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Abstract

This paper discusses the properties of certain risk estimators recently proposed to
choose regularization parameters in ill-posed problems. A simple approach is Stein’s un-
biased risk estimator (SURE), which estimates the risk in the data space, while a recent
modification (GSURE) estimates the risk in the space of the unknown variable. It seems
intuitive that the latter is more appropriate for ill-posed problems, since the properties
in the data space do not tell much about the quality of the reconstruction. We pro-
vide theoretical studies of both estimators for linear Tikhonov regularization in a finite
dimensional setting and estimate the quality of the risk estimators, which also leads to
asymptotic convergence results as the dimension of the problem tends to infinity. Un-
like previous papers, who studied image processing problems with a very low degree of
ill-posedness, we are interested in the behavior of the risk estimators for increasing ill-
posedness. Interestingly, our theoretical results indicate that the quality of the GSURE
risk can deteriorate asymptotically for ill-posed problems, which is confirmed by a de-
tailed numerical study. The latter shows that in many cases the GSURE estimator leads
to extremely small regularization parameters, which obviously cannot stabilize the recon-
struction. Similar but less severe issues with respect to robustness also appear for the
SURE estimator, which in comparison to the rather conservative discrepancy principle
leads to the conclusion that regularization parameter choice based on unbiased risk esti-
mation is not a reliable procedure for ill-posed problems. A similar numerical study for
sparsity regularization demonstrates that the same issue appears in nonlinear variational
regularization approaches.

Keywords: Ill-posed problems, regularization parameter choice, risk estimators,
Stein’s method, discrepancy principle.
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1 Introduction

Choosing suitable regularization parameters is a problem as old as regularization theory,
which has seen a variety of approaches both from deterministic (e.g. L-curve criteria, [18,
17]) or statistical perspectives (e.g. Lepskij principles, [2, 20]), respectively in between (e.g.
discrepancy principles motivated by deterministic bounds or noise variance, cf. [28, 3]).
Recently, another class of statistical parameter choice rules based on risk estimation, more
precisely using Stein’s unbiased risk estimation [27], was introduced in problems related to
image processing ([9, 29, 30, 12, 33, 10, 22, 32, 31, 25]). In addition to a classical Stein unbiased
risk estimator (SURE), several authors have considered a generalized version (GSURE, [30,
11, 15]), which measures risk in the space of the unknown rather than in the data space
and hence seems more appropriate for ill-posed problems. Previous investigations show that
the performance of such parameter choice rules is reasonable in many different settings (cf.
[16, 34, 8, 1, 26, 23, 13]). However, the problems considered in these works are very mildly
ill-posed and therefore, a first motivation of this paper is to further study the properties
of parameter choice by SURE and GSURE in Tikhonov-type regularization methods more
systematically in dependence of the ill-posedness of the problem and the degree of smoothness
of the unknown exact solution. For this purpose we provide a theoretical analysis of the quality
of unbiased risk estiamtors in the case of linear Tikhonov regularization. Additionally we carry
out extensive numerical investigations on appropriate model problems. While in very mildly
ill-posed settings the performances of the parameter choice rules under consideration are
reasonable and comparable, our investigations yield various interesting results and insights in
ill-posed settings. For instance, we demonstrate that GSURE shows a rather erratic behaviour
as the degree of ill-posedness increases. The observed effects are so strong that the meaning
of a parameter chosen according to this particular criterion is unclear.
A second motivation of this paper is to study the discrepancy principle as a reference method
and as we shall see it can indeed be put in a very similar context and analyzed by the same
techniques. Although the popularity of the discrepancy principle is decreasing recently in
favor of choices using more statistical details, our findings show that it is still more robust
for ill-posed problems than risk-based parameter choices. The conservative choice by the
discrepancy principle is well-known to rather overestimate the optimal parameter, but on the
other hand it avoids to choose too small regularization as risk-based methods often do. In
the latter case the reconstruction results are completely deteriorated, while the discrepancy
principle yields a reliable, though not optimal, reconstruction.
Throughout the paper we consider a (discrete) inverse problem of the form

y = Ax∗ + ε, (1)

where y ∈ Rm is a vector of observations, A ∈ Rm×n is some known but possibly ill-conditioned
matrix, and ε ∈ Rm is a noise vector. We assume that ε consists of independent and identically
distributed (i.i.d.) Gaussian errors, i.e., ε ∼ N (0, σ2Im). The vector x∗ ∈ Rn denotes the
(unknown) exact solution to be reconstructed from the observations. In order to find an
estimate x̂(y) of x∗, we apply a variational regularization method:

x̂α(y) = argmin
x∈Rn

1

2
‖Ax− y‖22 + αR(x), (2)

where R is assumed convex and such that the minimizer is unique for positive regularization
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parameter α. In what follows the dependence of x̂α(y) on α and the data y may be dropped
where it is clear without ambiguity that x̂ = x̂α(y).
In practice there are two choices to be made: First, a regularization functional R needs
to be specified in order to appropriately represent a-priori knowledge about solutions and
second, a regularization parameter α needs to be chosen in dependence of the data y. The
ideal parameter choice would minimize a difference between x̂α(y) and x∗ over all α, which
obviously cannot be computed and is hence replaced by a parameter choice rule that tries to
minimize a worst-case or average error to the unknown solution, which can be referred to as
a risk minimization. In the practical case of having a single observation only, the risk based
on average error needs to be replaced by an estimate as well, and unbiased risk estimators
that will be detailed in the following are a natural choice.
For the sake of a clearer presentation of methods and results we first focus on linear Tikhonov
regularization, i.e.,

R(x) =
1

2
‖x‖22,

leading to the explicit Tikhonov estimator

x̂α(y) = Tαy := (A∗A+ αI)−1A∗y. (3)

In this setting, a natural distance for measuring the error of x̂α(y) is given by its `2-distance
to x∗. Thus, we define

α∗ := argmin
α>0

‖x̂α(y)− x∗‖22

as the optimal, but inaccessible, regularization parameter. Many different rules for the choice
of the regularization parameter α are discussed in the literature. Here, we focus on strategies
that rely on an accurate estimate of the noise variance σ2. A classical example of such a
rule is given by the discrepancy principle: The regularization parameter α̂DP is given as the
solution of the equation

‖Ax̂α(y)− y‖22 = mσ2. (4)

The discrepancy principle is robust and easy-to-implement for many applications (cf. [4, 19,
24]) and is based on the heuristic argument, that xα(y) should only explain the data y up
to the noise level. Several other parameter choice rules are based on Stein’s famous unbiased
risk estimator (SURE).
The basic idea is to choose the α that minimizes the estimated quadratic risk function

α̂∗SURE ∈ argmin
α>0

RSURE(α) := argmin
α>0

E
[
‖Ax∗ −Ax̂α(y)‖22

]
(5)

Since RSURE depends on the unknown vector x∗, we replace it by an unbiased estimate:

α̂SURE ∈ argmin
α>0

SURE(α, y) := argmin
α>0

‖y −Ax̂α(y)‖22 −mσ2 + 2σ2dfα(y) (6)

with
dfα(y) = tr (∇y ·Ax̂α(y)) .

