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Abstract: In crossover designs, each subject receives a series of treatments
one after the other. Most papers on optimal crossover designs consider an
estimate which is corrected for carryover effects. We look at the estimate
for direct effects of treatment, which is not corrected for carryover effects.
If there are carryover effects, this estimate will be biased. We try to find a
design that minimizes the mean square error, that is the sum of the squared
bias and the variance. It turns out that the designs which are optimal for
the corrected estimate are highly efficient for the uncorrected estimate.
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1. Introduction

In crossover designs, each experimental unit gets more than one treatment in
consecutive periods. There is concern that a treatment applied in a given period
may, in addition to its direct effect, also have a carryover effect, i.e. it may effect
the measurement in the subsequent period. In most cases, the experimenter is
interested in the direct effects of the treatments. So the experimenter will try
to ensure that there are no carryover effects or at least try to minimize them.
Attempts to remove carryover effects include washout periods or consumption
of a neutral taste to neutralize lingering flavors.

If the carryover effects cannot be eliminated completely, the experimenter
may want to apply a model that allows for carryover. Kunert and Sailer (2006)
warn against the illusion that the model with carryover effects solves the problem
of carryover completely. They state as one of the main disadvantages of the
model with carryover effects that experimenters might put less effort in avoiding
carryover when they use it. Senn (2002) gives ”5 reasons for believing that the
simple carry-over model is not useful.”(Senn, 2002, chapter 10.3) He also argues
that experimenters should be more interested in avoiding carryover than in
adjusting for it.

On the other hand Ozan and Stufken (2010) recommend adjusting for carryo-
ver effects in each experiment. They showed, however, that the variance of the
corrected estimators can get large, especially in more complicated models like
the model with self- and mixed-carryover effects or the model with proportional
carryover effects, and recommend using designs which minimize the increase of
the variance.
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A possible compromise might be analyzing in a model without carryover
effects but choosing the design in such a way that the carryover effects have as
little impact on the estimates as possible. David et al. (2001) showed that this
approach can be quite useful, at least in agricultural studies.

Compared to the vast literature on the optimality of designs in the model
with carryover effects, there is only a very small number of papers on the choice
of designs if the carryover effect is neglected. The most relevant paper for our
work is Azäıs and Druilhet (1997) who present a bias-criterion, which is similar
to the optimality criterion by Kiefer (1975). We note that, apart from the disad-
vantage of having biased estimates, there is the advantage of a smaller variance
of the estimators neglecting the carryover effects. The present paper considers
an optimality criterion that gives a compromise between these two opposing
attributes. This criterion is the well-known mean square error (MSE).

2. Calculating the MSE

We consider the set of crossover designs Ωt,n,p with t treatments, n units and p
periods. If d ∈ Ωt,n,p is applied, then yij , the j-th observation on unit i, arises
from a model with additive carryover effects, i.e.

yij = αi + τd(i,j) + ρd(i,j−1) + εij .

Here αi, 1 ≤ i ≤ n, is the effect of the i-th unit, τd(i,j) is the effect of the
treatment given to the i-th unit in the j-th period by the design d, ρd(i,j−1) is
the carryover effect of the treatment given to unit i in period (j − 1), and εij is
the error. The errors are independent, identically distributed with expectation
0 and variance σ2.
In vector notation, this model can be written as

y = Uα+ Tdτ + Fdρ+ ε.

Here y is the vector of the yij and ε is the vector of the errors. The vectors
α , τ and ρ are the vectors of the unit, period, direct and carryover effects,
respectively. The matrices U , Td and Fd are the respective design-matrices.

We assume that the analysis of the data is done with a model without car-
ryover effects, i.e.

y = Uα+ Tdτ + ε.

It is hoped that, due to the precautions taken by the experimenter, the carryover
effects are vanishingly low or zero. In that case, the uncorrected estimate is
unbiased and the estimate which is corrected for carryover effects will have a
unnecessarily large variance.
If, however, there are carryover effects, then the uncorrected estimate of the
treatment effects is biased.

