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WEAK CONVERGENCE OF A PSEUDO MAXIMUM LIKELIHOOD

ESTIMATOR FOR THE EXTREMAL INDEX

BETINA BERGHAUS AND AXEL BÜCHER

Abstract. The extremes of a stationary time series typically occur in clusters. A
primary measure for this phenomenon is the extremal index, representing the recipro-
cal of the expected cluster size. Both a disjoint and a sliding blocks estimator for the
extremal index are analyzed in detail. In contrast to many competitors, the estima-
tors only depend on the choice of one parameter sequence. We derive an asymptotic
expansion, prove asymptotic normality and show consistency of an estimator for the
asymptotic variance. Explicit calculations in certain models and a finite-sample Monte
Carlo simulation study reveal that the sliding blocks estimator is outperforming other
blocks estimators, and that it is competitive to runs- and inter-exceedance estimators
in various models. The methods are applied to a variety of financial time series.

Key words. Clusters of extremes, extremal index, stationary time series, mixing
coefficients, block maxima.

1. Introduction

An adequate description of the extremal behavior of a time series is important in many
applications, such as in hydrology, finance or actuarial science (see, e.g., Section 1.3 in
the monograph Beirlant et al., 2004). The extremal behavior can be characterized by
the tail of the marginal law of the time series and by the serial dependence; that is, by
the tendency that extremal observations tend to occur in clusters. A primary measure
of extremal serial dependence is given by the extremal index θ ∈ [0, 1], which can be
interpreted as being equal to the reciprocal of the mean cluster size. The underlying
theory was worked out in Leadbetter (1983); Leadbetter et al. (1983); O’Brien (1987);
Hsing et al. (1988); Leadbetter and Rootzén (1988).

Estimating the extremal index based on a finite stretch from the time series has
been extensively studied in the literature. Common approaches are based on the blocks
method, the runs method and the inter-exceedance times method (see Beirlant et al.,
2004, Section 10.3.4, for an overview). The first two methods usually depend on two
parameters to be chosen by the statistician: a threshold sequence and a cluster iden-
tification scheme parameter (such as a block length). In contrast, inter-exceedance
type-estimators are attractive since they only depend on a threshold sequence. Some
references are Hsing (1993); Smith and Weissman (1994); Weissman and Novak (1998);
Ferro and Segers (2003); Süveges (2007); Robert (2009); Robert et al. (2009), among oth-
ers. The present paper is on a slight modification of a blocks estimator due to Northrop
(2015), which, remarkably, only depends on a cluster identification parameter. This
makes the estimator practically appealing in comparison to other blocks methods.
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In many papers on estimating the extremal index, either no asymptotic theory is
given (such as in Süveges, 2007; Northrop, 2015), or the asymptotic theory is incomplete
in the sense that theory is developed for a non-random threshold sequence, while in
practice a random sequence must be used (as, e.g., in Weissman and Novak, 1998;
Robert et al., 2009). As pointed out in the latter paper, “the mathematical treatment
of such random threshold sequences requires complicated empirical process theory”. In
the present paper, the mathematical treatment is comprehensive, working out all the
arguments needed from empirical process theory.

Let us proceed by motivating and defining the estimator: throughout, X1, X2, . . .
denotes a stationary sequence of real-valued random variables with stationary cumulative
distribution function (cdf) F . The sequence is assumed to have an extremal index θ ∈
(0, 1]: for any τ > 0, there exists a sequence un = un(τ) such that limn→∞ nF̄ (un) = τ
and such that

lim
n→∞

P(M1:n ≤ un) = e−θτ . (1.1)

Here, F̄ = 1− F and M1:n = max(X1, . . . , Xn).
For simplicity, we assume that F is continuous and define a sequence of standard

uniform random variables by Us = F (Xs). For x ∈ (0, 1), let un = F←(x1/n), where F←

denotes the generalized inverse of the cdf F . Then nF̄ (un) = n(1− x1/n)→ − log(x) as
n→∞ and therefore, by (1.1)

P(Nn
1:n ≤ x) = P(M1:n ≤ un)→ eθ log x = xθ, (1.2)

where N1:n = F (M1:n) = max{U1, . . . , Un}. In other words, Nn
1:n asymptotically follows

a beta-distribution with parameters (θ, 1), inspiring Northrop (2015) to estimate θ by the
maximum likelihood estimator for the beta-distribution, based on a sample of estimated
block maxima (see below). A slight modification of this estimator can be worked out by
considering a further transformation to Z1:n = n(1−N1:n). Equation (1.2) immediately
implies that

P(Z1:n ≥ x) = P(Nn
1:n ≤ {1− x/n}n)→ exp(−θx), n→∞, (1.3)

that is, Z1:n asymptotically follows the exponential distribution with parameter θ.
Now suppose that we observe a stretch of length n from the time series (Xs)s≥1.

Divide the sample into kn blocks of length bn, and for simplicity assume that n = bnkn
(otherwise, the final block would consist of less than bn observations and should be
omitted). For i = 1, . . . , kn, let

Mni = M((i−1)bn+1):(ibn) = max{X(i−1)bn+1, . . . , Xibn}
denote the maximum over the Xs from the ith block. Also, let Nni = F (Mni) =
max{U(i−1)bn+1, . . . , Uibn} and Zni = bn(1−Nni). If bn is sufficiently large, then, by (1.3),
the (unobservable) random variables Zn1, . . . , Znk form an approximate sample from the
Exponential(θ)-distribution. Moreover, as common when working with block maxima of
a time series, they may be considered as asymptotically independent, which suggests to
estimate θ by the maximum-likelihood estimator for the Exponential(θ) distribution:

θ̃n =
( 1

kn

kn∑
i=1

Zni

)−1
.
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Note that θ̃n should not be considered an estimator, as it is based on the unknown cdf
F . Subsequently, we call θ̃n an oracle for θ.

In practice, the Us are not observable, whence they need to be replaced by their
observable counterparts giving rise to the definitions

N̂ni = F̂n(Mni) and Ẑni = bn(1− N̂ni),

where F̂n(x) = n−1
∑n

s=1 1(Xs ≤ x) denotes the empirical cdf of X1, . . . , Xn. We obtain
the estimator

θ̂n = θ̂djn =
( 1

kn

kn∑
i=1

Ẑni

)−1
, (1.4)

which is, up to an error of order oP(k
−1/2
n ), equal to the estimator {− 1

kn

∑kn
i=1 log(N̂ bn

ni )}−1
considered in Northrop (2015) (where no asymptotic theory is given). While deriving

the asymptotic distribution of the oracle θ̃n may appear tractable (essentially, a cen-
tral limit theorem for rowwise dependent triangular arrays is to be shown, followed by
an argument using the delta method), asymptotic theory on the estimator θ̂n is sub-
stantially more difficult due to the additional serial dependence induced by the rank
transformation (which on top of that operates between blocks instead of within blocks).

A central contribution of the present paper is the derivation of the asymptotic distri-
bution of θ̂n. It will turn out that the impact of the rank transformation is non-negligible,
resulting in different asymptotic variances of θ̂n and the corresponding oracle θ̃n. We
also present asymptotic theory for a modification of θ̂n based on sliding block maxima.
The asymptotic expansions derived in this paper also suggest an estimator for the as-
ymptotic variance of θ̂n, which is the second main contribution. A third contribution
consists of a bias reduction method to improve the finite-sample approximation.

The remaining parts of this paper are organized as follows: in Section 2, we present
mathematical preliminaries needed to formulate and derive the asymptotic distributions
of the estimators for θ. Consistency and asymptotic normality is then shown in Section 3.
In Section 4, we propose a simple device to reduce the bias of the estimators. Estimators
of the asymptotic variance are handled in Section 5. Examples are worked out in detail
in Section 6, while finite-sample results and a case study are presented in Section 7 and 8,
respectively. The complete proof of the main result for the disjoint blocks estimator is
given is Section 9, and additional proofs are postponed to a supplementary material
(Appendices A and B).

2. Mathematical preliminaries

The serial dependence of the time series (Xs)s will be controlled via mixing coefficients.
For two sigma-fields F1,F2 on a probability space (Ω,F ,P), let

α(F1,F2) = sup
A∈F1,B∈F2

|P(A ∩B)− P(A)P(B)|.

In time series extremes, one usually imposes assumptions on the decay of the mixing
coefficients between sigma-fields generated by {Xi 1(Xs > F←(1 − εn)) : s ≤ `} and
{Xs 1(Xs > F←(1 − εn)) : s ≥ ` + k}, where εn → 0 is some sequence reflecting the
fact that only the dependence in the tail needs to be restricted (see, e.g., Rootzén,
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2009). For our purposes, we need slightly more to control even the dependence between
the smallest of all block maxima (see also Condition 2.1(v) below). More precisely,
for −∞ ≤ p < q ≤ ∞ and ε ∈ (0, 1], let Bεp:q denote the sigma algebra generated by
U εs := Us 1(Us > 1− ε) with s ∈ {p, . . . , q} and define, for ` ≥ 1,

αε(`) = sup
k∈N

α(Bε1:k,Bεk+`:∞)

Note that the coefficients are increasing in ε, whence they are bounded by the standard
alpha-mixing coefficients of the sequence Us, which can be retrieved for ε = 1. In Con-
dition 2.1(iii) below, we will impose a condition on the decay of the mixing coefficients
for small values of ε.

The extremes of a time series may be conveniently described by the point process of
normalized exceedances. The latter is defined, for a Borel set A ⊂ E := (0, 1] and a
number x ∈ [0,∞), by

N (x)
n (A) =

n∑
s=1

1(s/n ∈ A,Us > 1− x/n).

Note that N
(x)
n (E) = 0 iff N1:n ≤ 1 − x/n; the probability of that event converging to

e−θx under the assumption of the existence of extremal index θ.

Fix m ≥ 1 and x1 > · · · > xm > 0. For 1 ≤ p < q ≤ n, let F (x1,...,xm)
p:q,n denote the

sigma-algebra generated by the events {Ui > 1 − xj/n} for p ≤ i ≤ q and 1 ≤ j ≤ m.
For 1 ≤ ` ≤ n, define

αn,`(x1, . . . , xm) = sup{|P(A ∩B)− P(A)P(B)| :

A ∈ F (x1,...,xm)
1:s,n , B ∈ F (x1,...,xm)

s+`:n,n , 1 ≤ s ≤ n− `}.

The condition ∆n({un(xj)}1≤j≤m) is said to hold if there exists a sequence (`n)n with
`n = o(n) such that αn,`n(x1, . . . , xm) = o(1) as n → ∞. A sequence (qn)n with qn =
o(n) is said to be ∆n({un(xj)}1≤j≤m)-separating if there exists a sequence (`n)n with
`n = o(qn) such that nq−1n αn,`n(x1, . . . , xm) = o(1) as n→∞. If ∆n({un(xj)}1≤j≤m) is

met, then such a sequence always exists, simply take qn = bmax{nα1/2

n,`n
, (n`n)1/2}c.

By Theorems 4.1 and 4.2 in Hsing et al. (1988), if the extremal index exists and
the ∆(un(x))-condition is met (m = 1), then a necessary and sufficient condition for
weak convergence of N (x)

n is convergence of the conditional distribution of N (x)
n (Bn) with

Bn = (0, qn/n] given that there is at least one exceedance of 1− x/n in {1, . . . , qn} to a
probability distribution π on N, that is,

lim
n→∞

P(N (x)
n (Bn) = j | N (x)

n (Bn) > 0) = π(j) ∀ j ≥ 1,

where qn is some ∆(un(x))-separating sequence. Moreover, in that case, the convergence
in the last display holds for any ∆(un(x))-separating sequence qn. If the ∆(un(x))-
condition holds for any x > 0, then π does not depend on x (Hsing et al., 1988, Theo-
rem 5.1).

A multivariate version of the latter results is stated in Perfekt (1994), see also the
summary in Robert (2009), page 278, and the thesis Hsing (1984). Suppose that the
extremal index exists and that the ∆(un(x1), un(x2))-condition is met for any x1 ≥



MAXIMUM LIKELIHOOD ESTIMATION OF THE EXTREMAL INDEX 5

x2 ≥ 0, x1 6= 0. Moreover assume that there exists a family of probability measures
{π(σ)

2 : σ ∈ [0, 1]} on J = {(i, j) : i ≥ j ≥ 0, i ≥ 1} such that

lim
n→∞

P(N (x1)
n (Bn) = i,N (x2)

n (Bn) = j | N (x1)
n (Bn) > 0) = π

(x2/x1)
2 (i, j) ∀ (i, j) ∈ J ,

where qn is some ∆(un(x1), un(x2))-separating sequence. In that case, the two-level

point process N
(x1,x2)
n = (N

(x1)
n , N

(x2)
n ) converges in distribution to a point process with

characterizing Laplace transform explicitly stated in Robert (2009) on top of page 278.
Note that

π
(1)
2 (i, j) = π(i) 1(i = j), π

(0)
2 (i, j) = π(i) 1(j = 0).

The following set of conditions will be imposed to establish asymptotic normality of
the estimators.

Condition 2.1.

(i) Extremal index and the point process of exceedances. The extremal index
θ ∈ (0, 1] exists and the above assumptions guaranteeing convergence of the one-
and two-level point process of exceedances are satisfied.

(ii) Moment assumption on the point process. There exists δ > 0 such that, for
any ` > 0, there exists a constant C ′` such that

E[|N (x1)
n (E)−N (x2)

n (E)|2+δ] ≤ C ′`(x1 − x2) ∀ ` ≥ x1 ≥ x2 ≥ 0.

(iii) Asymptotic independence in the big-block/small-block heuristics. There
exists c2 ∈ (0, 1) and C2 > 0 such that

αc2(`) ≤ C2`
−η

for some η ≥ 3(2 + δ)/(δ − µ) > 3 with 0 < µ < δ ∧ (1/2) and with δ > 0 from
Condition (ii). The block size bn →∞ is chosen in such a way that

kn = o(b2n), n→∞, (2.1)

and such that there exists a sequence `n → ∞ (to be thought of as the length of
small blocks which are to be clipped-of at the end of each block of size bn) satisfying

`n = o(b2/(2+δ)n ), knαc2(`n) = o(1);

all convergences being for n→∞.
(iv) Bound on the variance of the empirical process. There exist some constants

c1 ∈ (0, 1), C1 > 0 such that, for all y ∈ (0, c1) and all n ∈ N,

Var
{ n∑
s=1

1(Us > 1− y)
}
≤ C1(ny + n2y2).

(v) All standardized block maxima of size bn/2 converge to 1. For all c ∈ (0, 1),
we have

lim
n→∞

P
(

2kn
min
i=1

N ′ni ≤ c
)

= 0,

where N ′ni = max{Us : s ∈ [(i − 1)bn/2 + 1, . . . , ibn/2]}, for i = 1, . . . , 2kn, denote
consecutive standardized block maxima of (approximate) size bn/2.
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(vi) Existence of moments of maxima. With δ > 0 from Condition (ii), we have

lim sup
n→∞

E[Z2+δ
1:n ] <∞.

(vii) Bias. As n→∞,

E[Z1:bn ] = θ−1 + o(k−1/2n ).

Assumptions (i)–(iii) are suitable adaptations of Conditions (C1) and (C2) in Robert
(2009); in fact, they can be seen to imply the latter. Among other things, these conditions
are needed to apply his central result, Theorem 4.1, on the weak convergence of the tail
empirical process on [0,∞). Note that the assumptions are satisfied for solutions of
stochastic difference equations, see Example 3.1 in Robert (2009). The Assumption in
(2.1) is a growth condition that is needed in the proof of Lemma 9.1. As argued in
Robert et al. (2009), it is actually a weak requirement, as in many time series models it
is a necessary condition for the bias condition in (vii) to be true (see Section 6 below).
Finally, a positive extremal index can be guaranteed by assuming that

lim
m→∞

lim sup
n→∞

P(Nm:bn > 1− x
n | U1 ≥ 1− x

n) = 0 (2.2)

for any x > 0, see Beirlant et al. (2004), formula (10.8). We will additionally need this
assumption for the calculation of the asymptotic variance of the estimators.

In a slightly different form concerning only the tail, Assumption (iv) has also been
made in Condition (C3) in Drees (2000) for proving weak convergence of the tail empirical
process. In comparison to there, the extra factor n2y2 allows for additional flexibility,
in that it allows for O(n2)-non-negligible covariances, as long as their contribution is at
most y2. In Section 6, we show that the assumption holds for solutions of stochastic
difference equations, such as the ARCH-model, and for max-autoregressive models.