As an analogue of the SURE-criterion, a generalized version (GSURE) is often considered. In
contrast to SURE, which aims at optimizing the MSE in the image of the operator, GSURE
operates in the domain instead and considers the MSE of the reconstruction of x:

α̂∗GSURE∈ argmin
α>0

RGSURE(α) := argmin
α>0

E
[
‖Π(x∗ − x̂α(y))‖22

]
,
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where Π := A+A denotes the orthogonal projector onto the range of A∗. Again, we replace
RGSURE by an unbiased estimator to obtain

α̂GSURE∈ argmin
α>0

GSURE(α, y) := argmin
α>0

‖xML(y)− x̂α(y)‖22 − σ2tr
(
(AA∗)+

)
+ 2σ2gdfα(y)

(7)
with

gdfα(y) = tr((AA∗)+∇yAx̂α(y)), xML = A+y = A∗(AA∗)+y,

where M+ denotes the Pseudoinverse of M .
Notice that all parameter choice rules depend on the data y and hence on the random errors
ε1, . . . , εm. Therefore, α̂DP, α̂SURE and α̂GSURE are random variables, described in terms of
their probability distributions. We first investigate these distributions by numerical simulation
studies. The results point to several problems of the presented parameter choice rules, in
particular of GSURE, and motivate our further theoretical investigation.
In the next section, we will describe a simple inverse problem scenario in terms of quadratic
Tikhonov regularization and fix the setting and notations both for further numerical simu-
lation as well as the analysis of the risk based estimators. The latter will be carried out in
Section 3 and supplemented by an exhaustive numerical study in Section 4. Finally we extend
the numerical investigation in Section 5 to a sparsity-promoting LASSO-type regularization,
for which we find similar behaviour. Conclusions are given in Section 6.

2 Risk Estimators for Quadratic Regularization

In the following we discuss the setup in the case of a quadratic regularization functional
R(x) = 1

2‖x‖
2, i.e. we recover the well-known linear Tikhonov regularization scheme. The

linearity can be used to simplify arguments and gain analytical insight in the next section.

2.1 Singular System and Risk Representations

Considering a quadratic regularization allows to analyze x̂α in a singular system of A in a
convenient way. Let r = rank(A), l = min(n,m). Let

A = UΣV ∗, Σ = diag (γ1, . . . , γl) ∈ Rm×n, γ1 ≥ . . . ≥ γr > 0, γr+1 . . . γm := 0

denote a singular value decomposition of A with

U = (u1, . . . , um) ∈ Rm×m, V = (v1, . . . , vn) ∈ Rn×n unitary.

Defining
yi = 〈ui, y〉 , x∗i = 〈vi, x∗〉 , ε̃i = 〈ui, ε〉 (8)

we can rewrite model (1) in its spectral form

yi = γix
∗
i + ε̃i, i = 1 . . . l; yi = ε̃i, i = l + 1 . . .m,

where ε̃1, . . . , ε̃m are still i.i.d. ∼ N (0, σ2). We will express some more terms in the singular
system that are frequently used throughout this paper. In particular, we have for xML, the
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regularized solution and its norm

xML = A+y = V Σ+U∗y, with Σ+ = diag(
1

γ 1

, . . . ,
1

γ r
, 0 . . . 0) ∈ Rn×m

x̂α(y) = (A∗A+ αI)−1A∗y =: V Σ+
αU
∗y, with Σ+

α = diag

(
γi

γ2i + α

)
∈ Rn×m

‖x̂α‖22 =
m∑
i=1

γ2i
(γ2i + α)2

y2i

as well as the residual and distance to the maximum likelihood estimate

‖Ax̂α − y‖22 =
m∑
i=1

α2

(γ2i + α)2
y2i . (9)

‖xML − x̂α‖22 = ‖A∗(AA∗)+y − (A∗A+ αI)−1A∗y‖22 = ‖V
(
Σ+ − Σ+

α

)
U∗y‖22

=

r∑
i=1

(
1

γi
− γi

(γ2i + α)

)2

y2i .

Based on the generalized inverse we compute

(AA∗)+ = U(ΣΣ∗)+U∗ = Udiag

(
1

γ21
, . . . ,

1

γ2r
, 0, . . . , 0

)
U∗

A∗(AA∗)+A = V diag(1, . . . , 1︸ ︷︷ ︸
r

, 0, . . . , 0︸ ︷︷ ︸
n−r

)V ∗,

which yields the degrees of freedom and the generalized degrees of freedom

dfα := ∇y ·Ax̂ = tr
(
A(A∗A+ αI)−1A∗

)
=

r∑
i=1

γ2i
γ2i + α

gdfα := tr((AA∗)+∇y ·Ax̂) = tr
(
(AA∗)+A(A∗A+ αI)−1A∗

)
= tr((ΣΣ∗)+ΣΣ−1α ) =

r∑
i=1

1

γ2i
γi

γi
γ2i + α

=

r∑
i=1

1

γ2i + α
.

Next, we derive the spectral representations of the parameter choice rules. For the discrepancy
principle, we use (9) to define

DP(α, y) :=
m∑
i=1

α2

(γ2i + α)2
y2i −mσ2, (10)

and now, (4) can be restated as DP(α̂DP, y) = 0. For (6) and (7), we find

SURE(α, y) =

m∑
i=1

α2

(γ2i + α)2
y2i −mσ2 + 2σ2

m∑
i=1

γ2i
γ2i + α

(11)

GSURE(α, y) =

r∑
i=1

(
1

γi
− γi
γ2i + α

)2

y2i − σ2
r∑
i=1

1

γ2i
+ 2σ2

r∑
i=1

1

γ2i + α
. (12)
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2.2 An Illustrative Example

We consider a simple imaging scenario which exhibits typical properties of inverse problems.
The unknown function x∗∞ : [−1/2, 1/2] → R is mapped to a function y∞ : [−1/2, 1/2] → R
by a periodic convolution with a compactly supported kernel of width l ≤ 1/2:

y∞(s) = A∞,lx
∗
∞ :=

∫ 1
2

− 1
2

kl (s− t)x∗∞(t) dt, s ∈ [−1/2, 1/2],

where the 1-periodic C∞0 (R) function kl(t) is defined for |t| ≤ 1/2 by

kl(t) :=
1

Nl

{
exp

(
− 1

1−t2/l2

)
if |t| < l

0 l ≤ |t| ≤ 1/2
, Nl =

∫ l

−l
exp

(
− 1

1− t2/l2

)
dt,

and continued periodically for |t| > 1/2. Examples of kl(t) are plotted in Figure 1(a). The
normalization ensures that A∞,l and suitable discretizations thereof have the spectral radius
γ1 = 1 which simplifies our derivations and the corresponding illustrations. The x∗∞ used in
the numerical examples is the sum of four delta distributions:

x∗∞(t) :=

4∑
i=1

aiδ

(
bi −

1

2

)
, with a = [0.5, 1, 0.8, 0.5], b =

[
1√
26
,

1√
11
,

1√
3
,

1√
3/2

]
.

The locations of the delta distributions approximate [−0.3,−0.2, 0.1, 0.3] by irrational num-
bers which simplifies the discretization.

