4) can be shown analogously to

the approach in He and Teräsvirta (2004). If GARCH(1,1) models are postulated to explain the

conditional variances, we have along the lines of the proof of Theorem 2 in He and Teräsvirta

(2004):

• ht −
[⊗

2Ct−1
]

ht−1 = vec (ωω′) +
2∑

k=1
[Ek1 ⊗ Ek2]ht−1 (B.5)

where {(Ek1, Ek2) , k ∈ {1, 2}} is the set of all permutations of (ω,Ct−1) .

• vec [hth
′
t]−

[⊗
3Ct−1

]
vec
[
ht−1h

′
t−1
]

(B.6)

= vec [vec (ωω′)ω′] +
3∑

k=1

[
E

(1)
k1 ⊗ E

(1)
k2 ⊗ E

(1)
k3

]
ht−1 +

3∑
k=1

[
E

(2)
k1 ⊗ E

(2)
k2 ⊗ E

(2)
k3

]
ht−1

where
{(
E

(1)
k1 , . . . , E

(1)
k3

)
, k ∈ {1, . . . , 3}

}
is the set of all permutations of (ω,ω,Ct−1)

and
{(
E

(2)
k1 , . . . , E

(2)
k3

)
, k ∈ {1, . . . , 3}

}
is the set of all permutations of (ω,Ct−1,Ct−1) .

• vec
[
hth′t

]
−
[⊗

4Ct−1
]

vec
[
ht−1h′t−1

]
(B.7)

= vec
[
vec (ωω′) vec (ωω′)′

]
+

4∑
k=1

[
E

(1)
k1 ⊗ E

(1)
k2 ⊗ E

(1)
k3 ⊗ E

(1)
k4

]
ht−1 +

6∑
k=1

[
E

(2)
k1 ⊗ E

(2)
k2 ⊗ E

(2)
k3 ⊗ E

(2)
k4

]
ht−1

+
(
(Ct−1 ⊗ ω + ω ⊗Ct−1)⊗⊗2Ct−1 +

[⊗
2Ct−1 ⊗ (Ct−1 ⊗ ω + ω ⊗Ct−1)

]
Kp2p

)
vec
(
ht−1h

′
t−1
)

where
{(
E

(1)
k1 , . . . , E

(1)
k4

)
, k ∈ {1, . . . , 4}

}
is the set of all permutations of (ω,ω,ω,Ct−1)

and
{(
E

(2)
k1 , . . . , E

(2)
k4

)
, k ∈ {1, . . . , 6}

}
is the set of all permutations of (ω,ω,Ct−1,Ct−1) .
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Consider the matrix polynomials Ψ(j)(L), j = 1, 2, 3, in the lag operator L with

Ψ(j)(L) =
∞∑
i=0
ψ

(j)
i,t−1L

i and ∀ j ∈ {1, 2, 3}

with ψ(j)
0,t−1 = Ipj+1 , ψ(j)

1,t−1 = −⊗j+1Ct−1 and ψ(j)
l,t−1 = 0 for all l ≥ 2 and j ∈ {1, 2, 3}. Along the

lines of He and Teräsvirta (2004), the inverses of Ψ(j)(L), j ∈ {1, 2, 3}, exist if

λmax
(
E
[⊗

jC0
])
<∞ ∀ j ∈ {1, . . . , 4} . (B.8)

Thus, multiplying the matching inverses Ψ(j)(L) from the lefthand side to (B.5)-(B.7), the prop-

erty (B.8) allows a filter representation of ht, vec (hth′t) and vec
(
hth′t

)
on the process {ht}. Since

ht < ∞ for all t ∈ Z almost surely, (B.8) yields the finity of the righthand side of (B.4). This

implies the existence of the eighth moments and cross moments of yt which completes the proof.

�

B.2. The Proof of Proposition 4.2

The proof of Proposition 4.2 is organized as follows: First of all, we show that the finite past

variation matrix D̂m(θ) = 1
m

m∑
t=1
l̂′t(θ)l̂′t(θ)T is a suitable substitute for the matrix with infinite past

Dm(θ) = 1
m

m∑
t=1
l′t(θ)l′t(θ)T , i.e.

sup
u∈U

∣∣∣D̂m(u)−Dm(u)
∣∣∣ a.s.→ 0. (B.9)

To ensure the existence of the limit matrix D(u) = E
(
l′0(u)l′0(u)T

)
for all u ∈ U in the first place,

it has to be shown that

E
(

sup
u∈U

∣∣∣l′0(u)l′0(u)T
∣∣∣) <∞. (B.10)

Since the QMLE θ̂m is a strongly consistent estimator of θ it remains to verify the uniform conver-

gence of Dm(·) to D(·). The latter properties imply

D̂m

(
θ̂m
)
a.s.→ D(θ) = D. (B.11)
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B.2.1. The Proof of sup
u∈U

∣∣∣D̂m(u)−Dm(u)
∣∣∣ a.s.→ 0

Along the lines of Berkes et al. (2003), we use a multivariate version of the classic mean value

theorem (MVT) throughout the proof section:

Lemma B.1. Let f : Rl → R be a function that is continuous in all of its arguments. Furthermore,

let x and y be some l dimensional real valued vectors. Then, there exists a vector ξ ∈ Rl with

|ξ − x| ≤ |x− y| and |ξ − y| ≤ |x− y|, such that

|f (x)− f (y)| =
∣∣∣∣∣ ∂f (x)
∂x

∣∣∣∣
x=ξ

∣∣∣∣∣ |x− y| . (B.12)

Proof: Denote x := (x1, . . . , xl)′, y := (y1, . . . , yl)′ and yi := (x1, . . . , xi−1, yi, xi+1, . . . , xl)′. Note

that |x− yi| = |xi − yi|. A componentwise application of the univariate MVT implies that for all

i ∈ {1, . . . , l} there exist ξi ∈ [xi, yi] and ξi =: (x1, . . . , xi−1, ξi, xi+1, . . . , xl)′ with

|f (x)− f (yi)| =
∣∣∣∣∣ ∂f (x)
∂xi

∣∣∣∣
x=ξi

∣∣∣∣∣ |xi − yi| .
Thus, choosing ξ := (ξ1, . . . , ξl)′ yields |ξi − x| ≤ |ξi − xi| ≤ |xi − yi| and |ξi − y| ≤ |xi − yi| for all

i ∈ {1, . . . , p} as well as (B.12) which completes the proof. �

With Lemma B.1, we have

sup
u∈U

∣∣∣D̂m(u)−Dm(u)
∣∣∣ = 1

m
sup
u∈U

∣∣∣∣∣
m∑
t=1

[
l̂′t(u)l̂′t(u)T − l′t(u)l′t(u)T

]∣∣∣∣∣
≤ 2d
m

sup
u∈U,t∈Z

|vt(u)|sup
u∈U

∣∣∣∣∣
m∑
t=1

[
l̂′t(u)− l′t(u)

]∣∣∣∣∣ (B.13)

where vt(u) ∈ Rd is such that |vt(u)− l′t(u)| ≤
∣∣∣l̂′t(u)− l′t(u)

∣∣∣ and ∣∣∣vt(u)− l̂′t(u)
∣∣∣ ≤ ∣∣∣l̂′t(u)− l′t(u)

∣∣∣.
For the sum in (B.13), we have

sup
u∈U

∣∣∣∣∣
m∑

t=1

[
l̂′t(u)− l′t(u)

]∣∣∣∣∣ = max
{

max
1≤j≤p

sup
u∈U

∣∣∣∣∣
m∑

t=1

(
∂l̂t(u)
∂rj

− ∂lt(u)
∂rj

)∣∣∣∣∣ , sup
u∈U

∣∣∣∣∣
m∑

t=1

(
∂l̂t(u)
∂u2

− ∂lt(u)
∂u2

)∣∣∣∣∣
}

with u1 :=
(
r′1, . . . , r′p

)′
where rj := (xj , sj , tj)′, j = 1, . . . , p, and u2 :=

(
a, b, q1, . . . , qp−

)′.
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(I) The Proof of sup
u∈U

∣∣∣∣ m∑
t=1

(
∂l̂t(u)
∂u1
− ∂lt(u)

∂u1

)∣∣∣∣ a.s.= O(1).

Throughout the next sections, we will use the following statement repeatedly. The lemma is a

generalisation of Lemma 2.2 in Berkes et al. (2003). Adopting their notation let

log+ x :=


log x, x > 1

0, else
.

Lemma B.2. Let {Xt, t ∈ N0} be a sequence of identically distributed but not necessarily inde-

pendent random variables satisfying

E log+ |X0| <∞. (B.14)

Then, we have that
∞∑
k=0

kjakXk converges with probability one for any a ∈ R with |a| < 1 and any

fixed j ∈ N0.

Proof: Analogously to the proof of Lemma 2.2 in Berkes et al. (2003), it suffices to show that

the conditions for the Borel-Cantelli Lemma are satisfied for all ζ > 1. Note, that the function

f : R+ → R+ with f(x) = ζx

xj has a minimum located at xmin = − j
log ζ and is strictly monotonic

increasing for larger values of x. Thus, there exists some constant ζ0 ∈ (1, ζ) with ζk

kj > ζk0 for any

integer k ≥ k0 where k0 is the smallest integer that is larger than xmin. Thus, for our counterpart

of (2.5) in Berkes et al. (2003), we have

∞∑
k=0

P
(
|Xk| >

ζk

kj

)
≤

k0−1∑
k=0

P
(
|Xk| >

ζk

kj

)
+
∞∑

k=k0

P
(
|Xk| >

ζk

kj

)
≤ k0 +

∞∑
k=0

P
(
|Xk| > ζk0

)
. (B.15)

Along the lines of Berkes et al. (2003), the righthand side of (B.15) is finite if (B.14) is satisfied.

Hence, the Borel-Cantelli Lemma yields the almost sure convergence for any nonnegative integer j

which completes the proof.
�
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Lemma B.3. Denote Tjt :=
∞∑

k=t−1
ρky2

j,t−k−1, for j = 1, . . . , p and t = 1, . . . ,m. Under Assump-

tions 2.1, 3.1-3.4, 4.3 and 4.4, we have for all i, j ∈ {1, . . . , p} and for m→∞:

•
m∑
t=1
Tjt

a.s.= O(1); and

•
∣∣∣∣ m∑
t=1
Tityityjt

∣∣∣∣ a.s.= O(1).

Proof: Note that
{
y2
jt, t ∈ Z

}
and {yityjt, t ∈ Z} are sequences of unconditionally identically dis-

tributed random variables. With Assumptions 4.3 and 4.4, we have for all i, j ∈ {1, . . . , p}:

E log+
(
y2
jt

)
≤ E

(
y2
jt

)
<∞ and E log+ (yityjt) ≤ E log+

(
y2
ity

2
jt

)
≤ E

(
y2
ity

2
jt

)
<∞. (B.16)

Hence, Lemma B.2 yields Tjt
a.s.= O(1), ∀ j ∈ {1, . . . , p} and t ∈ Z.

Additionally, for any i, j ∈ {1, . . . , p} and for m→∞, we have

m∑
t=1

Tjt =
m∑
t=1

∞∑
k=t−1

ρky2
j,t−k−1 =

m∑
t=1

∞∑
l=0
ρl+t−1y2

jl =
m−1∑
t=0

ρt
∞∑
l=0
ρly2

jl = 1− ρm

1− ρ

∞∑
l=0
ρly2

jl
a.s.= O(1)

and ∣∣∣∣∣
m∑
t=1

Tityityjt

∣∣∣∣∣ =
∣∣∣∣∣
m∑
t=1

yityjt

∞∑
l=0
ρl+t−1y2

il

∣∣∣∣∣ ≤
∣∣∣∣∣
m−1∑
t=0

ρtyi,t+1yj,t+1

∣∣∣∣∣ ·
∣∣∣∣∣
∞∑
l=0
ρly2

il

∣∣∣∣∣ a.s.= O(1)

where the last equality is implied by Lemma B.2 in both cases. �

Lemma B.4. Under Assumptions 2.1, 3.1-3.4, 4.3 and 4.4, we have for all j ∈ {1, . . . , p} and for

m→∞:

• sup
u∈U

∣∣∣∣ m∑
t=1

(
ŵjt(u)

1
2 − wjt(u)

1
2
)∣∣∣∣ a.s= O(1);

• sup
u∈U

∣∣∣∣ m∑
t=1

(
ŵjt(u)−

1
2 − wjt(u)−

1
2
)∣∣∣∣ a.s= O(1); and

• sup
u∈U

∣∣∣∣ m∑
t=1

[
(ŵit(u)ŵjt(u))−

1
2 − (wit(u)wjt(u))−

1
2
]∣∣∣∣ a.s= O(1).