Recall that N bn
ni is approximately Beta(θ, 1)-distributed. As a consequence, every

standardized block maximum Nni must converge to 1 as the sample size grows to infinity.
Still, out of the sample of kn block maxima, the smallest one could possibly be smaller
than one, especially when the number of blocks is large. Assumption (v) prevents this
from happening; note that a similar assumption has also been made in Bücher and Segers
(2015), Condition 3.2. Imposing the assumption even for block maxima N ′ni of size bn/2
guarantees that also the minimum over all big sub-block maxima (needed in the proof
for the disjoint blocks estimator) and the minimum over all sliding block maxima of size
bn (needed in the proof for the sliding blocks estimator) converges to 1.

Assumption (vi) is needed to deduce uniform integrability of the sequence Z2
1:bn

. It
implies convergence of the variance of Z1:bn to that of an exponential distribution with
parameter θ. Finally, (vii) requires the approximation of the first moment of Z1:bn by
that of an exponential distribution to be sufficiently accurate.

3. Main results

In this section we prove consistency and asymptotic normality of the disjoint blocks

estimator θ̂djn defined in (1.4), as well as of a variant which is based on sliding blocks and

which we will denote by θ̂sln . We begin by defining the latter estimator.
Divide the sample into n− bn + 1 blocks of length bn, i.e., for t = 1, . . . , n− bn + 1, let

M sl
nt = Mt:(t+bn−1) = max{Xt, . . . , Xt+bn−1}.
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Analogously to the notation used in the definition of the estimator for disjoint blocks, we
will write N sl

nt = F (M sl
nt) and Zsl

nt = bn(1−N sl
nt) and define their empirical counterparts

N̂ sl
nt = F̂n(M sl

nt) and Ẑsl
nt = bn(1 − N̂ sl

nt), where F̂n is the empirical cdf of X1, . . . , Xn.

Just as for the disjoint blocks estimator, the (pseudo-)observations Ẑsl
nt are approximately

exponentially distributed with mean θ−1, which suggests to estimate θ by the reciprocal
of their empirical mean, i.e.,

θ̂sln =

(
1

n− bn + 1

n−bn+1∑
t=1

Ẑsl
nt

)−1
.

Note that no data has to be discarded if bn is not a divisor of the sample size n. While θ̂sln
is based on a substantially larger number of blocks than the disjoint blocks estimator,
the blocks are heavily correlated. The following theorem is the central result of this
paper and shows that both estimators are consistent and converge at the same rate to
a normal distribution. The disjoint blocks estimator has a larger asymptotic variance
than the sliding blocks estimator.

Theorem 3.1. Suppose that Condition 2.1 and (2.2) is met. Then√
kn(θ̂djn − θ) N (0, θ4σ2dj) and

√
kn(θ̂sln − θ) N (0, θ4σ2sl),

where

σ2dj = 4

∫ 1

0

E[ζ(σ)

1 ζ(σ)

2 ]

(1 + σ)3
dσ + 4θ−1

∫ 1

0

E[ζ(σ)

1 1(ζ(σ)

2 = 0)]

(1 + σ)3
dσ − θ−2,

σ2sl = 4

∫ 1

0

E[ζ(σ)

1 ζ(σ)

2 ]

(1 + σ)3
dσ + 4θ−1

∫ 1

0

E[ζ(σ)

1 1(ζ(σ)

2 = 0)]

(1 + σ)3
dσ − 4− 4 log(2)

θ2
,

with (ζ(σ)

1 , ζ(σ)

2 ) ∼ π(σ)

2 . In particular, σ2dj = σ2sl + {3− 4 log(2)}/θ2 ≈ σ2sl + 0.2274/θ2.

It is interesting to note that the asymptotic variance of the disjoint blocks estimator is
substantially more complicated than if one would naively treat the Zni as an iid sample
from the exponential distribution with parameter θ (as is done in Northrop, 2015; the
variance would then simply be θ2). A heuristic explanation can be found in Remark 3.3
below. A formal proof is given at the end of this section, with several auxiliary lemmas
postponed to Section 9 (for the disjoint blocks estimator) and to Appendix A in the
supplement (for the sliding blocks estimator). Explicit calculations are possible for
instance for a max-autoregressive process, see Section 6.1, or for the iid case.

Example 3.2. If the time series is serially independent, a simple calculation shows that
π(i) = 1(i = 1) and π(σ)

2 (i, j) = (1− σ) 1(i = 1, j = 0) + σ 1(i = 1, j = 1). This implies

θ = 1, E[ζ(σ)

1 ζ(σ)

2 ] = σ, E[ζ(σ)

1 1(ζ(σ)

2 = 0)] = 1− σ

and therefore θ4σ2dj = 1/2 and θ4σ2sl ≈ 0.2726. It is worthwhile to mention that these
values are smaller than the variances of any of the disjoint and sliding blocks estimators
considered in Robert et al. (2009), respectively. Moreover, it can be seen that the same
formulas are valid whenever θ = 1: the fact that θ−1 ≥

∑∞
i=1 iπ(i) implies that π(1) = 1.

By (9.9), we then obtain π(σ)

2 = (1− σ) 1(i = 1, j = 0) + σ 1(i = 1, j = 1).



8 BETINA BERGHAUS AND AXEL BÜCHER

Remark 3.3 (Main idea for the proof). Define

T̂ dj
n =

1

kn

kn∑
i=1

Ẑni, T dj
n =

1

kn

kn∑
i=1

Zni. (3.1)

T̂ sl
n =

1

n− bn + 1

n−bn+1∑
t=1

Ẑsl
nt, T sl

n =
1

n− bn + 1

n−bn+1∑
t=1

Zsl
nt. (3.2)

In the following, we only consider the disjoint blocks estimator, the argumentation for
the sliding blocks estimator is similar. For the ease of notation, we will skip the upper

index and just write T̂n instead of T̂ dj
n , etc. Asympotic normality of θ̂n may be deduced

from the delta method and weak convergence of
√
k(T̂n − θ−1). The roadmap to handle

the latter is as follows: decompose√
kn(T̂n − θ−1) =

√
kn(T̂n − Tn) +

√
kn(Tn − θ−1). (3.3)

Using a big-block/small-block type argument, the asymptotics of the second summand on
the right-hand side can be deduced from a central limit theorem for rowwise independent
triangular arrays. Depending on the choice of the block sizes, an asymptotic bias term
may appear, which we control by Condition 2.1(vii). The first summand is more involved,
and also contributes to the limiting distribution: first, for x ≥ 0, let

en(x) =
1√
kn

n∑
s=1

{1(Us > 1− x/bn)− x/bn} (3.4)

denote the tail empirical process of X1, . . . , Xn and let

Ĥkn(x) =
1

kn

kn∑
i=1

1(Zni ≤ x) (3.5)

be the empirical distribution function of Zn1, . . . , Znkn . Then

√
kn(T̂n − Tn) =

bn√
kn

kn∑
i=1

(Nni − N̂ni) =
bn

n
√
kn

kn∑
i=1

n∑
s=1

{Nni − 1(Us ≤ Nni)} (3.6)

=
1

k
3/2
n

kn∑
i=1

n∑
s=1

{1(Us > 1− Zni/bn)− Zni/bn}

=
1

kn

kn∑
i=1

en(Zni) =

∫ maxkni=1 Zni

0
en(x) dĤkn(x).

Since Zni is approximately exponentially distributed with parameter θ, one may expect
that Ĥkn(x) converges to H(x) = 1 − exp(−θx) in probability, for n → ∞ and for any
x ≥ 0. Moreover, on an appropriate domain, en  e for some Gaussian process e (Drees,
2000, 2002; Rootzén, 2009; Robert, 2009; Drees and Rootzén, 2010), whence a candidate
limit for the expression on the left-hand side of the previous display is given by∫ ∞

0
e(x)θe−θx dx.
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The latter distribution is normal, and joint convergence of both terms on the right-hand
side of (3.3) will finally allow for the derivation of the asymptotic distribution of θ̂n.
These heuristic arguments have to be made rigorous.

Proof of Theorem 3.1 (Disjoint blocks). Write T̂n = T̂ dj
n and Tn = T dj

n . Recall the defi-

nitions of en and Ĥkn in (3.4) and (3.5), respectively. For ` ∈ N, let

Dn =

∫ maxZni

0
en(x) dĤkn(x), Dn,` =

∫ `

0
en(x) dĤkn(x), D` =

∫ `

0
e(x)θe−θx dx.

Also, let Gn =
√
kn(Tn−ETn) and let G be defined as in Lemma 9.3. Suppose we have

shown that

(i) For all δ > 0: lim`→∞ lim supn→∞ P(|Dn,` −Dn| > δ) = 0;

(ii) For all ` ∈ N: Dn,` +Gn  D` +G as n→∞;

(iii) D` +G D +G ∼ N (0, σ2dj) as `→∞.

It then follows from (3.6) and Wichura’s theorem (Billingsley, 1979, Theorem 25.5) that
√
n(T̂n − ETn) = Dn +Gn  N (0, σ2dj), n→∞.

By Condition 2.1(vii), we obtain that
√
kn(T̂n − θ−1)  N (0, σ2dj). The theorem then

follows from the delta-method.
The assertion in (i) is proved in Lemma 9.1. The assertion in (ii) is proved in

Lemma 9.5. The assertion in (iii) follows from the fact that D` + G is normally dis-
tributed with variance σ2` as specified in Lemma 9.5, and the fact that by Lemma 9.6
σ2` → σ2dj for `→∞. �

Proof of Theorem 3.1 (Sliding blocks). Let Ĥsl
kn

denote the empirical distribution func-

tion of the Zsl
nt, i.e., Ĥsl

kn
(x) = 1

n−bn+1

∑n−bn+1
t=1 1(Zsl

nt ≤ x) and let

Dsl
n =

∫ maxt Zsl
nt

0
en(x) dĤsl

kn(x), Dsl
n,` =

∫ `

0
en(x) dĤsl

kn(x), Dsl
` =

∫ `

0
e(x)θe−θx dx.

With this notation the proof follows along the same lines as for the disjoint blocks, with
Lemma 9.1, 9.2 and 9.3 replaced by Lemma A.1, A.2 and A.3, respectively. �

4. Bias reduction

Throughout this section, let (T̂n, Tn) ∈ {(T̂ dj
n , T

dj
n ), (T̂ sl

n , T
sl
n )} denote any of the quan-

tities defined in (3.1) or (3.2). A Taylor expansion allows to approximately decompose

the bias of the estimator θ̂n = T̂−1n into two parts:

µn = E[T̂−1n − θ] ≈ −θ2 E[T̂n − θ−1] = −θ2 E[T̂n − Tn]− θ2 E[Tn − θ−1] =: µn1 + µn2.

The second component µn2 is inherent to the time series (Xs)s∈N itself. In many ex-
amples, it can be seen to be of the order O(b−1n ), see for instance Section 6 or similar
calculations made in (Robert et al., 2009, Section 6). The first component µn1 is es-
sentially due to the use of the empirical distribution function in the definition of the
estimator. The following lemma gives a first-order asymptotic expansion, which turns
out to be the same for the disjoint and sliding blocks estimator.
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Lemma 4.1. Additionally to the conditions of Theorem 3.1 suppose that Condition 2.1(iii)
is met with c2 = 1. Then

lim
n→∞

kn E[T̂n − Tn] = −1

θ
.

where (T̂n, Tn) ∈ {(T̂ dj
n , T

dj
n ), (T̂ sl

n , T
sl
n )} as defined in (3.1) and (3.2).

A proof can be found in Section B. As a consequence, we obtain that µn1 = k−1n θ +

o(k−1n ). Plugging-in θ̂n as a consistent estimator for θ, we can estimate µn1 by µ̂n1 =

k−1n θ̂n and subtract it from θ̂n to obtain the bias-reduced estimator

θ̂n,bc = kn−1
kn

θ̂n.

Note that if we are additionally willing to assume that kn E[Tn − θ−1] = kn E[Z1:bn −
θ−1] = o(1) as n→∞ (cf. Condition 2.1(vii)), we obtain that µn1 is in fact the dominat-
ing bias-component. In common models, the assumption kn E[Tn−θ−1] = o(1) is satisfied
as soon as kn/bn = o(1) (see Section 6). In comparison to the assumption kn/b

2
n = o(1)

imposed in Condition 2.1(iii), this requires larger block sizes. Similar assumptions have
also been made for the bias-reduced estimators in Robert et al. (2009).

5. Variance estimation

For statistical inference on θ, estimators for the asymptotic variance formulas in The-
orem 3.1 are needed. Unfortunately, the formulas itself are too complicated to base
such estimators on a simple plug-in principle. Rather than that, we rely on an asymp-
totic expansion of the disjoint blocks estimator resulting from a careful inspection of
the proofs. Note that, since σ2dj = σ2sl − {3− 4 log(2)}/θ2, an estimator for the variance
of the disjoint blocks estimator can immediately be transferred into one for the sliding
blocks estimator. As explained below, this is particularly useful since a straightforward
extension of our proposed estimator for σ2dj to the sliding blocks estimator would require
the choice of an additional tuning parameter.

By the central decomposition in (3.3) and the calculations in (3.6), we can write

Tdj
n =

√
kn(T̂ dj

n − θ−1) as

Tdj
n =

1√
kn

kn∑
i=1

Zni − θ−1 + Ẑni − Zni

=
1√
kn

kn∑
i=1

{
Zni − θ−1 + 1

kn

∑kn
j=1

∑
s∈Ij{1(Us > 1− Zni

bn
)− Zni

bn
}
}

=
1√
kn

kn∑
j=1

Bnj ,

where
Bnj = Znj − θ−1 +

∑
s∈Ij

1
kn

∑kn
i=1{1(Us > 1− Zni

bn
)− Zni

bn
},

and where Ij = {(j − 1)kn + 1, . . . , jkn} denotes the jth block of indices. The proof of
Theorem 3.1 shows that Bn1, . . . , Bnkn are asymptotically independent and centered, and
that their empirical mean multiplied by

√
kn converges to a centered normal distribution

with variance σ2
dj. Hence, their second empirical moment should be a consistent estimator
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for σ2
dj. As the sample Bn1, . . . , Bnkn depends on unknown quantities, we must replace

these objects by empirical counterparts, leading us to define

B̂nj = Ẑnj − T̂n +
∑

s∈Ij
1
kn

∑kn
i=1{1(Ûs > 1− Ẑni

bn
)− Ẑni

bn
}

= Ẑnj +
∑

s∈Ij
1
kn

∑kn
i=1 1(Ûs > 1− Ẑni

bn
)− 2 · T̂ dj

n ,

where Ûs = F̂n(Xs). The following proposition shows that

σ̂2dj =
1

kn

kn∑
j=1

B̂2
nj , σ̂2sl = σ̂2dj − {3− 4 log(2)}(θ̂sln )−2.

are in fact consistent estimators for σ2dj and σ2sl, respectively, provided that moments
of order slightly larger than 4 exist. To simplify the proofs, we assume beta-mixing
of the times series, since it allows for stronger coupling results than alpha-mixing. We
also impose a further growth condition on the block size, which allows for a further
simplification within the proof.

Proposition 5.1 (Consistency of variance estimators). Additionally to the assumptions
imposed in Condition 2.1 suppose that bn = o(k2n) for n→∞ (hence, b1/2n � kn � b2n),
that Condition 2.1(iii) is met with the alpha-mixing coefficient αc2(`) replaced by the beta-
mixing coefficient β1(`) (see the proof for a precise definition) and that Condition 2.1(ii)
and (vi) are met with δ > 2. Then, as n→∞,

σ̂2dj
p−→ σ2dj and σ̂2sl

p−→ σ2sl.

The proof is given in Section 9, while the finite sample performance is investigated in
Section 7.

Following the above route to derive an estimator for the variance of the sliding blocks
version is substantially more complicated. The corresponding decomposition of Tsl

n =√
kn(T̂ sl

n − θ−1) is

Tsl
n =

1√
kn

n−bn+1∑
t=1

{
n

n−bn+1
Zsl
nt−θ−1

bn
+ 1

n−bn+1

∑n
s=1{1(Us > 1− Zsl

nt
bn

)− Zsl
nt
bn
}
}

=
1√
kn

n−bn∑
s=1

{
Zsl
ns−θ−1

bn
+ 1

n−bn+1

∑n−bn+1
t=1 {1(Us > 1− Zsl

nt
bn

)− Zsl
nt
bn
}
}

+ oP(1)

=
1√
kn

kn−1∑
j=1

Bsl
nj + oP(1),

where

Bsl
nj = 1

bn

∑
s∈Ij (Z

sl
ns − θ−1) +

∑
s∈Ij

1
n−bn+1

∑n−bn+1
t=1 {1(Us > 1− Zsl

nt
bn

)− Zsl
nt
bn
},

and where the oP terms are due to omitting final blocks and due to n/(n − bn + 1) =
1 + o(1). Unlike for the disjoint blocks estimator, the Bsl

nj are not asymptotically inde-
pendent. It can be seen from the proof, see in particular Lemma A.3, that a further
‘blocking of blocks’ is necessary to obtain asymptotically independent random variables.
Precisely, let k∗n < kn be an integer sequence converging to infinity, which formally should
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satisfy k∗n = o(kδ/{2(1+δ)}n ) with δ from Condition 2.1(ii). Form blocks of length k∗n from
the Bsl

nj , that is, let

Asl
nl =

∑lk∗n
j=(l−1)k∗n+1B

sl
nj , l = 1, . . . , qn = bkn/(k∗n)c.