We try to determine a design that minimizes the mean square error (MSE)
as a performance measure combining bias and variance. Because the MSE in
general is not convex, it is neither a criterion in the sense of Kiefer (1975) nor
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in the sense of Azäıs and Druilhet (1997).
The joint information matrix of direct and carryover effects can be written as

Md =

[
Md11 Md12

MT
d12 Md22

]
,

where

Md11 = TTd ω
⊥(U)Td,

Md12 = TTd ω
⊥(U)Fd,

Md22 = FTd ω
⊥(U)Fd,

see (Bose and Dey, 2009, p. 17).
In what follows, we restrict attention to designs which allow estimation of

all contrasts of direct effects in the model without carryover effects. Because
Md11 is the information matrix for direct effects in the model without carryover
effects, this is the set of all designs for which rank(Md11) = t− 1. In the model
with carryover-effects, we see that the MSE of the uncorrected estimate τ̂i − τj
for any pair (i, j), i 6= j then equals

E(τ̂i − τj − (τi − τj))2 = σ2`TijM
+
d11`ij + (`TijM

+
d11Md12ρ)2,

where M+
d11 is the Moore-Penrose generalized inverse of Md11 and `ij is a t-

dimensional vector with +1 in position i, −1 in position j and all other entries
0. If tr(M) denotes the trace of a matrix M , this can be rewritten as

E(τ̂i − τj − (τi − τj))2 = σ2tr(M+
d11`ij`

T
ij) + ρT (MT

d12M
+
d11`ij`

T
ijM

+
d11Md12)ρ.

Noting that ∑
i

∑
j 6=i

`ij`
T
ij = tIt − 1t1

T
t

and averaging over all pairs (i, j), i 6= j, we observe that the average MSE equals

σ2tr(M+
d11Ht) + ρT (MT

d12M
+
d11HtM

+
d11Md12)ρ,

where Ht = It − 1
t 1t1

T
t . Since Md11 has row- and column-sums zero, this sim-

plifies to
σ2tr(M+

d11) + ρT (MT
d12M

+
d11M

+
d11Md12)ρ.

To reduce the dependence on the unknown parameter ρ, we consider the worst
case for given ρTHtρ =

∑
(ρi − ρ̄)2 = δ, say, i.e. we consider

max
ρTHtρ=δ

(σ2tr(M+
d11) + ρT (MT

d12M
+
d11M

+
d11Md12)ρ)

= σ2tr(M+
d11) + δλ1(MT

d12M
+
d11M

+
d11Md12),

where λi(M) denotes the i-th ordered eigenvalue of a symmetric matrix M .
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Definition 1. Let d ∈ Ωt,n,p. Then we define

MSE(d) = σ2tr(M+
d11) + δλ1(MT

d12M
+
d11M

+
d11Md12).

The advantage of this criterion is that the multivariate purpose of minimizing
the bias and maximizing the precision of the estimators can be calculated as a
number in R. Our aim is to find a design that minimizes MSE(d).
Note that MSE(d) depends on the two unknown parameters σ2 and δ. The com-
parison of two designs, however, only depends on the quotient δ

σ2 . We therefore
assume can without any loss of generality assume that σ2 = 1.

Define St as the set of all (t× t)-permutation matrices. For any design d, we
define the symmetrized version M̄ij of the matrix Mij as

M̄dij =
1

t!

∑
Π∈St

ΠTMdijΠ,

for 1 ≤ i ≤ j ≤ 2. Note that trMdij = trM̄dij . Since all Mdij have row-sums
zero, 1Tt Mdij = 0, it hence is easy to see that

M̄dij = tr(Mdij)
1

t− 1
Ht

for 1 ≤ i ≤ j ≤ 2.

Proposition 1. For any design d ∈ Ωt,n,p there is a lower bound for the
MSE(d), namely

MSE(d) ≥ (t− 1)2

tr(Md11)
+ δ

(tr(Md12))2

(tr(Md11))2
.

Equality holds if Md11 and Md12 are completely symmetric.

Proof. The fact that

tr
(
M+
d11

)
≥ (t− 1)

2

tr(Md11)

is standard knowledge. It follows immediately from Kiefer’s (1975) Proposition
1.
The lower bound of λ1(MT

d12M
+
d11M

+
d11Md12) is derived as follows.

Note that λ1(MT
d12M

+
d11M

+
d11Md12) = λ1(M+

d11Md12M
T
d12M

+
d11).

Observing that Md11M
+
d11Md12 = Md12, we get

Md12M
T
d12 = Md11M

+
d11Md12M

T
d12M

+
d11Md11.

Because M+
d11Md12M

T
d12M

+
d11 has row- and column-sums 0, we have that

M+
d11Md12M

T
d12M

+
d11 ≤ λ1(M+

d11Md12M
T
d12M

+
d11)Ht

in the Loewner-sense and, consequently,

Md12M
T
d12 ≤Md11Md11λ1(M+

d11Md12M
T
d12M

+
d11).
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This implies the same ordering for all eigenvalues, i.e. for all 1 ≤ i ≤ t we get

λi(Md12M
T
d12) ≤ λi(Md11Md11)λ1(M+

d11Md12M
T
d12M

+
d11).