Proof: Analogously to the arguments in the proof of Lemma 5.4 in Berkes et al. (2003), there exist

positive constants C1 := u
1−u and C2 := u

1−ρ with
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0 < C1 ≤ ŵjt(u) ≤ wjt(u) ≤ C2

(
1 +

∞∑
k=0

ρky2
j,t−1

)
a.s.= O(1) ∀ j ∈ {1, . . . , p} . (B.17)

Since ŵjt(u) = min [ŵjt(u),wjt(u)], the MVT yields for any j ∈ {1, . . . , p}

sup
u∈U

∣∣∣∣∣
m∑
t=1

(
ŵjt(u)

1
2 − wjt(u)

1
2
)∣∣∣∣∣ ≤ sup

u∈U

m∑
t=1

1
2ŵjt(u) (wjt(u)− ŵjt(u)) ≤ 1

2C1

m∑
t=1

Tjt
a.s.= O(1). (B.18)

For the second statement, (B.17) and (B.18) yield

sup
u∈U

∣∣∣∣∣
m∑
t=1

(
ŵjt(u)−

1
2 − wjt(u)−

1
2
)∣∣∣∣∣ ≤ sup

u∈U

m∑
t=1

1
ŵjt(u)

(
wjt(u)

1
2 − ŵjt(u)

1
2
)
a.s.= O(1).

Finally, with the MVT and (B.17), we have for any i, j ∈ {1, . . . , p}

sup
u∈U

m∑
t=1

[
(ŵit(u)ŵjt(u))−

1
2 − (wit(u)wjt(u))−

1
2
]

= sup
u∈U

m∑
t=1

(ŵit(u)ŵjt(u)wit(u)wjt(u))−
1
2
[
(wit(u)wjt(u))

1
2 − (ŵit(u)ŵjt(u))

1
2
]

≤ 1
C2

1
sup
u∈U

m∑
t=1

1
2 (ŵit(u)ŵjt(u))−

1
2
∣∣∣wit(u)wjt(u)− ŵit(u)ŵjt(u)

∣∣∣
≤ 1

2C3
1

sup
u∈U

m∑
t=1

(∣∣∣wit(u)− ŵit(u)
∣∣∣ ŵjt(u) +

∣∣∣wjt(u)− ŵjt(u)
∣∣∣wit(u)

)
≤ ρ

2C3
1

sup
u∈U

m∑
t=1

(
Titŵjt(u) + Tjtwit(u)

)
≤ ρ

C3
1

max
1≤j≤p

sup
u∈U,t∈Z

wjt(u)
m∑
t=1

Tit
a.s.= O(1).

�

Lemma B.5. Under Assumptions 2.1, 3.1-3.4, 4.3 and 4.4, we have for any j ∈ {1, . . . , p}:

• sup
u∈U,t∈Z

∣∣∣∣∂vec(FDt (u))′
∂rj

∣∣∣∣ a.s.= O(1); and

• sup
u∈U

∣∣∣∣∣ m∑t=1

(
∂vec

(
F̂Dt (u)

)′
∂rj

− ∂vec(FDt (u))′
∂rj

)∣∣∣∣∣ a.s.= O(1).
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Proof: Using (B.17), (B.16) and Lemma B.2, we have for any j ∈ {1, . . . , p} and m→∞:

• sup
u∈U,t∈Z

∣∣∣∣∣∂vec (FDt(u))′

∂xj

∣∣∣∣∣ ≤ 1
2

1
1− ρ sup

u∈U,t∈Z
wjt(u)−

1
2
a.s.= O(1) (B.19)

• sup
u∈U,t∈Z

∣∣∣∣∣∂vec (FDt(u))′

∂sj

∣∣∣∣∣ ≤ 1
2 sup
u∈U,t∈Z

wjt(u)−
1
2 sup
u∈U,t∈Z

∞∑
k=0

ρky2
j,t−k−1

a.s.= O(1) (B.20)

• sup
u∈U,t∈Z

∣∣∣∣∣∂vec (FDt(u))′

∂tj

∣∣∣∣∣ ≤ 1
2
ρ

u
sup

u∈U,t∈Z
wjt(u)−

1
2 sup
u∈U,t∈Z

∞∑
k=0

kρky2
j,t−k−1

a.s.= O(1). (B.21)

Thus, the first statement is an immediate consequence of (B.19)-(B.21).

The second statement follows from (B.22)-(B.24) below. With Lemma B.4, we have

sup
u∈U

∣∣∣∣∣∣∣
m∑

t=1

∂vec
(

F̂Dt(u)
)′

∂xj
− ∂vec (FDt

(u))′

∂xj


∣∣∣∣∣∣∣ ≤

1
2

1
1− ρ sup

u∈U

∣∣∣∣∣
m∑

t=1

(
ŵjt(u)− 1

2 − wjt(u)− 1
2

)∣∣∣∣∣ a.s.= O(1) (B.22)

Furthermore, (B.17) and Lemmas B.3 and B.4 yield

sup
u∈U

∣∣∣∣∣∣∣
m∑

t=1

∂vec
(

F̂Dt(u)
)′

∂sj
− ∂vec (FDt

(u))′

∂sj


∣∣∣∣∣∣∣

≤ 1
2 sup

u∈U

∣∣∣∣∣
m∑

t=1

(
ŵjt(u)− 1

2 − wjt(u)− 1
2

)∣∣∣∣∣ sup
u∈U,t∈Z

t−2∑
k=0

tkj y
2
j,t−k−1 + 1

2C
−1/2
1

m∑
t=1

Tjt
a.s.= O(1). (B.23)

Finally, we have

sup
u∈U

∣∣∣∣∣∣∣
m∑

t=1

∂vec
(

F̂Dt
(u)
)′

∂tj
− ∂vec (FDt

(u))′

∂tj


∣∣∣∣∣∣∣

≤ 1
2C
−3/2
1

ρ

u

m∑
t=1

[ ∞∑
k=t−1

kρky2
j,t−k−1

][
t−2∑
k=0

kρky2
j,t−k−1

]
+ 1

2C
−1/2
1

ρ

u

m∑
t=1

∞∑
k=t−1

kρky2
j,t−k−1 (B.24)

with

m∑
t=1

∞∑
k=t−1

kρky2
j,t−k−1 =

m∑
t=1

∞∑
l=0

(l + t− 1)ρl+t−1y2
jl =

m∑
t=0

ρt
∞∑
l=0

lρly2
jl +

m∑
t=0

tρt
∞∑
l=0

ρly2
jl. (B.25)

Since (B.25) is O(1) almost surely with (B.16) and Lemma B.2, the same applies to (B.24) which

completes the proof. �
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Lemma B.6. Under Assumptions 2.1, 3.1-3.4, 4.3 and 4.4, we have for m→∞:

• sup
u∈U

∣∣∣∣ m∑
t=1

(
F̂Dt(u)− FDt(u)

)∣∣∣∣ a.s.= O(1); and

• sup
u∈U

∣∣∣∣ m∑
t=1

(
F̂Qt(u)− FQt(u)

)∣∣∣∣ a.s.= O(1).

Proof: For the first statement, Lemma B.4 implies

sup
u∈U

∣∣∣∣∣
m∑
t=1

(
F̂Dt(u)− FDt(u)

)∣∣∣∣∣ = max
1≤j≤p

∣∣∣∣∣
m∑
t=1

(
ŵjt(u)

1
2 − wjt(u)

1
2
)∣∣∣∣∣ a.s.= O(1).

For the second statement (B.16), (B.17), and Lemmas B.2, B.3 and B.4 yield

sup
u∈U

∣∣∣∣∣
m∑

t=1

(
F̂Qt(u)− FQt(u)

)∣∣∣∣∣ = sup
u∈U

a

∣∣∣∣∣
m∑

t=1

∞∑
k=1

bk−1
(

ẑt(u)̂z′t(u)− zt(u)z′t(u)
)∣∣∣∣∣

≤ sup
u∈U

max
1≤i,j≤p

ρ

∣∣∣∣∣
m∑

t=1

∞∑
k=1

ρk−1yi,t−kyj,t−k

[
(ŵi,t−k(u)ŵj,t−k(u))−

1
2 − (wi,t−k(u)wj,t−k(u))−

1
2
]∣∣∣∣∣

≤ sup
t∈Z

max
1≤i,j≤p

∣∣∣∣∣
∞∑

k=1
ρkyi,t−kyj,t−k

∣∣∣∣∣ sup
u∈U

∣∣∣∣∣
m∑

t=1

[
(ŵi,t−k(u)ŵj,t−k(u))−

1
2 − (wi,t−k(u)wj,t−k(u))−

1
2
]∣∣∣∣∣ a.s.= O(1).

�

In the following, the proofs for terms with finite and infinite past work analogously and will be

omitted for one of these cases.

Lemma B.7. Under Assumptions 2.1, 3.1-3.4, 4.3 and 4.4, we have for m→∞:

• sup
u∈U,t∈Z

|FDt(u)| a.s.= O(1), sup
u∈U,t∈Z

|FQt(u)| a.s.= O(1), and sup
u∈U,t∈Z

|FRt(u)| a.s.= O(1); and

• sup
u∈U,t∈Z

∣∣∣F̂Dt(u)
∣∣∣ a.s.= O(1), sup

u∈U,t∈Z

∣∣∣F̂Qt(u)
∣∣∣ a.s.= O(1), and sup

u∈U,t∈Z

∣∣∣F̂Rt(u)
∣∣∣ a.s.= O(1).

Proof: Statement (B.17) and Lemma 2.2 in Berkes et al. (2003) yield

sup
u∈U,t∈Z

|FDt(u)| = sup
u∈U,t∈Z

max
1≤i≤p

wit(u)1/2 a.s.= O(1)

and sup
u∈U,t∈Z

|FQt(u)| ≤ sup
u∈U,t∈Z

max
1≤i≤p−

1− a− b
1− b qi + a sup

u∈U,t∈Z

∣∣∣∣∣
∞∑
k=0

bkzt−k−1(u)z′t−k−1(u)
∣∣∣∣∣

≤ 1− 2u
1− ρ + ρ sup

u∈U,t∈Z
max

1≤i,j≤p

∣∣∣∣∣
∞∑
k=0

ρk
yi,t−k−1

wi,t−k−1(u)1/2
yj,t−k−1

wj,t−k−1(u)1/2

∣∣∣∣∣ a.s.= O(1).
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The last equality is a result of Lemma B.2 and

E log+
(

yit
wit(u)1/2

yjt
wjt(u)1/2

)
≤ E log+

(
y2
it

wit(u)1/2
y2
jt

wjt(u)1/2

)
≤ E

(
y2
it

wit(u)1/2
y2
jt

wjt(u)1/2

)

≤ C−1
1 E

(
y2
ity

2
jt

)
<∞.

Concluding, FRt(u) is a correlation matrix for all t ∈ Z almost surely. Hence, the absolute entries

are bounded by 1 almost surely which completes the proof. �

In the following, denote by Sn the set of all n! permutations of {1, . . . , n} and sgn(σ) the sign

of the permutation σ that indicates whether an even or odd number of pairwise interchanges of

neighbouring entries in (1, . . . , n) is necessary to obtain the permutation σ.

Lemma B.8. Under Assumptions 2.1, 3.1-3.4, 4.3 and 4.4, we have for m→∞:

• sup
u∈U,t∈Z

|det FQt(u)| a.s.= O(1);

• sup
u∈U,t∈Z

∣∣∣det F̂Qt(u)
∣∣∣ a.s.= O(1); and

• sup
u∈U,t∈Z

∣∣∣∣ m∑
t=1

(
det F̂Qt(u)− det FQt(u)

)∣∣∣∣ a.s.= O(1).