Up to an incomplete final block (which we can absorb into the oP(1)), we can then write
Tsl
n = 1√

kn

∑qn
l=1A

sl
nl + oP(1). Motivated by the proof, the Asl

nl can now be regarded as

asymptotically independent, which suggests to estimate

σ̃2sl =
1

kn

qn∑
l=1

(Âsl
nl)

2, Âsl
nl =

∑lqn
j=(l−1)qn+1 B̂

sl
nj ,

where

B̂sl
nj = 1

bn

∑
s∈Ij (Ẑ

sl
ns − T̂ sl

n ) +
∑

s∈Ij
1

n−bn+1

∑n−bn+1
t=1 {1(Ûs > 1− Ẑsl

nt
bn

)− Ẑsl
nt
bn
}.

In comparison to σ̂2sl, this estimator requires the choice of an additional tuning parameter
k∗n. We therefore do not pursue it any further in this paper.

6. Examples

Two examples are worked out in this section. For the max-autoregressive processes,
considered in Section 6.1, explicit calculations for the asymptotic variance formulas in
Theorem 3.1 are possible. These allow for a theoretical comparison with the blocks
estimators from Robert (2009) and Robert et al. (2009). Moreover, we show that all
assumptions imposed in Condition 2.1 are satisfied. In Section 6.2, we consider solutions
of stochastic difference equations such as ARCH-processes. Complementing results from
(Robert, 2009, Example 3.1) we show that Condition 2.1(iv) is satisfied.

6.1. Max-autoregressive processes. Consider the max-autoregressive process of or-
der one, ARMAX(1) in short, defined by the recursion

Xs = max{αXs−1, (1− α)Zs}, s ∈ Z,

where α ∈ [0, 1) and where (Zs)s denotes an i.i.d. sequence of standard Fréchet random
variables. A stationary solution of this recursion is given by

Xs = max
j≥0

(1− α)αjZs−j ,

which shows that the stationary distribution is standard Fréchet as well. The sequence
has extremal index θ = 1 − α and its cluster size distribution is geometric, i.e., π(j) =
αj−1(1−α) for j ≥ 1 (see, e.g., Chapter 10 in Beirlant et al., 2004). Moreover, it follows
from Proposition 5.3.7 in Hsing (1984) and some simple calculations that

π
(σ)
2 (j1, j2) = αj2−1

{
(σ − αj1−j2+1) 1(αj1−j2+1 < σ ≤ αj1−j2)

+ (αj1−j2 − ασ) 1(αj1−j2 < σ ≤ αj1−j2−1)
}

= αj2−1
{

(σ − αz+1) 1(j1 = j2 + z) + (αz+1 − ασ) 1(j1 = j2 + z + 1)
}
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for j1 ≥ j2 > 0, where z = blog σ/ logαc ∈ N0. The formula in Proposition 5.3.7 in
Hsing (1984) is wrong for j2 = 0, but can be corrected to

π
(σ)
2 (j1, 0) = π(j1)−

j1∑
j2=1

π
(σ)
2 (j1, j2) = (1− α)αj1−1 1(j1 ≤ z) + (αz − σ) 1(j1 = 1 + z)

for j1 ≥ 1. Based on these formulas, some straightforward calculations show that

E[ζ(σ)

1 ζ(σ

2 ] =
αz+1 + σ{1 + z(1− α)}

(1− α)2

and that

E[ζ(σ)

1 1(ζ(σ)

2 = 0)] =
1− αz+1

1− α
− σ(z + 1).

Note that, for α → 0, we obtain E[ζ(σ)

1 ζ(σ)

2 ] → σ and E[ζ(σ)

1 1(ζ(σ)

2 = 0)] → 1 − σ, which
corresponds to the iid scenario. The latter two displays imply that

E[ζ(σ)

1 ζ(σ

2 ] + θ−1 E[ζ(σ)

1 1(ζ(σ)

2 = 0)] =
1 + ασ

(1− α)2

and hence

σ2dj =
1 + α

2(1− α)2
, σ2sl =

8 log 2− 5 + α

2(1− α)2
.

Since θ = 1− α, the asymptotic variances of
√
kn(θ̂n/θ − 1) simply reduce to the affine

linear functions (1 + α)/2 and (8 log 2− 5 + α)/2 for the disjoint and the sliding blocks
estimator, respectively. These functions can be compared with the asymptotic variance
formulas in (Robert et al., 2009, Formula 5.1) and in (Robert, 2009, Page 285, variance

of θ̂(τ)1,n). Note that the variance of θ̂(τ)1,n in Robert (2009) is exactly the same as the one of
the disjoint blocks estimator in Robert et al. (2009). The asymptotic variance formulas
depend on an additional parameter τ > 0 to be chosen by the statistician. Assuming
we would have access to the optimal value (which can be calculated numerically, but
must be estimated in practice), we obtain the variance curves depicted in Figure 1. We
observe that, for the Armax-model, the PML-estimators analyzed in this paper have a
smaller asymptotic variance than the (theoretically optimal) estimators in Robert et al.
(2009) and Robert (2009).

Regarding the additional assumptions in Condition 2.1, some tedious calculations
show that Condition 2.1(ii) is satisfied for δ = 1. (Xs)s∈Z can further be shown to
be a geometrically ergodic Markov chain, see Formula (3.5) in Bradley (2005). As
a consequence of Theorem 3.7 in that reference, (Xs)s∈Z is geometrically β-mixing,
whence Condition 2.1(iii) is satisfied (and also the condition on beta-mixing imposed in
Proposition 5.1). It can be further be shown that, with Us = exp(−1/Xs), we have

Var
{ n∑
s=1

1(Us > 1− y)
}
≤ ny{1 + 2α/(1− α)}

for all y ∈ (0, 1), that is, Condition 2.1(iv) is met. Moreover, a simple calculation

shows that P(min2kn
i=1N

′
ni ≤ c) ≤ 2knP(N ′n1 ≤ c) = O(knc

(1−α)bn/2) = o(1), provided
that kn = o(b2n). Hence, Condition 2.1(v). Based on an explicit calculation of the
distribution of Zn1, it can also be seen that Condition 2.1(vi) is satisfied for any δ > 0,
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Figure 1. Asymptotic variances of
√
kn(θ̂n/θ − 1) within the

ARMAX(α)-Model for the sliding and disjoint blocks estimators analyzed
in this paper (PML) and in Robert et al. (2009) (RSF).

and that E[Z1:bn ]− θ−1 = O(b−1n ). The latter implies that Condition 2.1(vii) is satisfied
if kn = o(b2n), i.e. if (2.1) holds. Finally, it can easily be seen that (2.2) is met.

6.2. Stochastic Difference Equations. Consider the stochastic difference equation

Xs = AsXs−1 +Bs, s ∈ N, (6.1)

where (As, Bs)s are i.i.d. [0,∞)2-valued random vectors. If As = α1Z
2
s and Bs = α0Z

2
s

for some α0, α1 > 0 and some i.i.d. real-valued sequence (Zs)s, the above equation defines
the popular (squared) ARCH(1)-time series model. For simplicity, we assume that the
distribution of (A1, B1) is absolutely continuous.

The existence of a stationary solution of (6.1) as well as the tail behavior of the
stationary distribution F of Xs has been studied in Kesten (1973), Theorem 5. More
precisely, consider the condition

(S) There exists some κ > 0 such that

E logA1 < 0, E[Aκ1 ] = 1, E[Aκ1 max(logA1, 0)] <∞, E[Bκ
1 ] ∈ (0,∞).

Under this assumption, there exists a unique stationary solution of (6.1) and the cdf F of
Xs satisfies 1−F (x) ∼ cx−κ as x→∞ for some constant c > 0. Moreover, F is contin-
uous (Vervaat, 1979, Theorem 3.2) and, in particular, in the max-domain of attraction
of G1/κ, the generalized extreme value distribution with extreme-value index 1/κ.

Explicit calculations for the (two-level) cluster size distribution have been carried out
in (Perfekt, 1994, Example 4.2). Unfortunately, the formulas are complicated and do
not allow for simple expressions of the asymptotic variances in Theorem 3.1.

Slight adaptations of Assumptions (i)–(iii) of Condition 2.1 have been checked in
(Robert, 2009, Example 3.1). We complement those results by showing that also (iv) is
satisfied. The result is inspired by Section 4 in Drees (2000) and is in fact a modification
of Lemma 4.1 in that paper to the present needs. Its proof is given in Section B in the
supplement.
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Lemma 6.1. Suppose that Condition (S) is met and let (Xs)s denote a stationary so-
lution of (6.1). Then Condition 2.1(iv) is met.

7. Finite-sample performance

A simulation study is performed to illustrate the finite-sample performance of the
proposed estimators and methods. Results are presented for three time series models:

• The ARMAX-model from Section 6.1:

Xs = max{αXs−1, (1− α)Zs}, s ∈ Z,

where α ∈ [0, 1) and where (Zs)s is an i.i.d. sequence of standard Fréchet random
variables. We consider α = 0, 0.25, 0.5, 0.75 resulting in θ = 1, 0.75, 0.5, 0.25.
• The squared ARCH-model from Section 6.2:

Xs = (2× 10−5 + λXs−1)Z
2
s , s ∈ Z,

where λ ∈ (0, 1) and where (Zs)s denotes an i.i.d. sequence of standard nor-
mal random variables. We consider λ = 0.1, 0.5, 0.9, 0.99 which implies θ =
0.997, 0.727, 0.460, 0.422, respectively (see Table 3.1 in de Haan et al., 1989).
• The Markovian Copula-model (Darsow et al., 1992):

Xs = F−(Us), (Us, Us−1) ∼ Cϑ, s ∈ Z.

Here, F− is the quantile function of some arbitrary continuous cdf F , (Us)s
is a stationary Markovian time series of order 1 and Cϑ denotes the Survival
Clayton Copula with parameter ϑ > 0. For this model, θ = P(maxt≥1

∏t
s=1As ≤

U), where U,A1, A2, . . . are independent, U is standard uniform and As has

cdf Hϑ(s) = 1 − (1 + sϑ)−(1+1/ϑ), s ≥ 0, see Perfekt (1994) or Beirlant et al.
(2004), Section 10.4.2. We consider choices ϑ = 0.23, 0.41, 0.68, 1.06, 1.90 such
that (approximately) θ = 0.2, 0.4, 0.6, 0.8, 0.95 and fix F as the standard uniform
cdf (the results are independent of this choice, as the estimators are rank-based).
Algorithm 2 in Rémillard et al. (2012) allows to simulate from this model.

Additional simulation results for the AR-model and the doubly stochastic process
from Smith and Weissman (1994) turned out to be quite similar to the ARMAX-model
and are not presented for the sake of brevity. In all scenarios under consideration, the
sample size is fixed to n = 8, 192 = 213 and the block size bn for the blocks estimators is
chosen from the set 22, 23, . . . , 29.

7.1. Comparison with other estimators for the extremal index. We present
results for five different estimators: the bias-reduced sliding blocks estimator from this
paper, the bias-reduced sliding blocks estimator from Robert et al. (2009) (with a data-
driven choice of the threshold as outlined in Section 7.1 of that paper), the integrated
version of the blocks estimator from Robert (2009), the intervals estimator from Ferro
and Segers (2003) and the ML-estimator from Süveges (2007). Results for other versions
of these estimators (e.g., the disjoint blocks versions or the versions based on a fixed
threshold) are not presented as their performance was dominated by the above versions
in almost all scenarios under consideration. The parameters σ and φ for the Robert-
estimator (last display on page 276 of Robert, 2009) are chosen as σ = 0.7 and φ = 1.3.
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θ PML-sliding RSF-sliding Intervals ML-Süveges Robert

0.25 0.91 1.35 0.53 0.22 1.77
0.50 1.58 2.24 0.99 0.63 2.07
0.75 2.03 2.34 1.17 0.96 2.31
1.00 1.78 0.12 0.88 0.11 2.22

0.422 3.18 4.85 2.53 3.19 4.00
0.460 3.53 5.45 2.71 1.92 4.26
0.727 1.07 1.46 1.08 1.44 1.19
0.997 0.50 1.33 5.34 2.19 0.65

0.95 1.26 1.99 9.53 4.19 1.08
0.80 0.79 0.72 5.75 2.33 1.16
0.60 1.71 2.75 0.60 0.37 2.33
0.40 3.14 5.23 2.86 3.68 4.74
0.20 2.74 5.28 2.81 14.03 4.59

Table 1. Minimal mean squared error multiplied with 103 for the
ARMAX-model (top 4 rows), the squared ARCH-model (middle 4 rows)
and the Markovian copula model (bottom 5 rows). The estimator with
the (row-wise) smallest mean squared error is in boldface.

The intervals estimator and the Süveges-estimator require the choice of a threshold u,
which we choose as the 1− 1/bn empirical quantile of the observed data.

In Figures 2–4 we depict the mean-squared error E[(θ̂ − θ)2] as a function of the
block size parameter bn, estimated on the basis of N = 10, 000 simulation runs. For
almost all models and estimators, the MSE-curves are U-shaped, representing the usual
bias-variance tradeoff in extreme value theory. The minimal values of these curves are
of particular interest, and are summarized in Table 1. We observe that the sliding
blocks PML-estimator outperforms the other two blocks estimators in most scenarios.
For the ARMAX-model, this is in agreement with the theoretical findings presented in
Figure 1. In general however, there is no clear best estimator in terms of the MSE.
For the ARMAX-model, the Süveges-estimator performs best, followed by the intervals
estimator. For the ARCH-model (which may be regarded as the more relevant model,
given its frequent use for the modeling of financial data) the picture is different: for
small values of θ, the intervals estimator performs best, while for larger values the
PML-estimator is the winner. For the Markovian copula model, each of the estimators
under consideration performs best for one particular choice of the parameter. The sliding
blocks PML-estimator is generally the most robust one, none of the reported MSE-values
exceeding a value of 3.6 · 10−3.

7.2. Estimation of the asymptotic variance and coverage of confidence bands.
We consider the ARMAX- and squared ARCH-model as described above. We are inter-
ested in the performance of

τ̂2dj = (θ̂djn )4σ̂2dj and τ̂2sl = (θ̂sln )4σ̂2sl

as estimators for the variances of
√
knθ̂

dj
n and

√
knθ̂

sl
n , respectively. Results can be found

in Figure 5, where we depict the curves

bn 7→ E
[( τ̂2

Var(
√
knθ̂n)

− 1
)2]

= E
[( τ̂2(bn)

Var(
√
knθ̂n(bn))

− 1
)2]
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Figure 2. Mean squared error for the estimation of θ within the
ARMAX-model for four values of θ ∈ {0.25, 0.5, 0.75, 1}.
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Figure 3. Mean squared error for the estimation of θ within the ARCH-
model for four values of θ ∈ {0.422, 0.460, 0.727, 0.997}.
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Figure 4. Mean squared error for the estimation of θ within the Mar-
kovian copula model for four values of θ ∈ {0.2, 0.4, 0.6, 0.8}.
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Figure 5. Mean squared error E[(τ̂2/Var(θ̂n) − 1)2] within the
ARMAX-model (left) and the squared ARCH-model (right).

estimated on the basis of 10,000 simulation runs. Here, (τ̂2, θ̂n) ∈ {(τ̂2dj, θ̂djn ), (τ̂2sl , θ̂
sl
n)} and

Var(
√
knθ̂n(bn)) is approximated by the empirical variance of

√
knθ̂n(bn) over additional

10,000 simulations. Qualitatively, we observe a similar behavior as for the estimation
of θ depicted in Figures 2–4: the curves are U-shaped and possess a minimum at some
intermediate values of bn. Due to the fact that estimator τ̂2sl is based on an additional
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ARMAX-model Squared ARCH-model

bn/θ 0.25 0.5 0.75 1 0.422 0.46 0.727 0.997

disjoint 16 0 0 0.13 0.50 0 0 0.27 0.95
32 0.03 0.63 0.85 0.91 0.07 0.10 0.94 0.88
64 0.79 0.93 0.94 0.95 0.76 0.79 0.92 0.87
128 0.94 0.94 0.94 0.93 0.93 0.93 0.90 0.87
256 0.94 0.92 0.92 0.91 0.93 0.92 0.87 0.86
512 0.91 0.89 0.88 0.85 0.90 0.90 0.85 0.82

sliding 16 0 0 0.02 0.18 0 0 0.09 0.92
32 0 0.46 0.76 0.85 0.02 0.04 0.92 0.81
64 0.69 0.90 0.93 0.92 0.67 0.70 0.90 0.79
128 0.92 0.93 0.92 0.88 0.90 0.91 0.87 0.78
256 0.92 0.90 0.87 0.83 0.91 0.90 0.83 0.75
512 0.87 0.84 0.81 0.73 0.86 0.86 0.79 0.70

Table 2. Empirical coverage probabilities of 95%-confidence bands. Val-
ues above 90% are in boldface.

estimation step (which is potentially biased, if bn is small), the approximation works
better for the disjoint blocks estimator.

