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Abstract

In this paper, we present an innovative method for constructing proper priors for the
skewness parameter in the skew-symmetric family of distributions. The proposed method is
based on assigning a prior distribution on the perturbation effect of the skewness parameter,
which is quantified in terms of the Total Variation distance. We discuss strategies to translate
prior beliefs about the asymmetry of the data into an informative prior distribution of this
class. We show that our priors induce posterior distributions with good frequentist properties
via a Monte Carlo simulation study. We also propose a scale- and location-invariant prior
structure for models with unknown location and scale parameters and provide sufficient
conditions for the propriety of the corresponding posterior distribution. Illustrative examples
are presented using simulated and real data.

Keywords: Measure of skewness; Prior elicitation; Skew-symmetric distributions; Total
variation distance; Wasserstein metric.

1 Introduction

It is a well-known fact that several data sets cannot be modeled by means of symmetric distri-
butions, and hence even less via the normal distribution, due to skewness inherent to the data.
Such data are frequently encountered in domains such as biometry, finance, materials sciences
or environmetrics, to cite but these. See for instance |Ley (2015)) for detailed explanations.

Given these needs, there exists a plethora of distinct proposals for skew distributions in the
literature; for a recent and extensive overview of the state-of-the-art, we refer the reader to the
discussion paper |Jones (2015). A popular class of such distributions are the skew-symmetric
densities of the form

Sf;G(x;M,U,)\)zgf <$;M>G()\w <‘T;“>> z€R, (1)

with f the symmetric density (to be skewed), G any symmetric, univariate, absolutely continuous
cumulative distribution function (cdf), and w an increasing and odd function (Azzalini and
Capitanio|, |2003; Wang et al., 2004). In 7 u € R is a location, o € Rar a scale, and A € R
a skewness parameter. These distributions generalise the popular skew-normal distribution,
corresponding to f and G respectively the density and cdf of the standard normal distribution
and w the identity function, which was introduced in the seminal paper |Azzalini (1985). For a
recent account on skew-symmetric distributions and, in particular, the skew-normal distribution,
we refer the reader to the monograph |Azzalini and Capitanio| (2014).

Bayesian inference within these families is a challenge. The prior elicitation for A is compli-
cated given that this parameter controls several features of the density such as asymmetry,




the mode, the spread, and the tail behaviour of the density. In the skew-symmetric setting sev-
eral priors of this type have been proposed by |Liseo and Loperfido| (2006), |Cabras et al.| (2012),
Branco et al. (2013) and Rubio and Liseo (2014), among others. These references focus on the
construction of “noninformative priors” from different viewpoints. However there are several
situations where we do have a priori information on how the data shall behave, and hence at
least we know the sign of the skewness parameter \. For instance, when modeling BMI (body-
mass index) data, we know the data will be right-skewed for biometric reasons, see e.g. |Heinz
et al. (2003)). The same holds true for other biometric indicators and size measurements. Given
the popularity of skew-symmetric distributions it is thus of paramount importance to construct
informative priors for A\ that reflect our a priori knowledge of the situation. To our knowledge,
only |Canale et al.| (2016, who proposed the use of normal and skew-normal priors for A, have
studied informative priors. Their main motivation for using these kinds of priors is that they
facilitate sampling from the corresponding posterior distribution.

In the present paper we tackle the problem of constructing priors for A by interpreting it as
a perturbation parameter turning the initial symmetric density f into a skew-symmetric density
of the form . Indeed f is modified by multiplication with a “skewing function” 2G(\ -), which
is also referred to as “modulation of symmetry” (see, e.g., Azzalini and Capitaniol 2014)). This
perturbation effect becomes obvious when we consider A = 0: only then do we retrieve the
initial (symmetric) density f, while any non-zero value of A induces a perturbation. Viewing A
as perturbation parameter actually reflects its very nature as foreseen by Fernando de Helguero
(1880-1908), the early pioneer of skew-symmetric distributions. Quoting him “ But it may hap-
pen, and indeed this must often take place, that other perturbation causes join in [...|] The curve
will be abnormal, asymmetricall]

With this interpretation of A as perturbation parameter it is appealing to invoke its pertur-
bation capacity as a principle on which to construct prior distributions. In Section [2] we shall
therefore measure this effect of A by calculating the Total Variation distance between f and
its skew-symmetric counterpart . Rather than putting a prior on the parameter A, whose
values are difficult to interpret, we shall put a prior on this easily interpretable distance. We
opt in Section [3] to assign Beta distributions on the range of values taken by this distance. This
allows us, by varying the choice of the Beta hyperparameters, to build informative as well as
noninformative priors, which moreover enjoy a clear interpretability. Although our main focus
in this paper is on the Total Variation distance, other distances could be used as well, and as an
example we briefly discuss the Wasserstein distance in Section [4] In Section [5 we first compare
the performance of our priors to existing priors by means of a Monte Carlo simulation study, and
then we illustrate their usefulness by analyzing two data sets. Finally some proofs are provided
in the Appendix. The present paper is complemented by an online Supplementary Material
containing further details on the simulation study and a short application of our methodology
to other distributions containing a shape parameter.

2 Measuring the perturbation within skew-symmetric families

There exist several distinct measures for the distance between two distributions. Those are called
probability distances (or metrics, if the distance happens to be a true metric, see (Gibbs and Su,
2002). Our choice in the present paper for the Total Variation metric has been driven by the
fact that this distance allows precisely to measure mass relocation when passing from f to sy.q
for a given value of the parameter A\. Moreover, contrary to other distances such as the Hellinger
distance or Kullback-Leibler divergence, the Total Variation distance seems tailor-made for the
problem at hand as it gives rise to simple expressions which is mostly not the case for other
distances but is obviously crucial for our goal of building a prior for A.

!This is a passage from |de Helguero| (1909) translated to English in [Azzalini and Regoli (2012b).



The Total Variation distance between two probability measures p(-) and v(-) on R is defined
as

dry(p,v) = Sup ln(A) —v(A)],

explaining why this distance represents the largest possible difference between the probability
assigned to the same event by two such measures. One easily sees that 0 < dpy (u,v) < 1. If the
probability measures admit Radon-Nikodym derivatives f; and fs, supported on the interval R,
then the definition becomes

drv(fi, f2) = /|f1 (z)|dz.

Using this expression, the Total Variation distance between the baseline symmetric density f
and its skew-symmetric counterpart sy.c from , for fixed A € R, can be written as

drv(£sp6) = 5 [ 2GOWE) ~ 11f(@)da

The symmetry of G implies that dry (f, s¢.¢|\) = drv(f, sf.c| — A), hence this distance is not a
one-to-one function of the parameter A. This suggests the meaningful measure of perturbation

Mry (N) = sign(N)drv (f, sg.clA), (2)
which enjoys some appealing properties. First, for f and G fixed, M7y (0) = 0, which cor-
responds to the case sy = f. Since A — Mpy(A) is monotone increasing (see equation

below), the largest difference is obtained for A — Zo0o, when sy, converges to the posi-
tive/negative half-f. This largest difference equals +1/2, hence My (\) € (—1/2,1/2). Given
that we only consider the case when f and sy have the same location and scale parameters,
it follows that this measure is also invariant under affine transformations. By construction, we
have that Mpy(A) = —Mpy(—A). These properties resemble the desirable conditions P.1-P.3
discussed in |Arnold and Groeneveld| (1995)) for a measure of skewness, and indeed, given the
skewness nature of the parameter A\, Mpy can also be considered a measure of skewness within
the skew-symmetric family.
By using the symmetry properties of f and G, we can re-express as

1-— QSf;G(O; A)

MTV(A) = 92 5

(3)
where Sy.¢ is the cdf associated with sf,;. This expression reveals that, for a fixed choice of
f and G, Mrpy is simply a re-scaling of the difference between the mass cumulated on either
side of 0 by the distribution Sy (note that 1 — 2S.5(0;A) = {1 — Sr.q(0; N} — Sr.a(0;N)).
Therefore Mpy (A) measures the effect of the parameter A in terms of the relocation of mass on
either side of the symmetry center of f, as desired.

Example 1 For the skew-normal density we use the standard normal probability density func-
tion (pdf) ¢ and cdf ® for f and G in , respectively, and w(x) = z, and obtain from Godoi
et al.| (2016) and the representation

ArcTan(\)

™

Mrv () = (4)

for the perturbation measure Mpy. For the skew-Laplace density (obtained when f and G are
the Laplace pdf and cdf, respectively, and w(z) = x) we have

Mry(X) =




Finally, let ¢, and T, denote the pdf and cdf of the Student ¢ distribution with v > 0 degrees of
freedom, respectively. The density of the skew-t distribution with v degrees of freedom proposed
by |Azzalini and Capitanio| (2003)) is given by

2 (x—N)T,,Jrl()\(m—u) WM)’ R

Zt,

o
This distribution is a special case of the class of densities defined in . In the Appendix,
we show that its perturbation measure Mpy is given by and therefore coincides with the
corresponding measure for the skew-normal distribution (which is a special case of the skew-t
when v — 00).

3 Proposed objective priors

The proposed perturbation measure Mpy (A) allows us to build informative as well as non-
informative priors for the skewness parameter A in skew-symmetric models. Recall that My
11

varies in (—5, 5) and is an injective function of A\. Consequently any probability distribution on

(—%, %) as prior choice for M7y induces a proper prior on A. For these distributions we choose

the very versatile beta distribution with density

1 N /1 A-1 11
B(a. B) (“*2) (2‘“) ’ “E(‘z’z)’

where B(a, ) represents the beta function and «, 8 > 0. We refer to this class of priors as the
Beta Total Variation priors BTV (a, §) with hyperparameters a, 8 > 0. Of course, any other
distribution with support (—%, %) can be employed instead of the beta distribution, however,
this choice facilitates some aspects of our study thanks to its flexibility and interpretability.