Proof: Note that the determinant of a matrix equals the products of its eigenvalues. Hence,

Assumption 2.1-6. implies

sup
u∈U,t∈Z

|det FQt(u)| ≤
[

sup
u∈U,t∈Z

λmax (FQt(u))
]p

= δp2 .

For the second statement, Lemmas B.6 and B.7 yield

sup
u∈U

∣∣∣∣∣
m∑
t=1

(
det F̂Qt(u)− det FQt(u)

)∣∣∣∣∣
= sup

u∈U

∣∣∣∣∣∣
m∑
t=1

∑
σ∈Sp

([
F̂Qt(u)

]
1σ(1)

· . . . ·
[
F̂Qt(u)

]
pσ(p)

− [FQt(u)]1σ(1) · . . . · [FQt(u)]pσ(p)

)∣∣∣∣∣∣
= sup

u∈U

∣∣∣∣∣∣
m∑
t=1

∑
σ∈Sp

p−1∑
j=1

(
[FQt(u)]jσ(j) −

[
F̂Qt(u)

]
jσ(j)

) j−1∏
i=1

[FQt(u)]iσ(i)

p∏
k=j+1

[
F̂Qt(u)

]
kσ(k)

∣∣∣∣∣∣
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≤ p! (p− 1) sup
u∈U,t∈Z

∣∣∣∣∣
m∑
t=1

(
FQt(u)− F̂Qt(u)

)∣∣∣∣∣ max
1≤j≤p

[
sup

u∈U,t∈Z
|FQt(u)|

]j−1

max
1≤j≤p

[
sup

u∈U,t∈Z

∣∣∣F̂Qt(u)
∣∣∣]p−j

a.s.= O(1). �

Lemma B.9. Under Assumptions 2.1, 3.1-3.4, 4.3 and 4.4, we have for m→∞:

• sup
u∈U,t∈Z

det F̂Q∗t (u) a.s.= O(1); and

• sup
u∈U

∣∣∣∣ m∑
t=1

[(
det F̂Q∗t (u)

)2
−
(
det FQ∗t (u)

)2
]∣∣∣∣ a.s.= O(1).

Proof: For the first statement, we have

sup
u∈U,t∈Z

det F̂Q∗t (u) = sup
u∈U,t∈Z

p∏
i=1

[
F̂Qt(u)

]−1/2

ii
≤ sup

u∈U

(1− a− b
1− b

)−p/2
≤
(1− u

1− ρ

)p/2
= O(1).

For the second statement, consider the interval IQ∗t (u) :=
[
ξt
∗(u), ξ̄∗t (u)

]
with

ξt
∗(u) := min

{
det F̂Q∗t (u), det FQ∗t (u)

}
and ξ̄∗t (u) := max

{
det F̂Q∗t (u), det FQ∗t (u)

}
.

Hence, with the MVT and for any t ∈ Z and u ∈ U , there exists a ξ∗t (u) ∈ IQ∗t (u) such that

sup
u∈U

∣∣∣∣∣
m∑
t=1

[(
det F̂Q∗t (u)

)2
−
(
det FQ∗t (u)

)2
]∣∣∣∣∣ = sup

u∈U

∣∣∣∣∣
m∑
t=1

2ξ∗t (u)
[
det F̂Q∗t (u)− det FQ∗t (u)

]∣∣∣∣∣
≤ 2 sup

u∈U,t∈Z
ξ̄∗t (u) sup

u∈U

∣∣∣∣∣
m∑
t=1

( p∏
i=1

[
F̂Qt(u)

]− 1
2

ii
−

p∏
i=1

[FQt(u)]−
1
2

ii

)∣∣∣∣∣
= 2 sup

u∈U,t∈Z
ξ̄∗t (u) sup

u∈U

∣∣∣∣∣∣
m∑
t=1

p∑
j=1

([
F̂Qt(u)

]− 1
2

jj
− [FQt(u)]−

1
2

jj

) j−1∏
i=1

[FQt(u)]−
1
2

ii

p∏
k=j+1

[
F̂Qt(u)

]− 1
2

kk

∣∣∣∣∣∣
MV T
≤ 2 sup

u∈U,t∈Z
ξ̄∗t (u) sup

u∈U

p∑
j=1

∣∣∣∣∣
m∑
t=1

1
2
[
FQ̄(u)

]− 3
2

jj

([
F̂Qt(u)

]
jj
− [FQt(u)]jj

)∣∣∣∣∣ sup
u∈U

(1− a− b
1− b

)− p−1
2

≤
(1− u

1− ρ

) p−1
2

sup
u∈U,t∈Z

ξ̄∗t (u) p sup
u∈U

∣∣∣∣∣
m∑
t=1

(
F̂Qt(u)− FQt(u)

)∣∣∣∣∣ a.s.= O(1)

with Lemmas B.6, B.9 and (2.8). �
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Lemma B.10. Under Assumptions 2.1, 3.1-3.4, 4.3 and 4.4, we have for m→∞:

• sup
u∈U,t∈Z

1
det FRt (u)

a.s.= O(1),

• sup
u∈U,t∈Z

1
det F̂Rt (u)

a.s.= O(1); and

• sup
u∈U,t∈Z

∣∣∣∣ m∑
t=1

(
1

det F̂Rt (u)
− 1

det FRt (u)

)∣∣∣∣ a.s.= O(1).

Proof: For the inverted determinants, statement (2.9) yields

sup
u∈U,t∈Z

det FRt(u) ≥
(

sup
u∈U,t∈Z

λmin (FRt(u))
)p

a.s.
>

[1− a− b
1− b

δ1
pδ2

]p
⇒ sup

u∈U,t∈Z

1
det FRt(u)

a.s.
<

[ 1− b
1− a− b

pδ2
δ1

]p
= O(1).

For the last statement of the lemma, consider IRt(u) :=
[
ξt(u), ξ̄t(u)

]
with

ξt(u) := min
{

det F̂Rt(u), det FRt(u)
}

and ξ̄t(u) := max
{

det F̂Rt(u), det FRt(u)
}
.

Thus, with the MVT and for any t ∈ Z and u ∈ U , there exists a ξt(u) ∈ IRt(u) such that

sup
u∈U

∣∣∣∣∣
m∑
t=1

(
1

det F̂Rt(u)
− 1

det FRt(u)

)∣∣∣∣∣ ≤ sup
u∈U,t∈Z

∣∣∣∣− 1
ξ2
t (u)

∣∣∣∣ sup
u∈U

∣∣∣∣∣
m∑
t=1

(
det F̂Rt(u)− det FRt(u)

)∣∣∣∣∣
≤ sup

u∈U,t∈Z

1
ξt

2(u)
sup
u∈U

∣∣∣∣∣
m∑
t=1

([
det F̂Q∗t (u)

]2
det F̂Qt(u)−

[
det FQ∗t (u)

]2
det FQt(u)

)∣∣∣∣∣
≤ sup

u∈U,t∈Z

1
ξt

2(u)
sup

u∈U,t∈Z
det F̂Qt(u) sup

u∈U

∣∣∣∣∣
m∑
t=1

([
det F̂Q∗t (u)

]2
−
[
det FQ∗t (u)

]2)∣∣∣∣∣
+ sup
u∈U,t∈Z

1
ξt

2(u)

[
sup

u∈U,t∈Z
det FQ∗t (u)

]2

sup
u∈U

∣∣∣∣∣
m∑
t=1

(
det F̂Qt(u)− det FQt(u)

)∣∣∣∣∣ a.s.= O(1)

with Lemmas B.8 and B.9. �

Denote by X(i,j) the matrix that results from X ∼ (n × n) by omitting the i-th row and the j-th

column with 1 ≤ i, j ≤ n.
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Lemma B.11. Under Assumptions 2.1, 3.1-3.4, 4.3 and 4.4, we have for m→∞:

• sup
u∈U,t∈Z

det FRt(u)(i,j) a.s.= O(1); and

• sup
u∈U

∣∣∣∣ m∑
t=1

(
det F̂Rt(u)(i,j) − det FRt(u)(i,j)

)∣∣∣∣ a.s.= O(1).

Proof: The proof works analogously to the proof of Lemma B.8 and uses the arguments in the

proof of Lemma B.10.

Lemma B.12. Under Assumptions 2.1, 3.1-3.4, 4.3 and 4.4, we have for m→∞:

• sup
u∈U,t∈Z

∣∣∣∣ m∑
t=1

(
F̂Dt(u)−1 − FDt(u)−1

)∣∣∣∣ a.s.= O(1); and

• sup
u∈U,t∈Z

∣∣∣∣ m∑
t=1

(
F̂Rt(u)−1 − FRt(u)−1

)∣∣∣∣ a.s.= O(1).

Proof: With Lemmas B.4, B.10 and B.11, we have:

sup
u∈U,t∈Z

∣∣∣∣∣
m∑
t=1

(
F̂Dt(u)−1 − FDt(u)−1

)∣∣∣∣∣ = sup
u∈U,t∈Z

max
1≤j≤p

∣∣∣∣∣
m∑
t=1

(
ŵjt(u)−

1
2 − wjt(u)−

1
2
)∣∣∣∣∣ a.s.= O(1)

and sup
u∈U,t∈Z

∣∣∣∣∣
m∑
t=1

(
F̂Rt(u)−1 − FRt(u)−1

)∣∣∣∣∣
= sup

u∈U,t∈Z
max

1≤i,j≤p

∣∣∣∣∣
m∑
t=1

(
1

det F̂Rt(u)
det F̂Rt(u)(i,j) − 1

det FRt(u)det FRt(u)(i,j)
)∣∣∣∣∣

≤ sup
u∈U,t∈Z

∣∣∣∣∣
m∑
t=1

(
1

det F̂Rt(u)
− 1

det FRt(u)

)∣∣∣∣∣ max
1≤i,j≤p

sup
u∈U,t∈Z

∣∣∣det F̂Rt(u)(i,j)
∣∣∣

+ sup
u∈U,t∈Z

∣∣∣∣ 1
det FRt(u)

∣∣∣∣ max
1≤i,j≤p

sup
u∈U

∣∣∣∣∣
m∑
t=1

(
det F̂Rt(u)(i,j) − det FRt(u)(i,j)

)∣∣∣∣∣ a.s.= O(1)
�

Lemma B.13. Under Assumptions 2.1, 3.1-3.4, 4.3 and 4.4, we have for m→∞:

• sup
u∈U,t∈Z

∣∣∣FDt(u)1/2
∣∣∣ a.s.= O(1), sup

u∈U,t∈Z

∣∣∣FQt(u)1/2
∣∣∣ a.s.= O(1), and sup

u∈U,t∈Z

∣∣∣FQ∗t (u)1/2
∣∣∣ a.s.= O(1);

• sup
u∈U,t∈Z

∣∣∣F̂Dt(u)1/2
∣∣∣ a.s.= O(1), sup

u∈U,t∈Z

∣∣∣F̂Qt(u)1/2
∣∣∣ a.s.= O(1), and sup

u∈U,t∈Z

∣∣∣F̂Q∗t (u)1/2
∣∣∣ a.s.= O(1).

Proof: First of all, (B.17) implies sup
u∈U,t∈Z

∣∣∣FDt(u)1/2
∣∣∣ = sup

u∈U,t∈Z
max

1≤i≤p
wit(u)1/4 a.s.= O(1).
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Furthermore, consider the eigenvalue decomposition of FQt(u)1/2 with Ut(u) the matrix whose

columns are the orthonormalized eigenvectors that belong to the ordered eigenvalues of FQt(u)

which form the main diagonal of the diagonal matrix Λt(u). Note that due to the normalization we

have sup
u∈U,t∈Z

|Ut(u)| ≤ 1 and sup
u∈U,t∈Z

|FQt(u)| a.s.= O(1) which implies λmax (FQt(u)) a.s.= O(1). These

statements yield

sup
u∈U,t∈Z

∣∣∣FQt(u)
1
2

∣∣∣ = sup
u∈U,t∈Z

∣∣∣Ut(u)Λt(u)
1
2Ut(u)′

∣∣∣ ≤ 2p2 sup
u∈U,t∈Z

|Ut(u)| sup
u∈U,t∈Z

λmax (FQt(u))
1
2 = O(1)

and sup
u∈U,t∈Z

∣∣∣FQ∗t (u)
1
2

∣∣∣ a.s.≤ sup
u∈U,t∈Z

∣∣∣∣1− a− b1− b min
1≤i≤p

[
FQ̄(u)

]
ii

∣∣∣∣− 1
4 a.s.
≤
( 1− u

1− 2ρ

) 1
4

= O(1).
�

Lemma B.14. Under Assumptions 2.1, 3.1-3.4, 4.3 and 4.4, we have for m→∞:

• sup
u∈U,t∈Z

∣∣FDt(u)−1∣∣ a.s.= O(1) and sup
u∈U,t∈Z

∣∣FRt(u)−1∣∣ a.s.= O(1); and

• sup
u∈U,t∈Z

∣∣∣F̂Dt(u)−1
∣∣∣ a.s.= O(1) and sup

u∈U,t∈Z

∣∣∣F̂Rt(u)−1
∣∣∣ a.s.= O(1).