We are also interested in the coverage probabilities of the confidence sets

CI1−α = [θ̂n − k−1/2n τ̂u1−α/2, θ̂n + k−1/2n τ̂u1−α/2]

for θ, where (τ̂2, θ̂n) ∈ {(τ̂2dj, θ̂djn ), (τ̂2sl , θ̂
sl
n)} and where u1−α/2 denotes the (1 − α/2)-

quantile of the standard normal distribution. Empirical coverage probabilities for 1−α =
0.95 based on N = 10, 000 simulation runs are presented in Table 2, with coverage
probabilities above 0.9 in boldface. It can be seen that the probabilities strongly depend
on the block size bn, with at least one reasonable choice for every model, usually close to
the MSE-minimal choice in Figures 2 and 3. The larger width of the confidence sets for
the disjoint blocks estimator (not presented here; it is due to the larger variance) results
in a slightly better performance compared to the sliding blocks estimator.

8. Case study

The use of the PML-estimators and the corresponding confidence sets is illustrated
on negative daily log returns of a variety of financial market indices and prices including
equity (e.g., S&P 500 Composite, MSCI World), commodities (e.g., TOPIX Oil & Coal,
Gold Bullion LBM, Raw Sugar) and U.S. treasury bonds between 04 January 1990 and
30 December 2015 (n = 6, 780 observations for each index). Clusters of large negative
returns can be financially damaging and are hence of interest for risk management.

In Figure 6, we depict estimates of the extremal index for four typical time series
as a function of the block length parameter, ranging from b = 10 to b = 357. The
solid curves correspond to the bias corrected sliding blocks estimator, alongside with
a 95%-confidence band based on the variance estimator from Section 5 and the normal
approximation. Interestingly, the curves appear to be quite smooth. For comparison, the
(far rougher) dashed lines correspond to the intervals estimator from Ferro and Segers
(2003). As highlighted by many other authors, there is no simple optimal solution for
the choice of the best block length parameter and a unique estimate for the extremal
index. The dotted lines in Figure 6 correspond to the following ad-hoc solution (which is
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0 50 100 150 200 250 300 350

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

S&P 500 COMPOSITE

Block Size b

E
x
tr

e
m

a
l 
In

d
e
x

0 50 100 150 200 250 300 350

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

TOPIX OIL & COAL PRDS.

Block Size b

E
x
tr

e
m

a
l 
In

d
e
x

0 50 100 150 200 250 300 350

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Baltic Exchange Dry Index (BDI)

Block Size b

E
x
tr

e
m

a
l 
In

d
e
x

0 50 100 150 200 250 300 350

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

LME−Aluminium U$/MT

Block Size b

E
x
tr

e
m

a
l 
In

d
e
x

Figure 6. Extremal index estimates for four financial time series as
a function of the block size. The solid line is the bias–reduced sliding
blocks estimate, the shaded region is the pointwise 95%-confidence band.
The dashed line is the intervals estimator. The dotted lines correspond
to the plateau-search algorithm described in the main text.

essentially searching for a plateau in the plots): first, calculate absolute differences d(b) =

|θ̂(b+ 1)− θ̂(b)|, b = 10, . . . , 356. Let D denote the empirical mean of d(10), . . . , d(356).

The chosen block length b̂ is the minimal block length such that the sum over five
successive values, d(b̂) + · · · + d(b̂ + 4), is smaller than D/2. It can be seen that this
choice approximately catches the plateaus visible in the plots.

For the ease of comparison, this procedure has been repeated for all 20 time series
under consideration (despite the fact that the entire curves provide a more detailed
picture of the extremal dependence) . In Table 3, we state the resulting estimates of the
extremal index and the width of the corresponding confidence intervals. Interestingly,
the extremal index lies around 0.3 for most of the equity indexes (S&P 500 Composite,
MSCI World, etc.), while it is around 0.45 for many of the commodity prices (Coffee,
Cotton, Aluminium). The smallest value of 0.12 is attained for the Baltic Exchange
Dry Index, an index measuring the price of moving the major raw materials by sea
and usually regarded as an efficient economic indicator of future economic growth and
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Index / Prices Extremal Index Width of C-Interval

S&P 500 COMPOSITE 0.29 0.10
RUSSELL 2000 0.31 0.09
G12-DS Banks 0.26 0.09
G7-DS Banks 0.26 0.10
EU-DS Banks 0.26 0.08
S&P500 BANKS 0.22 0.08
MSCI WORLD EX US 0.36 0.11
TOPIX OIL & COAL PRDS. 0.45 0.08
Gold Bullion LBM 0.33 0.10
LMEX Index 0.27 0.10
Crude Oil-Brent Cur. Month 0.35 0.10
S&P GSCI Commodity Total Return 0.30 0.09
Baltic Exchange Dry Index (BDI) 0.12 0.02
Raw Sugar Cents/lb 0.54 0.17
Coffee-Brazilian Cents/lb 0.49 0.13
Cotton Cents/lb 0.42 0.12
LME-Aluminium U$/MT 0.49 0.14
S&P GSCI Precious Metal 0.42 0.12
Palladium U$/Troy Ounce 0.46 0.11
US T-Bill 10 YEAR 0.44 0.12

Table 3. Sliding Blocks Estimates of the extremal index and width of
corresponding confidence intervals for negative daily log returns of 20
financial market indices and prices.

production. In particular, this index is free of speculation which might explain why the
extremal index is much smaller than for the other time series under consideration.

9. Proofs

Throughout the proofs, C and C ′ denote generic constants whose values may change
from line to line. The notation o, oP, O,OP always refers to n → ∞, if not mentioned
otherwise.

Lemma 9.1 (Approximation by an integral with bounded support). Under Condi-
tion 2.1, for all δ > 0,

lim
`→∞

lim sup
n→∞

P(|Dn,` −Dn| > δ) = 0.

Proof. For some ε ∈ (0, c1 ∧ c2), let An = An(ε) denote the event {minkni=1Nni > 1 −
ε/2} = {maxkni=1 Zni < εbn/2}. By Condition 2.1(v), we have P(An)→ 1 as n→∞. We
may write

Dn −Dn,` = Rn,` 1An +oP(1)

as n→∞, where, with Ij = {(j − 1)bn + 1, . . . , jbn} for j = 1, . . . , kn (and Ij = ∅ else),

Rn,` = k−3/2n

kn∑
i=1

kn∑
j=1

∑
s∈Ij

f(Us, Zni)gn,`(Zni)

and

f(Us, Zni) = 1(Us > 1− Zni
bn

)− Zni
bn
, gn,`(Zni) = 1(bnε/2 > Zni ≥ `).



22 BETINA BERGHAUS AND AXEL BÜCHER

Now, decompose Rn,` = Rn,`,0 +Rn,`,1 +Rn,`,−1 +Rn,`,2 according to whether the second
sum over j is such that j = i, j = i+ 1, j = i− 1 or |j − i| ≥ 2, respectively. It suffices
to show that Rn,`,0 1An = oP(1) and Rn,`,±1 1An = oP(1) as n→∞, and that

lim
`→∞

lim sup
n→∞

P(|Rn,`,2 1An | > δ) = 0 (9.1)

for all δ > 0.
First, since Rn,`,0 = k

−3/2
n

∑kn
i=1 Zni ·gn,`(Zni), we have E |Rn,`,0| ≤ k−1/2

n E |Zni| = o(1)
as n→∞ by Condition 2.1(vi).

Second, we can write Rn,`,1 = R̄n,`,1 −Rn,`,0 = R̄n,`,1 − oP(1), where

R̄n,`,1 = k−3/2n

kn−1∑
i=1

∑
s∈Ii+1

1(Us > 1− Zni
bn

)gn,`(Zni)

whence it suffices to show that R̄n,`,1 1An = oP(1). For that purpose, define

U εs = Us 1(Us > 1− ε), Z
ε/2
ni = bn(1−N ε/2

ni ) = bn(1−max
s∈Ii

U ε/2s ). (9.2)

Note that Zε/2

ni is Bε/2{(i−1)bn+1}:ibn measurable, whence the mixing coefficients become avail-

able. On the event An, we have R̄n,`,1 = R̄εn,`,1, where R̄εn,`,1 is defined exactly as R̄n,`,1,

but with Us and Zni replaced by U εs and Zε/2

ni , respectively. By stationarity, we obtain

E |R̄εn,`,1| = (kn − 1)k−3/2n

bn∑
s=1

E
[
1
(
U εbn+s > 1− Z

ε/2
n1
bn

)
gn,`(Z

ε/2
n1 )

]
.

Recall Theorem 3 in Bradley (1983) (coupling for strongly mixing random variables): if
X and Y are two random variables in some Borel space S and R, respectively, if U is
uniform on [0, 1] and independent of (X,Y ) and if q > 0 and γ > 0 are such that q ≤
‖Y ‖γ = (E |Y |γ)1/γ , then there exists measurable function f such that Y ∗ = f(X,Y, U)
has the same distribution as Y , is independent of X and satisfies

P(|Y − Y ∗| ≥ q) ≤ 18(‖Y ‖γ/q)γ/(2γ+1)α(σ(X), σ(Y ))2γ/(2γ+1). (9.3)

Apply this theorem with X = U εbn+s, Y = Z
ε/2
n1 , γ = 2 + δ and q = qn = ‖Zε/2n1 ‖2+δ to

obtain that

E |R̄εn,`,1| ≤ k−1/2n

bn∑
s=1

{
E[1(U εbn+s > 1− Z

ε/2∗
n1 +qn
bn

)] + 18 · α(σ(U εbn+s), σ(Z
ε/2
n1 ))

4+2δ
5+2δ

}
where Zε/2∗

n1 is independent of X and has the same distribution as Zε/2

n1 . Note that

α(σ(U εbn+s), σ(Zε/2

n1 )) ≤ αc2(s). Since U εs ≤ Us, it follows that

E |R̄εn,`,1| ≤ k−1/2n

{
E[Z

ε/2∗
n1 ] + qn + 18×

bn∑
s=1

αc2(s)
4+2δ
5+2δ

}
,

which converges to 0 by Conditions 2.1(iii) and (vi). To conclude, Rn,`,1 1An = oP(1).
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The sum Rn,`,−1 can be treated analogously so that it remains to show (9.1). Decom-
pose Rn,`,2 = S̄n,`,1 + S̄n,`,2 where

S̄n,`,1 = k−3/2n

kn∑
i=3

i−2∑
j=1

∑
s∈Ij

f(Us, Zni)gn,`(Zni)

and where S̄n,`,2 is defined analogously with the second sum ranging from i+2 to kn. We
will only treat S̄n,`,1 in the following, as S̄n,`,2 can be treated analogously. Recall (9.2)

and note that, on the event An, we have f(Us, Zni)gn,`(Zni) = f(U εs , Z
ε/2

ni )gn,`(Z
ε/2

ni ).
Therefore, again on the event An,

S̄n,`,1 = k−3/2n

kn∑
i=3

i−2∑
j=1

∑
s∈Ij

f(U εs , Z
ε/2
ni )gn,`(Z

ε/2
ni ) =

1

kn

kn∑
i=3

e1:i−2(Z
ε/2
ni )gn,`(Z

ε/2
ni ) =: S̄εn,`,1,

where, for p, q ∈ {1, . . . , kn}, p < q, and x ≥ 0,

en,p:q(x) =
1√
kn

q∑
i=p

∑
s∈Ii

{1(U εs > 1− x/bn)− x/bn}.

We will show that (9.1) is met with Rn,`,2 1An replaced by S̄εn,`,1, and for that purpose

we consider the first central moment of S̄εn,`,1.

Note that |e1:j(x) 1(x ≥ `)| ≤ jbn/
√
kn and that, for all x, y ≥ 0 with y−q ≤ x ≤ y+q

for some q > 0, we have

|e1:j(x)| ≤ |e1:j(y + q)| ∨ |e1:j((y − q) ∨ 0)|+ 2q
√
kn,

as can be shown by a case-by-case study and monotonicity arguments. The previous
two inequalities, together with (9.3) with X = (U ε1 , . . . , U

ε
(i−1)bn), Y = Zε/2

ni , γ = 2 + δ

and q = qn = ‖Zε/2

n1 ‖2+δ/
√
kn, imply that

E[|S̄εn,`,1|] ≤
1

kn

kn∑
i=3

E

[{
|e1:i−2(Zε/2∗

ni + qn)|+ |e1:i−2((Zε/2∗
ni − qn) ∨ 0)|+ 2‖Zε/2

n1 ‖2+δ
}

× 1( bnε2 + qn > Zε/2∗
ni ≥ `− qn)

]
+

1

kn
18
(√

kn
) 2+δ
5+2δ

kn∑
i=3

ibn√
kn
αε(bn)

4+2δ
5+2δ ,

where Zε/2∗
ni is independent of (U ε1 , . . . , U

ε
(i−1)bn) and has the same distribution as Zε/2

ni .

The second sum on the right-hand side is of the order (note that η > 3)

O(bnk
1/2+

2+δ
10+4δ

n αc2(bn)
4+2δ
5+2δ ) = O(k

7+3δ
10+4δ
n b

1−η 4+2δ
5+2δ

n ) = O((kn/b
2
n)

7+3δ
10+4δ b

− δ
5+2δ

n )

which converges to 0 by Condition (2.1).
Since ‖Zε/2

n1 ‖2+δP(Zε/2

n1 ≥ ` − qn) converges to 0 for n → ∞ followed by ` → ∞, it

remains to consider the sums over E
[
|e1:i−2(Zε/2∗

ni ± qn) 1( bnε2 + qn > Zε/2∗
ni ≥ `− qn)

]
.

We only treat the sum involving the plus-sign. After conditioning on Zε/2∗
ni we are

left with bounding E |e1:i−2(z)| for z ∈ [`, εbn] (note that bnε
2 + qn > Zε/2∗

ni implies that

Zε/2∗
ni +qn ≤ bnε/2+2qn ≤ bnε for sufficiently large n). Decompose e1:i−2 = eeven1:i−2+eodd1:i−2
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where eeven1:i−2 and eodd1:i−2 denote the sum over the even and the odd blocks, respectively.
It suffices to treat both sums separately, and we give the details for the sum over the
even blocks. Let

Vj = Vj(z) =
∑
s∈I2j

{1(U εs > 1− z/bn)− z/bn},

such that eeven1:i−2(z) = k−1/2
n

∑bi/2c−1

j=1 Vj . Note that α(σ(Vj), σ(Vj+1)) ≤ αc2(bn). Repeat-

edly applying the coupling construction from (9.3) above (with γ = 2, V ∗1 = V1 and, in
the jth step, X = (V ∗1 , . . . , V

∗
j ) and Y = Vj+1), together with Theorem 5.1 in Bradley

(2005), we can inductively construct an iid sequence (V ∗j )j≥1 such that V ∗j has the same
distribution as Vj for any j and such that

P(|Vj − V ∗j | ≥ q′n) ≤ 18 · k1/5n αc2(bn)4/5,

where q′n = ‖Vj‖2/
√
kn. Note that, since z ≤ εbn, we have ‖Vj‖2 ≤ C

√
z + z2 by

Condition 2.1(iv). Now

E |eeven1:i−2(z)| ≤ k−1/2n E
∣∣∣∑bi/2c−1j=1 V ∗j

∣∣∣+ ik
−1/2
n E |Vj − V ∗j |.

Since V ∗j is a centered iid sequence, we have the bound

E
∣∣∣∑bi/2c−1j=1 V ∗j

∣∣∣ ≤ {Var
(∑bi/2c−1

j=1 V ∗j

)}1/2

≤ i1/2 ‖Vj‖2.

By the Cauchy-Schwarz-inequality, we further have

E |Vj − V ∗j | ≤ q′n + E |Vj − V ∗j |1(|Vj − V ∗j | ≥ q′n) ≤ q′n + 2‖Vj‖2
√

18 k1/10n αc2(bn)2/5.