Our way of proceeding leads to highly tractable and easily interpretable priors. If, a priori,
we favour right/left skewness and hence need informative priors, we just need to choose the
hyperparameters « and § in such a way that the prior assigns more mass to the appropriate
range of values (values of Mpy below 0 represent left-skewness, values above 0 represent right-
skewness). For those cases where there is no reliable prior information about the asymmetry of
the data, we explore the use of two types of noninformative priors, obtained for (i) « = 5 =1,
the uniform distribution, which gives equal probability mass to any pair of subintervals of [0, 1]
of equal length, and (ii) « = 8 = 1/2, corresponding to a U-shape beta density. The second
choice is motivated as follows. By assigning a Beta(c, ) prior to interpretable measures of
perturbation /skewness, we implicitly associate a probability p with values that produce right-
skewed distributions, and a probability 1 — p with values that produce left-skewed distributions.
We can interpret this scenario as a Bernoulli trial with parameter p. A noninformative prior
that has been widely studied for the parameter p of the Bernoulli distribution is the Jeffreys
prior, which is precisely the Beta(1/2,1/2) prior.

In the remainder of this section, we shall first describe and investigate the resulting BT'V (v, 3)
priors for the location-scale-free densities 2f(2)G(Mw(z)) (Section B.1)), and then discuss joint
location-scale-skewness priors for the skew-symmetric models of interest (Section . A
simple remark on the invariance of these sorts of priors is presented below.

Remark 1 The BTV («a, ) priors are invariant under one-to-one transformations of \. This
implies that the BTV priors associated to a reparameterisation o = h(\), where h : R — D C R
is a diffeomorphism, can be derived from the corresponding priors on A using a change of variable.

3.1 Beta-TV priors

Putting a Beta(a, ) prior on M7y (\) induces a prior on the parameter \ with pdf

a—1 B-1
O = g () (Goamw) S, o



In order to analyze the general priors BTV («, ), we first investigate some properties of the

d
simpler BTV (1,1) prior which reduces to W;‘l/(A) = ﬁMTV()\). Sufficient conditions for the

well-definiteness of this prior are stated in the following result.

Lemma 1 Consider the class of skew-symmetric densities of the type , If g is a bounded pdf
and f?oow(a:)f(x)da: < 00, the BTV (1,1) prior is well-defined for all A\ and given by

0
mv ) = |2 [ wo)@latxeta))ds]- 0
—00
In the following we provide some general properties of the prior (@, including a characterisation
of its tails in the important case w(z) = .

Theorem 2 Consider the class of skew-symmetric densities of the type , where g is a bounded
pdf and f?oow(:v)f(x)d:r: < 00. Then, the prior (6)) has the following properties:

(i) 77;“‘1/()\) is symmetric about A = 0.
(ii) If g is unimodal, then 77;"1/()\) is decreasing in |\|.

(i1i) For w(x) = xz, and under the assumptions that f is unimodal, f(0) = M < oo and
B zg(x)dr < oo, the tails of b () are of order O(|\|72).
00 TV

1
Example 2 Using expression () with w(z) = = we obtain 77;“‘1,()\) = T
1
prior for the skew-normal and skew-t distributions, and Wilp"l/()\) = W for the skew-
+

as BTV (1,1)

Laplace distribution.

Thanks to , any BTV («, ) prior possesses a nice closed-form expression whenever the
BTV (1,1) prior does. The following result describes the tail behaviour of the density W%‘é(A)
of the BTV (a, 3) prior and is a consequence of Theorem [2| and the tail behaviour of Beta-
transformations of symmetric distributions, see Section 4.5 of |Jones| (2004).

Corollary 3 Consider the skew-symmetric densities defined by for w(z) = x, together with
the assumptions of Theorem (m) The right tail of w%‘é()\) is of order O(|\|7P~1), while its
left tail is of order O(|\|~*~1). Moreover, if « = 3, then 71'%"?()\) is symmetric.

In particular, for the BT'V(1/2,1/2) prior we obtain the following expression:

1

3 =—r ). @
T Z—M%V()\)

[

)

o=
<

e

This prior is symmetric and, for skew-symmetric models with w(z) = =z, its tails are of order

O(|A\|=%/?), which interestingly coincide with those of the Jeffreys prior (Rubio and Liseo, 2014).
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However, the prior 777 (A\) and the Jeffreys prior are not identical. In fact, the Jeffreys prior

has no closed-form expression, and moreover it can be ill-defined for certain combinations of f

and G due to singularities in the Fisher information matrix in the neighborhood of A = 0, see

Hallin and Ley]| (2012]).



3.2 Heuristic approximations to the BTV(1,1) priors

In general the expression @ is not available in closed-form. However, we can appeal to the
characterisation of the tail behaviour of these priors in Theorem [2[ to come up with tractable
approximations. For example, in the case when w(z) = x and f and G are the logistic pdf and
cdf, respectively, the BTV (1, 1) prior is not available in closed-form but can be reasonably well
approximated with a Student-t distribution with 1 degree of freedom and scale parameter 0.92.
Figure [I] shows the quality of this approximation. The quality of Student-t approximations for
BTV (1,1) priors associated to other skew-symmetric models seems to require a case by case
analysis.

0.35 ' ' ; ' ' 0.020
0.30
0.25 i 0.015
0.20
0.15

0.010

0.10 0.005
0.05

0.0 ‘ ‘ ‘ ‘ 0.000

Figure 1: (a) Total variation prior of A (continuous line) and Student-¢ approximation (dashed
line); (b) Absolute difference between the Total variation prior of A and the Student-t approxi-
mation.

3.3 Location-scale-skewness models: partial information priors

Consider now the initial densities of interest , which contain unknown location and scale
parameters. For this model we adopt the prior structure
p(A)
7'('(/1,’ g, )‘> = (8)

(o

where p()\) is a proper prior on A, here BTV (v, ). This prior structure can be justified as a sort
of partial information prior (Sun and Berger} |1998]) in the sense that we are using the reference
prior for the location and scale parameters, 7(u, o) oc 01, while we allow for using a subjective
prior on the skewness parameter A\. Such structures can also be motivated as priors inspired
by the structure of the independence Jeffreys prior (Rubio and Steel, 2014} [2015)). Theorem
below presents sufficient conditions for the propriety of the posterior distribution under the
prior structure . We restrict our study to the cases when f belongs to scale mixtures of
normals. This is a wide family of symmetric distributions which contains many models of
practical interest such as the normal, logistic, Laplace, symmetric hyperbolic, Student-t, among
many other distributions.

Theorem 4 Let x = (z1,...,xy) be an i.i.d. sample from a skew-symmetric model . Suppose
that f is a scale mixture of normals. Then the posterior distribution of (u, o, ) associated with
the prior structure (@ 1s proper if n > 2 and if all the observations are different.

This theorem, proved in the Appendix, guarantees that the priors proposed in the present paper
for skew-symmetric densities lead almost surely to proper posterior distributions.

4 Extension of the proposed method: the Wasserstein metric

As mentioned in the Introduction, alternative distances could be used to measure the pertur-
bation effect of the parameter . In this section we study exemplarily the Wasserstein metric,



which is defined for two distributions F} and F, on R, with finite first moment, by
Fl,FQ / ‘Fl )|d$

see |Vallender| (1974)). The Wasserstein distance is a minimal distance between two random vari-
ables with fixed distributions F} and F5 or the minimal cost of transporting one distribution onto
another. It thus measures precisely the perturbation effect turning f into sy.. If the probability
laws associated with F} and Fj are stochastically ordered (see e.g. Ross, (1996, Chapter 9), then
either F} < Fy or Fy < Fi. Assuming the latter, we can rewrite the Wasserstein distance as

dy(Fy, Fy) = /R (Fi(x) - Fo(x))da = /R 2(faa) — fi(x))da

provided that limg 100 (Fi(z) — Fa(x)) = 0. |Azzalini and Regoli (2012a) have shown that
skew-symmetric densities are stochastically ordered, with St.¢ < F for A > 0 (and Sy, > F'
for A < 0). Consequently, if f has finite first moment, the Wasserstein distance between f and
s, becomes

) Jgz(2G(Aw(x)) — 1) f(x)dz if A >0
I Spicld) = {fi 1 - 2G(0w(@)) f(x)dz if A <0,

which resembles the Total Variation distance between F' and Sy.q. It is hence easy to see that
it satisfies the same properties, and we can analogously define a Wasserstein-based perturbation
measure by My () = sign(X)dy (F, Sg.c|A). Note that, since My (0) = 0, the latter expression
reflects well the mass relocation measure. It also shows how tractable the Wasserstein-induced
measure is.

Example 3 For the skew-normal density we obtain from Ley et al.| (2016) the representation

Similarly, straightforward calculations yield the corresponding distances for the skew-Laplace
and skew-t density, which are respectively

A2+ |A]) V(v —1)/2) A
My (XN) = 7(1 e and  Mpy(N) = T80 )2) v

We conclude this section by stating some results for Beta-W priors, which are obtained by putting
a Beta-prior on the range of Myy and will be called BW («v, 3)-priors. The corresponding densities

are denoted by W%’B. The BW (1, 1) prior is defined as 7711/(,1()\) x %MW()\), the proportionality

symbol being required since the length of the range of My () is here not necessarily equal to
1 as was the case for M7y. The proofs of the following statements are obtained by similar
arguments as for the Total Variation distance and the details are omitted for the sake of brevity.