Discretization For a given number of degrees of freedom n, let

Eni :=

[
i− 1

n
− 1

2
,
i

n
− 1

2

]
, i = 1, . . . , n

denote the equidistant partition of [−1/2, 1/2] and ψni (t) =
√
n1Eni (t) an ONB of piecewise

constant functions over that partition. If we use m and n degrees of freedom to discretize
range and domain of A∞,l, respectively, we arrive at the discrete inverse problem (1) with

(Al)i,j =
〈
ψmi , A∞,lψ

n
j

〉
=
√
mn

∫
Emi

∫
Enj

kl (s− t) dt ds (13)

x∗j =
〈
ψnj , x

∗
∞
〉

=
√
n

∫
Enj

x∗∞(t) dt =
√
n

4∑
i

ai1Eni δ

(
bi −

1

2

)
The two dimensional integration in (13) is computed by the trapezoidal rule with equidistant
spacing, employing 100× 100 points to partition Emi × Eni . Note that we drop the subscript
l from Al whenever the dependence on this parameter is not of importance for the argument
being carried out.
As the convolution kernel kl has mass 1 and the discretization was designed to be mass-
preserving, we have γ1 = 1 and the condition of A is given by cond(A) = 1/γr, where
r = rank(A). Figure 2 shows the decay of the singular values for various parameter settings
and Table 1 lists the corresponding condition numbers.
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Figure 1: (a) The convolution kernel kl(t) for different values of l. (b) True solution x∗, clean
data Alx

∗ and noisy data Alx
∗ + ε for m = n = 64, l = 0.06, σ = 0.1.

Table 1: Condition of Al computed different values of m = n and l.

l = 0.02 l = 0.04 l = 0.06 l = 0.08 l = 0.1

m = 16 1.27e+0 1.75e+0 2.79e+0 6.77e+0 2.31e+2
m = 32 1.75e+0 6.77e+0 6.94e+1 6.88e+2 2.30e+2
m = 64 6.77e+0 6.88e+2 6.42e+2 1.51e+3 4.22e+3
m = 128 6.88e+2 1.51e+3 1.51e+4 4.29e+3 4.29e+4
m = 256 1.70e+3 4.70e+4 1.87e+6 4.07e+6 1.79e+6
m = 512 4.70e+4 1.11e+7 1.22e+7 2.12e+7 3.70e+7

Empirical Distributions Using the above formulas and m = n = 64, l = 0.06, σ = 0.1,
we computed the empirical distibutions of the different parameter choice rules by evaluating
(10), (11) and (12) on a fine logarithmical α-grid, i.e., log10(αi) was increased linearly in
between −40 and 40 with a step size of 0.01. We draw Nε = 106 samples of ε. The results are
displayed in Figures 3 and 4: In both figures, we use a logarithmic scaling of the empirical
probabilities wherein empirical probabilities of 0 have been set to 1/(2Nε). While this presen-
tation complicates the comparison of the distributions as the probability mass is deformed,
it facilitates the examination of small values and tails.
First, we observe in Figure 3(a) that α̂DP typically overestimates the optimal α∗. However, it
performs robustly and does not cause large `2-errors as can be seen in Figure 3(b). For α̂SURE

and α̂GSURE, the latter is not true: While being closer to α∗ than α̂DP most often, and, as can
be seen from the joint error histograms in Figure 4, producing smaller `2-errors most often,
both distributions show outliers, i.e., occasionally, very small values of α̂ are estimated that
cause large `2-errors. In the case of α̂GSURE, we even observe two clearly separated modes
in the distributions. These findings motivate the theoretical examinations carried out in the
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Figure 2: Decay of the singular values γi of Al for different choices of m and l. As expected,
increasing the width l of the convolution kernel leads to a faster decay. For a fixed l, increasing
m corresponds to using a finer discretization and γi converges to the corresponding singular
value of A∞,l, as can be seen for the largest γi, e.g., for l = 0.02.

following section.
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Figure 3: Empirical probabilities of (a) α̂ and (b) the corresponding `2-error for different
parameter choice rules using m = n = 64, l = 0.06, σ = 0.1 and Nε = 106 samples of ε.
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(a) Discrepancy principle vs SURE
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(b) Discrepancy principle vs GSURE

Figure 4: Joint empirical probabilities of log10 ‖x∗−xα̂‖2 using m = n = 64, l = 0.06, σ = 0.1
and Nε = 106 samples of ε (the histograms in Figure 3(b) are the marginal distributions
thereof). As in Figure 3(b), the logarithms of the probabilities are displayed (here in form
of a color-coding) to facilitate the identification of smaller modes and tails. The red line at
x = y divides the areas where one method performs better than the other: In (a), all samples
falling into the area on the right of the red line correspond to a noise realization where the
discrepancy principle leads to a smaller error than SURE.
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Figure 5: True risk functions (black dotted line), their estimates for six different realizations
yk, k = 1 . . . 6 (solid lines), and their corresponding minima/roots (dots on the lines) in the
setting described in Figure 1 using `2-regularization: (a) DP(α,Ax∗) and DP(α, yk). (b)
RSURE(α) and SURE(α, yk). (c) RGSURE(α) and GSURE(α, yk).

3 Properties of the Parameter Choice Rules for Quadratic
Regularization

In this section we consider the theoretical (risk) properties of SURE, GSURE and the dis-
crepancy principle.

Assumption 1. For the sake of simplicity we only consider m = n in this first analysis.
Furthermore, we assume

1 = γ1 ≥ . . . ≥ γm > 0 (14)

and that ‖x∗‖22 = O(m). Note that all assumptions are fulfilled in the numerical example we
described in the previous section.

We mention that we consider here a rather moderate size of the noise, which remains bounded
in variances as m → ∞. A scaling corresponding to white noise in the infinite dimensional
limit is rather σ2 ∼ m and an inspection of the estimates below shows that the risk estimate
is potentially far from the expected values in such cases additionally.

3.1 SURE-Risk

We start with an investigation of the well-known SURE risk estimate. Based on (11) and
Stein’s result, the representation for the risk is given as

RSURE(α) = E[SURE(α, y)]

=
∑
i

α2

(γ2i + α)2
E[y2i ]− σ2m+ 2σ2

∑
i

γ2i
γ2i + α

=
∑
i

α2

(γ2i + α)2
(γ2i · (x∗i )2 + σ2)− σ2m+ 2σ2

∑
i

γ2i
γ2i + α

. (15)
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Figure 5(b) illustrates the typical shape of RSURE(α) and SURE estimates thereof. Following
[35, 14], who investigated the performance of Stein’s unbiased risk estimate in the different
context of hierarchical modeling, we show that, with the definition of the loss l by

l(α) :=
1

m
‖Ax∗ −Ax̂α(y)‖22,

1/m SURE(α, y) is close to l for large m. Note that SURE is an unbiased estimate of the
expectation of l.

Theorem 1. If Assumption 1 holds, then

sup
α∈[0,∞)

∣∣∣ 1

m
SURE(α, y)− l(α)

∣∣∣ = OP

(
1√
m

)
.