As a consequence,

E |eeven1:i−2(z)| ≤
{√

i/kn + ik−1n + 9 · ik−2/5n αc2(bn)2/5
}
‖Vj‖2

for any z ∈ [0, εbn], where ‖Vj‖2 ≤ C
√
z + z2 ≤ C(1+z) by Condition 2.1(iv). A similar

bound for the sum over the odd blocks finally implies that

E
[
|e1:i−2(Zε/2∗

ni + qn) 1( bnε2 + qn > Zε/2∗
ni ≥ `− qn)

]
≤ C

{√
i/kn + ik−1n + 9 · ik−2/5n αc2(bn)2/5

}
E
[
(1 + Zε/2∗

n1 + qn) 1(Zε/2∗
n1 ≥ `− qn)

]
after conditioning on Zε/2∗

ni . Note that the limes superior for n → ∞ of the moment
on the right-hand side can be made arbitrary small by increasing `. To finalize the
treatment of E[|S̄εn,`,1|] we are hence left with bounding the expression

1

kn

kn∑
i=3

{√
i/kn + ik−1n + 9 · ik−2/5n αc2(bn)2/5

}
≤ C + C ′ · k3/5n αc2(bn)2/5.

Since αc2(bn)2/5 = O(b
−2η/5
n ) = O(b

−6/5
n ), we obtain that k

3/5
n αc2(bn)2/5 = O((kn/b

2
n)3/5),

which converges to zero under the assumption that kn/b
2
n = o(1). �

Lemma 9.2 (Approximation by a Lebesgue integral). Suppose that Condition 2.1 is
met. Then, as n→∞,

Dn,` = D′n,` + oP(1), where D′n,` =

∫ `

0
en(x)θe−θx dx.
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Proof. Recall that H(x) = 1− exp(−θx). We have to show that∫ `

0
en(x) d(Ĥkn −H)(x) = oP(1), n→∞,

which follows from Lemma C.8 in Berghaus and Bücher (2016), provided we can show
that

sup
x∈[0,`]

|Ĥkn(x)−H(x)| = oP(1), n→∞.

The last display in turn follows from pointwise convergence (in probability) of Ĥkn to
H by a standard Gilvenko-Cantelli-type argument. For the pointwise convergence, note
that E[Ĥkn(x)] = Hkn(x) := P(Zn1 ≤ x) → H(x) by (1.3). By similar arguments
as in the proof of Proposition 3.1 in Robert et al. (2009) (but under slightly different
assumptions) it can be shown that

lim
n→∞

kn Var{Ĥkn(x)} = e−θx(1− e−θx).

This implies pointwise convergence in probability and hence the Lemma. �

Lemma 9.3 (Joint convergence of fidis). Under Condition 2.1, for any x1, . . . , xm ∈
[0,∞), (

en(x1), . . . , en(xm), Gn

)′
 
(
e(x1), . . . , e(xm), G

)′
,

the random vector on the right-hand side being Nm+1

(
0,Σdj(x1, . . . , xm)

)
-distributed

with

Σdj(x1, . . . , xm) =


r(x1, x1) . . . r(x1, xm) h(x1)

...
. . .

...
...

r(xm, x1) . . . r(xm, xm) h(xm)
h(x1) . . . h(xm) θ−2

 .

Here, r(0, 0) = h(0) = 0 and, for x ≥ y ≥ 0 with x 6= 0,

r(x, y) = θx
∞∑
i=1

i∑
j=0

ijπ
(y/x)
2 (i, j), h(x) =

∫ x

0

∞∑
i=1

ip
(x,y)
2 (i, 0) dy − x/θ,

where, for i ≥ j ≥ 0, i ≥ 1,

p
(x,y)
2 (i, j) = P

{
N

(x,y)
E = (i, j)

}
, N

(x,y)
E =

η∑
i=1

(ζ
(y/x)
i1 , ζ

(y/x)
i2 )

with η ∼ Poisson(θx) independent of iid random vectors (ζ(y/x)

i1 , ζ(y/x)

i2 ) ∼ π(y/x)

2 , i ∈ N.

Proof. Note that weak convergence of the first m components of the vector follows from
Theorem 4.1 in Robert (2009). Regarding joint convergence with the (m+ 1)st compo-
nent, we only consider the case m = 1 and set x1 = x; the general case can be treated
analogously.

Recall the definition of `n in Condition 2.1(iii). Decompose blocks Ii = I+i ∪I
−
i , where

I+i = {(i− 1)bn + 1, . . . , ibn − `n}, I−i = {ibn − `n + 1, . . . , ibn}.
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and let

e+n (x) = k−1/2n

kn∑
i=1

∑
s∈I+i

{1(Us > 1− x/bn)− x/bn}

G+
n = k−1/2n

kn∑
i=1

Z+
ni − E[Z+

ni], Z+
ni = bn(1−max

s∈I+i
Us).

As a consequence of Lemma 6.6 in Robert (2009), e−n (x) = en(x)−e+n (x) = oP(1). Let us
show the same for Gn. Denote G−n = Gn−G+

n and Z−ni = Zni−Z+
ni. For ε ∈ (0, c1 ∧ c2),

let A+
n = {minkni=1N

+
ni > 1 − ε} and note that P(A+

n ) → 1 by Condition 2.1(v). It then

suffices to show that G−n 1A+
n

= oP(1). We can write G−n 1A+
n

= G̃−n 1A+
n

= G̃−n + oP(1),
where

G̃−n = k−1/2n

kn∑
i=1

{Z−ni − E[Z−ni]}1(N+
ni > 1− ε)

Now, N+
ni > 1− ε implies that Z−ni = Zε−ni , where the latter variable is defined in terms

of the U εi instead of the Ui. Hence, G̃−n = k−1/2
n

∑kn
i=1 S

ε
ni, where

Sεni = {Zε−ni − E[Z−ni]}1(N ε+
ni > 1− ε)

is Bε{(i−1)bn+1}:(ibn)-measurable. As a consequence, by stationarity

Var(G̃−n ) = Var(Sεn1) +
2

kn

kn∑
i=1

(kn − i) Cov(Sεn1, S
ε
n,1+i)

≤ 3 Var(Sεn1) +
2

kn

kn∑
i=2

(kn − i) Cov(Sεn1, S
ε
n,1+i) (9.4)

Let us first show that Var(Sεn1) = o(1) as n→∞, which would follow, if we show that,
for any p ∈ (2, 2 + δ), |Zε−n1 | ≤ |Z

−
n1| → 0 in Lp (the inequality follows by studying the

cases N+
ni > 1− ε and ≤ 1− ε). Since `n = o(bn) we have, for any y > 0,

P(Z−n1 6= 0) = P
(

max
s∈I1

Us > max
s∈I+1

Us

)
(9.5)

≤ P
(
bn−`n
max
s=1

Us ≤ 1− y/bn
)

+ P
(

`n
max
s=1

Us > 1− y/bn
)

≤ P
(
Z1:bn−`n ≥ y(bn − `n)/bn

)
+ `ny/bn

→ exp(−θy),

which can be made arbitrary small by increasing y. Hence, Z−n1 = oP(1). Since E |Z−n1|p ≤
C E |Z1:bn−`n |p < ∞ for any p ∈ (2, 2 + δ) by Condition 2.1(vi), we can conclude that
Z−n1 → 0 in Lp.

It remains to treat the sum over the covariances on the right-hand side of (9.4). By
Lemma 3.11 in Dehling and Philipp (2002) (which is a slightly more general version of
Lemma 6.3 in Robert, 2009), for any p ∈ (2, 2 + δ),

|Cov(Sεn1, S
ε
n,1+i)| ≤ 10(E |Sεn1|p)2/pαc2((i− 1)bn)1−2/p
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(note that Sεni is Bε(ibn−bn+1):(ibn)-measurable). Now, for i ≥ 2, αc2((i−1)bn) ≤ αc2(i−1) ≤
C(i − 1)−η by monotonicity of αc2(`). The sum over the covariances in (9.4) can thus
be bounded by a multiple of

(E |Sεn1|p)2/p
kn∑
i=2

αc2((i− 1)bn)1−2/p ≤ (E |Sεn1|p)2/p
∞∑
i=1

i−η(1−2/p).

The series converges and the moment converges to 0 by arguments as given above.
Now, since (e−n (x), G−n ) = oP(1) and P(A+

n )→ 1, it suffices to show that (e+n (x), G+
n ) 1A+

n

converges weakly to the claimed normal distribution. This in turn follows from the
Cramér-Wold device, provided we show that for any λ1, λ2 ∈ R

(λ1e
+
n (x) + λ2G

+
n ) 1A+

n
 λ1e(x) + λ2G.

The left-hand side can be rewritten as (k
−1/2
n

∑kn
i=1 f̃i,n) 1A+

n
= k

−1/2
n

∑kn
i=1 f̃i,n + oP(1),

where f̃i,n = fi,n 1(Z+
ni < εbn) and

fi,n = λ1
∑

s∈I+i
{1(Us > 1− x/bn)− x/bn}+ λ2(Z

+
ni − E[Z+

ni]).

Note that f̃i,n is Bε{(i−1)bn+1}:{ibn−`n}-measurable. A standard argument based on char-
acteristic functions (see, e.g., the proof of Lemma 6.7 in Robert, 2009) shows that the

weak limit of k−1/2
n

∑kn
i=1 f̃i,n is the same as if the (f̃i,n)i=1,...,kn were considered as iid.

Now, ∑kn
i=1 E[|f̃i,n|p](∑kn

i=1 E[|f̃i,n|2]
)p/2 = k1−p/2n

E[|f̃i,n|p](
E[|f̃i,n|2]

)p/2 .
By Minkowski’s inequality, for any p ∈ (2, 2+δ), supn E[|f̃1,n|p] <∞ by Condition 2.1(vi)

and (ii). As a consequence, provided limn→∞ E[f̃21,n] exists, Ljapunov’s condition is

satisfied (Billingsley, 1979, Theorem 27.3) and k−1/2
n

∑kn
i=1 f̃i,n converges to a normal

distribution with variance equal to limn→∞ E[f̃21,n].

The latter limit is equal to limn→∞ E[f21,n], whence it remains to be shown that

lim
n→∞

E[f21,n] = λ21r(x, x) + 2λ1λ2h(x) + λ22/θ
2,

which in turn follows, observing the expressions for the limiting covariances r(x, x) in
Theorem 4.1 in Robert (2009), from

limn→∞Cov
{∑

s∈I+1
1(Us > 1− x/bn), bn(1−maxs∈I+1

Us)
}

= h(x),

limn→∞Var
{
bn(1−maxs∈I+1

Us)
}

= θ−2.

Repeating arguments from above, we may replace the set I+1 by I1 in the preceding
display, whence it is in fact sufficient to show that

lim
n→∞

Cov(N (x)
n (E), Z1:n) = h(x), lim

n→∞
Var(Z1:n) = θ−2.

By an application of Theorem 2.20 in van der Vaart (1998), the second assertion follows
directly from Z1:n  exp(θ) and Condition 2.1(vi). For the first convergence, abbreviate
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N (x)
n = N (x)

n (E) and note that

P(N (x)
n = i, Z1:n > y) = P(N (y)

n = 0, N (x)
n = i)→

{
p
(x,y)
2 (i, 0) x ≥ y ≥ 0

0 y > x ≥ 0,

see Perfekt (1994); Robert (2009), that is, (N
(x)
n , Z1:n) converges jointly. By uniform

integrability, we may deduce that

E[N (x)
n Z1:n] =

∞∑
i=1

i

∫ ∞
0

P(Z1:n > y,N (x)
n = i) dy →

∞∑
i=1

i

∫ x

0
p
(x,y)
2 (i, 0) dy.

The lemma finally follows from E[Z1:n]→ θ−1 and E[N (x)
n ]→ x. �

Lemma 9.4. Under Condition 2.1, as n→∞,{(
en(x), Gn

)′}
x∈[0,∞)

 
{(
e(x), G

)′}
x∈[0,∞)

in D([0,∞)) × R, where (e,G)′ is a centered Gaussian process with continuous sample
paths and covariance functional as specified in Lemma 9.3.

Proof. This follows directly from Theorem 4.1 in Robert (2009). �

Lemma 9.5. Under Condition 2.1, for any ` ∈ N,

Dn,` +Gn  N (0, σ2` ),

as n→∞, where

σ2` = θ2
∫ `

0

∫ `

0
r(x, y)e−θ(x+y) dx dy + 2θ

∫ `

0
h(x)e−θx dx+ θ−2

Proof. As a consequence of Lemma 9.2, Lemma 9.4 and the continuous mapping theorem,
we have

Dn,` +Gn = θ

∫ `

0
en(x) e−θx dx+Gn + oP(1) θ

∫ `

0
e(x) e−θx dx+G.

The right-hand side is normally distributed with variance σ2` . �

Lemma 9.6. Under Condition 2.1, as `→∞,

σ2` → σ2dj,

where σ2` and σ2dj are defined in Lemma 9.5 and Theorem 3.1, respectively.

Proof. Since

lim
`→∞

σ2` = σ2∞ = θ2
∫ ∞
0

∫ ∞
0

r(x, y)e−θ(x+y) dx dy + 2θ

∫ ∞
0

h(x)e−θx dx+ θ−2, (9.6)

we only have to show, that σ2∞ = σ2dj. First of all, note that, for x > y,

r(x, y) = θx

∞∑
i=1

i∑
j=0

ijπ(y/x)

2 (i, j) = θxE[ζ(y/x)

1 ζ(y/x)

2 ],
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where (ζ(y/x)

1 , ζ(y/x)

2 ) ∼ π(y/x)

2 . Using this representation and substituting σ = y
x we obtain

θ2
∫ ∞
0

∫ ∞
0

r(x, y)e−θ(x+y) dx dy = 2θ2
∫ ∞
0

∫ x

0
θxE[ζ(y/x)

1 ζ(y/x)

2 ]e−θ(x+y) dx dy

= 2θ3
∫ 1

0
E[ζ(σ)

1 ζ(σ)

2 ]

∫ ∞
0

x2e−θ(1+σ)x dx dσ = 4

∫ 1

0

E[ζ(σ)

1 ζ(σ)

2 ]

(1 + σ)3
dσ,

which is exactly the first summand in σ2dj.

Consider the second integral in σ2∞. By the definition of p(x,y)2 in Lemma 9.3 we have

∞∑
i=1

ip
(x,y)
2 (i, 0) = E

[ η∑
j=1

ζ(y/x)

j1 1
( η∑
j=1

ζ(y/x)

j2 = 0
)]
,

where η ∼ Poisson(θx) is independent of iid random vectors (ζ(y/x)

i1 , ζ(y/x)

i2 ) ∼ π(y/x)

2 , i ∈ N.

With the identity P(ζ(σ)

12 = 0) = 1 − σ, which we will show later, the latter expectation
can further be rewritten as

∞∑
k=1

E
[ k∑
j=1

ζ(y/x)

j1 1
( k∑
j=1

ζ(y/x)

j2 = 0
)]

P(η = k)

=

∞∑
k=1

kE
[
ζ(y/x)

11 1(ζ(y/x)

12 = 0)
]
P(ζ(y/x)

2 = 0)k−1P(η = k)

=

∞∑
k=1

kE
[
ζ(y/x)

11 1(ζ(y/x)

12 = 0)
]
(1− y/x)k−1

(θx)k

k!
e−θx

= E
[
ζ(y/x)

11 1(ζ(y/x)

12 = 0)
]
θxe−θy. (9.7)

Hence, substituting σ = y/x,

h(x) = θx2
∫ 1

0
E
[
ζ(σ)

1 1(ζ(σ)

2 = 0)
]
e−θσx dσ − x

θ
(9.8)

and therefore

2θ

∫ ∞
0

h(x)e−θx dx+ θ−2 = 4θ−1
∫ 1

0

E[ζ(σ)

1 1(ζ(σ)

2 = 0)]

(1 + σ)3
dσ − θ−2,

which corresponds to the remaining summands in σ2dj.
It remains to be shown that

P(ζ(σ)

12 = 0) = 1− σ. (9.9)

By the definition of π
(σ)
2 in Section 2, we have

P(ζ(σ)

2 = 0) = 1− P(ζ(σ)

2 > 0) = 1− lim
n→∞

P(N (σx)
n (Bn) > 0|N (x)

n (Bn) > 0)

= 1− lim
n→∞

P(N1:qn > 1− σx
n |N1:qn > 1− x

n)

= 1− lim
n→∞

P
(
N1:qn−(1−

x
n )

x
n

> 1− σ
∣∣N1:qn > 1− x

n

)
.
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Finally, by (2.2), we can use identity (10.21) in Beirlant et al. (2004), which is an
implication of Theorem 3.1 in Segers (2005), to deduce that, as n→∞,

P
(
N1:qn−(1−

x
n )

x
n

> 1− σ
∣∣N1:qn > 1− x

n

)
= P

(
U1−(1−xn )

x
n

> 1− σ
∣∣U1 > 1− x

n

)
+ o(1),

which converges to σ as asserted. �

Proof of Proposition 5.1. Let

βε(`) = sup
k∈N

β(Bε1:k,Bεk+`:∞) = sup
k∈N

1

2
sup

∑
i∈I

∑
j∈J
|P(Ai ∩Bj)− P(Ai)P(Bj)|,

where the last supremum is over all finite partitions (Ai)i∈I ⊂ Bε1:k and (Bj)j∈J ⊂ Bεk+`:∞
of Ω. Decompose

σ̂2dj =
1

kn

kn∑
j=1

B̂2
nj = An1 + 2An2 +An3,

where

An1 =
1

kn

kn∑
j=1

B2
nj , An2 =

1

kn

kn∑
j=1

(B̂nj −Bnj)Bnj , An3 =
1

kn

kn∑
j=1

(B̂nj −Bnj)2.