Theorem 5 Conszder the class of skew-symmetric densities of the type (L)), where g is a bounded
pdf and f x)xf(x)dx < co. Then, the prior

0
7r11,\’,1(/\) x / w(z)zf(x)g(Ax)dx (9)
1s well-defined and has the following properties:

(1) 71'11/{/1()\) is symmetric about A = 0.



(ii) If g is unimodal, then 71'11/{,1()\) is decreasing in |\|.
(i1t) For w(x) = x, and under the assumptions that f is unimodal, f(0) = M < oo and
B 22g(x)dx < oo, the tails of Tt () are of order O(|\|™3).
00 w

Example 4 For the skew-normal and skew-t distribution we find 7711/;,1()\) o (14 A2)73/2 as
BW (1,1) prior, which coincides with the noninformative prior m,(\) proposed in (Canale et al.
(2016). For the skew-Laplace distribution we have 7r11/{,1()\) oc (1+ A3,

Corollary 6 Consider the skew-symmetric densities defined by for w(x) = x, together with
the assumptions of Theorem @(m} Then the right tail of 773\’,5()\) is of order O(|\|7281), while
the left tail is of order O(|\|72~1). Moreover, if « = 3, then 7'('%’8()\) is symmetric.

Interestingly, in the skew-normal and skew-t cases the BTV (1,1) and BW (1/2,1/2) priors are
identical. However, this coincidence does not occur in other skew-symmetric models such as the
skew-Laplace model.

5 Finite sample properties and practical performance

5.1 Monte Carlo simulation study

In this section, we shall conduct a Monte Carlo simulation study wherein we compare the
performance of the proposed new priors to other priors from the literature. To this end, we shall
first consider noninformative and then informative priors.

Noninformative priors

In order to compare the performance of the priors proposed in Section [3| with that of the
Jeffreys prior (Liseo and Loperfido, 2006, [Rubio and Liseo| [2014) we have conducted a thorough
simulation study, of which we only present certain results here, the others being provided in
the Supplementary Material. We have generated N = 1,000 samples of sizes n = 50,100
from a skew-normal distribution with location parameter y = 0, scale parameter ¢ = 1, and
skewness parameter A = 0,2.5,5. Results for the sample size n = 200, as well as for the
skew-logistic and skew-Laplace distributions can be found in the Supplementary Material. For
each of these samples, we simulate a posterior sample of size 1,000 from (u,o, A) using the
BTV (1,1), BTV (1/2,1/2), BW(1,1) and Jeffreys priors. We employ a self-adaptive MCMC
sampler (Christen and Fox, 2010) to obtain the posterior samples. For each posterior sample,
we calculate the coverage proportions of the 95% credible intervals of each parameter (that is,
the proportion of credible intervals that contain the true value of the parameter) as well as
the 5%, 50% and 95% quantiles of the posterior medians and maximum a posteriori (MAP)
estimators. In addition, we obtain the median of the Bayes factors (BFs) associated to the
hypothesis Hy : A = 0. The Bayes factors are approximated using the Savage-Dickey density
ratio.

The BTV and BW priors for the skew-normal model enjoy nice closed-form expressions. In
order to facilitate the implementation of the Jeffreys prior, we use the corresponding Student-¢
approximation proposed in [Bayes and Branco (2007) (1/2 degrees of freedom and scale 7/2).
The results are reported in Tables Overall, we observe that the BTV (1/2,1/2) and Jef-
freys priors exhibit the best, and very similar, performance. However, we emphasise that the
BTV (1/2,1/2) prior is more tractable than the Jeffreys prior and it is well-defined under less
restrictive conditions. These conclusions are further supported by the simulation studies of the
Supplementary Material for the skew-Laplace and skew-logistic distributions.



Prior MAP Median Coverage BF

5% 50% 95% 5% 50% 95%
A=0
BTV(1/2,1/2)

" -1.157 -0.021 1.169 -0.820 -0.005 0.922 0.990 -
o 0.904 1.103 1.493 0.992 1.195 1.515 0.874 -
A -1.597 0.011 1.453 | -1.769  0.004 1.484 0.990 1.715

Jeffreys
0 -1.170  -0.076  1.229 | -0.871 -0.018  1.008 0.983 -
o 0.923 1.115 1.541 0.999 1.216 1.528 0.858 -
A -1.854 0.015 1.663 | -1.876  0.017 1.589 0.986 1.824

BTV(1,1)

0 -1.059 0.004 1.089 | -0.647 -0.007  0.731 0.997 -
o 0.897 1.081 1.344 0.974 1.163 1.412 0.892 -
A -0.712 0.003 0.552 | -1.158 -0.011  0.938 0.996 1.245

BW(1,1)
I -0.547  -0.012  0.763 | -0.414 -0.005  0.449 0.999 -
o 0.881 1.056 1.252 0.931 1.116 1.319 0.919 —
A -0.243 0.010 0.250 | -0.516  0.007 0.426 1.000 1.024

A=25

BTV(1/2,1/2)

I3 -0.281 0.039 0.921 | -0.224  0.189 0.821 0.899 -
o 0.610 0.832 1.220 0.667  0.880 1.202 0.931 -
A -0.273 1.033 5.290 | -0.103 1.414 7.759 0.869 0.949

Jeffreys

-0.283 0.036 0.994 | -0.233  0.170 0.837 0.897 -
0.614 0.847 1.220 0.674 0.891 1.213 0.936 -
-0.307 1.342 5.964 | -0.119  1.560 8.571 0.877 0.988

-0.225 0.093 0.891 | -0.163  0.308 0.815 0.862 -
0.602 0.782 1.171 0.647 0.845 1.147 0.917 -
-0.163 0.415 4.094 | -0.076  1.032 5.345 0.843 0.797

w

H
>ax S>ax

=

=

BW(1,1)
o -0.134 0.410 0.903 -0.070 0.505 0.824 0.749 —
o 0.581 0.733 1.063 0.617 0.786 1.062 0.834 -
A -0.156 0.098 2.757 | -0.053  0.412 3.195 0.694 0.819
A=5
BTV(1/2,1/2)
0 -0.174  -0.004  0.341 | -0.157  0.026 0.576 0.918 -
o 0.594 0.958 1.197 0.662 0.960 1.193 0.926 —
A -15.792  3.132  30.601 | 0.557 4.759  31.230 0.891 0.140
Jeffreys
I -0.180  -0.007  0.318 | -0.153  0.019 0.552 0.919 -
o 0.595 0.958 1.200 0.666 0.963 1.199 0.925 —
A -7.616 3.265  38.095 | 0.609 4.849  32.032 0.896 0.136
BTV(1,1)

-0.141 0.028 0.623 | -0.114  0.072 0.642 0.895 -
0.581 0.918 1.153 0.639 0.921 1.152 0.909 -
-0.010 2.921 8.071 0.344 3.595  11.755 0.874 0.164

-0.090 0.097 0.839 | -0.057  0.202 0.766 0.777 -
0.550 0.788 1.095 0.593 0.823 1.076 0.819 -
-0.075 1.572 4.794 0.139 1.957 6.301 0.736 0.330

Table 1: skew-normal data for noninformative priors: p = 0,0 = 1,n = 50.



Prior MAP Median Coverage BF
5% 50% 95% 5% 50% 95%

A=0
BTV(1/2,1/2)
I -1.031  0.018 0.993 | -0.797  0.009 0.775 0.983 -
o 0.943 1.074 1.389 1.000 1.150 1.387 0.861 -
A -1.455  0.001 1.481 | -1.244 -0.018 1.315 0.984 2.002
Jeffreys
I -1.039  0.028 1.020 | -0.864  0.011 0.800 0.982 -
o 0.946 1.084 1.432 1.008 1.159 1.400 0.839 -
A -1.537  -0.021 1.482 | -1.392 -0.026  1.401 0.982 2.204
BTV(1,1)

-0.997 -0.007  0.960 | -0.708  0.015 0.683 0.992 -
0.933 1.067 1.355 0.985 1.131 1.346 0.877 -
-1.186  0.008 1.279 | -0.992 -0.010 1.075 0.992 1.404

-0.827  0.005 0.823 | -0.504  0.022 0.451 0.997 -
0.922 1.049 1.201 0.968 1.101 1.265 0.903 -
-0.360  0.000 0.349 | -0.563 -0.008  0.624 0.997 1.087

A=25
BTV(1/2,1/2)
o -0.188  0.014 0.646 | -0.170  0.058 0.635 0.880 -
o 0.650  0.955 1.177 0.704  0.947 1.175 0.898 -
A -0.029  2.111 4.318 0.212 2.139 5.127 0.879 0.386
Jeffreys

-0.202  0.009 0.478 | -0.174  0.052 0.638 0.890 -
0.651 0.959 1.180 0.708 0.952 1.177 0.919 -
0.003 2.138 4.308 0.274 2.191 5.028 0.885 0.369

-0.176  0.031 0.739 | -0.148  0.088 0.667 0.870 -
0.645 0.931 1.155 0.691 0.922 1.150 0.897 -
-0.069  1.955 3.867 0.151 1.950 4.504 0.859 0.338

o]

=
sar Syax

=

)