Proof: Note that (B.17) implies sup
u∈U,t∈Z

∣∣FDt(u)−1∣∣ = sup
u∈U,t∈Z

max
1≤j≤p

wjt(u)−1/2 ≤ C
−1/2
1

a.s.= O(1).

To prove sup
u∈U,t∈Z

∣∣FRt(u)−1∣∣ a.s.= O(1), we investigate the matrix FRt(u)−1 in detail. For this purpose,

keep in mind that FRt(u)−1 = [det FRt(u)]−1 At(u) with At(u) := (aij,t(u))i,j=1,...,p the adjoint

matrix and aij,t(u) the cofactor of [FRt(u)]ij which is defined as aij,t(u) := (−1)i+jMij,t(u) with

Mij,t(u) := det FRt(u)(i,j) the minor of [FRt(u)]ij . Since the entries of FRt(u) do not exceed one in

modulus, Mij,t(u) is bounded by a constant:

sup
u∈U

max
1≤i,j≤p

|Mij,t(u)| | ≤ sup
u∈U

max
1≤i,j≤p

∑
σ∈Sp−1

p−1∏
k=1

∣∣∣∣[FRt(u)(i,j)
]
kσ(k)

∣∣∣∣ < (p− 1)! . (B.26)

Thus, analogously to the argumentation in Lemma B.10, (2.9) and (B.26) yield

sup
u∈U,t∈Z

∣∣∣FRt(u)−1
∣∣∣ ≤ sup

u∈U,t∈Z

∣∣∣∣ 1
det FRt(u)

∣∣∣∣ max
1≤i,j≤p

sup
u∈U,t∈Z

∣∣∣det FRt(u)(i,j)
∣∣∣ a.s.< [ 1− b

1− a− b
pδ2
δ1

]p
(p− 1)!

which completes the proof. �
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Lemma B.15. Under Assumptions 2.1, 3.1-3.4, 4.3 and 4.4, we have for m→∞:

• sup
u∈U,t∈Z

∣∣ẑt(u)ẑ′t(u)
∣∣ a.s.= O(1); and

• sup
u∈U

∣∣∣∣ m∑
t=1

(
ẑt(u)ẑ′t(u)− zt(u)z′t(u)

)∣∣∣∣ a.s.= O(1).

Proof: With F̂Ht(u) := F̂Dt(u)F̂Rt(u)F̂Dt(u) and Assumption 4.3, the Lemmas B.13 and B.14 yield

sup
u∈U,t∈Z

∣∣ẑt(u)ẑ′t(u)
∣∣ ≤ p2 sup

u∈U,t∈Z

∣∣∣F̂Dt(u)−1
∣∣∣ sup
u∈U,t∈Z

∣∣∣F̂Ht(u)1/2εtε
′
tF̂Ht(u)1/2

∣∣∣ sup
u∈U,t∈Z

∣∣∣F̂Dt(u)−1
∣∣∣

≤ p4
(

sup
u∈U,t∈Z

∣∣∣F̂Dt(u)−1
∣∣∣)2(

sup
u∈U,t∈Z

∣∣∣F̂Dt(u)1/2
∣∣∣)4(

sup
u∈U,t∈Z

∣∣∣F̂Rt(u)1/2
∣∣∣)2

sup
t∈Z

∣∣εtε′t∣∣
≤ p6

(
sup

u∈U,t∈Z

∣∣∣F̂Dt(u)−1
∣∣∣)2(

sup
u∈U,t∈Z

∣∣∣F̂Dt(u)1/2
∣∣∣)4(

sup
u∈U

∣∣∣F̂Q∗t (u)1/2
∣∣∣)4(

sup
u∈U,t∈Z

∣∣∣F̂Qt(u)1/2
∣∣∣)2

× sup
t∈Z

∣∣εtε′t∣∣ a.s.= O(1).

Furthermore, with (B.17) and Lemma B.3, we have

sup
u∈U

∣∣∣∣∣
m∑
t=1

(
ẑt(u)ẑ′t(u)− zt(u)z′t(u)

)∣∣∣∣∣ = sup
u∈U

max
1≤i,j≤p

∣∣∣∣∣
m∑
t=1

yityjt
[
(ŵit(u)ŵjt(u))−

1
2 − (wit(u)wjt(u))−

1
2
]∣∣∣∣∣

≤ ρ

2C3
1

sup
u∈U

max
1≤i,j≤p

∣∣∣∣∣
m∑
t=1

(
Titŵjt(u) + Tjtwit(u)

)
yityjt

∣∣∣∣∣
≤ ρ

2C3
1

max
1≤i≤p

sup
u∈U,t∈Z

wit(u) max
1≤i,j≤p

(∣∣∣∣∣
m∑
t=1

Tityityjt

∣∣∣∣∣+
∣∣∣∣∣
m∑
t=1

Tjtyityjt

∣∣∣∣∣
)
a.s.= O(1).

�

Denote K1t(u) := F̂Dt(u)−1 + F̂Dt(u)−1F̂Rt(u)−1ẑt(u)ẑ′t(u) and analogously K̂1t(u) in dependence

of a finite past of observations.

Lemma B.16. Under Assumptions 2.1, 3.1-3.4, 4.3 and 4.4, we have for m→∞:

• sup
u∈U,t∈Z

∣∣∣K̂1t(u)
∣∣∣ a.s.= O(1); and

• sup
u∈U

∣∣∣∣ m∑
t=1

(
K̂1t(u)−K1t(u)

)∣∣∣∣ a.s.= O(1).

53



Proof: The Lemmas B.12, B.14 and B.15 imply

sup
u∈U,t∈Z

∣∣∣K̂1t(u)
∣∣∣

≤ sup
u∈U,t∈Z

∣∣∣F̂Dt(u)−1
∣∣∣+ p2 sup

u∈U,t∈Z

∣∣∣F̂Dt(u)−1
∣∣∣ sup
u∈U,t∈Z

∣∣∣F̂Rt(u)−1
∣∣∣ sup
u∈U,t∈Z

∣∣ẑt(u)ẑ′t(u)
∣∣ a.s.= O(1)

and sup
u∈U

∣∣∣∣∣
m∑
t=1

(
K̂1t(u)−K1t(u)

)∣∣∣∣∣
≤ p2 sup

u∈U,t∈Z

∣∣∣F̂Rt(u)−1
∣∣∣ sup
u∈U,t∈Z

∣∣ẑt(u)ẑ′t(u)
∣∣ sup
u∈U

∣∣∣∣∣
m∑
t=1

(
F̂Dt(u)−1 − FDt(u)−1

)∣∣∣∣∣
+ p2 sup

u∈U,t∈Z

∣∣∣FDt(u)−1
∣∣∣ sup
u∈U,t∈Z

∣∣ẑt(u)ẑ′t(u)
∣∣ sup
u∈U

∣∣∣∣∣
m∑
t=1

(
F̂Rt(u)−1 − FRt(u)−1

)∣∣∣∣∣
+ p2 sup

u∈U,t∈Z

∣∣∣FDt(u)−1
∣∣∣ sup
u∈U,t∈Z

∣∣∣FRt(u)−1
∣∣∣ sup
u∈U

∣∣∣∣∣
m∑
t=1

(
ẑt(u)ẑ′t(u)− zt(u)z′t(u)

)∣∣∣∣∣ a.s.= O(1).

�

Lemma B.17. Under Assumptions 2.1, 3.1-3.4, 4.3 and 4.4, we have for all j ∈ {1, . . . , p} and

m→∞:

• sup
u∈U,t∈Z

∣∣∣∂lt(u)
∂rj

∣∣∣ a.s.= O(1); and

• sup
u∈U

∣∣∣∣ m∑
t=1

(
∂l̂t(u)
∂rj
− ∂lt(u)

∂rj

)∣∣∣∣ a.s.= O(1).

Proof: The Lemmas B.5, B.12 and B.16 imply

sup
u∈U,t∈Z

∣∣∣∣∣∂lt(u)
∂rj

∣∣∣∣∣ ≤ sup
u∈U,t∈Z

∂vec (FDt(u))′

∂rj
sup

u∈U,t∈Z
K1t(u) a.s.= O(1)

and sup
u∈U

∣∣∣∣∣
m∑
t=1

(
∂l̂t(u)
∂rj

− ∂lt(u)
∂rj

)∣∣∣∣∣ = sup
u∈U

∣∣∣∣∣∣∣
m∑
t=1

∂vec
(
F̂Dt(u)

)′
∂rj

K̂1t(u)− ∂vec (FDt(u))′

∂rj
K1t(u)


∣∣∣∣∣∣∣

≤ p sup
u∈U,t∈Z

∣∣∣K̂1t(u)
∣∣∣ sup
u∈U

∣∣∣∣∣∣∣
m∑
t=1

∂vec
(
F̂Dt(u)

)′
∂rj

− ∂vec (FDt(u))′

∂rj


∣∣∣∣∣∣∣

+ p sup
u∈U,t∈Z

∣∣∣∣∣∂vec (FDt(u))′

∂rj

∣∣∣∣∣ sup
u∈U

∣∣∣∣∣
m∑
t=1

(
K̂1t(u)−K1t(u)

)∣∣∣∣∣
+ p sup

u∈U,t∈Z

∣∣∣∣∣∂vec (FDt(u))′

∂rj

∣∣∣∣∣ sup
u∈U

∣∣∣∣∣
m∑
t=1

(
F̂Dt(u)−1 − FDt(u)−1

)∣∣∣∣∣ a.s.= O(1).

54



�

(II) The proof of sup
u∈U

∣∣∣∣ m∑
t=1

(
∂l̂t(u)
∂u2
− ∂lt(u)

∂u2

)∣∣∣∣ a.s.= O(1).

Denote K2t(u) := FRt(u)−1−FRt(u)−1zt(u)z′t(u)FRt(u)−1 and analogously K̂2t(u) in dependence of

a finite past of observations.

Lemma B.18. Under Assumptions 2.1, 3.1-3.4, 4.3 and 4.4, we have for m→∞:

• sup
u∈U,t∈Z

|K2t(u)| a.s.= O(1); and

• sup
u∈U

∣∣∣∣ m∑
t=1

(
K̂2t(u)−K2t(u)

)∣∣∣∣ a.s.= O(1).

Proof: With Lemmas B.12, B.14 and B.15, we have

sup
u∈U,t∈Z

|K2t(u)|

≤ sup
u∈U,t∈Z

∣∣FRt
(u)−1∣∣− p2 sup

u∈U,t∈Z

∣∣FRt
(u)−1∣∣ sup

u∈U,t∈Z
|zt(u)z′t(u)| sup

u∈U,t∈Z

∣∣FRt
(u)−1∣∣ a.s.= O(1).

and sup
u∈U

∣∣∣∣∣
m∑

t=1

(
K̂2t(u)−K2t(u)

)∣∣∣∣∣
≤ sup

u∈U,t∈Z
|̂zt(u)̂z′t(u)|

(
sup

u∈U,t∈Z

∣∣∣F̂Rt(u)−1
∣∣∣+ sup

u∈U,t∈Z

∣∣FRt(u)−1∣∣) sup
u∈U

∣∣∣∣∣
m∑

t=1

(
F̂Rt(u)−1 − FRt(u)−1

)∣∣∣∣∣
+ sup

u∈U,t∈Z

∣∣∣F̂Rt
(u)−1

∣∣∣ sup
u∈U,t∈Z

∣∣FRt
(u)−1∣∣ sup

u∈U

∣∣∣∣∣
m∑

t=1

(
ẑt(u)̂z′t(u)− zt(u)z′t(u)

)∣∣∣∣∣ a.s.= O(1).
�

Lemma B.19. Under Assumptions 2.1, 3.1-3.4, 4.3 and 4.4, we have for m→∞:

• sup
u∈U,t∈Z

∣∣∣∣∂vech(FQt (u))′
∂u2

∣∣∣∣ a.s.= O(1); and

• sup
u∈U

∣∣∣∣∣∑m
t=1

(
∂vech(FQt (u))′

∂u2
− ∂vech

(
F̂Qt (u)

)′
∂u2

)∣∣∣∣∣ a.s.= O(1).