By the Cauchy-Schwarz inequality, it suffices to show that An3 = oP(1) and that An1 =
σ2dj + oP(1).

Let us first show that An3 = oP(1). Note that Us > 1 − Znj/bn iff Ûs > 1 − Ẑnj/bn,
almost surely. As a consequence, by a similar calculation as in (3.6), we can write

B̂nj −Bnj = Ẑnj − Znj +
1

θ
− T̂n +

1

kn

kn∑
i=1

(Zni − Ẑni)

=
en(Znj)√

kn
+

1

θ
− T̂n −

1√
kn

√
kn(T̂n − Tn) =

en(Znj)√
kn

+OP(k−1/2n )

almost surely, where the OP-term is uniformly in j = 1, . . . , n. We may further write

en(Znj) = −
√
n/kn · Fn(1− Znj/bn),

where Fn(u) = n−1/2
∑n

s=1{1(Us ≤ u) − u} denotes the usual empirical process. By
weak convergence of that process (a consequence of the assumption on beta-mixing) we
can conclude that maxnj=1 |en(Znj)| = OP(b1/2n ). Hence,

An3 =
1

k2n

kn∑
j=1

{
en(Znj) +OP(1)

}2
=
{ 1

k2n

kn∑
j=1

e2n(Znj)
}

+OP(b1/2n k−1n ) +OP(k−1n )

≤ 1

kn

n
max
j=1
|en(Znj)|

∫ ∞
0
|en(z)| dĤkn(z) + oP(1).

Repeating arguments from the proof of Theorem 3.1 (Wichura’s theorem), it can be
seen that the dominating term on the right-hand side of this display is of the order
OP(
√
bn/kn), which converges to 0 by assumption.
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It remains to be shown that An1 = σ2dj + oP(1). For that purpose, write An1 =
Cn1 + 2Cn2 + Cn3, where

Cn1 =
1

kn

kn∑
j=1

(Znj − θ−1)2

Cn2 =
1

kn

kn∑
j=1

(Znj − θ−1)
{∑

s∈Ij
1
kn

∑kn
i=1 1(Us > 1− Zni

bn
)− Zni

bn

}

Cn3 =
1

kn

kn∑
j=1

{∑
s∈Ij

1
kn

∑kn
i=1 1(Us > 1− Zni

bn
)− Zni

bn

}2

From the proof of Lemma 9.6 we know that σ2dj = σ2∞, where σ2∞ is defined in (9.6).
Therefore, it suffices to show that

Cn1
p−→ θ−2, Cn2

p−→ θ

∫ ∞
0

h(x)e−θx dx, Cn3
p−→ θ2

∫ ∞
0

∫ ∞
0

r(x, y)e−θ(x+y) dx dy.

The first convergence can be shown by considering expectations and variances: first,
E[Cn1] = E[(Zn1 − θ−1)2] → θ−2 by Condition 2.1(vi) and weak convergence of Zn1.
Second,

Var(Cn1) =
1

kn
Var

{
(Zn1 − θ−1)2

}
+

1

kn

kn∑
`=1

kn − `
kn

Cov{(Zn1 − θ−1)2, (Zn,1+` − θ−1)2}

which is of the order O(k−1n ) by a standard inequality for covariances of strongly mixing
time series and by finiteness of moments of Znj of order larger than 4.

Consider Cn2. For integer ` ≥ 1, let

Cn2(`) =
1

k2n

∑
j,i∈{1,...,kn}
|j−i|≥2

{
(Znj − θ−1)

∑
s∈Ij f(Us, Zni)

}
1(Zni ≤ `),

where f(u, z) = 1(u > 1 − z/bn) − z/bn. Using similar arguments as in the proof of
Lemma 9.1 it can be shown that, for any δ > 0, lim supn→∞ P(|Cn2(`) − Cn2| > δ)
converges to 0 for `→∞. Therefore, by Wichura’s theorem (Billingsley, 1979, Theorem
25.5), it is sufficient to show that

Cn2(`)→ C2(`) = θ

∫ `

0
h(x)e−θx dx, n→∞,

holds for any ` ∈ N. For that purpose, we will show that E[Cn2(`)] → C2(`) and that
Var(Cn2(`))→ 0 as n→∞.

Recall Berbee’s coupling Lemma (Berbee, 1979): if X and Y are two random variables
in some Borel spaces S1 and S2, respectively, then there exists a random variable U
independent of (X,Y ) and a measurable function f such that Y ∗ = f(X,Y, U) has the
same distribution as Y , is independent of X and satisfies P(Y 6= Y ∗) = β(σ(X), σ(Y )).
Apply this lemma with X = (Us)s∈Ij and Y = Zni (with |i − j| ≥ 2) to construct
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a random variable Z∗ni ∼ Hkn (Hkn denoting the cdf of Zn1) independent of (Us)s∈Ij
satisfying P(Zni 6= Z∗ni) ≤ β(bn). Write

E
[
(Znj − 1

θ )
∑

s∈Ij f(Us, Zni) 1(Zni ≤ `)
]

(9.10)

= E
[
(Znj − 1

θ )
∑

s∈Ij f(Us, Z
∗
ni) 1(Z∗ni ≤ `)

]
+ E

[
(Znj − 1

θ )
∑

s∈Ij
{
f(Us, Zni) 1(Zni ≤ `)− f(Us, Z

∗
ni) 1(Z∗ni ≤ `)

}
1(Zni 6= Z∗ni)

]
By Hölder’s and Minkowski’s inequality, the second expectation on the right-hand side
of this display can be bounded in absolute value by

‖Znj − 1
θ‖3

∑
s∈Ij

{
‖f(Us, Zni) 1(Zni ≤ `)‖3 + ‖f(Us, Z

∗
ni) 1(Z∗ni ≤ `)‖3

}
β(bn)1/3.

This bound converges to 0, since |f(Us, Zni)| ≤ 1 and since the assumptions imply that

lim supn→∞ ‖Zn1 − 1
θ‖3 ≤ C and that bnβ(bn)1/3 = o(1).

As a consequence, rewriting the first summand on the right-hand side of (9.10), we
obtain that

E[Cn2(`)] = E[hn(Z∗n1) 1(Z∗n1 ≤ `)] + o(1),

where hn(x) = E
[
(Zn1 − θ−1)

∑
s∈I1 f(Us, x)

]
. By Condition 2.1(ii) and (vi) hn(Z∗n1)

is uniformly integrable. Hence, to obtain that E[Cn2(`)]→ C2(`) we only have to show
that hn(Z∗n1) 1(Z∗n1 ≤ `)  h(Z) 1(Z ≤ `) with Z being exponentially distributed with
parameter θ. This in turn follows from the extended continuous mapping theorem, since
Z∗n1  Z and hn(xn) 1(xn ≤ `) → h(x) 1(x ≤ `) for any sequence xn → x 6= `. To
see the latter, note that, for x < ` and n large enough, Minkowski’s inequality and
Condition 2.1(ii) and (vi) imply that

|hn(xn)− hn(x)| =
∣∣E [(Zn1 − θ−1){N (xn)

bn
(E)−N (x)

bn
(E)}

]∣∣ ≤ C × |xn − x|1/(2+δ).
Consider the variance of Cn2(`). By the Cauchy-Schwarz inequality, up to negligible

terms, it can be written as

k−4n
∑

(i,i′,j,j′)∈J

Cov
(

(Znj − θ−1)
∑

s∈Ij f(Us, Zni) 1(Zni ≤ `),

(Znj′ − θ−1)
∑

s′∈Ij′
f(Us′ , Zni′) 1(Zni′ ≤ `)

)
(9.11)

where J denote the set of all (i, i′, j, j′) ∈ {1, . . . , kn}4 such that any two of the indexes
are at distance larger than 2. We have to show that all covariances in this sum converge
to 0, uniformly in the indexes.

First, consider the case where either i∨ j < i′∧ j′ or i′∨ j′ < i∧ j. Recall Lemma 3.11
in Dehling and Philipp (2002): for real-valued random variables X,Y and real numbers
r, s, t > 1 such that 1/r + 1/s+ 1/t = 1, we have∣∣E[XY ]− E[X] E[Y ]

∣∣ ≤ 10‖X‖r‖Y ‖sα(σ(X), σ(Y ))1/t. (9.12)

Therefore, for some ε ∈ (0, δ), the covariances inside the sum in (9.11) are bounded by

‖(Znj − θ−1)
∑

s∈Ij f(Us, Zni) 1(Zni ≤ `)‖22+ε{α1(bn)}ε/(2+ε),

which can be seen to be o(1) by Minkowski’s inequality and the Cauchy-Schwarz in-
equality.
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The other cases are slightly more difficult. Consider the case i < j′ < j < i′. Apply
Berbee’s coupling Lemma with X = (Us)s∈Ij′∪Ij∪Ii′ and Y = (Us)s∈Ui . Then the mixed

moment inside the covariance can be written as

E
[
(Znj − θ−1)

∑
s∈Ij f(Us, Zni) 1(Zni ≤ `)(Znj′ − θ−1)

∑
s′∈Ij′

f(Us′ , Zni′) 1(Zni′ ≤ `)
]

= E
[
(Znj − θ−1)

∑
s∈Ij f(Us, Z

∗
ni) 1(Z∗ni ≤ `)

× (Znj′ − θ−1)
∑

s′∈Ij′
f(Us′ , Zni′) 1(Zni′ ≤ `)

]
+ o(1),

where the remainder term has been handled by Hölder’s and Minkowski’s inequal-
ity just as in (9.10). A second application of Berbee’s coupling Lemma (with X =
((U∗s )s∈Ii , (Us)s∈Ij′∪Ij ) and Y = (Us)s∈Ii′ ) allows to rewrite the dominating term in the

last display as

E
[
(Znj − θ−1)

∑
s∈Ij f(Us, Z

∗
ni) 1(Z∗ni ≤ `)

× (Znj′ − θ−1)
∑

s′∈Ij′
f(Us′ , Z

∗
ni′) 1(Z∗ni′ ≤ `)

]
+ o(1)

= E
[
(Znj − θ−1)

∑
s∈Ij f(Us, Z

∗
ni) 1(Z∗ni ≤ `)

]
× E[(Znj′ − θ−1)

∑
s′∈Ij′

f(Us′ , Z
∗
ni′) 1(Z∗ni′ ≤ `)

]
+ o(1),

where the latter equality follows from (9.12). Since

E
[
(Znj − θ−1)

∑
s∈Ij f(Us, Z

∗
ni) 1(Z∗ni ≤ `)

]
= E

[
(Znj − θ−1)

∑
s∈Ij f(Us, Zni) 1(Zni ≤ `)

]
+ o(1)

we finally obtain that

Cov
(

(Znj − θ−1)
∑

s∈Ij f(Us, Z
∗
ni) 1(Z∗ni ≤ `),

(Znj′ − θ−1)
∑

s′∈Ij′
f(Us′ , Z

∗
ni′) 1(Z∗ni′ ≤ `)

)
= o(1)

All other cases can be treated similarly by a successive application of Berbee’s coupling
Lemma. Also, Cn3 can be treated similarly. �
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Drees, H. and H. Rootzén (2010). Limit theorems for empirical processes of cluster
functionals. Ann. Statist. 38 (4), 2145–2186.

Ferro, C. A. T. and J. Segers (2003). Inference for clusters of extreme values. J. R. Stat.
Soc. Ser. B Stat. Methodol. 65 (2), 545–556.

Hsing, T. (1984). Point Processes Associated with Extreme Value Theory. ProQuest
LLC, Ann Arbor, MI. Thesis (Ph.D.)–The University of North Carolina at Chapel
Hill.

Hsing, T. (1993). Extremal index estimation for a weakly dependent stationary sequence.
Ann. Statist. 21 (4), 2043–2071.
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SUPPLEMENTARY MATERIAL ON
“WEAK CONVERGENCE OF A PSEUDO MAXIMUM LIKELIHOOD

ESTIMATOR FOR THE EXTREMAL INDEX”

BETINA BERGHAUS AND AXEL BÜCHER

Abstract. This supplementary material contains the remaining lemmas needed for
the proof of the sliding blocks version of Theorem 3.1 (Section A) and the proofs of
Lemmas 4.1 and 6.1 from the main paper (Section B).

Appendix A. Auxiliary Lemmas for the proof of Theorem 3.1 – sliding
blocks

Lemma A.1 (Approximation by an integral with bounded support – sliding blocks).
Under Condition 2.1, for all δ > 0,

lim
`→∞

lim sup
n→∞

P(|Dsl
n,` −Dsl

n | > δ) = 0.

Proof. The proof is similar to the proof of Lemma 9.1, whence we only give a sketch proof.
For some ε ∈ (c1, c2) let A′n = A′n(ε) denote the event {minn−bn+1

t=1 Nnt > 1 − ε}. Note
that P(A′n) → 0 by Condition 2.1(v). Recalling the definition of f from the beginning
of the proof of Lemma 9.1, we may then write Dsl

n −Dsl
n,` = Rsl

n,` 1A′n +oP(1), where

Rsl
n,` = k−3/2n

kn−1∑
i=1

kn∑
j=1

∑
s∈Ij

b−1n
∑
t∈Ii

f(Us, Z
sl
nt) 1(Zsl

nt ≥ `).

Now, decompose Rsl
n,` = Rsl

n,`,2+Rsl
n,`,3 according to whether the second sum over j is such

that |j−i| ≤ 2 or |j−i| ≥ 3, respectively. Similar as in the proof of Lemma 9.1, it can be
shown that Rsl

n,`,2 1A′n = oP(1) and that lim`→∞ lim supn→∞ P(|Rsl
n,`,3 1A′n | > δ) = 0. �

Lemma A.2 (Approximation by a Lebesgue integral – sliding blocks). Suppose Condi-
tion 2.1 is met. Then, as n→∞,

Dsl
n,` = D′ sln,` + oP(1), where D′ sln,` =

∫ `

0
en(x)θe−θx dx.

Proof. As in the proof of Lemma 9.2 the result follows if we can show that Var{Ĥsl
kn

(x)} =
o(1) for any x ∈ [0, `]. This in turn follows from similar arguments as in the proof of
Proposition 3.1 in Robert et al. (2009). �

Lemma A.3 (Joint convergence of fidis – sliding blocks). Let

Gsl
n =

√
kn(T sl

n − ET sl
n ), T sl

n =
1

n− bn + 1

n−bn+1∑
t=1

Zsl
nt.

Under Condition 2.1, for any x1, . . . , xm ∈ [0,∞), as n→∞,(
en(x1), . . . , en(xm), Gsl

n

)′
 
(
e(x1), . . . , e(xm), Gsl

)′
,
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the random vector on the right-hand side being Nm+1

(
0,Σsl(x1, . . . , xm)

)
-distributed

with

Σsl(x1, . . . , xm) =


r(x1, x1) . . . r(x1, xm) h(x1)

...
. . .

...
...

r(xm, x1) . . . r(xm, xm) h(xm)

h(x1) . . . h(xm) 2(log(4)−1)
θ2


where r and h are defined in Lemma 9.3.

Proof. For notational convenience, we will only show the joint weak convergence of
(en(x), Gsl

n) for some fixed x > 0; the general case can be shown analogously. Let

A′n = {minn−bn+1
t=1 N sl

nt > 1 − ε}, where ε ∈ (0, c1 ∧ c2) and note that P(A′n) → 1 as
n→∞. Due to the Cramér-Wold device it suffices to prove that, for any λ1, λ2 ∈ R,

{λ1en(x) + λ2G
sl
n}1A′n  λ1e(x) + λ2G

sl.