BW(1,1)
o -0.137 0.075 0.815 -0.109 0.185 0.724 0.815 —
o 0.634  0.844 1.119 0.668 0.864 1.107 0.841 -
A -0.101  1.581 3.387 0.071 1.430 3.786 0.789 0.423
A=5
BTV(1/2,1/2)
o -0.142  -0.006  0.152 | -0.120  0.004 0.185 0.922 -
o 0.806 0.983 1.137 0.814 0.988 1.147 0.946 -
A 1.724 4.245 10.966 2.289 4.995 14.257 0.931 0.004
Jeffreys
I -0.134  -0.003  0.150 | -0.123  0.004 0.184 0.925 -
o 0.810 0.986 1.147 0.817  0.991 1.147 0.944 -
A 1.893 4.336  10.033 | 2.409 5.044  15.041 0.927 0.004
BTV(1,1)
-0.117 0.011 0.177 -0.103 0.019 0.231 0.922 —
0.788 0.975 1.133 0.780 0.975 1.131 0.935

1.767 4.044 8.088 1.945 4.582  10.286 0.932 0.003

-0.094  0.033 0.229 | -0.076  0.047 0.402 0.889 -
0.641 0.947 1.105 0.709 0.947 1.109 0.902 -
0.218 3.446 6.433 0.996 3.861 7.616 0.891 0.008

Table 2: skew-normal data for noninformative priors: p = 0,0 = 1,n = 100.
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Informative priors

We now explore the use of the proposed informative priors. We simulate N = 1,000 samples
of size n = 50 from a skew-normal distribution with parameters p =0, c =1 and A = 5. We
employ again a self-adaptive MCMC sampler to obtain the posterior samples. For each of these
samples, we simulate a posterior sample of size 1,000 from (u, o, \) using the BT'V(3,1/2) and
BW (3,1/2) priors. These priors assign 5% of the mass to values of A < 0 while being vaguely
informative about A > 0. We also consider the skew-normal prior proposed in |Canale et al.
(2016) with hyperparameters (pg, o9, Ag) = (0,1,6.5). This prior also assigns 5% of the mass
to values of A < 0 and is vaguely informative about A > 0, however, it has lighter tails than
the BTV and BW priors. The shape of these priors is presented in Figure 2k. We calculate the
coverage proportions of the 95% credible intervals of each parameter as well as the 5%, 50% and
95% quantiles of the posterior medians and MAP estimators. Results are reported in Table
We observe that the BTV (3,1/2) and BW (3,1/2) priors exhibit better frequentist properties
than their competitor. This, together with the intuitive nature of our priors, underlines the
strength of our new approach.

Prior MAP Median Coverage
5% 50% 95% 5% 50% 95%
A=5
BTV(3,1/2)
I -0.185  -0.020  0.241 | -0.161 0.001  0.309 0.935
o 0.680 0.976 1.200 0.722 0.986 1.210 0.945
A -22.182  3.348  40.942 | 1.546 5.269 36.241 0.919
BW(3,1/2)
m -0.147 0.023 0.288 | -0.117 0.046  0.338 0.940
o 0.665 0.939 1.153 0.705 0.944 1.159 0.933
A 0.927 3.233 8.794 1.349  3.960 12.739 0.919
SN(0,2.5,6.5)
m -0.054 0.078 0.247 | -0.045 0.093 0.311 0.890
o 0.692 0.902 1.087 0.703  0.904 1.084 0.908
A 1.118 2.962 4.147 1.494 3.091 4.204 0.804

Table 3: skew-normal data for informative priors: u = 0,0 = 1,n = 50.

5.2 The frontier data

We now analyse the frontier data set which is available from the ‘sn’ R package. It consists of
n = 50 simulated observations from a skew-normal with parameters (p, 0, A) = (0,1,5). This
data set is infamous because the related maximum likelihood estimator (MLE) of A is infinite.
This problem is described on the website http://azzalini.stat.unipd.it/SN/index.html of Adelchi
Azzalini, with an open request to propose a “reasonable” estimate for \. We believe our approach
does allow a correct treatment of these data.

We calculate the median posterior estimators associated to the prior with five choices for
p(\): (i) the BT'V/(1,1) prior (6, (ii) the BTV (1/2,1/2) prior (7)), (iii) the BW(1,1) prior (9),
(iv) the Jeffreys prior and (v) the matching prior of A (Cabras et al.l 2012). For each of these
models, we simulate, using an adaptive MCMC sampler, a posterior sample of size N = 10,000
from (u, o, \) (with a burn-in period of 100, 000 iterations and a thinning period of 100 iterations;
this means that we simulated a chain of total length 1,100, 000). Table4|shows the corresponding
posterior medians and the 95% highest posterior density (HPD) credible intervals. All of the
HPD intervals contain the true value of the parameters. The length of the HPD intervals for p
and o associated to the BW (1, 1) prior are the largest, while the corresponding posterior median
estimator of A is the most accurate and the length of the corresponding posterior interval is the
shortest. The simulation study shows that this prior does not have good frequentist properties
for this sample size and therefore the closeness of the posterior median estimators is just a mere
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coincidence. Among the other priors, the BTV (1,1) does lead to the best estimation, improving
in particular on the Jeffreys prior and the matching prior.

Prior L o A
BTV(1,1)  -0.092 (-0.244,0.143) 1.214 (0.940,1.533) 11.621 (-1.073,151.209 )
BW(1,1) -0.033 (-0.280,0.498) 1.158 (0.799,1.490)  5.610 (-0.986,24.483 )
BTV(1/2,1/2) -0.114 (-0.242,0.037) 1.245 (1.008,1.538) 36.174 (-0.253,4440.252)
Jeffreys -0.113 (-0.236,0.049) 1.243 (0.995,1.538) 31.526 (-0.112,3648.675)
Matching -0.120 (-0.236,0.026) 1.258 (0.998,1.527)  40.946 (0.871,4346.058)

Table 4: Frontier data: posterior median and 95% HPD intervals.

5.3 Body Mass Index

In this application we analyse the Body Mass Index (BMI) of n = 100 female Australian athletes,
available in the R package ‘sn’. Biometric reasons entail that such data is typically asymmetric
with a longer right tail. Consequently, we fit a skew-normal distribution to this data set together
with the prior and expect informative priors to yield better results. For p(A) we use the fol-
lowing priors: (i) the BT'V(1,1) prior (6], (ii) the BTV (1/2,1/2) prior (7)), (iii) the BW(1,1)
prior (9), (iv) the Jeffreys prior, (v) the informative BT'V/(3,1/2) prior, (vi) the informative
BW (3,1/2) prior, (vii) the informative skew-normal prior of Canale et al. (2016) with hyperpa-
rameters (po, 0o, Ao) = (0,2.25,6.5), and (viii) the matching prior of |Cabras et al. (2012). The
informative priors (v)-(vii) assign 5% of the mass to values of A < 0 (see Figure [2)). This is, we
are assigning little prior probability mass to values of A < 0, as suggested by the anthropometric
theory (Heinz et al., 2003)). For each of these models, we simulate, using an adaptive MCMC
sampler, a posterior sample of size N = 10,000 from (u, o, \) (with a burn-in period of 100,000
iterations and a thinning period of 100 iterations). Table [5| shows a summary of the posterior
simulations, maximum likelihood estimator of the parameters and the 95% quantile bootstrap-
confidence intervals, and the Bayes factors associated to the hypothesis Hy : A = 0 (obtained
using the Savage-Dickey density ratio for priors (i)—(vii), and a Laplace approximation for prior
(viii)). The posterior inference for p and o is similar throughout the different Bayesian mod-
els, however, we can observe that the informative priors BTV (3,1/2) and BW (3,1/2) produce
credible intervals for A that do not contain the value A = 0. This clearly shows the added value
of interpretable informative priors.

Prior 7 o A BF
Jeffreys 19.391 (18.178,22.427)  3.692 (2.570,4.667) 1.937 (-0.447,4.094) 0.473
BTV(1/2,1/2) 19.411 (18.254,22.998) 3.682 (2.537,4.605) 1.896 (-0.650,3.985) 0.433
BTV(1,1) 19.529 (18.287,23.044) 3.605 (2.513,4.568) 1.735 (-0.777,3.827) 0.406
BW(1,1) 19.796 (18.467,23.066) 3.404 (2.389,4.358) 1.413 (-0.732,3.151) 0.425
BTV(3,1/2)  19.295 (18.149,20.751) 3.768 (2.814,4.781) 2.097 ( 0.410,4.118) 0.278
BW(3,1/2) 19.361 (18.263,20.784) 3.707 (2.741,4.659) 1.960 ( 0.292,3.669) 0.175
SN 19.288 (18.275,20.556) 3.769 (2.884,4.733) 2.087 ( 0.668,3.845) 0.119
Matching 19.190 (18.313,20.219) 3.858 (2.991,4.735) 2.265 ( 0.895,4.035) 0.370
MLE 19.229 (18.445,20.876) 3.810 (2.625,4.634) 2.233 ( 0.597,4.248) -
Table 5:  BMI data: posterior median, 95% HPD intervals, and Bayes factors associated to

Ho: A=0.
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Figure 2: (a) Profile likelihood of A; (b) Marginal posterior of A using the informative prior
BTV (3,1/2); (c) Informative priors: BT'V(3,1/2) prior (continuous line), BW (3,1/2) prior
(dashed line), and SN prior (dotted line).