Proof: With sup
u∈U

∣∣∣FQ̄(u)
∣∣∣ a.s.≤ 1, we have

• sup
u∈U,t∈Z

∣∣∣∣∣∣∂vech (FQt(u))′

∂vecl
(
FQ̄(u)

)
∣∣∣∣∣∣ = 1− a− b

1− b = O(1)
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• sup
u∈U,t∈Z

∣∣∣∣∣∂vech (FQt(u))′

∂a

∣∣∣∣∣ ≤ 1
1− ρ + sup

u∈U,t∈Z

∣∣∣∣∣
∞∑
n=0

ρnzt−n−1(u)z′t−n−1(u)
∣∣∣∣∣ a.s.= O(1)

• sup
u∈U,t∈Z

∣∣∣∣∣∂vech (FQt(u))′

∂b

∣∣∣∣∣ ≤ u

(1− ρ)2 + sup
u∈U,t∈Z

∣∣∣∣∣
∞∑
n=0

nρn−1zt−n−1(u)z′t−n−1(u)
∣∣∣∣∣ a.s.= O(1)

where the validity of the second and third statement is implied by (∗) from Section B.3.1 and

Lemma B.2. Thus, the first part of the Lemma holds with Lemmas B.7 and B.15. Furthermore,

with Lemmas B.6 and B.15, we have

• sup
u∈U

∣∣∣∣∣∣∣
m∑

t=1

∂vech (FQt
(u))′

∂vecl
(
FQ̄(u)

) − ∂vech
(

F̂Qt
(u)
)′

∂vecl
(
FQ̄(u)

)

∣∣∣∣∣∣∣ = 0

• sup
u∈U

∣∣∣∣∣∣∣
m∑

t=1

∂vech (FQt
(u))′

∂a
−
∂vech

(
F̂Qt(u)

)′
∂a


∣∣∣∣∣∣∣ = sup

u∈U

∣∣∣∣∣
m∑

t=1

∞∑
k=0

bk

(
zt−k(u)z′t−k(u)− ẑt−k(u)̂z′t−k(u)

)∣∣∣∣∣
≤ 1

1− b sup
u∈U,t∈Z

∣∣∣∣∣
m∑

t=1

(
zt−k(u)z′t−k(u)− ẑt−k(u)̂z′t−k(u)

)∣∣∣∣∣ a.s.= O(1)

• sup
u∈U

∣∣∣∣∣∣∣
m∑

t=1

∂vech (FQt
(u))′

∂b
−
∂vech

(
F̂Qt

(u)
)′

∂b


∣∣∣∣∣∣∣ = sup

u∈U

∣∣∣∣∣
m∑

t=1

∞∑
k=0

bk

(
vech (FQt(u))− vech

(
F̂Qt(u)

))∣∣∣∣∣
≤ 1

1− b sup
u∈U,t∈Z

∣∣∣∣∣
m∑

t=1

(
FQt

(u)− F̂Qt
(u)
)∣∣∣∣∣ a.s.= O(1).

�

Lemma B.20. Under Assumptions 2.1, 3.1-3.4, 4.3 and 4.4, we have for m→∞:

• sup
u∈U

∣∣∣∣ m∑
t=1

(
FQ∗t (u)⊗ FQ∗t (u)− F̂Q∗t (u)⊗ F̂Q∗t (u)

)∣∣∣∣ a.s.= O(1); and

• sup
u∈U

∣∣∣∣ m∑
t=1

(
FQ∗t (u)FQt(u)− F̂Q∗t (u)F̂Qt(u)

)∣∣∣∣ a.s.= O(1).

Proof: With Lemmas B.6 and B.7 and the univariate MVT, we have

sup
u∈U

∣∣∣∣∣
m∑
t=1

(
FQ∗t (u)⊗ FQ∗t (u)− F̂Q∗t (u)⊗ F̂Q∗t (u)

)∣∣∣∣∣
= sup

u∈U
max

1≤i,j≤p

∣∣∣∣∣
m∑
t=1

(
[FQt(u)]−1/2

ii [FQt(u)]−1/2
jj −

[
F̂Qt(u)

]−1/2

ii

[
F̂Qt(u)

]−1/2

jj

)∣∣∣∣∣
≤ 2sup

u∈U
max

1≤j≤p

∣∣∣[FQt(u)]−1/2
jj

∣∣∣ sup
u∈U

max
1≤i≤p

∣∣∣∣∣
m∑
t=1

(
[FQt(u)]−1/2

ii −
[
F̂Qt(u)

]−1/2

ii

)∣∣∣∣∣
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≤ 2sup
u∈U

∣∣∣∣ min
1≤j≤p

[FQt(u)]jj
∣∣∣∣−1/2 1

2 sup
u∈U

∣∣∣∣ min
1≤j≤p

[FQt(u)]jj
∣∣∣∣−3/2

sup
u∈U

∣∣∣∣∣
m∑
t=1

(
FQt(u)− F̂Qt(u)

)∣∣∣∣∣
≤
(1− u

1− ρ

)2
sup
u∈U

∣∣∣∣∣
m∑
t=1

(
FQt(u)− F̂Qt(u)

)∣∣∣∣∣ a.s.= O(1)

and sup
u∈U

∣∣∣∣∣
m∑
t=1

(
FQ∗t (u)FQt(u)− F̂Q∗t (u)F̂Qt(u)

)∣∣∣∣∣
≤ sup

u∈U,t∈Z
|FQt(u)| sup

u∈U

∣∣∣∣∣
m∑
t=1

(
FQ∗t (u)− F̂Q∗t (u)

)∣∣∣∣∣+ sup
u∈U,t∈Z

∣∣∣F̂Q∗t (u)
∣∣∣ sup
u∈U

∣∣∣∣∣
m∑
t=1

(
FQt(u)− F̂Qt(u)

)∣∣∣∣∣
=
(

sup
u∈U,t∈Z

|FQt(u)|+ sup
u∈U,t∈Z

∣∣∣F̂Q∗t (u)
∣∣∣) sup

u∈U

∣∣∣∣∣
m∑
t=1

(
FQt(u)− F̂Qt(u)

)∣∣∣∣∣ a.s.= O(1)
�

Denote

K3t(u) := D+
p,−

(
FQ∗t

(u)⊗ FQ∗t
(u)
)

Dp + D+
p,−

(
FQ∗t

(u)FQt(u)⊗ Ip + Ip ⊗ FQ∗t
(u)FQt(u)

)
Dp

∂vech
(
FQ∗t

(u)
)

∂vech (FQt
(u))′

and analogously K̂3t(u) in dependence of a finite past of observations.

Lemma B.21. Under Assumptions 2.1, 3.1-3.4, 4.3 and 4.4, we have for m→∞:

• sup
u∈U,t∈Z

|K3t(u)| a.s.= O(1); and

• sup
u∈U

∣∣∣∑m
t=1

(
K3t(u)− K̂3t(u)

)∣∣∣ a.s.= O(1).

Proof: First of all, we have

sup
u∈U,t∈Z

∣∣∣∣∣∣
∂vech

(
FQ∗t (u)

)
∂vech (FQt(u))′

∣∣∣∣∣∣ ≤ 1
2 sup
u∈U,t∈Z

(
min

1≤j≤p

∣∣∣[FQt(u)]jj
∣∣∣)−3/2 a.s.

≤
(1− u

1− ρ

)3/2
= O(1). (B.27)

Furthermore, the MVT and Lemma B.6 yield

sup
u∈U

∣∣∣∣∣∣
m∑

t=1

∂vech
(
FQ∗t

(u)
)

∂vech (FQt
(u))′

−
∂vech

(
F̂Q∗t

(u)
)

∂vech (FQt
(u))′

∣∣∣∣∣∣ = 1
2 max

1≤j≤p
sup
u∈U

∣∣∣∣∣
m∑

t=1

(
[FQt

(u)]−3/2
jj −

[
F̂Qt

(u)
]−3/2

jj

)∣∣∣∣∣
≤ 3

4 sup
u∈U,t∈Z

(
min

1≤j≤p
[FQt

(u)]jj

)−5/2
sup
u∈U

∣∣∣∣∣
m∑

t=1

(
FQt

(u)− F̂Qt
(u)
)∣∣∣∣∣

≤ 3
4

(
1− u
1− ρ

)5/2
sup
u∈U

∣∣∣∣∣
m∑

t=1

(
FQt

(u)− F̂Qt
(u)
)∣∣∣∣∣ a.s.= O(1). (B.28)
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In combination with the Lemmas B.7 and B.20, (B.27) and (B.28) imply

sup
u∈U,t∈Z

∣∣K3t(u)
∣∣ ≤ sup

u∈U,t∈Z

∣∣FQ∗t
(u)⊗ FQ∗t

(u)
∣∣+ sup

u∈U,t∈Z

∣∣FQ∗t
(u)FQt

(u)
∣∣ sup

u∈U,t∈Z

∣∣∣∣∣∂vech
(
FQ∗t

(u)
)

∂vech (FQt(u))′

∣∣∣∣∣
≤
(

sup
u∈U,t∈Z

∣∣FQ∗t
(u)
∣∣)2

+ p sup
u∈U,t∈Z

∣∣FQ∗t
(u)
∣∣ sup

u∈U,t∈Z
|FQt

(u)|
(

1− u
1− ρ

)3/2
a.s.= O(1)

and sup
u∈U

∣∣∣∣∣
m∑

t=1

(
K3t(u)− K̂3t(u)

)∣∣∣∣∣ ≤ sup
u∈U

∣∣∣∣∣
m∑

t=1

(
FQ∗t

(u)⊗ FQ∗t
(u)− F̂Q∗t

(u)⊗ F̂Q∗t
(u)
)∣∣∣∣∣

+ 2 sup
u∈U,t∈Z

∣∣∣∣∣∣
∂vech

(
F̂Q∗t

(u)
)

∂vech (FQt
(u))′

∣∣∣∣∣∣ sup
u∈U

∣∣∣∣∣
m∑

t=1

(
FQ∗t

(u)FQt
(u)− F̂Q∗t

(u)F̂Qt
(u)
)∣∣∣∣∣

+ 2 sup
u∈U,t∈Z

∣∣∣F̂Q∗t
(u)F̂Qt(u)

∣∣∣ sup
u∈U

∣∣∣∣∣∣
m∑

t=1

∂vech
(
FQ∗t

(u)
)

∂vech (FQt
(u))′

−
∂vech

(
F̂Q∗t

(u)
)

∂vech (FQt
(u))′

∣∣∣∣∣∣ a.s.= O(1)

�

Lemma B.22. Under Assumptions 2.1, 3.1-3.4, 4.3 and 4.4, we have for m→∞:

• sup
u∈U,t∈Z

∣∣∣∣∣∂vecl
(

F̂Rt (u)
)′

∂u2

∣∣∣∣∣ a.s.= O(1); and

• sup
u∈U

∣∣∣∣∣∑m
t=1

(
∂vecl(FRt (u))′

∂u2
− ∂vecl

(
F̂Rt (u)

)′
∂u2

)∣∣∣∣∣ a.s.= O(1).