Proof: We find

l =
1

m
‖Ax̂− y + ε‖22 =

1

m
‖Ax̂− y‖22 +

1

m
‖ε‖22 +

2

m
〈ε,Ax̂− y〉

=
1

m

m∑
i=1

α2

(γ2i + α)2
y2i −

1

m
‖U∗ε‖22 +

2

m
〈ε,Ax̂−Ax∗〉

=
1

m

m∑
i=1

α2

(γ2i + α)2
y2i −

1

m
‖ε̃‖22 +

2

m
〈ε,Ax̂−Ax∗〉.

Note that

Ax̂−Ax∗ = UΣΣ−1α U∗(Ax∗ + ε)− UΣV ∗x∗

= U{ΣΣ−1α − I}ΣV ∗x∗ + UΣΣ−1α U∗ε

and recall from (8) that x∗i = 〈vi, x∗〉. Since U∗U = UU∗ = I, Var[ε̃i] = σ2, where ε̃ = U∗ε,
that is, ε̃i = 〈ui, ε〉. This yields

2

m
〈ε , Ax̂−Ax∗〉 =

2

m

n∑
i=1

ε̃2i γ
2
i

γ2i + α
− 2

m

n∑
i=1

αε̃iγix
∗
i

γ2i + α
.

We obtain the representation

1

m
SURE(α, y)− l = −σ2 +

2σ2

m

m∑
i=1

γ2i
γ2i + α

+
1

m

m∑
i=1

ε̃2i −
2

m

m∑
i=1

ε̃2i γ
2
i

γ2i + α
+

2

m

m∑
i=1

αε̃iγix
∗
i

γ2i + α

=
1

m

m∑
i=1

(ε̃2i − σ2)−
2

m

m∑
i=1

γ2i
γ2i + α

(ε̃2i − σ2) +
2

m

m∑
i=1

αγi
α+ γ2i

x∗i ε̃i

=: Sl1(α) + Sl2(α) + Sl3(α),

where the terms Slj(α), j ∈ {1, 2, 3} are defined in an obvious manner. Since ε̃21, . . . , ε̃
2
n are

independent and identically distributed with expectation σ2 we immediately obtain that

√
mSl1(α) = OP(σ2).

11



Note that Sl1(α) is independent of α. Next, we consider the term Sl2(α).

Due to the ordering of the singular values the vectors γ2i /(γ
2
i +α), which have entries in (0, 1]

for α ∈ [0,∞), and are monotonically decreasing. Thus, we find

sup
α∈[0,∞)

|Sl2(α)| = sup
α∈[0,∞)

1

m

∣∣∣∣ m∑
i=1

γ2i
γ2i + α

(ε̃2i − σ2)
∣∣∣∣ ≤ sup

1≥c1≥...≥cm≥0

1

m

∣∣∣∣ m∑
i=1

ci(ε̃
2
i − σ2)

∣∣∣∣.
It follows from [21], Lemma 7.2.:

sup
1≥c1≥...≥cm≥0

1

m

∣∣∣∣ m∑
i=1

ci(ε̃
2
i − σ2)

∣∣∣∣ = sup
1≤j≤m

1

m

∣∣∣∣ j∑
i=1

(ε̃2i − σ2)
∣∣∣∣,

and an application of Kolmogorov’s maximal inequality yields:

sup
α∈[0,∞)

|Sl2(α)| = OP
(
σ2/
√
m
)
,

where we also used that Var(ε̃2i − σ2) = 2σ4, which follows because ε̃i ∼ N (0, σ2).
Finally, we estimate Sl3(α). The functions α 7→ αγi/(γ

2
i + α) are monotonically increas-

ing, which implies that αγi/(γ
2
i + α) ⊂ [0, 1], by condition (14). A further application of

Kolmogorov’s maximal inequality finally yields

sup
α∈[0,∞)

|Sl3(α)| = sup
α∈[0,∞)

1

m

∣∣∣∣ m∑
i=1

αγi
γ2i + α

x∗i ε̃i

∣∣∣∣ ≤ sup
1≥c1≥...≥cm≥0

1

m

∣∣∣∣ m∑
i=1

cix
∗
i ε̃i

∣∣∣∣
= sup

1≤j≤m

1

m

∣∣∣∣ j∑
i=1

x∗i ε̃i

∣∣∣∣ = OP

(
σ‖x∗‖2/m

)
= OP

(
σ/
√
m
)
.

�

The latter result can be used to show that, in an asymptotic sense, if the loss l is considered,
the estimator α̂SURE does not have a larger risk than any other choice of regularization
parameter. This statement is made precise in the following corollary.

Corollary 1. Under Assumption 1 it holds that for all ε > 0 and any sequence of positive
real numbers (αm)m∈N we have

P(l(α̂SURE) ≥ l(αm) + ε)→ 0.

Proof: By definition SURE(α̂SURE, y) ≤ SURE(αm, y). This yields

P(l(α̂SURE) ≥ l(αm) + ε) ≤ P
(
l(α̂SURE)− 1

m
SURE(α̂SURE, y) ≥ l(αm)− 1

m
SURE(αm, y) + ε

)
and the claim follows by an application of Theorem 1.

�

The following corollary is an extension of Corollary 1.

Corollary 2. The claim of Corollary 1 remains true if the arbitrary but fixed positive constant
ε > 0 is replaced by a sequence εm such that 1/εm = o(

√
m).

12



We finally mention that our estimates are rather conservative, in particular with respect to
the quantity Sl3(α), since we do not assume particular smoothness of x∗. With an additional
source condition, i.e., certain decay speed of the x∗i , it is possible to derive improved rates,
which are however beyond the scope of our paper. We instead turn our attention to the
convergence of the risk estimate as m → ∞ as well as the convergence of the estimated
regularization parameters.

Theorem 2. If Assumption 1 holds, then, as m→∞

sup
α∈[0,∞)

∣∣∣ 1

m

(
SURE(α, y)− RSURE(α, y)

)∣∣∣ = OP

( 1√
m

)
and

E
(

sup
α∈[0,∞)

∣∣∣ 1

m

(
SURE(α, y)− RSURE(α, y)

)∣∣∣)2

= O
( 1

m

)
. (16)

Proof: Observing (11) and (15) we find

1

m

(
SURE(α, y)− RSURE(α)

)
=

1

m

m∑
i=1

α2

(γ2i + α)2
ε̌i,

where ε̌i := y2i −E[y2i ]. The random variables ε̌1, . . . , ε̌n are independent and centered. Notice
that

Var[ε̌i] = Var[y2i ] = E[y4i ]− (E[y2i ])
2 = 4γ2i x

∗
i
2σ2 + 2σ4,

since yi ∼ N (γix
∗
i , σ

2). Consider the monotonically increasing function α 7→ α2

(γ2i+α)
2 ⊂ [0, 1]

for α ∈ [0,∞). With the same arguments as in the proof of Theorem 1, using Kolmogorov’s
maximal inequality, we estimate

sup
α∈[0,∞)

∣∣∣SURE(α, y)− RSURE(α)
∣∣∣ = sup

α∈[0,∞)