6 Discussion

The construction of meaningful priors, either informative or noninformative, is of central im-
portance in Bayesian inference. Prior elicitation is particularly challenging when the model pa-
rameters control several features. Such is the case of the skewness parameter in skew-symmetric
distributions, where this parameter controls the mode, asymmetry, tail behaviour, and spread
of the pdf. We proposed a new method for constructing priors for this parameter based on its
overall effect on the shape of the density. For this purpose, we studied the perturbation effect of
the skewness parameter through the Total Variation and Wasserstein distances. We showed that
the priors induced by the Total Variation distance are very intuitive and hence user-friendly,
have very good frequentist properties and enjoy tractable expressions, especially compared to
the popular Jeffreys prior which moreover can have singularities.

The constructive strategy proposed in this paper can be extended to shape parameters in
other distributions. In the Supplementary Material, we provide a brief study on the construction
of priors using the Total Variation and Wasserstein distances for log-skew-symmetric distribu-
tions and two-piece distributions. It is shown that the priors for the entire family of two-piece
distributions have closed-form expressions, which are linked to a family of priors proposed in |Ru-
bio and Steel (2014). Applying this new strategy of prior construction to various other families
with shape parameters represents a promising research direction.

Appendix: Proofs

Proof of the representation (4))

Let X, be a random variable following a skew-t¢ distribution. By using the stochastic represen-
tation of the skew-t distribution as a scale mixture of skew-normal distributions (Azzalini and
Capitaniol, 2003) it follows that

Stz (A ) = P(X), <0)=P (\/,;1/22A < 0) —P(Z,<0),

where V,, ~ x2/v, and Zy is a skew-normal random variable with location 0, unit scale, and
skewness parameter A. The result follows from this relationship together with equation .

Proof of Theorem [2]

(i) The symmetry property is immediate from expression @

(ii) It is easily seen that mpy(A) = [5° 2w(u) f(u)g(Aw(u))du. For u > 0 and |[A1] > [A2] > 0,
it follows that w(u)f(u)g(Mw(u)) < w(u)f(u)g(Aew(u)) thanks to the unimodality and
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symmetry of g. Thus

| wtwrgoustude < [ o fugOuw)d
0 0

and hence the prior is decreasing in |\|.

(iii) By using the change of variable u = Az and the maximality of f at 0, it follows that

‘/ g(A\x)dx

Now, let [A\| > L > 0. Then, the unimodality and symmetry of f yield f (%) > f (%) for
u > 0. By using the change of variable u = —Ax we find

‘/ g(A\z)dx

0 0 o0
< / |z| f(z)g(Ax)dx < M/_OO |z|g(A\x)dx = ]/g/o ug(u)du.

1 oo [e.9]

= 1w (55 =5 [Tt (5) s

> s () s

The result follows by combining the previous inequalities.

Proof of Theorem [4]
The proof is based on that of Theorem 3 from Rubio and Liseo| (2014]). Recall that a posterior
distribution is proper whenever the marginal distribution P(z1,...,z,) < oo (Fernandez and

T —p

2
Steel, [1999)). Now note that sf.q(x;p,0,\) < —f ( ) , which entails that
o

- p(A)
Plxy,...,xn) = // / s(xj;p, 0, N) | —=dudodA
( ) o, S 1;[ j -

/IR /R ﬁljf (mjg_ﬂ> idﬂdU/Rp(/\)d)\.
s IR |2

Given that p()\) is proper, it follows that the posterior distribution of (i, o, \) exists whenever
the posterior distribution of (u, o) exists for a scale mixture of normals sampling model and the
prior m(p, o) o< o~'. The propriety of the latter, for n > 2 and when all the observations are
different, follows by Theorem 1 of Fernandez and Steel| (1999).
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1 Extension to other distributions

We here briefly show how our method applies to other types of flexible distributions where a
(skewness) parameter has a perturbation effect on the original distribution.

Log-skew-symmetric distributions

The proposed priors from our main paper have the same interpretation if they are used for the
shape parameter in log-skew-symmetric distributions. Recall that a positive random variable
Y is said to be distributed according to a log-skew-symmetric distribution if it is distributed
according to (@) below. This sort of distributions have been used for modelling environmental,
medical, biological, and financial data (see Marchenka and Genton and the references
therein). The pdf of Y is given by

sy ) = if(logy)G(Mogy), y > 0. 1)

It follows that the TV and Wasserstein distances between () and the corresponding baseline

1
log-symmetric density fj(y) = — f(logy) satisfy:
Yy

v fN) = 5 [Tl ~ ildy =5 [ s~ falde = dry(s. £

oo oo
(S, FIA) = / 1Sy \) — Fi(y) | dy = / (23 3) — F(x)ldz = dy(S, FIN).
0 —0o0
Consequently, the priors proposed in Section 3 of the main paper for the skew-symmetric family
coincide with those obtained for the log-skew-symmetric family. It is also clear that one could
use any other increasing diffeomorphism from R to R instead of the logarithmic transformation.

Two-piece distributions

Consider the family of two-piece distributions with the following parameterisation (see Bubid
Bnd Steel, for a general overview):

T

1+7)I(x20), z €R, (2)

sulein) =1 (2 ) 1w <0+ 1

where v € (—=1,1), and f is a unimodal symmetric pdf with mode at 0. The parameter «y controls
the mass cumulated on either side of the mode (z = 0) while preserving the tail behaviour of



f. The density (B) is asymmetric for 7 # 0 and it reduces to f for v = 0. The TV distance

between sy, and the baseline pdf f is given by:
1 [ x
d - _
o) b ) e

f(lf,y)—ﬂx)

If we define the measure of asymmetry Mpy (y) = /2, this coincides, up to a proportionality
constant, with the AG measure of skewness proposed in Brnold and Groeneveld ([993) (see

14 2M: 1
Bubicand Steel, 200d). Consequently, if we assume that +2Mry (7) = ;7 ~ Beta(a, B),

we obtain the AG-Beta priors proposed in Bubia and Steel (BIId) for this family of distributions.
Regarding the Wasserstein distance, and assuming that the first moment of f is finite, we

have
twtse ) = | [ 21 (7)) dos [Ta]r (£5) - )]

= 2ly|wi,

:m.

d
T

1 0
drv (sip, fl7) = 2/

where w; = [*°_ || f(x)dz. Inspired by this distance, we can define the measure of asymmetry
My () = 2wy, which again coincides, up to a proportionality constant, with the AG measure
of skewness. Consequently, we can also obtain the family of AG-Beta priors by assuming that
1+ M, 2w 1

+ Wgy)/( ) = _'2—7 ~ Beta(a, ).




2 Simulation study

This section is a complement to the Monte Carlo simulation study in Section 5.1 of the main
paper. It is a performance comparison between noninformative priors built according to our new
method and the Jeffreys prior.

We simulate N = 1,000 samples of size n = 200 from the skew-normal distribution, and
N = 1,000 samples of sizes n = 50, 100,200 from skew-logistic and skew-Laplace distributions,
in each case with location parameter u = 0, scale parameter ¢ = 1, and skewness parameter
A = 0,2.5,5. For each of these samples, we simulate a posterior sample of size 1,000 from
(t, 0, A) using the BTV (1,1), BTV (1/2,1/2), BW(1,1), BW(1/2,1/2) and Jeffreys priors. We
employ a self-adaptive MCMC sampler (Christenand Fod, PZ0T0) to obtain the posterior samples.
For each posterior sample, we calculate the coverage proportions of the 95% credible intervals
of each parameter (this is, the proportion of credible intervals that contain the true value of the
parameter) as well as the 5%, 50% and 95% quantiles of the posterior medians and maximum
a posteriori (MAP) estimators. In addition, we obtain the median of the Bayes factors (BFs)
associated to the hypothesis Hy : A = 0. The Bayes factors are approximated using the Savage-
Dickey density ratio.

The BTV and BW priors for the skew-normal and skew-Laplace distribution are available
under closed-form, see Example 2 and Example 3 of the main paper. For the skew-logistic
model, we employ the Student-t approximation for the BTV (1, 1) prior described in Section 3.2
of the main paper, while the BW(1, 1) prior associated to the skew-logistic model is approxi-
mated using a Student-¢ distribution with 2 degrees of freedom and scale parameter 0.6. The
BTV (1/2,1/2) and BW(1/2,1/2) priors are readily obtained via the Beta transformation as
indicated in expression (5) of the main paper. For the Jeffreys priors associated to the skew-
logistic model, we employ the Student-t approximation proposed in Bubloand Tised (20Id) (1/2
degrees of freedom and scale 4/3). For the skew-Laplace model, we propose a new approximation
to the Jeffreys prior:

1
N 480(1 + |.’E/So‘)3/2’

T7(\)

where sop = 0.77. Results are reported in Tables BS-I73. We attract the reader’s attention to
the fact that the BW(1/2,1/2) prior is left out of Table ES since, in the skew-normal setting,
it coincides with the BTV (1,1) prior. Overall, we observe that the Jeffreys and BTV (1/2,1/2)
priors exhibit the best, and very similar, performance.