Proof: With Lemmas B.19 and B.21, we have

• sup
u∈U,t∈Z

∣∣∣∣∂vecl
(

F̂Rt (u)
)′

∂u2

∣∣∣∣ ≤ sup
u∈U,t∈Z

|K3t(u)|
∣∣∣∣ sup
u∈U,t∈Z

∂vech(FQt (u))′
∂u2

∣∣∣∣ a.s.= O(1)

• sup
u∈U

∣∣∣∣ m∑
t=1

(
∂vecl(FRt (u))′

∂u2
−

∂vecl
(

F̂Rt (u)
)′

∂u2

)∣∣∣∣
≤ sup

u∈U,t∈Z
|K3t(u)| sup

u∈U

∣∣∣∣ m∑
t=1

(
∂vech(FQt (u))′

∂u2
− ∂vech(FQt (u))′

∂u2

)∣∣∣∣
+ sup

u∈U,t∈Z

∣∣∣∣∂vech(FQt (u))′
∂u2

∣∣∣∣ sup
u∈U

∣∣∣∣ m∑
t=1

(
K3t(u)− K̂3t(u)

)∣∣∣∣ a.s.= O(1).
�

Lemma B.23. Under Assumptions 2.1, 3.1-3.4, 4.3 and 4.4, we have for m→∞:

• sup
u∈U,t∈Z

∣∣∣∂lt(u)
∂u2

∣∣∣ a.s.= O(1); and

• sup
u∈U

∣∣∣∣ m∑
t=1

(
∂l̂t(u)
∂u2
− ∂lt(u)

∂u2

)∣∣∣∣ a.s.= O(1).
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Proof: With Lemmas B.19 and B.18, we have

• sup
u∈U,t∈Z

∣∣∣∂lt(u)
∂u2

∣∣∣ ≤ sup
u∈U,t∈Z

∣∣∣∣∂vecl(FRt (u))′
∂u2

∣∣∣∣+ sup
u∈U,t∈Z

|K2t(u)|

• sup
u∈U

∣∣∣∣ m∑
t=1

(
∂l̂t(u)
∂u2
− ∂lt(u)

∂u2

)∣∣∣∣ ≤ sup
u∈U,t∈Z

|K2t(u)| sup
u∈U

∣∣∣∣∣ m∑t=1

(
∂vecl(FRt (u))′

∂u2
− ∂vecl

(
F̂Rt (u)

)′
∂u2

)∣∣∣∣∣
+ sup

u∈U,t∈Z

∣∣∣∣∣∂vecl
(

F̂Rt (u)
)′

∂u2

∣∣∣∣∣ sup
u∈U

∣∣∣∣ m∑
t=1

(
FRt(u)−1 − F̂Rt(u)−1

)∣∣∣∣
+ sup
u∈U,t∈Z

∣∣∣∣∣∂vecl
(

F̂Rt (u)
)′

∂u2

∣∣∣∣∣ sup
u∈U

∣∣∣∣ m∑
t=1

(
K̂2t(u)−K2t(u)

)∣∣∣∣
Thus, with Lemmas B.17 and B.23, we have sup

u∈U

∣∣∣D̂m(u)−Dm(u)
∣∣∣ a.s.= O

(
1
m

)
, which completes the

proof of (B.9). �

B.2.2. The Proof of E sup
u∈U

∣∣∣l′0(u)l′0(u)T
∣∣∣ <∞

Along the lines of Berkes et al. (2003), we have

sup
u∈U

∣∣∣l′0(u)l′0(u)T
∣∣∣ ≤ (sup

u∈U

∣∣∣∣∂l0(u)
∂u

∣∣∣∣
)2

a.s.= O(1)

with Lemmas B.17 and B.23. This implies

E sup
u∈U

∣∣∣l′0(u)l′0(u)T
∣∣∣ <∞.

B.2.3. The Proof of the Uniform Convergence of Dm(·) to D(·)

We use Theorem A.2.2 in White (1994). The requirements are satisfied since U is a compact set

and l′t(u)l′t(u)T is ergodic, continuous in u for all yt and measurable in yt for all u ∈ U . We choose

the dominiating function as sup
u∈U

∣∣∣l′t(u)l′t(u)T
∣∣∣. Thus, the finiteness of the expectation is implied

by (B.10) which yields the uniform convergence of Dm(·) to D(·). �

B.2.4. The Proof of Proposition 4.2.

Since Dm(·) converges uniformly to D(·), (B.11) follows directly from the consistency of the

estimator θ̂m and the positive definiteness of the variation matrix D, i.e. Assumption 4.1, which

completes the proof of Proposition 4.2. �
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B.3. The Proof that the Second Order Derivations are of Finite Expectation

B.3.1. Notation

In the following, for ϕ ∈ (0, 1) and i, j ∈ {1, . . . , p}, we adopt the notation

• Gy0 (i, j, ϕ) :=
∞∑
n=0

ϕnyi,−n−1yj,−n−1 • Gy1 (i, j, ϕ) :=
∞∑
n=0

nϕn−1yi,−n−1yj,−n−1

• Gy2 (i, j, ϕ) :=
∞∑
n=0

n(n− 1)ϕn−2yi,−n−1yj,−n−1

• Gz
0 (i, j, u) :=

∞∑
n=0

bnzi,−n−1(u)zj,−n−1(u) • Gz
1 (i, j, u) :=

∞∑
n=0

nbn−1zi,−n−1(u)zj,−n−1(u)

• Gz
2 (i, j, u) :=

∞∑
n=0

n(n− 1)bn−2zi,−n−1(u)zj,−n−1(u)

• Z(u) :=
( p∑
s=1

zs0(u)
)2

=
p∑
s=1

p∑
t=1

zs0(u)zt0(u).

Note that Gz (i, j, u)
a.s.
≤ 1

C1
Gy (i, j, b) for all u ∈ U .

Furthermore, with ϕ̄ := max {ϕ1, ϕ2} and ϕ1, ϕ2 ∈ (0, 1), we have for i, j, k, l ∈ {1, . . . , p}:

Gy0 (i, j, ϕ1) Gy0 (k, l, ϕ2) =
∞∑
m=0

m∑
n=0

ϕn1ϕ
m−n
2 yi,−n−1yj,−n−1yk,−m+n−1yl,−m+n−1

≤
∞∑
m=0

(
ϕ̄

1
2
)m m∑

n=0

(
ϕ̄

1
2
)n
yi,−n−1yj,−n−1yk,−m+n−1yl,−m+n−1. (B.29)

With Assumptions 4.3 and 4.4 the double sum in (B.29) is stochastically bounded, since under the

use of the Cauchy Schwarz inequality, we have E
∣∣yisyjsyktylt∣∣ ≤ [E (y2

isy
2
js

)]1/2 [
E
(
y2
kty

2
lt

)]1/2
< ∞

which implies E log+ (yisyjsyktylt) <∞ for all s, t ∈ Z and all i, j, k, l ∈ {1, . . . , p}.

Thus, Lemma B.2 can be applied to the sum on the righthand side of (B.29).

Analogously, all products Gym1 (i, j, ϕ1) Gym2 (k, l, ϕ2) or Gz
m1 (i, j, u) Gz

m2 (k, l, u) with ϕ1, ϕ2 ∈ (0, 1)

and m1,m2 ∈ {0, 1, 2} are of finite expectation. This property can be expanded to products of

four terms of type Gym (i, j, ϕ) or Gzm (i, j, u), i, j ∈ {1, . . . , p}, m ∈ {0, 1, 2}, ϕ ∈ (0, 1), which

can be shown by the use of Assumptions 4.3 and 4.4 and an application of the generalized Hölder

inequality, that is Lemma 1.16 in Alt (2006) with m = 8, q = 1 and pi = 8, i = 1, . . . , 8. While
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considering products of terms of type Gz
m (i, j, u), one or several factors can be substituted by Z(u)

which leads to a decomposition into finitely many summands that are of finite expectation each.

We denote the property of finite expectations of all of these products as (∗).

Furthermore, denote FR0(u)−1 :=
[
r−ij,0(u)

]
i,j=1,...,p

and recall that the arguments in the proof of

Lemma B.14 imply

sup
u∈U,t∈Z

∣∣∣r−ij,t(u)
∣∣∣ a.s.< [ 1− b

1− a− b
pδ2
δ1

]p
(p− 1)! =: δ∗ ∀i, j ∈ {1, . . . , p} . (B.30)

B.3.2. The Partial Derivations of wi0(u)

The following statements on the magnitude of the partial derivations of wi0(u) with respect to the

variance parameters will be used in the next sections:

•
(
∂wi0(u)
∂xi

)2
= 1

4
1

(1− ti)2 •
(
∂wi0(u)
∂si

)2
= 1

4Gy
0 (i, i, ti)2 (B.31)

•
(
∂wi0(u)
∂ti

)2
= 1

4
x2

i

(1− ti)4 + 1
2

xi

(1− ti)2 Gy
1 (i, i, ti) + 1

4Gy
1 (i, i, ti)2 (B.32)

• ∂wi0(u)
∂xi

∂wi0(u)
∂si

= 1
4

1
1− ti

Gy
0 (i, i, ti) • ∂wi0(u)

∂xi

∂wi0(u)
∂ti

= 1
4

xi

(1− ti)3 + 1
4

1
1− ti

Gy
1 (i, i, ti) (B.33)

• ∂wi0(u)
∂si

∂wi0(u)
∂ti

= 1
4

xi

(1− ti)2 Gy
0 (i, i, ti) + 1

4Gy
0 (i, i, ti) Gy

1 (i, i, ti) . (B.34)

Furthermore, the following statements on derivations of the derivations of the roots of wi0(u) will

be useful:

• ∂wj0(u) 1
2

∂xj
≤ 1

2C
1
2
1 (1− tj)

• ∂wj0(u) 1
2

∂sj
≤ Gy

0 (j, j, tj)

2C
1
2
1

• ∂wj0(u) 1
2

∂tj
≤ Gy

1 (j, j, tj)

2C
1
2
1

(B.35)

•

∣∣∣∣∣∂2wj0(u) 1
2

(∂xj)2

∣∣∣∣∣ ≤ 1

4C
3
2
1 (1− tj)2

•

∣∣∣∣∣∂2wj0(u) 1
2

(∂sj)2

∣∣∣∣∣ ≤ Gy
0 (j, j, tj)2

4C
3
2
1

(B.36)

•

∣∣∣∣∣∂2wj0(u) 1
2

(∂tj)2

∣∣∣∣∣ ≤ Gy
1 (j, j, tj)

4C
3
2
1

+ Gy
2 (j, j, tj)

2C
1
2
1

•

∣∣∣∣∣∂2wj0(u) 1
2

∂xj∂sj

∣∣∣∣∣ ≤ Gy
0 (j, j, tj)

4C
3
2
1 (1− tj)

(B.37)

•

∣∣∣∣∣∂2wj0(u) 1
2

∂xj∂tj

∣∣∣∣∣ ≤ 1

2C
1
2
1 (1− tj)2

+ Gy
1 (j, j, tj)

4C
3
2
1 (1− tj)

•

∣∣∣∣∣∂2wj0(u) 1
2

∂sj∂tj

∣∣∣∣∣ ≤ Gy
0 (j, j, tj)2

4C
3
2
1

+ Gy
1 (j, j, tj)

2C
1
2
1

(B.38)
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B.3.3. The Partial Derivations of FQ0(u) and FQ∗0(u)

In the following, we will have a closer look at the first and second order partial derivations of the

(i, j)-th entry of FQ0(u):

•
∂ [FQ0(u)]ij

∂a
= − 1

1− b + Gz
0 (i, j, u) •

∂ [FQ0(u)]ij
∂b

= − a

(1− b)2 + aGz
1 (i, j, u) (B.39)

•
∂2 [FQ0(u)]ij

(∂a)2 = 0 •
∂2 [FQ0(u)]ij

(∂b)2 = − 2a
(1− b)3 + aGz

2 (i, j, u) (B.40)

•
∂2 [FQ0(u)]ij

∂a∂b
= − 1

(1− b)2 + Gz
1 (i, j, u) . (B.41)

The entries of FQ∗0(u) are either 0 or [FQ0(u)]−1/2
ii , for i ∈ {1, . . . , p}. Hence, only the derivations

of the main diagonal entries will be considered.