Since λi(Md11) > 0 and, therefore, λi(Md11Md11) > 0 for 1 ≤ i ≤ t − 1, we
conclude that

λ1(M+
d11Md12M

T
d12M

+
d11) ≥ λi(Md12M

T
d12)

λi(Md11Md11)
. (1)

Consider the singular values of Md12,

σ1(Md12) ≥ . . . ≥ σt−1(Md12) ≥ σt(Md12) = 0.

From the singular value decomposition, it follows that

tr(Md12) = tr



σ1(Md12)

. . .

σt−1(Md12)
σt(Md12)

G
 ,

where G is an orthonormal matrix. Consequently,

|tr(Md12)| =

∣∣∣∣∣
t∑
i=1

σi(Md12)gii

∣∣∣∣∣ ≤
t∑
i=1

σi(Md12)|gii|,

where gij is the (i, j)-th entry of G. Since G is an orthogonal matrix, all |gij | ≤ 1
and we get the well-known inequality between the trace and the sum of the
singular values

|tr(Md12)| ≤
t∑
i=1

σi(Md12). (2)

Could it be that
σi(Md12)

λi(Md11)
<
|tr(Md12)|
tr(Md11)

for all 1 ≤ i ≤ t− 1?
It would follow that

t−1∑
i=1

σi(Md12) <
|tr(Md12)|
tr(Md11)

t−1∑
i=1

λi(Md11).

Since σt(Md12) = 0 and λt(Md11) = 0, this implies that

t∑
i=1

σi(Md12) < |tr(Md12)|.
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This, however, contradicts equation (2). Hence, there is an i0, such that

σi0(Md12)

λi0(Md11)
≥ |tr(Md12)|

tr(Md11)
.

Note that λi(Md11Md11) = (λi(Md11))2 and that λi(Md12M
T
d12) = (σi(Md12))2.

Inserting this in equation (1), we have shown that

λ1(MT
d12M

+
d11M

+
d11Md12) ≥ (σi0(Md12))2

(λi0(Md11))2
≥ |tr(Md12)|2

(tr(Md11))2
.

It is easy to verify that complete symmetry of Md11 and Md12 implies equality.
This completes the proof.

Thus we can restrict to symmetric designs and calculate the MSE as function
of traces instead of matrices. For any design d define qdij = 1

n tr (Mdij) for
1 ≤ i ≤ j ≤ 2. It was shown by Kushner (1997) that the qdij are weighted
means of the sequences of treatments in the design. So, if there is a design
d with l different sequences s1, . . . , sl with proportions πs1 , . . . , πsl , such that∑l
j=1 πsj = 1 then it follows

qdij =

l∑
k=1

qij(sk)πsk .

That simplifies the calculation of the bound of MSE and we get

MSE(d) ≥ (t− 1)2

n qd11
+

(
qd12

qd11

)2

δ.

3. Optimal designs

The MSE of a design depends only on the sequences it uses and their proporti-
ons. It is known that each sequence within a symmetry group (i.e. all sequences
which are equal when changing treatment labels only) has the same qij(s), so
that we only need to analyze a representative sequence. For any sequence we cal-
culate q11(s) and q12(s) as follows (cf. Kushner (1998) or Bose and Dey (2009)):

q11(sk) = p− 1

p

t∑
m=1

f2
s,m and q12(sk) =

1

p

(
pBs + fs,tp −

t∑
m=1

f2
s,m

)
.

Here fs,m is the frequency of treatment m in the sequence, fs,tp is the frequency
of the treatment given in the last period and Bs the number of periods, in which
the treatment of the period right before was repeated.
There are four special sequences to be investigated:

s1 =[1, . . . , p]
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sequence q11(s) q12(s)
s1 p− 1 (1− p)/p
s2 (p2 − p− 2)/p 0
s3 ((p2 − r)t− p2 + r2)/(pt) (p(1− p) + (r − 1)(r − t))/(pt)
s4 ((p2 − r)t− p2 + r2)/(pt) (pt(p− t) + p(1− p) + (r − 1)(r − t))/(pt)

Table 1
Values for q11(s) and q12(s) for the investigated sequences

s2 =[1, . . . , p− 1, p− 1]

s3 =[1, . . . , t, 1, . . . , t, . . . , 1, . . . , t, 1, . . . , r]

s4 =[1, 1, . . . , 1, 2, 2, . . . , 2, . . . , t, t, . . . , t].