Prior MAP Median Coverage BF
5% 50% 95% 5% 50% 95%
A=0
BTV(1/2,1/2)
i -0.886  -0.035 0.869 | -0.682 -0.009 0.692 0.994 -
o 0.960 1.054 1.330 | 1.008  1.108 1.296 0.846 -
A -1.286  0.028  1.295 | -1.028 -0.004 1.037 0.993 2.306
Jeffreys
m -0.890  0.032  0.890 | -0.718  0.006  0.720 0.991 -
o 0.961 1.058 1.351 | 1.009  1.115 1.319 0.844 -
A -1.335 -0.002 1.297 | -1.082 -0.019  1.052 0.991 2.557
BTV(1,1)
m -0.857  0.002 0.860 | -0.602 -0.007 0.652 0.995 -
o 0.952  1.048 1.285 | 0.999  1.098  1.275 0.862 -
A -1.207 -0.001 1.180 | -0.992 -0.004 0.851 0.995 1.570
BW(1,1)
i -0.728  0.007  0.780 | -0.436 -0.002  0.502 1.000 -
o 0.949  1.040 1.156 | 0.988  1.082  1.210 0.889 -
A -0.993  0.003 0.661 | -0.704 -0.014  0.597 1.000 1.172
A=25
BTV(1/2,1/2)
m -0.124  0.008 0.211 | -0.119  0.021  0.317 0.905 -
o 0.699  0.981 1.123 | 0.760  0.980 1.124 0.909 -
A 1.158  2.283  3.671 | 0.924 2.362 3.814 0.907 0.012
Jeffreys
W -0.127  0.006 0.202 | -0.119  0.019  0.321 0.914 -
o 0.709  0.984 1.120 | 0.772  0.982  1.125 0.911 -
A 1.191 2319 3.645 | 0.922 2.369  3.886 0.916 0.006
BTV(1,1)
m -0.123  0.015 0.225 | -0.110  0.031  0.401 0.898 -
o 0.687 0.976 1.123 | 0.743  0.972 1.117 0.902 -
A 0.787  2.231  3.541 | 0.722  2.294  3.666 0.897 0.014
BW(1,1)
m -0.105  0.035 0.303 | -0.097 0.056 0.514 0.866 -
o 0.663  0.958 1.099 | 0.711  0.950 1.102 0.875 -
A 0.174  2.072  3.301 | 0.438  2.098  3.478 0.855 0.050
A=5
BTV(1/2,1/2)
W -0.090  0.000 0.097 | -0.082 0.003  0.098 0.938 -
o 0.874  0.992 1.108 | 0.874  0.995 1.107 0.935 -
A 2.948  4.603  7.795 | 3.129  4.939  8.662 0.923 5 x 1011
Jeffreys
W -0.087 -0.001 0.095 | -0.081  0.004  0.098 0.940 -
o 0.873  0.989 1.099 | 0.874  0.995 1.108 0.937 -
A 2.922  4.615 7.907 | 3.134  4.947  8.943 0.926 4x10~11
BTV(1,1)
m -0.080  0.004 0.098 | -0.076  0.008  0.106 0.945 -
o 0.867  0.987 1.096 | 0.869  0.990 1.101 0.944 -
A 2.853  4.457  7.475 | 3.048  4.748  8.275 0.929 5x 10~ 11
BW(1,1)
m -0.072  0.014 0.113 | -0.067 0.017  0.123 0.933 -
o 0.857 0.978 1.088 | 0.855  0.980  1.089 0.925 -
A 2.593  4.173  6.750 | 2.825  4.450  7.376 0.920 8§ x 10~ 11
Table 1S: skew-normal data: n = 200.




Prior MAP Median Coverage BF
5% 50% 95% 5% 50% 95%
A=0
BTV(1/2,1/2)
o -1.513 -0.006 1.624 -1.260 0.042 1.368 0.964 -
o 0.871 1.080 1.350 0.922 1.148 1.432 0.905 -
A -0.771 0.005 0.753 -1.278  -0.027 1.099 0.972 2.049
BW(1/2,1/2)
w -1.324 0.009 1.334 -1.161 0.039 1.155 0.984 -
o 0.857 1.065 1.317 0.906 1.117 1.371 0.927 -
A -0.599 0.002 0.565 -0.947 -0.013 0.846 0.985 1.410
Jeffreys
o -1.524 0.017 1.580 -1.279  0.046 1.384 0.966 -
o 0.871 1.089 1.372 0.927 1.153 1.433 0.901 -
A -0.862 -0.002 0.802 -1.327  -0.026 1.107 0.967 2.138
BTV(1,1)
o -1.378 0.030 1.397 -1.163 0.031 1.187 0.980 -
o 0.857 1.065 1.307 0.913 1.126 1.379 0.923 -
A -0.675 0.002 0.629 -1.009 -0.022 0.920 0.983 1.436
BW(1,1)
o -0.942 0.004 0.951 -0.890 0.017 0.882 0.992 -
o 0.842 1.045 1.266 0.884 1.086 1.312 0.940 -
A -0.426 -0.008 0.437 -0.618 -0.011 0.577 0.995 1.136
A=25
BTV(1/2,1/2)
o -0.459 0.080 0.810 -0.390  0.175 0.924 0.913 -
o 0.617 0.871 1.252 0.650 0.909 1.266 0.923 -
A 0.022 1.172 7.476 0.314 1.809 11.010 0.912 0.507
BW(1/2,1/2)
o -0.365 0.182 0.946 -0.287 0.300 0.998 0.895 -
o 0.595 0.821 1.198 0.636 0.866 1.205 0.897 -
A 0.138 0.863 4.346 0.211 1.354 6.077 0.874 0.470
Jeffreys
o -0.476 0.065 0.815 -0.378 0.162 0.935 0.912 -
o 0.624 0.875 1.269 0.658 0.917 1.266 0.919 -
A 0.073 1.321 7.835 0.316 1.894 9.999 0.905 0.518
BTV(L,1)
o -0.357 0.167 0.859 -0.286  0.276 0.989 0.899 -
o 0.606 0.835 1.204 0.641 0.875 1.196 0.899 -
A 0.209 0.937 4.343 0.252 1.439 5.855 0.879 0.463
BW(1,1)
o -0.217 0.446 1.073 -0.119  0.497 1.088 0.780 -
o 0.587 0.763 1.079 0.612 0.803 1.098 0.818 -
A 0.133 0.513 2.584 0.183 0.828 3.261 0.738 0.520
A=5
BTV(1/2,1/2)
o -0.316 0.011 0.524 -0.263 0.049 0.621 0.921 -
o 0.614 0.938 1.230 0.656 0.955 1.236 0.919 -
A -7.980 3.013 33.228 | 0.995 4.600  33.555 0.915 0.111
BW(1/2,1/2)
o -0.243 0.062 0.667 -0.194  0.129 0.738 0.893 -
o 0.595 0.896 1.190 0.634 0.905 1.195 0.904 -
A 0.478 2.520 8.610 0.761 3.370 13.059 0.886 0.113
Jeffreys
o -0.307 0.010 0.486 -0.262  0.052 0.600 0.921 -
o 0.618 0.938 1.230 0.662 0.958 1.242 0.919 -
A -10.231 3.015 33.053 1.099 4.535 33.336 0.906 0.115
BTV(1,1)
o -0.238 0.060 0.632 -0.204 0.124 0.729 0.897 -
o 0.594 0.894 1.181 0.640 0.913 1.185 0.902 -
A 0.543 2.585 8.449 0.826 3.483 13.135 0.894 0.109
BW(1,1)
o -0.141 0.196 0.908 -0.088 0.313 0.895 0.789 -
o 0.557 0.791 1.096 0.591 0.819 1.100 0.815 -
A 0.362 1.037 4.632 0.516 1.904 6.230 0.730 0.202
Table 2S: skew-logistic data: n = 50.




Prior MAP Median Coverage BF
5% 50% 95% 5% 50% 95%
A=0
BTV(1/2,1/2)
o -1.139 0.048 1.191 -0.994 0.055 1.046 0.957 -
o 0.906 1.060 1.244 0.936 1.099 1.282 0.911 -
A -0.682 -0.014 0.641 -0.842  -0.030 0.820 0.952 2.794
BW(1/2,1/2)
o -1.058 0.005 1.082 -0.910  0.035 0.966 0.963 -
o 0.904 1.057 1.229 0.933 1.091 1.265 0.921 -
A -0.560  -0.009 0.561 -0.736  -0.029 0.729 0.963 1.808
Jeffreys
w -1.190 0.047 1.227 -1.044 0.059 1.097 0.952 -
o 0.913 1.070 1.254 0.944 1.106 1.295 0.910 -
A -0.783  -0.014 0.719 -0.899  -0.044 0.865 0.946 2.913
BTV(1,1)
o -1.030 0.029 1.082 -0.932 0.051 0.965 0.965 -
o 0.901 1.054 1.230 0.938 1.092 1.270 0.916 -
A -0.614  -0.016 0.608 -0.766  -0.035 0.739 0.961 1.901
BW(1,1)
o -0.802 0.030 0.880 -0.781 0.025 0.818 0.982 -
o 0.895 1.043 1.213 0.918 1.071 1.242 0.932 -
A -0.476  -0.006 0.452 -0.589  -0.025 0.552 0.981 1.344
A=25
BTV(1/2,1/2)
o -0.312 0.037 0.546 -0.278  0.090 0.602 0.922 -
o 0.706 0.947 1.196 0.734 0.950 1.203 0.923 -
A 0.540 1.929 4.478 0.766 2.141 5.002 0.904 0.122
BW(1/2,1/2)
o -0.285 0.077 0.610 -0.243 0.140 0.674 0.914 -
o 0.685 0.914 1.167 0.719 0.925 1.171 0.912 -
A 0.457 1.715 3.831 0.628 1.896 4.519 0.892 0.111
Jeffreys
o -0.305 0.031 0.535 -0.277 0.089 0.604 0.925 -
o 0.704 0.949 1.203 0.737 0.955 1.204 0.921 -
A 0.565 1.951 4.205 0.742 2.137 5.028 0.911 0.115
BTV(L,1)
o -0.264  0.074 0.642 -0.237  0.134 0.676 0.918 -
o 0.685 0.917 1.174 0.718 0.926 1.180 0.913 -
A 0.496 1.725 3.919 0.675 1.917 4.491 0.894 0.099
BW(1,1)
o -0.216 0.182 0.768 -0.171 0.264 0.773 0.858 -
o 0.662 0.847 1.129 0.691 0.873 1.130 0.852 -
A 0.391 1.109 3.262 0.516 1.425 3.651 0.821 0.143
A=5
BTV(1/2,1/2)
o -0.222  -0.003 0.260 -0.198 0.018 0.294 0.931 -
o 0.780 0.973 1.168 0.792 0.980 1.175 0.942 -
A 1.649 4.077 10.223 2.174 4.733 13.117 0.916 0.006
BW(1/2,1/2)
o -0.185 0.023 0.287 -0.165  0.044 0.338 0.932 -
o 0.760 0.959 1.147 0.777 0.964 1.155 0.928 -
A 1.591 3.794 8.276 1.922 4.303 10.006 0.916 0.005
Jeffreys
o -0.210 0.001 0.264 -0.200  0.015 0.287 0.933 -
o 0.788 0.975 1.168 0.796 0.981 1.172 0.943 -
A 1.507 4.109 9.910 2.178 4.766 13.401 0.907 0.006
BTV(1,1)
o -0.182 0.020 0.303 -0.170 0.040 0.330 0.930 -
o 0.761 0.961 1.156 0.774 0.967 1.155 0.932 -
A 1.601 3.792 7.933 1.964 4.338 10.000 0.909 0.005
BW(1,1)
o -0.141 0.067 0.406 -0.124 0.098 0.465 0.895 -
o 0.700 0.927 1.122 0.725 0.927 1.124 0.891 -
A 0.987 3.171 6.343 1.432 3.544 7.643 0.858 0.010
Table 3S: skew-logistic data: n = 100.