∣∣∣∣ m∑
i=1

α2

(γ2i + α)2
ε̌i

∣∣∣∣ = sup
1≤j≤m

∣∣∣∣ j∑
i=1

ε̌i

∣∣∣∣
= OP

(( m∑
j=1

(4γ2i (x∗i )
2 + 2σ4)

) 1
2
)

It remains to show the L2-convergence (16). To this end define the j-th partial sum

Sj :=

j∑
i=1

ε̌i

and observe that {Sj | j ∈ N} forms a martingale. The Lp-maximal inequality for martingales
yields

E
(

sup
α∈[0,∞)

∣∣∣ 1

m

(
SURE(α, y)− RSURE(α)

)∣∣∣)2

= E
(

sup
α∈[0,∞)

∣∣∣ 1

m

(
SURE(α, y)− RSURE(α)

)∣∣∣2)
=

1

m2
E
(

sup
1≤j≤m

|Sj |2
)
≤ 4

m2
E
( m∑
i=1

ε̌i

)2

= O

(
1

m2

m∑
j=1

(4γ2i (x∗i )
2 + 2σ4)

)

13



as above.
�

In order to understand the behavior of the estimated regularization parameters we start with
some bounds on α̂∗SURE, which recover a standard property of deterministic regularization

methods, namely that σ2

α does not diverge for suitable parameter choices.

Lemma 1. A regularization parameter α̂∗SURE obtained from RSURE satisfies

σ2

maxi |x∗i |2
≤ α̂∗SURE ≤ max{1, 8σ2

∑
γ4i∑

γ4i (x∗i )
2
}

Proof: It is straightforward to see the differentiability of RSURE and to compute

RSURE
′(α) =

m∑
i=1

2γ4i
(γ2i + α)3

(α(x∗i )
2 − σ2).

Hence, for α < σ2

maxi |x∗i |2
, the risk RSURE is strictly decreasing, which implies the first inequal-

ity. Moreover, for α ≥ 1 we obtain

α3RSURE
′(α) = 2

m∑
i=1

γ4i
(γ2i /α+ 1)3

(α(x∗i )
2 − σ2)

>
α

4

m∑
i=1

γ4i (x∗i )
2 − 2σ2

m∑
i=1

γ4i

and we finally see that RSURE
′ is nonnegative if in addition α ≥ 8σ2

∑
γ4i∑

γ4i (x
∗
i )

2 .

�

In order to make the convergence as m → ∞ more clear we make the dependence on m
explicit in the following by writing RSURE,m and α∗SURE,m for the associated estimate of the
regularization parameter. From a straight-forward estimate of the derivative of RSURE,m on
sets where α is bounded away from zero we obtain the following result:

Lemma 2. The sequence of functions fm := 1
m RSURE,m(α) is equicontinuous on sets [C1, C2]

with 0 < C1 < C2.

As a consequence of the Arzela-Ascoli theorem we further derive a convergence result:

Proposition 1. The sequence of functions fm := 1
m RSURE,m(α) is equicontinuous on sets

[C1, C2] with 0 < C1 < C2 and hence has a uniformly convergent subsequence fmk with
continuous limit function f .

In order to obtain convergence of minimizers it suffices to be able to choose uniform constants
C1 and C2, which is possible if the bounds in Lemma 1 are uniform:

Theorem 3. Let maxmi=1 |x∗i | be uniformly bounded in m and 1
m

∑m
i=1 γ

4
i (x∗i )

2 be uniformly
bounded away from zero. Then there exists a subsequence α̂SURE,mk that converges to a min-
imizer of the asymptotic risk f . Moreover α̂SURE,mk converges to to a minimizer of the
asymptotic risk f in probability.

Proof: From the uniform convergence of the sequence fmk in Proposition 1 we obtain the
convergence of the minimizers α̂∗SURE,mk

. Combined with Theorem 2 we obtain an analogous
argument for α̂SURE,mk .

�
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3.2 Discrepancy Principle

We now turn our attention to the discrepancy principle, which we can formulate in a similar
setting as the SURE approach above. With a slight abuse of notation, in analogy to the other
methods, we denote the expectation of DP(α, y) by RDP(α) and define α̂DP as the solution
of the equation

RDP(α) =

m∑
i=1

α2

(γ2i + α)2
E[y2i ]−mσ2 = 0.

Figure 5(a) illustrates the typical shape of RDP(α) and its DP estimates. Observing that

DP(α, y)− RDP(α) = SURE(α, y)− RSURE(β)

we immediately obtain the following result:

Theorem 4. If Assumption 1 holds, we have

sup
α∈[0,∞)

∣∣∣ 1

m

(
DP(α, y)− RDP(α)

)∣∣∣ = OP

( 1√
m

)
and

E
(

sup
α∈[0,∞)

∣∣∣ 1

m

(
DP(α, y)− RDP(α)

)∣∣∣)2

= O
( 1

m

)
.

3.3 GSURE-Risk

Now we consider the GSURE-risk estimation procedure. Figure 5(c) illustrates the typical
shape of RGSURE(α) and GSURE estimates thereof. Based on (12), the risk can be written
as

RGSURE(α, y) =
m∑
i=1

(
1

γi
− γi

(γ2i + α)

)2 (
γ2i (x∗i )

2 + σ2
)
− σ2

m∑
i=1

1

γ2i
+ 2σ2

m∑
i=1

1

γ2i + α
.

For the SURE criterion we showed in Theorem 1 that SURE(α, y) is close to the loss l in
an asymptotic sense with the standard

√
m-rate of convergence. An analogous result can be

shown for GSURE and the associated loss l̃ := cm‖Π(x∗− x̂α)‖22 but with different associated
rates of convergence cm, dependent on the singular values.

Theorem 5. Let Assumption 1 be satisfied and in addition to (14), let γm → 0. Then, as
m→∞,

sup
α∈[0,∞)

∣∣∣GSURE(α, y)− c−1m l̃
∣∣∣ = OP

√√√√ m∑
i=1

x∗i
γ2i

+

√√√√ m∑
i=1

1

γ4i

 ,

where

cm :=

 m∑
j=1

1

γ2i

−1/2 .
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Proof: For m = n and invertible matrices A the GSURE-loss l̃ is given by

c−1m l̃ = ‖x∗ − x̂α‖22

=
m∑
i=1

(
1

γi
− γi

(γ2i + α)

)2

y2i −
m∑
j=1

ε̃2i
γ2i

+ 2α
m∑
j=1

x∗i ε̃

γi(γ2i + α)
+ 2− 2

m∑
j=1

ε̃2i
γ2i + α

,

since, in this special case, the projection π satisfies π = id. Hence

GSURE(α, y)− c−1m l̃ = −
m∑
i=1

1

γ2i
(ε̃2i − σ2) + 2

m∑
i=1

1

γ2i
(ε̃2i − σ2)− 2

m∑
i=1

1

γ2i + α
(ε̃2i − σ2)

+ 2α
m∑
i=1

x∗i
γi(γ2i + α)

ε̃i

= 2α
m∑
i=1

x∗i
γi(γ2i + α)

ε̃i +
m∑
i=1

α2 − γ4i
γ2i (γ21 + α)2

(ε̃2i − σ2)

