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Abstract

We generalize the refinement ordering for well calibrated probability forecasters to the

case were the debtors under consideration are not necessarily identical. This ordering is

consistent with many well known skill scores used in practice. We also add an illustration

using default predictions made by the leading rating agencies Moody’s and S&P.
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1. Introduction

Probability forecasting has a long tradition in many fields of application. In

economics, the most popular ones are default predictions in the rating industry.

According to the Basel-II and Basel-III accords for instance, banks have to attach

predicted default probabilities to all outstanding loans. Although major rating

agencies like Moody’s or S&P are reluctant to identify their letter grades with

predicted default probabilities, we will stick to this probability interpretation in

what follows. Given two competing default predictors and the prevalence of split

ratings in practice (see e.g. Hauck and Neyer (2014)), it is then natural to ask:

Which one is better?

One option is to rely on some scalar measures of performance like the Brier Score.

However, it is well known that different score functions might produce conflicting

results (see e.g. Krämer and Güttler (2008) for an example). The present paper

therefore is concerned with partial orderings which, if valid, will imply identical

rankings with respect to all members from some suitable class of scoring functions.

It extends Krämer (2006), which covers only identical sets of debtors, to cases

when the two debtors under considerations are not necessarily identical. It is not

concerned with the equally important issue of how ratings are produced in the

first place (see however Czarnitzki and Kraft (2004) or Boumparis et al. (2015) for

relevant discussions in the present journal).

Section 2 below introduces a novel partial ordering based on Generalized Lorenz

curves and section 3 provides an application to ten-year default predictions made

by the leading rating agencies Moody’s and S&P.

2. Modified Lorenz Dominance

Let 0 = a1 < a2 < ... < ak = 1 be a finite set of possible default probabilities.

Let qA(aj) be the relative frequency with which the default probability aj is pre-

dicted by forecaster A (similarly for B). This paper will only consider forecasters

which are well calibrated, i.e. where

P(default|aj) = aj (j = 1, . . . , k).(1)

In addition, we will focus on theoretical distributions, i.e. we will not distinguish

between relative default frequencies and default probabilities. Everything that fol-

lows will then depend only on the vectors a = [a1, ..., ak]′ and q = [q(a1), .., q(ak)]′.
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We are not concerned with methods to produce probability forecasts in the first

place; see Lahiri and Yang (2013) for a most useful overview.

For the special case where A and B are rating the same set of debtors, DeGroot

and Fienberg (1983) suggest the concept of refinement to discriminate between the

two. If, by applying a randomization to the probability forecasts of A, one obtains

a new probability forecast with the same distribution as B, then A is more refined

than B. As shown by DeGroot and Eriksson (1985), this amounts to Lorenz-

domination of the respective forecast distributions:

A ≥L B ⇔ 1

p

∫ x

0

FA−1

(t)dt︸ ︷︷ ︸
=LA(x)

≤ 1

p

∫ x

0

FB−1

(t)dt︸ ︷︷ ︸
=LB(x)

, (0 ≤ x ≤ 1)(2)

where LA(x) and LB(x) are the respective Lorenz curves and where

FA(a) =
∑
ai≤a

qA(ai)(3)

is A’s default forecast distribution (similarly for B). The overall default probability

can then be expressed as

p =

∫ 1

0

FA−1

(t)dt =

∫ 1

0

FB−1

(t)dt(4)

which equals the expectation of both FA and FB . In view of calibration, p =∑
aiq

A(ai) =
∑

aiq
B(ai). This expectation could as well be dropped in equa-

tion (2), as it appears on both sides of the inequality, and mainly sees to it that

both Lorenz curves end in (1, 1).

Contrary to comparing income inequality, where Lorenz curves close to the

diagonal are ”good” (i.e. signal a more equal distribution of income), A is in the

present application considered better than B if its Lorenz curve bends farther away

from the diagonal, i.e. if its predicted default probabilities are more spread out. It

can also easily be shown that the same ordering obtains if the ranking is based on

predicted non-defaults:

∫ x

0

FA−1

(t)dt ≤
∫ x

0

FB−1

(t)dt

⇔
∫ x

0

F̃A−1

(t)dt ≤
∫ x

0

F̃B−1

(t)dt (0 ≤ x ≤ 1),

(5)

where F̃ (a) =
∑

ãi≤a(1− qA(ãi)) is the distribution function of the predicted sur-

vival probabilities ãi = 1− ai.
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If A and B are rating different (possibly overlapping) sets of debtors, the over-

all probability of default will in general differ between the respective sets, and the

refinement concept does no longer apply. However, the Lorenz-ordering is still pos-

sible, by replacing the overall default probability p = pA = pB in (2) with pA

and pB , where appropriate. Other than in the case pA = pB , it now does matter

whether we consider predicted default or predicted survival probabilities: It can

be shown by simple counterexamples that A’s Lorenz curve for predicted default

probabilities is better and A’s Lorenz curve for predicted survival probabilities is

worse than that of B. Therefore the standard Lorenz order does not make much

sense for nonidentical sets of debtors. Here is an extension:

Definition: A dominates B in the modified Lorenz sense (A ≥ML B) if

A ≥L B (i.e. (2) obtains with pA and pB in place of p) and in addition,

0.5 ≥ pA ≥ pB (pB < 0.5) or 0.5 ≤ pA ≤ pB (pB > 0.5).

For pA = pB , this reduces to the standard refinement ordering. Without loss

of generality, we will confine ourselves to the empirically more relevant case pB <

0.5 in what follows. The inequality pA > pB then implies that the generalized

Lorenz curve (defined as p times standard Lorenz curve) of A is larger than that

of B towards the right end of the [0, 1]-interval. Intuitively, this means that A′s

predictions are both more spread out and on average closer to 0.5 at the same time.

It is well known from the theory of proper scoring rules (see e.g. Winkler (1996))

that it becomes harder to obtain good results as the overall default probability

approaches 0.5. The well known Brier Score for instance, given by

B(a, q) =

k∑
i=1

q(ai)ai(1− ai)(6)

whenever a forecaster is well calibrated, approaches its optimal value of 0 even

for the trivial forecast ai = p ∀i whenever p → 0 or p → 1. And the trivial

forecast is worst in the Brier sense if p = 0.5 (always assuming that p is among

the available ai’s). Two additional scoring rules often used in application are the

logarithmic score

L(a, q) =

k∑
i=1

q(ai) (ai ln(ai) + (1− ai) ln(1− ai)) (with 0 ln(0) := 0)(7)
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and the spherical score

S(a, q) =

k∑
i=1

q(ai)
√

a2i + (1− ai)2,(8)

which are likewise producing good results for the trivial forecasts as p→ 0 or p→ 1.

In order to compensate for this intrinsic difference in difficulty, it is common to

rely on skill scores rather than on ordinary scoring rules whenever pA 6= pB (see

Lahiri and Yang (2013) for additional motivation). Given any scoring rule S(a, q),

the corresponding skill score is given by

SS(a, q) =
S(a, q)− St

Sopt − St
(9)

where St is the trivial score obtained for ai = p ∀i and Sopt is the optimal score

where only q(0) and/or q(1) are different from zero (Winkler (1996)). A skill score

then measures how close a forecaster is to the optimum. It takes its maximum

value of 1 if defaults and non-defaults are both predicted with certainty; it takes

the value zero for the trivial forecast, and it can even take on values less than zero

if a forecaster is worse than the trivial forecast. For the Brier-Score, for instance,

we have

BS(a, q) =
B(a, q)− p(1− p)

p(1− p)
.(10)

Theorem: For two well calibrated probability forecasters A and B, let A ≥ML B.

Then, for skill scores derived from the Brier-Score, the Logarithmic-Score and the

Spherical-Score, A is at least as good as B.

Proof: The proof builds on Krämer (2006), who establishes the above result

for the case pA = pB . Now, let without loss of generality, 0.5 > pA > pB > 0,

let a∗i = pB

pA
ai < ai and consider a well calibrated forecaster A∗ with possible pre-

dictions a∗i . Then A∗ has the same Lorenz curve as A, while, by construction,

pA∗ = pB . Therefore, A∗ cannot be worse than B according to any strictly proper

scoring rule.
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Next we show that, for the Brier skill-Score, A cannot be worse than A∗. Rewriting

the Brier skill-Score as

BS(a, q) = 1− B(a, q)

p(1− p)
,(11)

this amounts to

∑
q(ai)cai(1− cai)

cp(1− cp)
≥

∑
q(ai)ai(1− (ai))

p(1− p)
(12)

where c = pB/pA. After several trivial reshufflings, this inequality is seen to be

equivalent to

∑
q(ai)aip ≤

∑
q(ai)a

2
i ,(13)

which in turn follows from p =
∑

q(ai)ai, the general inequality E(X2) > [E(X)]2

and the fact that the ai’s can be viewed as the values of a random variable with prob-

ability function q(ai).