Prior MAP Median Coverage BF
5% 50% 95% 5% 50% 95%
A=0
BTV(1/2,1/2)
o -0.907 -0.022 0.904 | -0.824 -0.010 0.807 0.938 -
o 0.931 1.037 1.168 0.950 1.059 1.187 0.913 -
A -0.529  -0.002 0.540 | -0.594 -0.002 0.632 0.938 3.838
BW(1/2,1/2)
o -0.826  -0.020 0.828 | -0.785 -0.008 0.766 0.946 -
o 0.927 1.033 1.157 0.947 1.055 1.178 0.921 -
A -0.454 0.007 0.505 | -0.541 0.005 0.585 0.947 2.437
Jeffreys
o -0.913 -0.012 0.902 | -0.826 -0.007 0.820 0.936 -
o 0.932 1.038 1.165 0.949 1.061 1.191 0.915 -
A -0.531 0.011 0.566 | -0.606 0.002 0.662 0.931 4.186
BTV(1,1)
o -0.879 -0.013 0.837 | -0.780 -0.012  0.755 0.945 -
o 0.926 1.035 1.154 0.946 1.058 1.181 0.921 -
A -0.481 0.007  0.542 | -0.531 0.003 0.618 0.942 2.574
BW(1,1)
o -0.717 -0.004 0.710 | -0.694 -0.006 0.683 0.965 -
o 0.922 1.029 1.143 0.941 1.046 1.162 0.931 -
A -0.402 0.001 0.426 | -0.465 0.000 0.507 0.964 1.722
A=25
BTV(1/2,1/2)
o -0.225 0.011 0.363 | -0.207 0.037 0.382 0.930 -
o 0.787 0.975 1.142 | 0.804 0.975 1.142 0.930 -
A 1.069 2.233 3.760 1.187 2.330 3.999 0.931 0.001
BW(1/2,1/2)
o -0.215 0.028 0.372 | -0.196 0.059 0.424 0.915 -
o 0.777 0.964 1.135 0.791 0.964 1.132 0.917 -
A 0.923 2.146 3.564 1.094 2.224 3.793 0.910 0.002
Jeffreys
" -0.228 0.014 0.334 | -0.211 0.034 0.392 0.924 -
o 0.790 0.974 1.143 0.804 0.977 1.145 0.926 -
A 1.042 2.253 3.745 1.188 2.349 3.936 0.927 0.001
BTV(1,1)
o -0.207 0.029 0.370 | -0.194 0.052 0.427 0.918 -
o 0.777 0.966 1.128 | 0.790 0.968 1.128 0.918 -
A 0.954 2.174 3.617 1.088 2.236 3.800 0.911 0.002
BW(1,1)
o -0.187 0.070 0.476 | -0.162 0.106 0.507 0.890 -
o 0.738 0.941 1.111 0.761 0.938 1.114 0.880 -
A 0.749 1.958 3.315 0.919 2.006 3.491 0.874 0.004
A=5
BTV(1/2,1/2)
o -0.141 0.003 0.157 | -0.132 0.009 0.172 0.934 -
o 0.859 0.989 1.125 0.859 0.992 1.128 0.940 -
A 2.773 4.640 7.651 3.013 4.942 8.602 0.942 9x1079
BW(1/2,1/2)
o -0.132 0.011 0.182 | -0.121 0.019 0.184 0.941 -
o 0.846 0.982 1.122 0.849 0.985 1.122 0.937 -
A 2.742 4.436 7.435 2.893 4.746 8.078 0.934 9x1079
Jeffreys
o -0.141 0.004 0.169 | -0.138 0.010 0.174 0.940 -
o 0.854 0.987 1.126 | 0.859 0.992 1.132 0.933 -
A 2.811 4.615 7.605 | 3.023 4.957 8.638 0.945 8x1079
BTV(1,1)
o -0.131 0.012 0.179 | -0.123 0.018 0.184 0.936 -
o 0.851 0.983 1.114 | 0.851 0.985 1.123 0.932 -
A 2.704 4.429 7.301 2.883 4.754 8.134 0.939 8x10~°
BW(1,1)
o -0.112 0.029 0.201 | -0.101 0.038 0.219 0.928 -
o 0.830 0.966 1.101 0.835 0.972 1.104 0.921 -
A 2.390 4.116 6.653 2.576 4.408 7.197 0.908 3x10~8
Table 4S: skew-logistic data: n = 200.




Prior MAP Median Coverage BF
5% 50% 95% 5% 50% 95%
A=0
BTV(1/2,1/2)
o -0.585 0.000 0.587 -0.524  -0.005 0.562 0.946 -
o 0.803 1.032 1.293 0.835 1.067 1.332 0.960 -
A -0.369 0.001 0.385 -0.621 0.001 0.582 0.946 3.921
BW(1/2,1/2)
o -0.535 -0.010 0.513 -0.479 -0.014 0.511 0.961 -
o 0.788 1.027 1.267 0.823 1.061 1.320 0.966 -
A -0.332 0.004 0.311 -0.539  0.001 0.497 0.963 2.279
Jeffreys
o -0.591  -0.007 0.629 -0.523  -0.009 0.575 0.948 -
o 0.795 1.034 1.290 0.835 1.072 1.333 0.959 -
A -0.415  -0.001 0.388 -0.654  -0.000 0.574 0.948 3.759
BTV(1,1)
o -0.549  -0.003 0.554 -0.509 -0.011 0.545 0.957 -
o 0.798 1.031 1.286 0.824 1.065 1.318 0.958 -
A -0.347  -0.001 0.329 -0.546  -0.002 0.529 0.954 2.567
BW(1,1)
o -0.461  -0.008 0.459 -0.428 -0.006 0.441 0.960 -
o 0.793 1.020 1.261 0.813 1.050 1.299 0.961 -
A -0.270 0.000 0.248 -0.436 0.000 0.398 0.971 1.610
A=25
BTV(1/2,1/2)
o -0.273 0.014 0.381 -0.230  0.035 0.375 0.932 -
o 0.661 0.939 1.267 0.706 0.972 1.299 0.936 -
A 0.280 1.558 6.824 0.697 2.234 10.721 0.926 0.137
BW(1/2,1/2)
o -0.221 0.048 0.456 -0.191 0.070 0.425 0.929 -
o 0.663 0.909 1.235 0.691 0.942 1.261 0.937 -
A 0.308 1.326 4.846 0.567 1.880 6.993 0.933 0.094
Jeffreys
o -0.272 0.016 0.416 -0.239 0.038 0.385 0.930 -
o 0.668 0.933 1.266 0.710 0.967 1.296 0.932 -
A 0.270 1.493 6.402 0.684 2.194 11.039 0.922 0.136
BTV(L,1)
n -0.229 0.041 0.421 -0.192 0.063 0.402 0.931 -
o 0.656 0.917 1.230 0.694 0.949 1.254 0.933 -
A 0.338 1.438 4.853 0.614 1.963 7.188 0.936 0.106
BW(1,1)
o -0.165 0.109 0.509 -0.128  0.135 0.475 0.900 -
o 0.634 0.871 1.172 0.660 0.901 1.192 0.909 -
A 0.237 0.981 3.066 0.419 1.390 4.250 0.884 0.092
A=5
BTV(1/2,1/2)
o -0.187 0.000 0.244 -0.164 0.015 0.262 0.931 -
o 0.667 0.942 1.234 0.697 0.967 1.263 0.932 -
A -3.128 3.112 30.605 1.445 4.790 34.839 0.922 0.054
BW(1/2,1/2)
o -0.153 0.023 0.299 -0.123  0.042 0.299 0.940 -
o 0.654 0.913 1.208 0.684 0.941 1.232 0.931 -
A 0.739 2.851 9.570 1.214 3.971 15.015 0.920 0.035
Jeffreys
o -0.182 0.002 0.257 -0.166  0.019 0.264 0.929 -
o 0.668 0.942 1.246 0.701 0.971 1.267 0.933 -
A -6.021 3.107 30.692 1.424 4.824 34.424 0.926 0.053
BTV(1,1)
o -0.157 0.021 0.291 -0.124 0.041 0.296 0.935 -
o 0.658 0.914 1.211 0.688 0.944 1.237 0.933 -
A 0.775 2.897 9.682 1.281 4.018 14.715 0.927 0.041
BW(1,1)
1 -0.099 0.076 0.378 -0.079 0.098 0.377 0.888 -
o 0.625 0.863 1.141 0.651 0.892 1.168 0.901 -
A 0.547 1.878 4.771 0.899 2.737 7.180 0.861 0.038
Table 5S: skew-Laplace data: n = 50.