Here r ≤ t. The sequences s1 and s2 are only for the case p ≤ t and s3 and
s4 for the case t > p. In sequences s3 and s4 not all treatments are repeated
equally often. While only the number of replications for the treatment given in
the last period is of outstanding importance we assume that the last treatment
in s4 is given (p − r)/t + 1 times. The values of q11(s) and q12(s) for the four
mentioned classes of sequences can be seen in Table 1.
We split the problem up in two cases p > t and p ≤ t. For p > t we get the
following result:

Proposition 2. Let p > t and let ∆t,p the set of all (approximate) designs with
t treatments and p periods.
Let d∗ the design which consists of sequence s3 with proportion

π1 = 1− (r − 1)(t− r) + p(p− 1)

pt(p− t)

and of sequence s4 with proportion π2 = 1− π1. It holds:

1. d∗ is universally optimal for estimating the treatment effects in the model
with additive carryover effects and in the model without it.

2. ∀d ∈ ∆t,p : MSE(d) ≥MSE(d∗).

Proof. 1. The design d∗ fulfills the requirements of theorem 3 in Kushner
(1998).

2. Because d∗ is a generalized Youden design, it is universally optimal in
the row-column model. (Shah and Sinha, 1989). Therefore tr(Md11) is
maximized and maxd∈∆t,p qd11 = qd∗11.
Noting that qd∗12 = 0, the proposition follows.

We show that this design is not only universally optimal but also bias-optimal
in the sense of Azäıs and Druilhet (1997). In the case p ≤ t the bias-optimal
design is even simplier.

Proposition 3. Let d∗ ∈ Ωt,n,p. In case p ≤ t let d∗ consist only of sequence
s2. In case p > t let d∗ be as in proposition 2. It follows: d∗ is universally
bias-optimal in the sense of Azäıs and Druilhet (1997).
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Proof. We observe for symmetric designs: Md = qd12
qd11

Ht and therefore tr(Md) =

(t− 1) qd12qd11
. Because Md and especially Md∗ are c.s. and qd∗12 = 0 in both cases,

the proposition follows.

The MSE-optimal design for the case p ≤ t is more complicated. The following
boundaries help to restrict the class of competing designs:

Proposition 4. Let p ≤ t and let Bs be the number of periods, in which the
treatment of the period right before was repeated. Then it holds:

t∑
m=1

f2
s,m ≥ (p+ 2Bs).

Proof. Without loss of generality we assume that only treatments 1, . . . , l occur
in the sequence. Then l ≤ p. For 1 ≤ m ≤ p define am = fs,m − 1. Then
p∑

m=1
fs,m = p and thus

p∑
m=1

am = 0. Let M∗ = {m : fs,m ≥ 2} the set of

treatments that occur more than once. We get:

p∑
m=1

f2
s,m =

p∑
m=1

(am + 1)2 =
∑

m∈M∗

(am + 1)2 +
∑

m/∈M∗

(am + 1)2.

From
p∑

m=1
am = 0 we get

∑
m∈M∗

am = −
∑

m/∈M∗
am. We further know

∑
m∈M∗

a2
m ≥∑

m∈M∗
am ≥ Bs and thus

∑
m/∈M∗

a2
m ≥

∑
m/∈M∗

(−am) ≥ Bs.

With that we get∑
m∈M∗

(am + 1)2 +
∑

m/∈M∗

(am + 1)2 =
∑

m∈M∗

a2
m + 2

∑
m∈M∗

am +
∑

m∈M∗

1

+
∑

m/∈M∗

a2
m + 2

∑
m/∈M∗

am +
∑

m/∈M∗

1

= p+
∑

m∈M∗

a2
m +

∑
m/∈M∗

a2
m

≥ p+ 2Bs.

With that we can conclude:

Corollary 1. Let Bs the number of periods, in which the treatment of the period
right before was repeated. It holds for every sequence s:

q11(s) ≤ p− 1

p
(p+ 2Bs) = p− 1− 2

p
Bs

q12(s) ≤ (Bs − 1)
p− 1

p
.
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If we define B(d) of a design d as the weighted mean B(d) =
∑
s
Bsπ(s) this also

holds for design d.

With this preliminary work we can calculate MSE-optimal designs for the
case p ≤ t. At first we take a look at the case p = 2. Since there are only two
possible sequence classes we get the following proposition.

Proposition 5. Let 2 = p ≤ t and let ∆t,2 the set of all (approximate) designs
with t treatments and 2 periods.
Define ds1 as a symmetric design which only consists of sequences s1 = [1, 2].
It holds mind∈∆t,2

MSE(d) = MSE(ds1).