In a similar fashion, it is seen that for the logarithmic skill score LS(a?, q) ≤

LS(a, q). For the purpose, rewrite LS as a ratio of a convex and a concave function

PN (c) and PD(c) of c = pB/pA (ceteris paribus) and show that

LS(a?, q) =
PN (c)

PD(c)
≤ cPN (1)

cPD(1)
= LS(a, q).(14)

Given a and q, one can likewise view the spherical score of A? as a function of c via

SS(a?, q) =

∑
q(ai)

√
(cai)2 + (1− cai)2 −

√
1− 2cp(1− cp)

1−
√

1− 2cp(1− cp)
,(15)

where it can be shown by brute force calculation that ∂SS
∂c ≥ 0 for all c ∈ (0, 1), so

SS(a?, q) ≤ SS(a, q). �

As an illustration, consider three well calibrated forecasters A, A∗ and B with pre-

dicted default probabilities and distributions across predicted default probabilities

as in table 1.
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Table 1. Three well calibrated probability forecasters

ai qA(ai) qB(ai) qA
∗
(ai)

0 0.3 0.2 0.3

10
11 · 0.1 0 0 0.5

0.1 0.5 0.6 0

0.2 0 0.2 0

10
11 · 0.3 0 0 0.2

0.3 0.2 0 0

Then we have pB = pA∗ = 0.1 < pA = 0.11, with Lorenz curves of A (equal to that

of A∗) and B as in figure 1.
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Figure 1. Lorenz curves of predicted default probabilities

It is seen that the Lorenz curve of A is nowhere above that of B, so A ≥ML B in

view of pA > pB . Table 2 reports the respective Brier-Scores, plus the Logarithmic-

Scores L(a, q) and the Spherical-Scores S(a, q) where, contrary to the Brier-Score,

large values of L(a, q) and S(a, q) are ”good”.
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Table 2. Selected scores for predictions from table 1.

Rule A A∗ B

Brier 0.087 0.081 0.086

Logarithmic -0.285 -0.270 -0.295

Spherical 0.905 0.912 0.908

Brier skill 0.111 0.100 0.044

Logarithmic skill 0.178 0.171 0.092

Spherical skill 0.081 0.070 0.029

3. Application

As an illustration, table 3 shows ten-year default rates obtained from the web pages

of Moody’s and S&P (Moody’s (2015) and Standard & Poor’s (2015)).

Table 3. Empirical ten year default rates and distribution of

debtors among rating classes times 100.

Moody’s S&P

Rating Class aMi qM (ai) aSi qS(ai)

AAA/Aaa 0.49 3.41 0.71 1.07

AA/Aa 0.89 11.50 0.78 7.13

A 2.09 24.26 1.71 22.94

BBB/Baa 4.95 23.18 4.98 26.15

BB/Ba 19.79 14.23 16.38 17.37

B 40.25 17.86 29.97 22.77

CCC/Caa-C 65.97 5.54 51.35 2.56

As we equalize realized relative default frequencies and predicted default proba-

bilities, both agencies are well calibrated by construction. Figure 2 presents the

resulting Lorenz curves; it shows that Moody’s predicted default probabilities are

more spread out.
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Figure 2. Lorenz curves of predicted default probabilities for

Moody’s and S&P.

Since in addition

pM =

7∑
i=1

aMi qM (ai) = 15.43% > pS =

7∑
i=1

aSi q
S(ai) = 12.74%,(16)

Moody’s dominate S&P in the modified Lorenz sense and are therefore also superior

in terms of the skill scores discussed here (table 4). According to the unmodified

spherical score and brier score, however, S&P is better.

Table 4. Score values for Moody’s and S&P predictions.

Rule Moody’s S&P

Brier 0.0950 0.0948

Logarithmic -0.3039 -0.3095

Spherical 0.8935 0.8953

Brier skill 0.2719 0.1470

Logarithmic skill 0.2935 0.1885

Spherical skill 0.2411 0.1136
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