=: GSl1(α) +GSl2(α),

where GSl1(m,α) and GSl2(m,α) are defined in an obvious manner. Furthermore,

sup
α∈[0,∞)

|GSl1(α)| = sup
α∈[0,∞)

∣∣∣∣∣2α
m∑
i=1

x∗i
γi(γ2i + α)

ε̃i

∣∣∣∣∣ = sup
1≥c1≥...≥cm≥0

∣∣∣∣∣2
m∑
i=1

ci
x∗i
γi
ε̃i

∣∣∣∣∣
= sup

1≤j≤m

∣∣∣∣∣2
j∑
i=1

x∗i
γi
ε̃i

∣∣∣∣∣ = OP

(√√√√ m∑
i=1

x∗i
γ2i

)
,

where the last estimate follows from Kolmogorov’s maximal inequality. Now we estimate the
term GSl2(α). Consider the functions ψi : α 7→ (α2 − γ4i )/(γ2i + α)2, i = 1, . . . ,m. Notice
that

ψi(0) = −1 and lim
α→∞

ψi(α) = 1 for i = 1, . . . ,m

and that for each i the function ψi increases monotonically in α. This implies

sup
α∈[0,∞)

|GSl2(α)| = sup
α∈[0,∞)

∣∣∣∣ m∑
i=1

α2 − γ4i
γ2i (γ21 + α)2

(ε̃2i − σ2)
∣∣∣∣

≤ sup
1≥c1≥...≥cm≥0

∣∣∣∣ m∑
i=1

ci
γ2i

(ε̃2i − σ2)
∣∣∣∣+ sup

0≤c1≤...≤cm≤1

∣∣∣∣ m∑
i=1

ci
γ2i

(ε̃2i − σ2)
∣∣∣∣

≤ sup
1≤j≤m

∣∣∣∣∣
j∑
i=1

1

γ2i
(ε̃2i − σ2)

∣∣∣∣∣+ sup
1≤j≤m

∣∣∣∣∣
m∑
i=j

1

γ2i
(ε̃2i − σ2)

∣∣∣∣∣.
A further application of Kolmogorov’s maximal inequality yields the desired result.

�

We can now proceed to an estimate between GSURE and RGSURE similar to the ones for
the SURE risk, however we observe a main difference due to the appearance of the condition
number of the forward matrix A:
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Theorem 6. Let A ∈ Rn×m be a full rank matrix. In addition to Assumption 1, let γm → 0.
Then, as m→∞,

sup
α∈[0,∞)

∣∣∣ 1

m cond(A)2
(

GSURE(α, y)− RGSURE(α)
)∣∣∣ = OP

( 1√
m

)
and

E
(

sup
α∈[0,∞)

∣∣∣ 1

m cond(A)2
(

GSURE(α, y)− RGSURE(α)
)∣∣∣)2

= OP

( 1

m

)
. (17)

Proof: For full rank matrices A ∈ Rm×m we have

GSURE(α, y) =
m∑
i=1

(
1

γi
− γi

(γ2i + α)

)2

y2i − σ2
m∑
i=1

1

γ2i
+ 2σ2

m∑
i=1

1

γ2i + α
.

This gives

GSURE(α, y)− RGSURE(α) =
m∑
i=1

(
1

γi
− γi

(γ2i + α)

)2 (
y2i − E[y2i ]

)
=

m∑
i=1

(
1

γi
− γi

(γ2i + α)

)2

ε̌i.

As in the proof of Theorem 2 we set ε̌i := y2i −E[y2i ]. Recall that the random variables ε̌i are
centered, independent with Var[ε̌i] = 4γ2i x

∗
i
2σ2 + 2σ4. We find

GSURE(α, y)− RGSURE(α) =
1

γ2m

m∑
i=1

γ2m
γ2i

α2

(γ2i + α)2
ε̌i.

With the same arguments as in the proofs of Theorems 1 and 2 we obtain

sup
α∈[0,∞)

∣∣∣GSURE(α, y)− RGSURE(α)
∣∣∣ ≤ sup

0≤c1≤c2≤...≤1

∣∣∣ 1

γ2m

m∑
i=1

ciε̌i

∣∣∣ ≤ max
1≤j≤m

∣∣∣ 1

γ2m

m∑
i=j

ε̌i

∣∣∣.
Again, an application of Kolmogorov’s maximal inequality yields

sup
α∈[0,∞)

∣∣∣GSURE(α, y)− RGSURE(α)
∣∣∣ = OP

((
4

m∑
i=1

γ2i x
∗
i
2σ2 + 2mσ4

) 1
2

)
and the first claim of the theorem follows with cond(A) = γ1/γm = 1/γm. Moreover, in a
similar manner as in the proofs of the previous theorems, we find

E
(

sup
α∈[0,∞)

∣∣∣ 1

m cond(A)2
(

GSURE(α, y)− RGSURE(α)
)∣∣∣)2

≤ E sup
1≤j≤m

∣∣∣∣ 1

γ2m
Sj

∣∣∣∣2
and by the Lp maximal inequality the second claim now follows as

E sup
1≤j≤m

∣∣∣∣ 1

γ2m
Sj

∣∣∣∣2 ≤ 1

γ4m
ES2

m = O
(
m/γ4m

)
.

�

We finally note that in the best case the convergence of GSURE is slower than that of
SURE. However, since for ill-posed problems the condition number of A will grow with m the

typical case is rather divergence of cond(A)2√
m

, hence the empirical estimates of the regularization

parameters might have a large variation, which will be confirmed by the numerical results
below.
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(c) GSURE, with cond(A)

Figure 6: Illustration of Theorems 2 and 6 for `2-regularization: The left hand side of (16)/(17)
was estimated by the sample mean and plotted vs. m. For (17), the normalization with
cond(A) was omitted in (b) and included in (c). The black dotted lines were added to
compare the order of convergence.

4 Numerical Studies for Quadratic Regularization

4.1 Setup

As in the illustrative example in Section 2.1, we computed the empirical distributions of the
different parameter choice rules for the same scenario (cf. Section 2.2) for each combination
of m = n = 16, 32, 64, 128, 256, 512, 1024, 2048, l = 0.01, 0.02, 0.03, 0.04, 0.06, 0.08, 0, 1 and
σ = 0.1. For m = 16, . . . , 512, Nε = 106 and for m = 1024, 2048, Nε = 105 noise realizations
were sampled. The computation was, again, based on a logarithmical α-grid, i.e., log10 α
is increased linearly in between -40 and 40 with a step size of 0.01. In addition to the
distributions of α, the expressions

sup
α

∣∣∣SURE(α, y)− RSURE(α, y)
∣∣∣, and sup

α

∣∣∣GSURE(α, y)− RGSURE(α, y)
∣∣∣ (18)

were computed over the α-grid. As in some cases, the supremum is obtained in the limit
α → ∞, and hence, on the boundary of our computational grid, we also evaluated (18) for
α =∞ in these cases.

4.2 Illustration of Theorems

We first illustrate Theorems 2 and 6 by computing (16) and (17) based on our samples. The
results are plotted in Figure 6 and show that the asymptotic rates hold. For GSURE, the
comparison between Figures 6(b) and 6(c) also shows that the dependence on cond(A) is
crucial.