Proof. We get that

MSE(d) ≥ (t− 1)2

nπ
+

(
−π
2π

)2

δ =
(t− 1)2

nπ
+

1

4
δ

with π the proportion of sequence s1. From that the proposition follows.

Even in the case of p ≥ 3 we can restrict our examination on designs that
only consist of s1 and s2. This is shown in the following proposition.

Proposition 6. Let 3 ≤ p ≤ t and let ∆t,p the set of all (approximate) designs
with t treatments and p periods.
Let B(d) =

∑
s
π(s)Bs, the weighted mean of the number of consecutive treat-

ments in the design. It holds:

MSE(d) ≥ (t− 1)2

nqd11
+

(
qd12

qd11

)2

δ ≥ (t− 1)2

n
(
p− 1− 2

pB(d)
) +

(
p−1
p (B(d)− 1)

p− 1− 2
pB(d)

)2

δ

with equality if the design is symmetric and consists only of sequences s1 and
s2.

Proof. From corollary 1 we know that qd11 ≤ p− 1− 2
pB(d) and qd12 ≤ (B(d)−

1)p−1
p .

As long as B(d) ≤ 1 we have qd12 ≤ 0 and we get a minimal MSE(d) if qd12

is as large as possible.
If B(d) > 1, we see that qd11 < p−1− 2

p and (qd12)2 ≥ 0. This means for any

design d with B(d) > 1 we get MSE(d) ≥ (t−1)2

n(p−1− 2
p )

= MSE(ds2), with ds2 the

design that only consists of s2. This completes the proof.

We know that the design ds1 is universally optimal if δ = 0 so it has to
be optimal in a (small) domain around it. The limit is given by the following
proposition.

Proposition 7. Let 3 ≤ p ≤ t and let ∆t,p the set of all (approximate) sym-
metric designs with t treatments and p periods.
Define ds1 as the symmetric design which only consists of sequence s1.

Then ∀d ∈ ∆t,p it holds: If δ ≤ (t−1)2p2

n(p−1)(p+1)(p−2) then MSE (ds1) ≤MSE (d) .
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Proof. Let d a design with proportion π for sequence s1 and proportion (1−π) for

sequence s2. Define v = (t−1)2

n .We can find an optimal mixture by differentiating
the MSE with respect to π. For given δ we get the minimal MSE, if

π =
vp(p+ 1)(p− 2)

−2vp+ δ(p− 1)2(p+ 1)(p− 2)
.

We calculate the derivative of π with respect to δ and get:

∂π

∂δ
=
−(vp((p− 1)(p+ 1)(p− 2))2)

(2vp− δ(p− 1)2(p+ 1)(p− 2))2
.

Noting that the derivation is negative and the optimal π decreases in δ.
We determine the point δ for that π = 1 holds and get:

δ1 =
vp2

(p− 1)(p+ 1)(p− 2)
.

Note that:
∂MSE (d)

∂π

∣∣
π=0

=
−(2vp)

(−p2 + p+ 2)2
≤ 0.

Furthermore the derivative has exactly one root at the optimal π. Thus for δ ≤ δ1
we get that MSE(d) decreases if π increases and π = 1 gives the minimal MSE
for all mixtures.

For larger δ the optimal design is a mixture of s1 and s2.

Proposition 8. Let 3 ≤ p ≤ t and let ∆t,p the set of all (approximate) designs
with t treatments and p periods.
Define d∗ as a symmetric design having sequence s1 with proportion

π∗ =
(t− 1)2p (p (1− p) + 2)

2(t− 1)2p− nδ (p− 1)
2

(p+ 1) (p− 2)

and sequence s2 with proportion 1− π∗.
Then ∀d ∈ ∆t,p it holds: If

δ >
(t− 1)2p2

n(p− 1)(p+ 1)(p− 2)
= δ1 : MSE (d∗) ≤MSE (d) .

Proof. We only need to prove that the mixture of π∗ sequences with s1 and
(1−π∗) with s2 is the best under all mixtures of s1 and s2. Let π the proportion
of sequence s1 in an arbitrary design and let (1 − π) be the proportion of s2.

Define v := (t−1)2

n . We differentiate the MSE of the design with the respect to
π and get:

∂MSE

∂π
=

2(π(p− 1)2(p+ 1)(p− 2)δ − vp2(p− 1) + 2v(1− π)p)

(p2 − p+ 2π − 2)3
.

Solving for a root with respect to π gives π∗.
We see that π∗ decreases with δ but stays greater than 0.