We may write

λ1en(x) + λ2G
sl
n = λ1

k
1/2
n

n∑
s=1

{1(Us > 1− x
bn

)− x
bn
}+ λ2k

1/2
n

n−bn+1

n−bn+1∑
s=1

{Zsl
ns − E[Zsl

n1]}

=

kn−1∑
j=1

∑
s∈Ij

[
λ1

k
1/2
n

{1(Us > 1− x
bn

)− x
bn
}+ λ2k

1/2
n

n−bn+1{Z
sl
ns − E[Zsl

n1]}
]

+ oP(1),

where the oP is due to omitting summands from the last block. Choose some integer
sequence k∗n < kn such that k∗n →∞ and k∗n = o(kδ/{2(1+δ)}n ) as n→∞, where δ is defined
in Condition 2.1(ii). Moreover, set q∗n = bkn/(k∗n + 2)c. For j = 1, . . . , q∗n, define

J+
j =

⋃j(k∗n+2)−2
i=(j−1)(k∗n+2)+1 Ii and J−j = Ij(k∗n+2)−1 ∪ Ij(k∗n+2),

i.e., we combine k∗n consecutive Ii-blocks in one big block J+

j of size k∗nbn and each of

the big blocks is separated by a small block J−j of size 2bn, formed by merging two
consecutive Ii-blocks. With this notation we obtain

λ1en(x) + λ2G
sl
n = H+

n +H−n + oP(1), H±n =
1√
q∗n

q∗n∑
j=1

S±nj ,

where, for j = 1, . . . , q∗n,

S±nj =

√
q∗n
kn

∑
s∈J±j

[
λ1{1(Us > 1− x

bn
)− x

bn
}+

λ2n

n− bn + 1

1

bn
{Zsl

ns − E[Zsl
n1]}

]
.

First, we will show that H−n 1A′n = oP(1). As in the proof of Lemma 9.3 we have

H−n 1A′n = H̃−n 1A′n +oP(1) = H̃−n + oP(1), where H̃−n is defined exactly as H−n , but with

S−nj replaced by

Sε−nj =

√
q∗n
kn

∑
s∈J±j

[
λ1{1(U εs > 1− x

bn
)− x

bn
}+

λ2n

n− bn + 1

1

bn
{Zε,slns − E[Zsl

n1]}
]
,
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with Zε,slns = bn(1 −maxt+bn−1s=t U εs ). By an inequality similar to (9.4) and the argumen-
tation subsequent to that inequality, it suffices to show that ‖Sε−n1 ‖p = o(1) for some

p ∈ (2, 2 + δ) and that
∑q∗n

j=2 |Cov(Sε−nj , S
ε−
n,1+j)| = o(1). The first assertion follows from

‖Sε−1j ‖p ≤ 2

√
q∗n
kn

{
λ1‖N (x)

bnk∗n
(E)‖p + λ2‖Zε,sln1 − E[Zsl

n1]‖p
}

= O(1/
√
k∗n) = o(1),

by Condition 2.1(ii) and (vi) and the definition of q∗n. For the second assertion, note
that Sε−nj is Bε{(jk∗n+2j−2)bn+1}:{j(k∗n+2)bn}-measurable, whence

|Cov(Sε−nj , S
ε−
n,1+j)| ≤ 10‖Sε−n1 ‖

2
p.αc2(jk∗nbn)1−2/p

By Condition 2.1(iii) the sum
∑q∗n

j=2 αc2(jk∗nbn)1−2/p converges to 0, which implies the
assertion.

It remains to be shown H+
n 1A′n converges to a normal distribution with the claimed

covariance. As in the proof of Lemma 9.3, we can write

H+
n 1A′n =

1√
q∗n

q∗n∑
j=1

S̃+
nj + oP(1), S̃+

nj = S+
nj 1(maxs∈J+

j
Zsl
ns < εbn).

For i 6= j, the observations S̃+
nj and S̃+

ni are separated by at least one block of size

bn and measurable with respect to the Bε·:·-sigma fields. Further, by Condition 2.1(iii),
q∗nαc2(bn) ≤ knαc2(bn) = o(1). A standard argument for the characteristic function then

shows that the weak limit of (q∗n)−1/2
∑q∗n

j=1 S̃
+

nj is the same as if the sample (S̃+

nj)j=1,...,q∗n
was independent, which we will assume subsequently. By arguments as before, we can
then pass back to an independent sample (S+

nj)j=1,...,q∗n , and weak convergence follows
from the classical central limit theorem for rowwise iid triangular arrays.

By Condition 2.1(ii) and (vi) and Minkowski’s inequality, we have E[|S+
nj |2+δ] =

O(k∗n
(2+δ)/2). Hence,∑q∗n
j=1 E[|S+

nj |2+δ](∑q∗n
j=1 E[||S+

nj |2]
) 2+δ

2

= q∗n
−δ/2 E[|S+

nj |2+δ]

E[|S+
nj |2]

2+δ
2

= O(k−δ/2n k∗n
1+δ)0 = o(k−δ/2+δ/2n ) = o(1),

by the definition of k∗n, provided that limn→∞ E[(S+
n1)

2] exists (which we will show below).
Therefore, Ljapunov’s condition is satisfied and λ1en(x) + λ2G

sl
n converges weakly to a

normal distribution with variance limn→∞ E[(S+
n1)

2]. Hence, it remains to be shown that

lim
n→∞

E[(S+
n1)

2] = λ21r(x, x) + 2λ1λ2h(x) + λ22
2(log(4)−1)

θ2

and this in turn follows from the proof of Theorem 4.1 in Robert (2009) (for the first
summand in the latter display) and Lemma A.4, A.5 and A.6 below (note that, with
n∗ = k∗nbn, we can write S+

n1 = λ1en∗ + λ2G
sl
n∗ + oP(1) and that all assumptions in

Condition 2.1 are satisfied if n and kn are replaced by n∗ and k∗n). �

Lemma A.4. Suppose Conditions 2.1(ii), (iii) and (vi) are met. Then, for any x ∈
[0,∞), as n→∞,

Cov(en(x), Gsl
n)→ hsl(x),
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where hsl(0) = 0 and, for x 6= 0,

hsl(x) =
2

θ

[ ∞∑
i=1

i

∫ 1

0

{
θ

∫ x

0

i∑
l=0

p(ξx)(l)p
((1−ξ)x,(1−ξ)y)
2 (i−l, 0)e−θξy dy+p(ξx)(i)e−θx

}
dξ−x

]
,

where p2 is defined in Lemma 9.3 and where, for x > 0,

p(x)(i) = P
(
N

(x)
E = i

)
, N

(x)
E =

η∑
i=1

ξi

with η ∼ Poisson(θx) independent of iid random variables ξi ∼ π, i ∈ N.

Proof. For the sake of a clear exposition, we will assume that both Us and Zsl
nt are

measurable with respect to the Bε·:·-sigma fields; the general case follows by multiplication
with suitable indicator functions as in the previous proofs. Introduce the notation Aj =∑

s∈Ij 1(Us > 1− x/bn) and Bj =
∑

s∈Ij Z
sl
nt. We can write

Cov(en(x), Gsl
n) =

1

n− bn + 1

kn∑
i=1

kn−1∑
j=1

Cov(Ai, Bj) +
1

n− bn + 1

kn∑
i=1

Cov(Ai, Z
sl
n,n−bn+1).

The second sum on the right hand-side is negligible, since both ‖Aj‖2 = ‖N (x)
bn

(E)‖2 =

O(1) and ‖Zsl
n,n−bn+1‖2 = O(1) by Condition 2.1(ii) and (vi). Regarding the first sum,

by stationarity, we can write

1

n

kn∑
i=1

kn−1∑
j=1

Cov(Ai, Bj)

=
1

n

kn−1∑
i=1

kn−1∑
j=1

Cov(Ai, Bj) +O(bn/n)

=
kn − 1

n
Cov(A1, B1) +

kn−1∑
h=2

kn − h
n

{
Cov(A1, Bh) + Cov(Ah, B1)

}
+ o(1).

Split the right-hand side according to whether Cov(Ai, Bj) is such that either i − j ∈
{0, 1}, or i− j ∈ {−1, 2} or i− j ∈ {−kn + 2, . . . , kn− 2} \ {−1, 0, 1, 2}. Up to negligible
terms, this allows to write the right-hand side of the previous display as Rn1+Rn2+Rn3,
where Rn1 = b−1n Cov(A2, B1 +B2), Rn2 = b−1n Cov(A3, B1 +B4) and

Rn3 =

kn−1∑
h=3

kn − h
n

Cov(A1, Bh) +

kn−1∑
h=4

kn − h
n

Cov(Ah, B1).

Both sums in Rn3 converge to 0: first, ‖Aj‖2+δ = O(1) and ‖Bj‖2+δ = O(bn). Second,
the variables defining A1 and Bh are at least (h − 1)bn-observations apart, while the
variables defining A1 and Bh are at least (h−2)bn-observations apart. As a consequence,
by Lemma 3.11 in Dehling and Philipp (2002),

|Rn3| ≤ C
kn∑
h=1

αδ/(2+δ)c2 (hbn) ≤ Cb−ηn
∞∑
h=1

h−η = o(1).
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The term Rn2 is also negligible: we have

b−1n Cov(A3, B4) = b−1n Cov(A1, B2) = b−1n

2bn∑
t=bn+1

Cov{
∑bn

s=1 1(Us > 1− x/bn), Zsl
nt}.

The covariance on the right-hand side can be bounded by a multiple of αc2(t−bn)δ/(2+δ).
The remaining sum over the mixing-coefficients converges, such that b−1n Cov(A3, B4) =
O(b−1n ). The covariance b−1n Cov(A3, B1) can be treated similarly.

It remains to be shown that

Rn1 =
1

bn
Cov(A2, B1 +B2) =

1

bn

2bn∑
t=1

Cov
{∑
s∈I2

1(Us > 1− x
bn

), Zsl
nt

}
converges to hsl(x). To this end, define functions fn, gn : [0, 1]→ R by

fn(ξ) =

bn∑
t=1

E
[∑
s∈I2

1(Us > 1− x
bn

)Zsl
nt

]
1{ξ ∈ [ t−1bn ,

t
bn

)},

gn(ξ) =

2bn∑
t=bn+1

E
[∑
s∈I2

1(Us > 1− x
bn

)Zsl
nt

]
1{ξ ∈ [ t−bn−1bn

, t−bnbn
)}.

With this notation, we obtain

Cov(en(x), Gsl
n) =

∫ 1

0
{fn(ξ) + gn(ξ)}dξ − 2xE[Zsl

n1] + o(1).

By uniform integrability of Zsl
n1 we have E[Zsl

n1]→ θ−1, as n→∞ . Furthermore, for any
n, fn and gn are uniformly bounded by ‖

∑
s∈I1 1(Us > 1− x

bn
)‖2×‖Zsl

n1‖2, which again

is uniformly bounded in n by Condition 2.1(ii) and (vi), i.e., supn(‖fn‖∞+‖gn‖∞) <∞.
Hence, by dominated convergence, the lemma follows if we show that, for any ξ ∈ (0, 1),

lim
n→∞

fn(1− ξ) = lim
n→∞

gn(ξ)

=
∞∑
i=1

i

∫ x

0

i∑
l=0

p(ξx)(l)p
((1−ξ)x,(1−ξ)y)
2 (i− l, 0)e−θξy dy + θ−1p(ξx)(i)e−θx. (A.1)

We only do this for gn, as fn can be treated similarly. Fix ξ ∈ (0, 1) and note that

gn(ξ) = E
[∑
s∈I2

1(Us > 1− x
bn

)Zsl
n,(b(1+ξ)bnc+1)

]
.

Let us first show joint weak convergence of the two variables inside this expectation, and
for that purpose consider

Fn(i, y) := P
(∑2bn

s=bn+1 1(Us > 1− x
bn

) = i, Zsl
n,(b(1+ξ)bnc+1) ≥ y

)
= P

(∑
2bn
s=bn+1 1(Us > 1− x

bn
) = i,

∑b(1+ξ)bnc+bn
s=b(1+ξ)bnc+1 1(Us > 1− y

bn
) = 0

)



MAXIMUM LIKELIHOOD ESTIMATION OF THE EXTREMAL INDEX 41

For y ∈ (0, x], we can write Fn(i, y) =
∑i

l=0An(l, i), where

An(l, i) = P
(∑b(1+ξ)bnc

s=bn+1
1(Us > 1− x

bn
) = l,

∑
2bn
s=b(1+ξ)bnc+1

1(Us > 1− x
bn

) = i− l,∑
2bn
s=b(1+ξ)bnc+1

1(Us > 1− y
bn

) = 0,
∑b(2+ξ)bnc

s=2bn+1 1(Us > 1− y
bn

) = 0
)
.

Let us show that we can manipulate any sum inside this probability by adding or sub-
tracting rn summands, where rn is some integer sequence with rn = o(bn). Indeed, for
any fixed x > 0 and sufficiently large n:

P
(∑rn

s=1 1(Us > 1− x
bn

) = 0
)
≥ 1− rnP(U1 > 1− x

bn
) = 1− xrn

bn
→ 1, n→∞.

Now, by omitting the last rn summands of the first sum inside the probability defining
An(l, i), this sum becomes asymptotically independent of the remaining sums in the
probability (at the cost of an additive αc2(rn)-error). The same can be done for the last
sum and we obtain

An(l, i) = P
(∑b(1+ξ)bnc

s=bn+1 1(Us > 1− x
bn

) = l
)
× P

(∑b(2+ξ)bnc
s=2bn+1 1(Us > 1− y

bn
) = 0

)
× P

(∑2bn
s=b(1+ξ)bnc+1 1(Us > 1− x

bn
) = i− l,

∑2bn
s=b(1+ξ)bnc+1 1(Us > 1− y

bn
) = 0

)
+O(αc2(rn)) +O(rn/bn).

This expression converges to p(ξx)(l)p(ξy)(0)p
((1−ξ)x,(1−ξ)y)
2 (i − l, 0) by Theorem 4.1 in

Robert (2009). As a consequence,

Fn(i, y)→
i∑
l=0

p(ξx)(l)p
((1−ξ)x,(1−ξ)y)
2 (i− l, 0)p(ξy)(0).

In the case y > x similar arguments imply that

Fn(i, y)→ p(ξx)(i)p(y)(0) = p(ξx)(i)e−θy.

Since both
∑

s∈I2 1(Us > 1 − x
bn

) and Zsl
n(b(1+ξ)bnc+1) are in L2+δ(P), weak convergence

implies convergence of moments, whence

gn(ξ) =

∞∑
i=1

i

∫ ∞
0

P
( 2bn∑
s=bn+1

1(Us > 1− x
bn

) = i, Zsl
n(b(1+ξ)bnc+1) ≥ y

)
dy

→
∞∑
i=1

i

∫ x

0

i∑
l=0

p(ξx)(l)p
((1−ξ)x,(1−ξ)y)
2 (i− l, 0)e−θξy dy +

∫ ∞
x

p(ξx)(i)e−θy dy.

Calculating the integral on the right-hand side explicitly yields (A.1). �

Lemma A.5. Suppose Conditions 2.1(iii) and (vi) are met, then, as n→∞,

Var(Gsl
n)→ 2(log(4)− 1)

θ2
.

Proof. As in proof of Lemma A.4 we will assume that the Zsl
nt are measurable with

respect to the Bε·:·-sigma fields. Similar as in the beginning of the proof of Lemma A.4,
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one can show that

Var(Gsl
n) =

2

bn

bn∑
t=1

Cov(Zsl
n1Z

sl
n,(1+t)) + o(1) = 2

∫ 1

0
hn(ξ) dξ − 2 E[Zsl

n1]
2 + o(1),

where hn : [0, 1]→ R is defined as

hn(ξ) =

bn∑
t=1

E[Zsl
n1Z

sl
n,(1+t)] 1{ξ ∈ [ t−1bn ,

t
bn

)} = E[Zsl
n1Z

sl
n,(bbnξc+1)].

Condition 2.1(vi) implies E[Zsl
n1] → θ−1. The limit of the integral over hn can deduced

from pointwise convergence and the dominated convergence theorem. To see this, note

that supn ‖hn‖∞ ≤ supn E[Zsl
n1

2
] <∞, due to Condition 2.1(vi). Regarding the pointwise

convergence, suppose we have shown that, for any ξ ∈ (0, 1), there exists some random

vector (X(ξ), Y (ξ)) with dirtybution function depending on ξ, such that

(Zsl
n1, Z

sl
n,(bbnξc+1)) (X(ξ), Y (ξ)). (A.2)

In that case, hn(ξ) = E[Zsl
n1Z

sl
n,(bbnξc+1)] converges to E[X(ξ)Y (ξ)] by Condition 2.1(vi).

Let us show (A.2). Fix x, y ∈ R+ and write

F̄n(x, y) = P(Zsl
n1 > x,Zsl

n,(bbnξc+1) > y)

= P(N1:bbnξc < 1− x
bn
, N(bbnξc+1):bn < 1− x∨y

bn
, N(bn+1):bbn(ξ+1)c < 1− y

bn
).

Now, if rn is an integer sequence such that rn = o(bn), then, for sufficiently large n,

P(N1:rn > 1− x
bn

) ≤ xrn
bn
→ 0, n→∞,

which is why we can omit or add rn observations in the maximum without changing the
limit of its distribution. Similar as in the proof of Lemma A.4 this gives

F̄n(x, y) = P(N1:bbnξc < 1− x
bn

)× P(N(bbnξc+1):bn < 1− x∨y
bn

)

× P(N(bn+1):bbn(ξ+1)c < 1− y
bn

) +O(αc2(rn)) +O( rnx∨ybn
),

which, by (1.3), converges to

F̄ξ(x, y) = exp(−θξx) exp(−θ(1− ξ)(x ∨ y)) exp(−θξy) = exp{−θ(ξ(x ∧ y) + x ∨ y)}.