•
∂2 [FQ∗0

(u)
]

ii

(∂a)2 = ∂2 [FQ0(u)]−
1
2

ii

(∂a)2 = 3
4 [FQ0(u)]−

5
2

ii

(
∂ [FQ0(u)]ii

∂a

)2

<
3a2

4

(
1− b

1− a− b

) 5
2

Gz
0(i, i, u)2 (B.42)

•
∂2 [FQ∗0

(u)
]

ii

(∂b)2 = 3
4 [FQ0(u)]−

5
2

ii

(
∂ [FQ0(u)]ii

∂b

)2

− 1
2 [FQ0(u)]−

3
2

ii

∂2 [FQ0(u)]ii
(∂b)2

<
3a2

4

(
1− b

1− a− b

) 5
2

Gz
1(i, i, u)2 + 1

2

(
1− b

1− a− b

) 3
2 2

(1− ρ)3 (B.43)

•
∂2 [FQ∗0

(u)
]

ii

∂a∂b
= 3

4 [FQ0(u)]−
5
2

ii

∂ [FQ0(u)]ii
∂a

∂ [FQ0(u)]ii
∂b

− 1
2 [FQ0(u)]−

3
2

kk

∂2 [FQ0(u)]ii
∂a∂b

<
3a2

4

(
1− b

1− a− b

) 5
2

Gz
0(i, i, u)Gz

1(i, i, u) + 1
2

(
1− b

1− a− b

) 3
2 1

(1− ρ)2 . (B.44)

B.3.4. The Proof that the Expectation of ∂2l0(u)
∂u1∂u′1

is Finite

E
(
∂2l0(u)
∂u1∂u′1

)
= −1

2E
(
∂vec (FD0(u))′

∂u1

[
2
(

FD0(u)−1 ⊗ FD0(u)−1
)

(B.45)

+
(

z0(u)z′0(u)⊗ FD0(u)−1FR0(u)−1FD0(u)−1
)

+
(

FD0(u)−1FR0(u)−1FD0(u)−1 ⊗ z0(u)z′0(u)
)

+
(

FD0(u)−1 ⊗ FD0(u)−1FR0(u)−1z0(u)z′0(u)
)

+
(

FD0(u)−1FR0(u)−1z0(u)z′0(u)⊗ FD0(u)−1
)

+
(

z0(u)z′0(u)FR0(u)−1FD0(u)−1 ⊗ FD0(u)−1
)

+
(

FD0(u)−1 ⊗ z0(u)z′0(u)FR0(u)−1FD0(u)−1
)]) ∂vec (FD0(u))

∂u′1
(B.46)

+ E
([

1
2

(
vec
(

FD0(u)−1FR0(u)−1z0(u)z′0(u)
)
⊗ I3p

)
+1

2

(
vec
(

z0(u)z′0(u)FR0(u)−1FD0(u)−1
)
⊗ I3p

)
−
(

vec
(

FD0(u)−1
)
⊗ I3p

)] ∂2vec (FD0(u))′

∂u1∂u′1

)
(B.47)
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First of all, we have a closer look at the summands in (B.46). We use different matrices

V(l) :=
[
v(l)
ij

]
i,j=1,...,p

, l ∈ {1, 2}, that have to be specified appropriately to obtain the terms

in (B.46). This general approach yields that

∂vec (FD0(u))′

∂u1

(
V(1) ⊗ V(2)

) ∂vec (FD0(u))
∂u′1

is a block diagonal matrix with (3× 3) blocks

v(1)
kk v(2)

kk

wk0(u)
∂wk0(u)
∂rk

∂wk0(u)
∂r′k

for k ∈ {1, . . . , p}

on its main diagonal. Note, that with (∗) the terms (B.31)-(B.34) are stochastically bounded. For

the first summand in (B.46), we have v(1)
ii v(2)

ii
wi0(u) = wi0(u)−2 ≤ C−2

1 . Thus, the expectation of this

summand is finite. For the second and third summand in (B.46), we have

E
(

v(1)
ii v(2)

ii

wi0(u)

)
≤ C−3

1 E
(
y2
i0

∣∣∣r−ii,0(u)
∣∣∣) ≤ δ∗C−3

1 E
(
y2
i0

)
(B.48)

and for the fourth to seventh summand, we have

E
(

v(1)
ii v(2)

ii

wi0(u)

)
= E

(
yi0

wi0(u)2

p∑
k=1

yk0
wk0(u)

∣∣∣r−ik,0(u)
∣∣∣) ≤ δ∗C−3

1

p∑
k=1

E (yi0yk0) . (B.49)

Hence, with (∗) it is obvious that products of one of the terms (B.31)-(B.34) and (B.48) or (B.49)

are of finite expectation. Furthermore, note that (B.47) is finite if the following expectations are

finite for all u ∈ U , i1, . . . , i4 ∈ {1, . . . , p} and x, y ∈ {xi4 , si4 , ti4}:

E
(
wi10(u)−1/2

∣∣∣r−i2i3,0(u)
∣∣∣Z(u)∂

2wi40(u)1/2

∂x∂y

)
≤ δ∗C−1/2

1 E
(

Z(u)∂
2wi40(u)1/2

∂x∂y

)
(B.50)

E
(
wi10(u)−1/2∂

2wi10(u)1/2

∂x∂y

)
≤ C−1/2

1 E
(
∂2wi10(u)1/2

∂x∂y

)
. (B.51)

The finity of (B.50) and (B.51) is a direct consequence of (B.30), (∗) and (B.35)-(B.38). Therefore,

combining the previous results finally yields ∂2l0(u)
∂u1∂u′1

<∞.
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B.3.5. The Proof that the Expectations of ∂2l0(u)
∂u1∂u′2

and ∂2l0(u)
∂u2∂u′1

are Finite

E
(
∂2l0(u)
∂u1∂u′2

)
= −1

4E
(
∂vec (FD0(u))′

∂u1

[(
z0(u)z′0(u)FR0(u)−1 ⊗ FD0(u)−1FR0(u)−1

)
+
(
FD0(u)−1FR0(u)−1 ⊗ z0(u)z′0(u)FR0(u)−1

)]
2
(
D+
p,−

)′ ∂vecl (FR0(u))
∂u′2

)
(B.52)

The cross derivations are of finite expectation if the following expectation is finite for all u ∈ U ,

i1, . . . , i5 ∈ {1, . . . , p}, x ∈ {xi1 , si1 , ti1} and y ∈
{
a, b, q1, . . . , qp−

}
:

E

∂w1/2
i10
∂x

Z(u)
∣∣∣r−i2i3,0(u)

∣∣∣2 w−1/2
i40

∂
[
FQ∗0(u)

]
i5i5

∂y

 ≤ δ2
∗C
−1/2
1 E

∂w1/2
i10
∂x

Z(u)
∂
[
FQ∗0(u)

]
i5i5

∂y

 (B.53)

The finity of (B.53) is implied by (B.30), (∗) and the statements in Sections B.3.2 and B.3.3 which

completes the proof.

B.3.6. The Proof that the Expectation of ∂2l0(u)
∂u2∂u′2

is Finite

It has to be shown that the following expectations are finite:

E
(
∂vecl (FR0(u))′

∂u2
D+

p,−

(
FR0(u)−1 ⊗ FR0(u)−1

)
Dp,−

∂vecl (FR0(u))
∂u′2

)
(B.54)

E
(
∂vecl (FR0(u))′

∂u2
D+

p,−

(
FR0(u)−1zt(u)z′t(u)FR0(u)−1 ⊗ FR0(u)−1

)
Dp,−

∂vecl (FR0(u))
∂u′2

)
(B.55)

E
(
∂vecl (FR0(u))′

∂u2
D+

p,−

(
FR0(u)−1 ⊗ FR0(u)−1zt(u)z′t(u)FR0(u)−1

)
Dp,−

∂vecl (FR0(u))
∂u′2

)
(B.56)

E
[(

vecl
(

FR0(u)−1 [Ip − zt(u)z′t(u)FR0(u)−1] )′D+
p,− ⊗

∂vech (FQ0(u))′

∂u2
D′p
)
∂vecl

(
FQ∗0

(u)⊗ FQ∗0
(u)
)

∂u′2

]
(B.57)

E
[(

vecl
(

FR0(u)−1 [Ip − zt(u)z′t(u)FR0(u)−1] )′D+
p,− ⊗

∂vech
(
FQ∗0

(u)
)′

∂u2
D′p

)(
Ip ⊗ Kpp ⊗ Ip

)
×

[
∂vec

(
FQ∗0

(u)FQ0(u)
)

∂u′2
⊗ vec (Ip) + vec (Ip)⊗

∂vec
(
FQ∗0

(u)FQ0(u)
)

∂u′2

]]
(B.58)

E
[(

vecl
(

FR0(u)−1 [Ip − zt(u)z′t(u)FR0(u)−1] )′D+
p,−

(
FQ0(u)∗ ⊗ FQ0(u)∗

)
Dp ⊗ Ip−+2

)
× ∂

∂u′2
vec
(
∂vech (FQ0(u))′

∂u2

)]
(B.59)
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E
[(

vecl
(

FR0(u)−1 [Ip − zt(u)z′t(u)FR0(u)−1] )′D+
p,−

(
FQ∗0

(u)FQ0(u)⊗ Ip + Ip ⊗ FQ∗0
(u)FQ0(u)

)
Dp ⊗ Ip−+2

)
× ∂

∂u′2
vec
(
∂vech

(
FQ∗0

(u)
)′

∂u2

)]
. (B.60)

The following statements will be useful for the next parts of this section:

• d(i, j) :=
(
[FQ0(u)]ii [FQ0(u)]jj

)−1/2 a.s.
<

1− b
1− a− b (B.61)

• Gz0(k, k, u)
[FQ0(u)]kk

≤ Gz0(k, k, u)
aGz0(k, k, u) = 1

a
(B.62)

• [FQ0(u)]ij d(i, j) ≤ 1 ⇒
[FQ0(u)]ij
[FQ0(u)]1/2ii

≤ [FQ0(u)]1/2jj < [1 + aGz0(j, j, u)]1/2 . (B.63)

The finity of (B.55) and (B.56) is a direct consequence of the finity of the following expectations

for u ∈ U , x ∈
{
a, b, q1, . . . , qp−

}
and for all i1, . . . , i5 ∈ {1, . . . , p}:

E

[∂ [FQ∗t
(u)
]

i1i1

∂x

]2 [
∂ [FQt

(u)]i2i3

∂ [FQt(u)]1/2
i2i2

]2 ∣∣r−i4i5,0(u)
∣∣3 Z(u)

 ≤ δ3
∗E

[∂ [FQ∗t
(u)
]

i1i1

∂x

]2

[1 + aGz
0(i3, i3, u)] Z(u)


E

[∂ [FQ∗t
(u)
]

i1i1

∂x

]2 [
FQ∗0

(u)
]4 ∣∣r−i4i5,0(u)

∣∣3 Z(u)

 ≤ δ3
∗E

[∂ [FQ∗t
(u)
]

i1i1

∂x

]2(
1− b

1− a− b

)2
Z(u)


which is implied by (B.30), (∗) and the statements in Section B.3.3. Analogously, the finity of (B.54)

is obtained by substituting
∣∣∣r−i4i5,0(u)

∣∣∣3 Z(u) by
∣∣∣r−i4i5,0(u)

∣∣∣2 a.s.
< δ2

∗ .