At δ = vp2

(p−1)(p+1)(p−2) we observe π = 1 and because π∗ can not be smaller

than zero, a valid design always exists.
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4. Optimal Designs for the model with period effects

We extend the model and include period effects, i.e. the model becomes

y = Uα+ Pβ + Tdτ + Fdρ+ ε,

with β the vector of the period effects and P the corresponding design matrix.
The information matrices for the model become (with an argument of Kunert
and Martin (2000))

M̃d11 = TTd ω
⊥ ([U, P ])Td)

M̃d12 = HtF
T
d ω
⊥ ([U, P ])Td

M̃d22 = HtF
T
d ω
⊥ ([U, P ])FdHt

The calculations of tr
(
M̃d11

)
and tr

(
M̃d12

)
are different from the calculations

before. Especially it is not possible to express the traces as weighted means of
the traces of the sequences. Following Cheng and Wu (1980) these traces can
be written as:

tr(M̃d11) = n q̃d11 = n qd11 −
1

n

t∑
i=1

p∑
k=1

l2dik +
1

np

t∑
i=1

r2
di

tr(M̃d12) = n q̃d12 = n qd12 −
1

n

t∑
i=1

p∑
k=1

ldik l̃dik +
1

np

t∑
i=1

rdir̃di,

where ldik is the number on appearances of treatment i in period k, l̃dik the
number on appearances of treatment i in period k − 1 with l̃di1 = 0, rdi the
number on appearances of treatment i and r̃di the number on appearances of
treatment i in the first p − 1 periods and qd11 and qd12 are as in section 3.
Example 4.6 in Kunert (1983) shows that there are (non-symmetric) desgins
such that M̃d12 = 0, while Md12 6= 0. However, tr(M̃d12) 6= tr(Md12) can only
be achieved if tr(M̃d11) < tr(Md11).

Note that for symmetric designs it holds that tr(M̃d11) = n qd11 and tr(M̃d12) =
n qd12.Therefore in the case of p > t the results of Proposition 2 extend to the
model with period effects.

For t ≤ p, we start by showing that for a wide class of designs the loss in
tr(M̃d11) is higher than the possible gain in |tr(M̃d12)|.

Proposition 9. Let Ω̃t,n,p the set of all designs with t treatments, n units and
p periods, where all treatments appear equally often, i.e. rdi = np

t , 1 ≤ i ≤ t.
If d ∈ Ω̃t,n,p, it holds that

tr
(
TTd ω

(
ω⊥ (U)P

)
Td
)
≥ |tr(HtF

T
d ω

(
ω⊥ (U)P

)
Td)|.

Proof. From the Cauchy-Schwarz inequality it is known that |q̃d12| ≤
√
q̃d11q̃d22.

Similarly it holds for Q = 1
nPP

T − 1
np1np1

T
np = ω

(
ω⊥ (U)P

)
:

tr
(
TTd QTd

)
tr
(
HtF

T
d QFdHt

)
≥ |tr(HtF

T
d QTd)|2.
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We know that while tr
(
TTd QTd

)
is the loss in M̃d11, |tr(HtF

T
d QTd)| is the gain in

M̃d12. Thus it satisfies to show that tr
(
TTd QTd

)
≥ tr

(
HtF

T
d QFdHt

)
. Therefore

we calculate:

tr
(
TTd QTd

)
=

1

n

t∑
i=1

p∑
j=1

(
ldij − l̄d·j

)2 − 1

np

t∑
i=1

(rdi − r̄d·)2

tr
(
HtF

T
d QFdHt

)
=

1

n

t∑
i=1

p−1∑
j=o

(
ldij − l̄d·j

)2 − 1

np

t∑
i=1

(r̃di − ¯̃rd·)
2

=
1

n

t∑
i=1

p∑
j=1

(
ldij − l̄d·j

)2 − 1

np

t∑
i=1

(rdi − r̄d·)2

− 1

n

t∑
i=1

(
ldip − l̄d·p

)2
+

2

np

t∑
i=1

(rdi − r̄d·)
(
ldip − l̄d·p

)
− 1

np

t∑
i=1

(
ldip − l̄d·p

)2
=tr

(
TTd QTd

)
− 1

np

t∑
i=1

(p+ 1)
(
ldip − l̄d·p

)2
+

2

np

t∑
i=1

(rdi − r̄d·)(ldip − l̄d·p)

If rdi = np
t , 1 ≤ i ≤ t, it holds:

tr
(
HtF

T
d QFdHt

)
− tr

(
TTd QTd

)
= − 1

np

t∑
i=1

(p+ 1)
(
ldip − l̄d·p

)2 ≤ 0.

With that result we are now able to show that for every design where each
treatment appears equally often there is a symmetric design with lower or equal
bias.