This implies (A.2), with (X(ξ), Y (ξ)) being defined by its joint survival function F̄ξ :
[0,∞)2 → [0, 1]. Now, it is easy to see that

lim
n→∞

hn(ξ) = E[X(ξ)Y (ξ)] =

∫
R+

∫
R+

F̄ξ(x, y)dxdy =
2

θ2(1 + ξ)
.

Finally, putting everything together, we obtain

lim
n→∞

Var(Gsl
n) = 2

∫ 1

0
lim
n→∞

hn(ξ)dξ − 2

θ2
=

2

θ2

(∫ 1

0

2

1 + ξ
dξ − 1

)
=

2{log(4)− 1}
θ2

as asserted. �

Lemma A.6. Under the above conditions, hsl = h, where hsl and h are defined in
Lemma A.4 and Lemma 9.3, respectively.
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Proof. By the definition of p(x) and p(x,y)2 in Lemma A.4 and Lemma 9.3 we obtain that

i∑
l=0

p(ξx)(l)p((1−ξ)x,(1−ξ)y)2 (i − l, 0) = P
( η1∑
j=1

ζj +

η2∑
j=1

ζ(y/x)

j1 = i,

η2∑
j=1

ζ(y/x)

j2 = 0
)
,

with independent random variables η1 ∼ Poisson(ξθx), η2 ∼ Poisson((1 − ξ)θx), ζi ∼
π, i ∈ N, and (ζ(y/x)

i1 , ζ(y/x)

i2 ) ∼ π(y/x)

2 , i ∈ N. For this reason, we can write

∞∑
i=1

i
i∑
l=0

p(ξx)(l)p((1−ξ)x,(1−ξ)y)2 (i− l, 0) = E

[{ η1∑
j=1

ζj +

η2∑
j=1

ζ(y/x)

j1

}
1
( η2∑
j=1

ζ(y/x)

j2 = 0
)]

= E
[ η1∑
j=1

ζj

]
P
( η2∑
j=1

ζ(y/x)

j2 = 0
)

+ E

[ η2∑
j=1

ζ(y/x)

j1 1
( η2∑
j=1

ζ(y/x)

j2 = 0
)]
.

By Wald’s identity, we have E
[∑η1

j=1 ζj
]

= ξx. Independence of η2 and ζ(y/x)

j2 , j ∈ N,
further implies

P
( η2∑
j=1

ζ(y/x)

j2 = 0
)

=

∞∑
k=0

P(ζ(y/x)

12 = 0)kP(η2 = k) = e−θ(1−ξ)y,

where we used that P(ζ(y/x)

12 = 0) = 1− y/x, see (9.9). Finally, (9.7) implies that

E

[ η2∑
j=1

ζ(y/x)

j1 1
( η2∑
j=1

ζ(y/x)

j2 = 0
)]

= E
[
ζ(y/x)

11 1(ζ(y/x)

12 = 0)
]
θ(1− ξ)xe−(1−ξ)θy.

Altogether, we obtain

∞∑
i=1

i
i∑
l=0

p(ξx)(l)p((1−ξ)x,(1−ξ)y)2 (i− l, 0)

= ξxe−θ(1−ξ)y + E[ζ(y/x)

11 1(ζ(y/x)

12 = 0)]θ(1− ξ)xe−(1−ξ)θy.

Now, noting that
∑∞

i=1 ip
(ξx)(i) = E

[∑η1
j=1 ζj

]
= ξx, we can rewrite hsl as follows

hsl(x) =
2

θ

[ ∞∑
i=1

i

∫ 1

0

{
θ

∫ x

0

i∑
l=0

p(ξx)(l)p
((1−ξ)x,(1−ξ)y)
2 (i− l, 0)e−θξy dy + p(ξx)(i)e−θx

}
dξ − x

]
= 2

∫ x

0

∫ 1

0
ξxe−θy dξ dy + 2

∫ x

0

∫ 1

0
E[ζ(y/x)

11 1(ζ(y/x)

12 = 0)]θ(1− ξ)xe−θy dξ dy

+
2

θ

∫ 1

0
ξxe−θx dξ − 2x

θ

=

∫ x

0
xe−θy dy +

∫ x

0
E[ζ(y/x)

11 1(ζ(y/x)

12 = 0)]θxe−θy dy +
x

θ
e−θx − 2x

θ

=

∫ 1

0
E[ζ(σ)

11 1(ζ(σ)

12 = 0)]θx2 exp−θσx dσ − x

θ
.

From (9.8) we finally obtain that hsl(x) = h(x). �
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Appendix B. Additional proofs

Proof of Lemma 4.1. We begin with the disjoint blocks estimator and write (T̂n, Tn) =

(T̂ dj
n , T

dj
n ). Recalling (3.6), we can write kn E[T̂n − Tn] = Sn1 + Sn2 + Sn3 + Sn4, where

Sn1 =

bn∑
s=1

E[1(Us > 1− Zn1
bn

)− Zn1
bn

]

Sn2 =
kn − 1

kn

bn∑
s=1

E[1(Us > 1− Zn2
bn

)− Zn2
bn

],

Sn3 =
kn − 1

kn

2bn∑
s=bn+1

E[1(Us > 1− Zn1
bn

)− Zn1
bn

]

Sn4 =

kn∑
i=3

kn − i+ 1

kn

{∑
s∈I1

E[1(Us > 1− Zni
bn

)− Zni
bn

] +
∑
s∈Ii

E[1(Us > 1− Zn1
bn

)− Zn1
bn

]
}
.

Note that Sn1 = −E[Zn1]→ −θ−1, as n→∞, by Condition 2.1 (vi). Hence, it remains
to be shown that Sn2, Sn3 and Sn4 vanish as n→∞.

Consider Sn2. Choose some integer l ∈ N and let n be sufficiently large such that
bn > l. Write Sn2 = (kn − 1)/kn{S+

n2 + S−n2}, where

S+
n2 =

bn−l∑
s=1

E[1(Us > 1− Zn2
bn

)− Zn2
bn

], S−n2 =

bn∑
s=bn−l+1

E[1(Us > 1− Zn2
bn

)− Zn2
bn

].

The absolute value of S−n2 can be bounded by

l

bn
E[|Zn1|] + l P(

l
max
s=1

Us >
l+bn
max
s=l+1

Us)

which goes to 0 as n → ∞ for any fixed l by Condition 2.1 (vi) and similar reasons
as in the proof of Lemma 9.3, see (9.5). For the treatment of S+

n2 fix q > 0 such that

q < limn→∞ ‖Zn1‖2 =
√

2/θ. Then, for sufficiently large n, we can use the coupling
construction leading to (9.3) (with X = Us and Y = Zn2) to find a random variable Z∗n2
that has the same distribution as Zn2, is in dependent of Us and satisfies

P(|Zn2 − Z∗n2| > q) ≤ 18(‖Zn2‖2/q)2/5α(σ(Us), σ(Un2))
4/5.

By a monotonicity argument, we have∣∣E [{1(Us > 1− Zn2
bn

)− Zn2
bn

}
1(|Zn2 − Z∗n2| ≤ q)

]∣∣
≤
∣∣E [{1(Us > 1− Z∗n2+q

bn
)− Z∗n2+q

bn

}
1(|Zn2 − Z∗n2| ≤ q)

]∣∣
+
∣∣E [{1(Us > 1− Z∗n2−q

bn
)− Z∗n2−q

bn

}
1(|Zn2 − Z∗n2| ≤ q)

]∣∣+
2q

bn
.

Furthermore, since Z∗n2 is independent of Us,∣∣E [{1(Us > 1− Z∗n2±q
bn

)− Z∗n2±q
bn

}
1(|Zn2 − Z∗n2| ≤ q)

]∣∣
=
∣∣E [{1(Us > 1− Z∗n2±q

bn
)− Z∗n2±q

bn

}
1(|Zn2 − Z∗n2| > q)

]∣∣.
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Combining everything we obtain

|S+
n2| ≤

bn−l∑
s=1

∣∣E [{1(Us > 1− Zn2
bn

)− Zn2
bn

}
1(|Zn2 − Z∗n2| ≤ q)

]∣∣
+

bn−l∑
s=1

∣∣E [{1(Us > 1− Zn2
bn

)− Zn2
bn

}
1(|Zn2 − Z∗n2| > q)

]∣∣
≤ 2q(bn − l)

bn
+ 54(‖Zn2‖2/q)2/5

bn∑
s=l+1

α(s)4/5.

As a consequence, since α(s) ≤ Cs−η ≤ Cs−3 by Condition 2.1 (iii),

lim sup
n→∞

|Sn2| ≤ 2q + 54C(
√

2/(θq))2/5
∞∑
s=l

s−12/5

This bound in turn can be made arbitrarily small by first choosing q sufficiently small
and then choosing l sufficiently large. Hence, limn→∞ |Sn2| = 0. Along the same lines,
we obtain that limn→∞ |Sn3| = 0.

The term Sn4 can also be treated by a coupling construction. Here, we choose q =
qn = k−1−εn for some ε ∈ (0, 3/4). By similar arguments as before, we obtain that

|Sn4| ≤ 2

kn∑
i=3

{
2qn + 54(‖Zn1‖2/qn)2/5bnα((i− 2)bn)4/5

}
≤ 4k−εn + 108 · k2/5(1+ε)n b−7/5n ‖Zn1‖2/52 C

kn∑
i=3

(i− 2)−12/5

= O((kn/b
2
n)2/5(1+ε)b−3/5+4/5ε

n ) = o(1),

by Condition 2.1 (iii) and by the choice of ε. The proof for the disjoint blocks estimator
is finished.

Sliding Blocks. By the definition of T̂ sl
n and T sl

n we can write

kn E[T̂ sl
n − T sl

n ] = Ssl
n1 + Ssl

n2 + Ssl
n3 + Ssl

n4 + Ssl
n5 + o(1),

as n→∞, where

Ssl
n1 =

1

bn

bn∑
s=1

bn∑
t=1

E
[

1
(
Us > 1− Zsl

nt
bn

)
− Zsl

nt
bn

]
Ssl
n2 =

1

bn

kn − 1

kn

2bn∑
s=bn+1

bn∑
t=1

E
[
1
(
Us > 1− Zsl

nt
bn

)
− Zsl

nt
bn

]

Ssl
n3 =

1

bn

kn − 2

kn

bn∑
s=1

2bn∑
t=bn+1

E
[
1
(
Us > 1− Zsl

nt
bn

)
− Zsl

nt
bn

]

Ssl
n4 =

1

bn

kn−1∑
i=3

kn − i
kn

∑
s∈I1

∑
t∈Ii

E
[

1
(
Us > 1− Zsl

nt
bn

)
− Zsl

nt
bn

]
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Ssl
n5 =

1

bn

kn∑
i=3

kn − i+ 1

kn

∑
s∈Ii

∑
t∈I1

E
[

1
(
Us > 1− Zsl

nt
bn

)
− Zsl

nt
bn

]
.

Ssl
n3 and Ssl

n4 + Ssl
n5 are negligible by the same reasons as for the treatment of Sn2 and

Sn4 above, respectively. Regarding Ssl
n1, we can write

Ssl
n1 =

1

bn

bn∑
s=1

bn∑
t=1

E
[

1
(
Us > 1− Zsl

nt
bn

)
− Zsl

nt
bn

]
=

1

bn

bn∑
t=1

t−1∑
s=1

E
[

1
(
Us > 1− Zsl

nt
bn

)
− Zsl

nt
bn

]
− 1

b2n

bn∑
t=1

bn∑
s=t

E[Zsl
nt].

The first summand on the right-hand side vanishes by similar arguments as we used
to show the negligibility of Sn2 above. Furthermore, the second sum on the right-hand
side converges to − 1

2θ for n → ∞, by Condition 2.1(vi). Hence, limn→∞ S
sl
n1 = − 1

2θ .

Similarly, limn→∞ S
sl
n2 = − 1

2θ , which finishes the proof. �

Proof of Lemma 6.1. A function f is slowly varying with index α ∈ R, notationally
f ∈ RVα, if limt→∞ f(tx)/f(t) = xα for any x > 0. Recall the Potter bounds (Bingham
et al., 1987, Theorem 1.5.6): if f ∈ RVα, then, for any δ1, δ2 > 0, there exists some
constant t0 = t0(δ1, δ2) such that, for any t and x with t ≥ t0, tx ≥ t0:

(1− δ1)xα min(xδ2 , x−δ2) ≤ f(tx)

f(t)
≤ (1 + δ1)x

α max(xδ2 , x−δ2).

Let U(z) = F←(1 − 1/z) = {1/(1 − F )}←(z). Since 1 − F (x) ∼ cx−κ, the function
x 7→ 1/(1−F (x)) is regularly varying with index κ. We obtain that U ∈ RV1/κ by, e.g.,
Proposition 0.8 (v) in Resnick (1987),

For non-negative integers j > i define

Πi+1:j =

j∏
k=i+1

Ak, Yi+1:j =

j∑
k=i+1

Πk+1:jBk.

Then Xj = Πi+1:jXi + Yi+1:j and (Πi+1:j , Yi+1:j) is independent of Xi. We obtain that

P(Ui > 1− y, Uj > 1− y) = P{Xi > F←(1− y),Πi+1:jXi + Yi+1:j > F←(1− y)}
≤ Pn1 + Pn2

where

Pn1 = P{Xi > F←(1− y),Πi+1:jXi > F←(1− y)/2},
Pn2 = P{Xi > F←(1− y), Yi+1:j > F←(1− y)/2}.

Consider Pn2. By independence of Yi+1:j and Xi, we get the bound

Pn2 ≤ P{Xi > F←(1− y)}P{Yi+1:j > F←(1− y)/2}
≤ yP{Xj > F←(1− y)/2}
= y[1− F{F←(1− y)/2}]
≤ 2κ+2y2
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The last inequality follows from the Potter bounds applied to 1 − F (δ1 = δ2 = 1): we
may choose c1 sufficiently small such that

1− F{F←(1− y)/2} ≤ 2(1/2)−κ−1[1− F{F←(1− y)}] = 2κ+2y ∀ y ∈ (0, c1).

Now consider Pn1. By Markov’s inequality and a change of variable, for any ξ ∈ (0, κ),

Pn1 =

∫ ∞
F←(1−y)

P {Πi+1:ju > F←(1− y)/2} F ( du)

≤
∫ ∞
F←(1−y)

E[Πξ
i+1:j ]

{
U(1/y))

2u

}−ξ
F ( du)

= 2ξ E[Aξ1]
j−i
∫ y

0

{
U(1/v)

U(1/y)

}ξ
dv

By the Potter bounds applied to U ∈ RV1/κ, with δ1 = 1 and δ2 ∈ (0, 1/ξ − 1/κ), we
have, for all sufficiently large t and for all x ≥ 1,

U(tx)

U(t)
≤ 2xτ , where τ = 1/κ+ δ2 < 1/ξ.

With t = 1/y ≥ 1/c1 and x = y/v ≥ 1 we obtain, after decreasing c1 if necessary,∫ y

0

{
U(1/v)

U(1/y)

}ξ
dv ≤ 2ξ

∫ y

0
(y/v)ξτ dv =

2ξ

1− τξ
· y

As a consequence, Pn1 ≤ 4ξ/(1− τξ) E[Aξ1]
j−iy.

The derived bounds on Pn1 and Pn2 directly yield the bound

E
{ n∑
i=1

1(Ui > 1− y)
}2

=
n∑
i=1

P(Ui > 1− y) + 2
∑

1≤i<j≤n
P(Ui > 1− y, Uj > 1− y)

≤ ny + 2n2 · 2κ+2y2 + 2n
4ξ

1− τξ

( ∞∑
s=1

E[Aξ1]
s
)
y.

The assertion follows from the fact that E[Aξ1] < E[Aκ1 ] = 1 by condition (S). �
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Drees, H. and H. Rootzén (2010). Limit theorems for empirical processes of cluster
functionals. Ann. Statist. 38 (4), 2145–2186.

Ferro, C. A. T. and J. Segers (2003). Inference for clusters of extreme values. J. R. Stat.
Soc. Ser. B Stat. Methodol. 65 (2), 545–556.

Hsing, T. (1984). Point Processes Associated with Extreme Value Theory. ProQuest
LLC, Ann Arbor, MI. Thesis (Ph.D.)–The University of North Carolina at Chapel
Hill.

Hsing, T. (1993). Extremal index estimation for a weakly dependent stationary sequence.
Ann. Statist. 21 (4), 2043–2071.
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