4.3 Dependence on the Ill-Posedness

We then demonstrate how the empirical distributions of α̂ and the corresponding `2-error,
‖x∗ − xα̂‖22, such as those plotted in Figure 3, depend on the ill-posedness of the inverse
problem.
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Dependence on m In Figures 7 and 8, m is increased while the width of the convolution
kernel is kept fix. The impact of this on the singular value spectrum is illustrated in Figure
2. Most notably, smaller singular values are added and the condition of A increases (cf.
Table 1). Figures 7(a) and 8(a) suggest that the distribution of the optimal α∗ is Gaussian
and converges to a limit for increasing m. The distribution of the corresponding `2-error
looks Gaussian as well and seems to concentrate while shifting to larger mean values. For
the discrepancy principle, Figures 7(b) and 8(b) show that the distribution of α̂DP widens
for increasing m, and the distribution of the corresponding `2-error develops a tail while
shifting to larger mean values. Figures 7(c) and 8(c) show that the distribution of α̂SURE

seems to converge to a limit for increasing m. The distribution of the corresponding `2-error
also develops a tail while shifting to larger mean values. For GSURE, Figures 7(d) and 8(d)
reveal that increasing m leads to erratic, multimodal distributions: Compared to the other
α-distributions, the distribution of α̂GSURE includes a significant amount of very small values,
and the corresponding `2-error distributions range over very large values.

Dependence on l In Figures 9 and 10, the width of the convolution kernel, l, is increased
while m = 64 is kept fix (cf. Figure 2 and Table 1). It is worth noticing that as l = 0.02
corresponds to a very well-posed problem, the optimal α∗ is often extremely small or even 0,
as can be seen from Figure 9(a). The general tendencies are similar to those observed when
increasing m. For GSURE, Figures 9(d) and 10(d) illustrate how the multiple modes of the
distributions slowly evolve and shift to smaller vales of α (and larger corresponding `2-errors).

4.4 Linear vs Logarithmical Grids

One reason why the properties of GSURE exposed in this work have not been noticed so far
is that they only become apparent in very ill-conditioned problems (cf. Section 1). Another
reason is the way the risk estimators are typically computed: Firstly, for high dimensional
problems, (3) often needs to be solved by an iterative method. For very small α, the condition
of (A∗A+αI) is very large and the solver will need a lot of iterations to reach a given tolerance.
If, instead, a fixed number of iterations is used, an additional regularization of the solution
to (1) is introduced which alters the risk function. Secondly, again due to the computational
effort, a coarse, linear α-grid excluding α = 0 instead of a fine, logarithmic one is often used
for evaluating the risk estimators. For two of the risk estimations plotted in Figure 5(c),
Figure 11 demonstrates that this insufficient coverage of small α values by the grid can lead
to missing the global minimum and other misinterpretations.

5 Numerical Studies for Non-Quadratic Regularization

In this section, we consider the popular sparsity-inducing R(x) = ‖x‖1 as a regularization
functional (LASSO penalty) to examine whether our results also apply to non-quadratic
regularization functionals. For this, let I be the support of x̂α(y) and J its complement. Let
further |I| = k and PI ∈ Rk×n be a projector onto I and AI the restriction of A to I. We
have that

dfα = ‖x̂α(y)‖0 = k and gdfα = tr(ΠB[J ]), B[J ] := PI(A
∗
IAI)

−1P ∗I ,

as shown, e.g., in [29, 12, 10], which allows us to compute SURE (6) and GSURE (7). Notice
that while x̂α(y) is a continuous function of α [6], SURE and GSURE are discontinuous at
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all α where the support I changes.
To carry out similar numerical studies as those presented the last section, we have to overcome
several non-trivial difficulties: While there exist various iterative optimization techniques to
solve (2) nowadays (see, e.g., [7]), each method typically only works well for certain ranges
of α, cond(A) and tolerance levels to which the problem should be solved. In addition, each
method comes with internal parameters that have to be tuned for each problem separately
to obtain fast convergence. As a result, it is difficult to compute a consistent series of x̂α(y)
for a given logarithmical α-grid, i.e., that accurately reproduces all the change-points in the
support and has a uniform accuracy over the grid. Our solution to this problem is to use an
all-at-once implementation of ADMM [5] that solves (2) for the whole α-grid simultaneously,
i.e., using exactly the same initialization, number of iterations and step sizes. See Appendix
A for details. In addition, an extremely small tolerance level (tol = 10−14) and 104 maximal
iterations were used to ensure a high accuracy of the solutions.
Another problem for computing quantities like (18) is that we cannot compute the expecta-
tions defining the real risks RSURE (6) and RGSURE (7) anymore: We have to estimate them as
the sample mean over SURE and GSURE in a first run of the studies, before we can compute
(18) in a second run (wherein RSURE and RGSURE are replaced by the estimates from the first
run).
We considered scenarios with each combination of m = n = 16, 32, 64, 128, 256, 512, l =
0.02, 0.04, 0.06 and σ = 0.1. Depending on m, Nε = 105, 104, 104, 104, 103, 103 noise realiza-
tions were examined. The computation was based on a logarithmical α-grid where log10 α is
increased linearly in between -10 and 10 with a step size of 0.01.

Risk plots Figure 12 shows the different risk functions and estimates thereof. The jagged
form of the SURE and GSURE plots evaluated on this fine α-grid indicates that the underlying
functions are discontinuous. Also note that while SURE and GSURE for each individual noise
realization are discontinuous, RSURE and RGSURE are smooth and continuous, as can be seen
already from the empirical means over Nε = 104.

Empirical Distributions Figure 13 shows the empirical distibutions of the different pa-
rameter choice rules for α. Here, the optimal α∗ is chosen as the one minimizing the `1-error
‖x∗−xα̂‖1 to the true solution x∗. We can observe similar phenomena as for `2-regularization.
In particular, the distributions for GSURE, also have multiple modes at small values of α and
at large values of `1-error.

Sup-Theorems Due to the lack of explicit formulas for the `1-regularized solution xα(y),
carrying out similar analysis as in Section 3 to derive theorems such as Theorems 2 and 6 is
very challenging. In this work, we only illustrate that similar results may hold for the case
of `1-regularization by computing the left hand side of (16) and (17) based on our samples.
The results are shown in Figure 14 and are remarkably similar to those shown in Figure 6.

Linear Grids and Accurate Optimization All the issues raised in Section 4.4 about
why the properties of GSURE revealed in this work are likely to be overlooked when working
on high dimensional problems are even more crucial for the case of `1-regularization: For
computational reasons, the risk estimators are often evaluated on a coarse, linear α-grid
using a small, fixed number of iterations of an iterative method such as ADMM. Figure 15
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illustrates that this may obscure important features of the real GSURE function, such as the
strong discontinuities for small α, or even change it significantly.