Proposition 10. Let d be an arbitrary design with p ≤ t and let ∆̃t,p the set
of all symmetric (approximate) designs with t treatments, p ≥ 3 periods and
rdi = np

t , 1 ≤ i ≤ t.

It holds: ∀d ∈ Ω̃t,n,p ∃d∗ ∈ ∆̃t,p with
(
q̃d12
q̃d11

)2

≥
(
qd∗12

qd∗11

)2

and qd∗11 ≥ q̃d11.

Proof. Case 1:
(
q̃d12
q̃d11

)2

≥
(

1
p

)2

.

Define ds1 as the design which only consists of sequence s1. It holds:(
qds112

qds111

)2

=

(
1

p

)2

≤
(
q̃d12

q̃d11

)2

.



C. Neumann and J.Kunert/MSE-optimal crossover designs 13

With q̃d11 ≤ qd11 ≤ qds111 the proposition follows.

Case 2:
(
q̃d12
q̃d11

)2

<
(

1
p

)2

.

Let d2 the symmetric design that consists of sequences s1 with proportion π =
|q̃d12| pp−1 and sequences s2 with proportion 1− π.
It follows that |q̃d12| = |qd212| and qd211 = p− 1− 2

p + 2|q̃d12|
p−1 .

One can split up the traces q̃d11 and |q̃d12| in the parts one gets in the model
without period effects (the ’old’ traces) and the gain respectively the loss towards
the period effects and get: q̃d11 = qd11− qd11,diff and |q̃d12| ≥ |qd12|− |qd12,diff |.
We need to show that q̃d11 < q̃d211.We get

qd211 − q̃d11 = p− 1− 2

p
+

2|q̃d12|
p− 1

− q̃d11

≥ p− 1− 2

p
+

2

p− 1
(|qd12| − |qd12,diff |)

− qd11(d) + qd11,diff

= p− 1− 2

p
+

2

p− 1
|qd12| − qd11(d) +

p− 3

p− 1
|qd12,diff |

≥ p− 1− 2

p
+

2

p− 1
|qd12| − qd11

If d̃ is a mixture of s1 and s2 we get

2

p− 1
|qd̃12| − qd̃11 =

2

p
− p+ 1

and with corollary 1 it follows:

2

p− 1
|qd12| − qd11 ≥

2

p
− p+ 1

for (an arbitrary) design d. Thus we get

qd211 − q̃d11 ≥ 0

and the proposition follows.

Thus the calculations of the sections before hold for a wide class of designs
even in the model with period effects.

5. Efficiency in terms of MSE

As one usually is not choosing the model for MSE-optimality reasons but for
reasons like optimal estimation of the main effects it is useful to take a look at
the efficiency, i.e. the ratio between the optimal and the actual MSE. We take
the ratio

Eff(d) = MSEopt/MSE(d)
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because our goal is to minimize the MSE. We examine the efficiency of three
different designs ds1 respectively ds3 , ds2 respectively ds4 and dopt, the optimal

design in the model with carryover effects. As before we define v = (t−1)2

n .
Again, we split the problem up in two cases. First we examine the case p > t.

Obviously we get:
Eff(dopt) = 1

as the MSE-optimal and the optimal design for estimating direct effects fall
together.
For the design ds3 we get:

Eff (ds3) =

ed︷ ︸︸ ︷
pt(t− 1)2((t− 1)p2 + r(r − t))

ed + δn((p− r)(p+ r − 1) + t(r − 1))2
.

At δ = 0 the efficiency is 1 (due to its optimality) and falls towards zero with
growing δ.
For the design ds4 we get:

Eff (ds4) =
ed

ed + δn((t− 1)p2 + (1− t2)p+ (r − t)(r − 1))2
.

We observe similar behavior for the efficiency as for ds3 .
Now focus on the case: p ≤ t. First let δ ∈ [0, δ1) . Obviously

Eff(ds1) = 1.

For design ds2 we get:

Eff(ds2) =
(δ(p− 1) + p2v)(p2 − p− 2)

vp3(p− 1)
.