Prior MAP Median Coverage BF
5% 50% 95% 5% 50% 95%
A=0
BTV(1/2,1/2)
o -0.342  -0.007 0.347 -0.341  0.006 0.356 0.936 -
o 0.850 1.021 1.197 0.868  1.038  1.213 0.950 -
A -0.240 0.001 0.226 -0.335 0.001 0.304 0.934 6.549
BW(1/2,1/2)
I -0.337  -0.005  0.313 | -0.330 0.002  0.324 0.950 -
o 0.852 1.016 1.195 0.868 1.035 1.212 0.954 -
A -0.218  0.002 0.207 | -0.313 0.001  0.272 0.942 3.607
Jeffreys
I -0.343  -0.007  0.350 | -0.347 0.006  0.349 0.939 -
o 0.851 1.021 1.199 0.869 1.038 1.210 0.953 -
A -0.244 0.001 0.221 -0.330  0.004 0.303 0.936 6.333
BTV(1,1)
o -0.354  -0.003 0.328 -0.338  0.003 0.333 0.944 -
o 0.853 1.021 1.200 0.868 1.035 1.212 0.952 -
A -0.243 0.001 0.214 -0.319  0.001 0.292 0.934 4.277
BW(1,1)
o -0.308  -0.000 0.298 -0.300 0.004 0.290 0.958 -
o 0.850 1.016 1.182 0.866  1.030  1.205 0.946 -
A -0.211 0.001 0.183 -0.277  0.002 0.254 0.954 2.437
A=25
BTV(1/2,1/2)
I -0.173  0.002 0.237 | -0.157 0.014  0.240 0.945 -
o 0.781 0.969 1.195 0.799 0.983 1.216 0.952 -
A 0.834 2.039 4.492 1.068 2.377 5.605 0.944 0.011
BW(1/2,1/2)
o -0.162 0.016 0.258 -0.146  0.028 0.260 0.937 -
o 0.768 0.952 1.191 0.784 0.971 1.202 0.944 -
A 0.786 1.956 4.344 0.996 2.224 5.101 0.936 0.006
Jeffreys
o -0.173 0.001 0.249 -0.155 0.012 0.238 0.938 -
o 0.771 0.971 1.203 0.788  0.985  1.217 0.953 -
A 0.841 2.065 4.552 1.060 2.386 5.598 0.940 0.010
BTV(1,1)
I -0.163  0.012 0.257 | -0.145 0.026  0.251 0.938 -
o 0.772 0.958 1.192 0.788 0.974 1.200 0.944 -
A 0.778 1.951 4.391 0.991 2.241  5.094 0.946 0.008
BW(1,1)
I -0.131  0.043 0.300 | -0.115 0.062  0.297 0.926 -
o 0.746 0.931 1.163 0.765 0.947 1.169 0.933 -
A 0.630 1.646 3.630 0.811 1.924 4.242 0.911 0.007
A=5
BTV(1/2,1/2)
o -0.120 0.001 0.147 -0.113  0.008 0.157 0.938 -
o 0.786 0.974 1.187 0.801 0.983 1.194 0.947 -
A 1.943 4.172 9.410 2.427 4.877  12.860 0.936 0.002
BW(1/2,1/2)
I -0.107  0.009 0.161 | -0.099 0.018 0.175 0.945 -
o 0.775 0.966 1.168 0.789 0.972 1.173 0.945 -
A 1.772 3.858 8.530 2.228 4.492  11.127 0.934 0.002
Jeffreys
I -0.128 -0.000 0.153 | -0.117 0.009  0.159 0.943 -
o 0.787 0.973 1.182 0.798 0.985 1.194 0.945 -
A 1.950 4.128 10.446 2.381 4.868  12.906 0.936 0.003
BTV(1,1)
o -0.109 0.009 0.164 -0.099 0.017 0.177 0.947 -
o 0.772 0.962 1.159 0.787  0.974  1.182 0.947 -
A 1.852 3.848 8.546 2.224 4.479  10.951 0.942 0.002
BW(1,1)
o -0.085 0.031 0.197 -0.079  0.041 0.209 0.931 -
o 0.754 0.938 1.147 0.770 0.948 1.151 0.928 -
A 1.552 3.273 6.765 1.897  3.767  8.302 0.916 0.002

Table 6S: skew-Laplace data: n = 100.




Prior MAP Median Coverage BF
5% 50% 95% 5% 50% 95%
A=0
BTV(1/2,1/2)
o -0.204 -0.002 0.225 | -0.209 -0.002 0.223 0.941 -
o 0.889 1.008 1.136 0.898 1.013 1.142 0.942 -
A -0.147  -0.000 0.149 | -0.183 0.000 0.185 0.947 10.585
BW(1/2,1/2)
o -0.198 0.000 0.213 | -0.202 -0.001 0.206 0.948 -
o 0.886 1.004 1.133 0.895 1.012 1.138 0.943 -
A -0.132  0.001 0.143 | -0.171 0.001 0.178 0.956 5.739
Jeffreys
n -0.206  -0.001 0.224 | -0.211  -0.000 0.214 0.939 -
o 0.884 1.007 1.133 0.895 1.014 1.141 0.939 -
A -0.148  0.001 0.154 | -0.180  0.001 0.190 0.945 10.440
BTV(1,1)
o -0.208 -0.002  0.211 | -0.206 0.001 0.210 0.941 -
o 0.887 1.007 1.132 0.898 1.014 1.140 0.942 -
A -0.138 0.000 0.148 | -0.180 -0.000 0.189 0.945 6.852
BW(1,1)
o -0.192  -0.002 0.203 | -0.202 -0.001 0.202 0.950 -
o 0.889 1.006 1.131 0.896 1.013 1.141 0.943 -
A -0.133 0.001 0.136 | -0.163 0.002 0.169 0.953 3.770
A=25
BTV(1/2,1/2)
o -0.126  -0.004 0.155 | -0.119  0.003  0.155 0.945 -
o 0.840 0.987 1.147 0.845 0.994 1.159 0.936 -
A 1.307 2.311 3.849 1.429 2.469 4.217 0.941 7x10~6
BW(1/2,1/2)
o -0.119  0.005 0.168 | -0.114  0.011 0.163 0.947 -
o 0.831 0.978 1.136 0.843 0.986 1.148 0.939 -
A 1.204 2.243 3.718 1.356 2.392 4.049 0.948 4x10~6
Jeffreys
o -0.127  -0.001  0.157 | -0.118 0.004 0.161 0.940 -
o 0.836 0.982 1.148 0.851 0.992 1.154 0.939 -
A 1.289 2.291 3.830 1.403 2.460 4.176 0.944 6x1076
BTV(1,1)
o -0.119 0.004 0.159 | -0.110 0.009 0.160 0.945 -
o 0.828 0.978 1.140 | 0.843 0.988 1.145 0.938 -
A 1.263 2.210 3.738 1.382 2.385 4.045 0.945 5x1076
BW(1,1)
o -0.103 0.020 0.176 | -0.095 0.024 0.180 0.936 -
o 0.823 0.967  1.120 | 0.828 0.974 1.133 0.939 -
A 1.160 2.055 3.522 1.276 2.194 3.715 0.942 4x106
A=5
BTV(1/2,1/2)
o -0.084 -0.001 0.097 | -0.080 0.002 0.096 0.951 -
o 0.849 0.984  1.137 | 0.855 0.991 1.142 0.939 -
A 2.817 4.596 7.956 3.036 4.900 8.621 0.952 7x10~8
BW(1/2,1/2)
o -0.079 0.004 0.101 | -0.075 0.006 0.105 0.956 -
o 0.841 0.977 1.126 0.848 0.983 1.134 0.935 -
A 2.669 4.379 7.501 2.925 4.702 8.301 0.951 6x10~8
Jeffreys
o -0.085 -0.002 0.095 | -0.079  0.002  0.097 0.951 -
o 0.847 0.987 1.142 0.853 0.990 1.142 0.940 -
A 2.784 4.567  7.767 | 3.033 4.879  8.693 0.945 1x10~7
BTV(L,1)
o -0.080 0.004 0.099 | -0.074 0.006 0.102 0.951 -
o 0.840 0.978 1.128 0.849 0.986 1.135 0.932 -
A 2.615 4.427 7.547 2.859 4.744 8.132 0.943 7x10~8
BW(1,1)
o -0.070  0.013  0.114 | -0.067  0.018 0.119 0.943 -
o 0.834 0.970 1.121 0.841 0.974 1.124 0.926 -
A 2.530 4.044 6.888 2.702 4.344 7.487 0.924 8x10~8
Table 7S: skew-Laplace data: n = 200.
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