6 Conclusion

From the results presented in this work, we see that unbiased risk estimators encounter enor-
mous difficulties for the parameter choice in variational regularization methods for ill-posed
problems. While the discrepancy principle yields a quite unimodal distribution of regulariza-
tion parameters resembling the optimal one with slightly increased mean value, the SURE
estimates start to develop multimodality, and the additional modes consist of underestimated
regularization parameters, which may lead to significant errors in the reconstruction.
For the case of GSURE, which is based on a presumably more reliable risk, the estimates
produce quite wide distributions (at least in logarithmic scaling) for increasing ill-posedness,
in particular there are many highly underestimated parameters, which clearly yield bad recon-
structions. We expect that this behavior is rather due to the bad quality of the risk estimators
than the quality of the risk. These findings may be explained by Theorem 6, which indicates
that the estimated GSURE risk might deviate strongly from the true risk function when the
condition number of A is large, i.e. the problem is asymptotically ill-posed as m → 0. Con-
sequently one might expect a strong variation in the minimizers of GSURE with varying y
compared to the ones of RGSURE. A potential way to cure those issues is to develop novel
risk estimates for RGSURE that are not based on Stein’s method, possibly it might even be
useful not to insist on the unbiasedness of the estimators.
We finally mention that for problems like sparsity-promoting regularization, the GSURE risk
leads to additional issues, since it is based on a Euclidean norm. While the discrepancy
principle and the SURE risk only use the norms appearing naturally in the output space of
the inverse problem (or in a more general setting the log-likelihood of the noise), the Euclidean
norm in the space of the unknown is rather arbitrary. In particular, it may deviate strongly
from the Banach space geometry in `1 or similar spaces in high dimensions. Thus, different
constructions of GSURE risks are to be considered in such a setting, e.g. based on Bregman
distances.

A A Consistent LASSO Solver

We want to solve (2) with R(x) = ‖x‖1 for a large number of different values of α but need to
ensure that the results are comparable and consistent. For this, we rely on an implementation
of the scaled version of ADMM [5] that carries out the iterations for all α simultaneously,
with the same penalty parameter ρ for all α and a stop criterion based on the maximal primal
and dual residuum over all α. Online adaptation of ρ is also performed based on primal and
dual residua for all α. While ensuring the consistency of the results, this leads to sub-optimal
performance for individual α’s which has to be countered by using a large number of iterations
to obtain high accuracies.

Algorithm 1 (All-At-Once ADMM). Given α1, . . . , αNα, ρ > 0 (penalty parameter), τ > 1,
µ > 1 (adaptation parameters), K ∈ N (max. iterations) and ε > 0 (stopping tolerance),
initialize X0, Z0, U0 ∈ Rn×Nα by 0, and Y = y ⊗ 1TNα, Λ = [α1, . . . , αNα ] ⊗ 1n, where 1l

denotes an all-one column vector in Rl. Further, let � denote the component-wise multipli-
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cation between matrices (Hadamard product).

For k = 1, . . . ,K do:

Xk+1 = (A∗A+ ρI)−1(A∗Y + ρ(Zk − Uk)) (x− update)

Zk+1 = sign
(
Xk+1 + Uk

)
�max

(
Xk+1 + Uk − Λ/ρ, 0

)
(z − update)

Uk+1 = Uk +Xk+1 − Zk+1 (u− update)

rk+1
i = Xk+1

(·,i) − Z
k+1
(·,i) ∀ i = 1, . . . , Nα (primal residuum)

sk+1
i = −ρ(Zk+1

(·,i) − Z
k
(·,i)) ∀ i = 1, . . . , Nα (dual residuum)

(Uk+1, ρ) =


(Uk+1/τ, τρ) if #

{
i
∣∣∣ ‖rk+1

i ‖2 > µ‖sk+1
i ‖2

}
> Nα/2

(τUk+1, ρ/τ) if #
{
i
∣∣∣ ‖sk+1

i ‖2 > µ‖rk+1
i ‖2

}
> Nα/2

(Uk+1, ρ) else.

(ρ− adaptation)

εprii = ε
(√

n+ max(‖Xk+1
(·,i) ‖2, ‖Z

k+1
(·,i) ‖2)

)
∀ i = 1, . . . , Nα (primal stop tol)

εduali = ε
(√

n+ ρ‖Uk+1
(·,i) ‖2

)
∀ i = 1, . . . , Nα (dual stop tol)

stop if ‖rk+1
i ‖2 < εprii ∧ ‖sk+1

i ‖2 < εduali ∀ i = 1, . . . , Nα

The algorithm returns both Xk+1
(·,i) and Zk+1

(·,i) as approximations of the solution to (2) with

R(x) = ‖x‖1 and α = αi of which we use Zk+1
(·,i) for our purposes as it is exactly sparse due to

the soft-thresholding step (z-update). In the computations, we furthermore initialized ρ = 1
and used τ = 2, µ = 1.1, ε = 10−14 and K = 104.
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[3] Gilles Blanchard and Peter Mathé, Discrepancy principle for statistical inverse problems
with application to conjugate gradient iteration, Inverse problems 28 (2012), no. 11,
115011. 2

[4] Peter Blomgren and Tony F Chan, Modular solvers for image restoration problems using
the discrepancy principle, Numerical linear algebra with applications 9 (2002), no. 5,
347–358. 3

22



[5] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed optimization and
statistical learning via the alternating direction method of multipliers, Foundations and
Trends in Machine Learning 3 (2011), no. 1, 1–122. 20, 21

[6] Björn Bringmann, Daniel Cremers, Felix Krahmer, and Michael Möller, The homotopy
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Figure 11: Illustration of the difference between evaluating the GSURE risk on a coarse,
linear grid for α as opposed to a fine, logarithmic one: In (a), a linear grid is constructed
around α̂DP as α = ∆α, 2∆α, . . . , 50∆α with ∆α = 2α̂DP/50. While the plot suggests a clear
minimum, (b) reveals that it is only a sub-optimal local minimum and that the linear grid did
not cover the essential parts of GSURE(α, y). (c) and (d) show the same plots for a different
noise realization. Here, a linear grid will not even find a clear minimum. Both risk estimators
are the same as those plotted in Figure 5(c) with the same colors.
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parameter choice rules using `1-regularization, m = n = 64, l = 0.06, σ = 0.1 and N = 104

samples of ε.
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Figure 14: Illustration that Theorems 2 and 6 might also hold for `1-regularization: The left
hand side of (16)/(17) is estimated by the sample mean and plotted vs. m. The black dotted
lines were added to compare the order of convergence.
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Figure 15: Illustration of the difficulties of evaluating the GSURE risk in the case
of `1-regularization: In (a), a coarse linear grid is constructed around α̂DP as α =
∆α, 2∆α, . . . , 20∆α with ∆α = α̂DP/10. Similar to Figure 11(a) the plot suggests a clear
minimum. However, using a fine, logarithmic grid, (b) reveals that it is only a sub-optimal lo-
cal minimum before a very erratic part of GSURE(α, y) starts. (c) shows how a coarse α-grid
can lead to an arbitrary projection of GSURE(α, y) that is likely to miss important features.
Both risk estimators are the same as those plotted in Figure 12(c) with the same colors. In
(d), the difference between computing GSURE(α, y) with the consistent and highly accurate
version of ADMM (Impl A) and with a standard ADMM version using only 20 iterations
(Impl B) is illustrated.
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