Furthermore, the finity of (B.57) and (B.58) is a consequence of the finity of the following expec-

tations for all u ∈ U , i1, . . . , i5 ∈ {1, . . . , p} and x, y ∈
{
a, b, q1, . . . , qp−

}
:

E

∣∣∣r−i1i2,0(u)
∣∣∣2 Z(u)

∂[FQ0 (u)]
i3i4

∂x

∂

[
FQ∗0

(u)
]

i5i5
∂y [FQt(u)]−

1
2

i6i6


≤ δ2
∗

(
1−b

1−a−b

) 1
2 E

Z(u)
∂[FQ0 (u)]

i3i4
∂x

∂

[
FQ∗0

(u)
]

i5i5
∂y


E

∣∣∣r−i1i2,0(u)
∣∣∣2 Z(u)

∂
[

FQ∗0
(u)
]

i3i3
∂x


2

[FQ0(u)]i3i3

 ≤ δ2
∗E

Z(u)
[
∂[FQ0 (u)]

i3i3
∂x

]2


E

∣∣∣r−i1i2,0(u)
∣∣∣2 Z(u)

∂

[
FQ∗0

(u)
]

i3i3
∂x

∂

[
FQ∗0

(u)
]

i3i3
∂y

[
FQ∗0(u)

]
i3i3

 ≤ δ2
∗

(
1−b

1−a−b

)1/2
E

Z(u)

∂
[

FQ∗0
(u)
]

i3i3
∂x


2 .
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Finally, with

∂

∂u′2
vec

∂vech
(
FQ∗0(u)

)
∂u′2

 =



∂2vech
(
FQ∗0

(u)
)

(∂a)2

∂2vech
(
FQ∗0

(u)
)

∂a∂b 0p+×p−

∂2vech
(
FQ∗0

(u)
)

∂a∂b

∂2vech
(
FQ∗0

(u)
)

(∂b)2 0p∗×p−

0p+p− 0p+p− 0p+p−×p−


the terms (B.59) and (B.60) are finite if the same applies to the following expectations for all u ∈ U ,

i1, . . . , i6 ∈ {1, . . . , p} and x, y ∈
{
a, b, q1, . . . , qp−

}
:

E
(∣∣∣r−i1i2,0(u)

∣∣∣2 Z(u) [FQ0(u)]−1
i3i3

∂2 [FQ0(u)]i4i5
∂x∂y

)
≤ δ2
∗

1− b
1− a− bE

(
Z(u)

∂2 [FQ0(u)]i4i5
∂x∂y

)
(B.64)

E

∣∣∣r−i1i2,0(u)
∣∣∣2 Z(u)

[FQ0(u)]i3i4
[FQ0(u)]1/2i3i3

∂2 [FQ0(u)]i5i6
∂x∂y

 ≤ δ2
∗E
(

Z(u) [1 + aGz0(i4, i4, u)]1/2
∂2 [FQ0(u)]i5i6

∂x∂y

)
.

(B.65)

With (B.30), (∗) and the statements from Section B.3.3, the terms (B.64) and (B.65) are finite

wich completes the proof and yields E
(
∂2l0(u)
∂u2∂u′2

)
<∞.

B.4. The Proof of Theorem 4.1

We use Theorem A.2.2 in White (1994). Since U is a compact set and l′′t (u) is continuous in u for

all yt and measurable in yt for all u ∈ U , it remains to verify the dominance condition. Choosing the

dominating function as sup
u∈U
|l′′t (u)| and using the results of Section B.3 implies E sup

u∈U
|l′′t (u)| < ∞.

This yields

sup
u∈U

∣∣∣∣∣ 1
m

m∑
i=1
l′′i (u)− E

(
l′′0(u)

)∣∣∣∣∣ = 1
m

sup
u∈U

∣∣∣∣∣
m∑
i=1

[
l′′i (u)− E

(
l′′0(u)

)]∣∣∣∣∣ a.s.→ 0. (B.66)

Recall that with Lemmas B.17 and B.23, we have

sup
u∈U

∣∣∣∣∣
n∑
i=1

[
l̂′i(u)− l′i(u)

]∣∣∣∣∣ a.s.= O(1). (B.67)
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Using the consistency of the QMLE as well as (B.66) and (B.67), we can argue along the lines of

Berkes et al. (2004) that

sup
1≤k<mB

∣∣∣∣∣ m+k∑
i=m+1

D̂
−1/2
m l̂′i

(
θ̂m
)∣∣∣∣∣

m1/2
(
1 + k

m

)
b
(
k
m

) d→ sup
t∈(0,B]

∣∣∣[WD(1 + t)− (1 + t)WD(1)]D−1/2
∣∣∣

(1 + t)b (t) .

where the limit process {WD(s), s ∈ [0,∞)} is a d-variate mean zero Gaussian process with co-

variance function E
(
W T
D(k)WD(l)

)
= min {k, l}D. A simple recalculation of the properties of

the processes yieds that
{

[WD(1 + t)− (1 + t)WD(1)]D−1/2, t ∈ [0,∞)
}

and {G(t), t ∈ [0,∞)}

possess the same distribution which completes the proof. �

B.5. The Proof of Theorem 4.2

Assume that the vector of parameters θ changes to θ∗ at the k∗-th point of the monitoring period

and there is a positive constant λ∗ that determines the fraction of the monitoring period where the

changepoint is located, i.e. λ∗ := k∗

mB . To avoid that λ∗ is shrinked towards zero with m tending

to infinity we assume λ∗ as constant over time. In the following, we consider the decomposition for

k > k∗:
m+k∑
i=m+1

l′i

(
θ̂m
)

m1/2
(
1 + k

m

)
b
(
k
m

) =

m+k∗−1∑
i=m+1

l′i

(
θ̂m
)

m1/2
(
1 + k

m

)
b
(
k
m

) +

m+k∑
i=m+k∗

l′i

(
θ̂m
)

m1/2
(
1 + k

m

)
b
(
k
m

) . (B.68)

For the first summand in (B.68) that sums the gradient contributions of pre break observations,

we obtain along the lines of the proof of Theorem 4.1 or the proof of Theorem 3.1. in Berkes et al.

(2004):

sup
k∗≤k<∞

∣∣∣∣∣m+k∗−1∑
i=m+1

l′i

(
θ̂m
)∣∣∣∣∣

m1/2
(
1 + k

m

)
b
(
k
m

) d→ sup
t∈ [λ∗B,∞ )

|WD (1 + λ∗B)− (1 + λ∗B)WD (1)|
(1 + t)b(t) . (B.69)

The second summand in (B.68) contains the gradient contributions of the post break observations

that are determined by parameter vector θ∗. Thus, an expansion of l′i
(
θ̂m
)
into a Taylor series

at θ∗ yields
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sup
k∗≤k<∞

∣∣∣∣∣ m+k∑
i=m+k∗

l′i

(
θ̂m
)
−
[

m+k∑
i=m+k∗

l′i (θ∗) +
(
θ̂m − θ∗

)′ m+k∑
i=m+k∗

l′′i (θ∗)
]∣∣∣∣∣

m1/2
(
1 + k

m

)
b
(
k
m

) = oP (1)

as m→∞. Along the lines of Theorem 4.4 in Berkes et al. (2004), we can deduce

(
θ̂m − θ∗

)
=
(
θ̂m − θ

)
+
(
θ − θ∗

)
= − 1

m

m∑
i=1

[
E
(
l′′0(θ)

)]−1
l′i(θ)

[
1 + oP (1)

]
+
(
θ − θ∗

)
.

Note that since θ∗ is in the interior of U , there exists U2 a neighbourhood of θ∗ inside of which
1
m

m∑
i=1
l′′i (u) converges uniformly to its expectation with Theorem A.2.2 in White (1994) and the

results of Section B.3 that imply the finity of the expectation of the dominating function sup
u∈U
|l′′i (u)|.

This property implies the convergence in probability of

sup
k∗≤k<∞

∣∣∣∣(θ̂m − θ∗
)′ m+k∑

i=m+k∗
l′′i (θ∗) −

[
− k−k∗+1

m

[
E (l′′0 (θ))

]−1
E (l′′0 (θ∗))

m∑
i=1
l′i(θ) + (k − k∗ + 1) (θ − θ∗)′ E (l′′0 (θ∗))

]∣∣∣∣
m1/2

(
1 + k

m

)
b
(

k
m

)
to zero. Furthermore, the triangle inequality yields

sup
k∗≤k<∞

∣∣∣∣[ m+k∑
i=m+k∗

l′i (θ∗) − k−k∗+1
m

[
E (l′′0 (θ))

]−1
E (l′′0 (θ∗))

m∑
i=1
l′i(θ)

]
− (k − k∗ + 1) (θ − θ∗)′ E (l′′0 (θ∗))

∣∣∣∣
m1/2

(
1 + k

m

)
b
(

k
m

)
≥

∣∣∣∣∣∣∣∣ sup
k∗≤k<∞

∣∣∣∣ m+k∑
i=m+k∗

l′i (θ∗) − k−k∗+1
m

[
E (l′′0 (θ))

]−1
E (l′′0 (θ∗))

m∑
i=1
l′i(θ)

∣∣∣∣
m1/2

(
1 + k

m

)
b
(

k
m

) − sup
k∗≤k<∞

∣∣(k − k∗ + 1) (θ − θ∗)′ E (l′′0 (θ∗))
∣∣

m1/2
(
1 + k

m

)
b
(

k
m

)
∣∣∣∣∣∣∣∣

with

sup
k∗≤k<∞

∣∣∣∣∣ m+k∑
i=m+k∗

l′i (θ∗)− k−k∗+1
m

[
E (l′′0(θ))

]−1
E (l′′0 (θ∗))

m∑
i=1
l′i(θ)

∣∣∣∣∣
m1/2

(
1 + k

m

)
b
(
k
m

)
d→ sup
t∈(λ∗,∞)

∣∣∣∣WD∗(1 + t)−WD∗(1 + λ∗)− (t− λ∗)
[
E (l′′0(θ))

]−1
E (l′′0 (θ∗))WD(1)

∣∣∣∣
(1 + t) b (t) (B.70)

where D∗ := Cov [l′0 (θ∗)] and {WD∗(t), t ∈ [0,∞)} a zero mean Gaussian process with covariance

function KD∗(s, t) = min {s, t}D∗.
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In addition, we have

sup
k∗≤k<∞

∣∣∣(k − k∗ + 1) (θ − θ∗)′ E (l′′0 (θ∗))
∣∣∣

m1/2
(
1 + k

m

)
b
(
k
m

) =
√
m sup
k∗≤k<∞

∣∣∣k−k∗+1
m (θ − θ∗)′ E (l′′0 (θ∗))

∣∣∣(
1 + k

m

)
b
(
k
m

) →∞

as m→∞ almost surely. Since the thresholds (B.69) and (B.70) are stochastically bounded if the

variable parts in b(·) are chosen such that the procedure keeps its size under the null, this completes

the proof. �

C. The Proofs of the Calculation Rules in Section A.2

C.1. The Proof of CR1:

Recall that Dp,− is a (p2 × p−) matrix while D+
p,− is of dimension (p− × p2). Furthermore, Dp,− is

a matrix whose entries are zero or one and whose column sums are all equal to 2 whereas the row

sums are 1, i.e. every column has two ones but none of them is in the same row as any of the ones

in a different column.

Dp,− :=
(
d·1, d·2 . . . , d·p+

)
⇒ d′·id·j =


2, i = j

0 i 6= j

⇒ D′p,−Dp,− = 2Ip+

Thus, the eigenvalues of D′p,−Dp,− are all equal to 2 with multiplicity p−. According to page 335

in Seber (2008), this implies that the singular values of Dp,− are
√

2 and the singular value decom-

position of Dp,− is given as

Dp,− = U


√

2 · Ip−

0p+×p−

V ′
with orthogonal matrices U ∼ (p2 × p2) and V ∼ (p− × p−) that contain the orthonormalized

eigenvectors of Dp,−D′p,− and D′p,−Dp,−, respectively. Hence, with 5.5.1(9) of Lütkepohl (1996), the

singular value decomposition of the Moore Penrose inverse of Dp,− is given as

D+
p,− = V

 1√
2 · Ip−

0p+×p−

U ′ = 1
2V


√

2 · Ip−

0p+×p−

U ′ = 1
2D′p,−.
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C.2. The Proof of CR4:

We use 17.30(h) in Seber (2008):

Z ∼ (l ×m), U(Z) ∼ (q × r), V (Z) ∼ (r × t)

⇒ ∂vec (UV )
∂vec (Z)′

= (V ⊗ Iq)′
∂vec (U)
∂vec (Z)′

+ (It ⊗ U) ∂vec (V )
∂vec (X)′

.

We consider symmetric (n× n) matrices X and Y (X) and choose U := XY and V := X.

This yields q = r = t = l = m = n and

∂vec(XY (X)X)
∂vec(X)′ = (X ⊗ In)′ ∂vec (XY )

∂vec (X)′
+ (In ⊗XY ) ∂vec (X)

∂vec (X)′

U=X, V=Y= (X ⊗ In)
[
(Y ⊗ In)′ ∂vec (X)

∂vec (X)′
+ (In ⊗X) ∂vec (Y )

∂vec (X)′

]
+ (In ⊗XY )

= (X ⊗ In) (Y ⊗ In) + (X ⊗ In) (Ip ⊗X) ∂vec (Y )
∂vec (X)′

+ (In ⊗XY )

= (X ⊗X) ∂vec (Y )
∂vec (X)′

+ (XY ⊗ In + In ⊗XY ) . �
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