The efficiency increases in δ and is 1 − 2/(p(p − 1)) at δ = 0. For higher p we
get a relatively high efficiency even in the worst case.
For the optimal design in the model with carryover effects we get:

Eff(dopt) =

(
vp2 + δ (p− 1)

) (
p (p− 1)

2
t− 2

)2

p2 (p− 1)
2
(

(p− 1) ((p− 1) t− 1)
2
δ + vpt

(
p (p− 1)

2
t− 2

)) .
At point δ = 0 we get an efficiency of 1− 2/(pt(p− 1)2) which depends on t and
p but is relatively near to 1.
Now assume that δ > δ1. For design ds1 we get:

Eff(ds1) =
vp3

(
(p− 1)

2 (
p2 − p− 2

)
δ − vp

)
δ (p− 1) (p+ 1)

2
(p− 2)

2
(vp2 + δ (p− 1))

.
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which is rapidly decreasing towards 0 when δ increases.
The design ds2 is the other way round (because in the optimal design the pro-
portion of sequences s2 increases). Here the efficiency calculates to:

Eff(ds2) = 1− vp

δ(p− 1)2(p+ 1)(p− 2)
.

The efficiency tends to 1 for bigger δ.
The last but most important efficiency is the efficiency of the universally optimal
design. In this case we get:

Eff (dopt) =

((
p3 − 2p2 + p

)
t− 2

)2
δ (p− 1)

3
(p− 2)

2
(p+ 1)

2

×
vp
(
vp− (p− 1)

2
(p− 2) (p+ 1) δ

)
(1− p) (t (1− p) + 1)

2
δ − vpt

(
p (p− 1)

2
t− 2

) .
The efficiency of dopt first increases until the δ where the model is MSE-optimal.
Afterwards it increases but not that rapidly as ds1 does.
We can summarize that the model that are optimal for estimating treatment
effects are highly efficient in the MSE if the δ is small.

6. Example

In this section we discuss two examples. First we examine the case p > t.
With Proposition 2 we know that the MSE-optimal is an optimal design for

estimating treatment effects. As in example 4.6.4 of Bose and Dey (2009) let p =
6, t = 3. We can calculate an exact optimal design for n = 54. With Proposition
2 we get π1 = 4/9 so that there are 24 sequences of s3 = [1, 2, 3, 1, 2, 3] and 30
sequences of s4 = [1, 1, 2, 2, 3, 3].
In Figure 1 the efficiencies for the three different sequences are shown. We
see that the efficiencies of ds3 and ds4 fall rapidly when δ increases but that
the efficiency of ds3 is lower than that of ds4 . While the MSE-optimal and
the optimal design fall together the efficiency is 1. Note that all designs have
efficiency 1 at the point δ = 0.
There is the strong recommendation to use dopt as it is optimal in the models
with and without carryover effects and further is MSE- and bias-optimal.

Now, take a look at the case p ≤ t. Let p = 3, t = 4. Bose and Dey (2009)
give in example 4.6.2 an exact design for n = 48 which consists of the sequences
s1 = [1, 2, 3] and s2 = [1, 2, 2]. We know from the propositions 7 and 8 that the
optimal proportion of sequence s1 depends on δ and t. We calculate the boun-
dary δ1 as 1·9·9

48·1·4·2 = 27
128 ≈ 0.21. The optimal proportion of s1 as a function of

δ can be seen in figure 2. We see that the proportion falls rapidly right after δ1
but it will never reach zero. At the point δ = 1 the proportion is still 0.15.
With that knowledge we are now able to calculate the efficiencies of the three
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Fig 1. MSE-efficiencies for designs ds3 (solid line), ds4 (dashed line) and dopt (dotted line)
for parameters p = 6, t = 3, n = 54 and δ ∈ [0, 1].

competing designs. We plot them in figure 3. It is not surprising that the ef-
ficiency of design ds2 increases with δ and the efficiency of ds1 decreases. The
most interesting curve is the one of the optimal design for estimating treatment
effects. The efficiency of that design increases a short time and then falls towards
zero but not that strong as the design ds1 does. Since the optimal proportion
π is in (0, 1] there is a δ for that the designs ds1 and dopt have efficiency 1 but
there is no δ such that the efficiency of ds2 = 1.

7. Discussion

We examine the MSE-optimality of crossover designs when neglecting the car-
ryover effects of the design. Besides its theoretical justification there is a reason
for this designs in practice even if a MSE-optimal design may not be the design
one chooses. We found that the balanced block design with no self-adjacencies
gives the estimators with the lowest MSE in a domain around 0. We also found
that the optimal design in the bigger model gives highly efficient estimators in
terms of MSE. The MSE-optimal design consists of sequences that are known to
deliver good designs for other criterion like Φp-optimality. As the optimal design
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Fig 2. Proportion π of s1 as a function of δ.

in the bigger model is highly efficient we recommend to plan an experiment as
if there are carryover effects, try to avoid these effects and analyze the expe-
riment without any carryover effects. In case of the non-existence of carryover
effects there will be a higher chance of finding treatments differences. This also
confirms the findings of David et al. (2001).
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