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Control charts for the mean based on robust two-sample tests
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Faculty of Statistics, TU Dortmund University, Vogelpothsweg 87, 44221 Dortmund, Germany

We propose and investigate robust control charts for the detection of sudden shifts in se-
quences of very noisy observations with a naturally slowly varying mean. They sequentially
apply local two-sample tests for the location problem. Thus, no previous knowledge about
the in-control behaviour is necessary.

We identify critical values for the tests to achieve a desired in-control average run length
(ARLo) with extensive simulations. Control charts based on nonparametric tests or a ran-
domization principle provide a satisfactory run length behaviour for different error distribu-
tions. They possess a nearly distribution-free ARLo and are fast in detecting present signal
jumps in a time series.

In our simulations and exemplary real-world applications from biosignal analysis, a test based
on the two-sample Hodges-Lehmann estimator leads to very promising results regarding dis-
tribution independence, robustness and detection speed.

Keywords: biosignal analysis; change-point detection; robust control charts; time series;
two-sample tests; monitoring

AMS Subject Classification: 62G10; 62G35; 62M10; 62L.10; 62P10

1. Introduction

The detection of sudden changes in the signal underlying a time series is an important
task in biosignal analysis. We concentrate on situations where the data are observed
subsequently in equidistant time intervals and tolerate slow variations in the mean.

For example, in intensive care vital parameters, e.g. the heart rate of a person, are mon-
itored. Abrupt changes in the signal can indicate clinically relevant events. Figure
shows the heart rate of a patient. A large level shift begins at time ¢ = 121. In addition,
some patches of very large values can be seen, e.g. at ¢t = 178. The challenging task is to
distinguish between relevant and irrelevant changes which are caused, e.g., by measure-
ment artefacts or movements of the patient [I]. An appropriate method should detect
the relevant changes quickly while ignoring unimportant ones. Moreover, the number of
false alarms should be as small as possible because of a potential alarm fatigue by the
medical staff [2] [3].

Another example is the plasmon assisted microscopy of nanosize objects (PAMONO).
The PAMONO biosensor is used to check a sample fluid for the existence of specific
objects with a size on the nanoscale, e.g. viruses. If a virus adheres on the sensor surface,
a permanent bright spot surrounded by a dark circle appears in a sequence of greyscale
images taken from the surface. To analyse the data, a time series of greyscale values is
extracted for each pixel coordinate. If the coordinate is part of a virus adhesion, it has
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(a) Exemplary time series from the online heart-rate monitoring in intensive care.
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(b) Exemplary time series from the plasmon assisted microscopy of nanosize objects for retrospective virus detection.
Relevant level shifts occur at ¢t = 164,478, 539.

Figure 1.: Examples for the detection of abrupt signal changes in time series.

a sudden positive or negative jump depending on whether the coordinate belongs to the
bright spot or the dark circle. More details on the sensor can be found in [4] or [5]. Figure
1(b)| shows a time series from a PAMONO data set. It contains three shifts induced by
virus adhesions at times ¢t = 164,478,539. Between these change points, the signal is
approximately constant. There are no outliers and the time series behaves better than
in the intensive-care example.

Obvious methods to monitor such data are control charts. They typically work in two
phases. Phase I is used to set up the control limits. In Phase II the actual monitoring is
performed by comparing a sequentially calculated control statistic to these limits. If the
limits are violated, an action is taken to adjust the process [7]. In [8] the necessity for
robust methods is pointed out. To get appropriate control limits, the process has to be
in control, meaning that it is not influenced by any kind of non-random disturbances.
Often this cannot be assured so that the Phase-II results might be negatively influenced.
This is one reason why classical charts like the Shewhart, CUSUM (Cumulative Sum) or
EWMA (Exponentially Weighted Moving Average) control charts are not appropriate in
some applications. They depend on certain reference values or historical in-control data
to estimate them. For example, in the intensive care context a common reference value
or in-control phase does not exist [I]. In the PAMONO application, an adjustment after
a level shift is unnecessary. Moreover, multiple level shifts can occur in a time series.
Thus, a reference value would have to be updated after each shift to detect the next one.
This is difficult because the magnitude of a shift is unknown.

Control charts for nonlinear time series based on the CUSUM and EWMA approaches
have been investigated in, e.g., [9] [10] but also depend on reference values or historical
data.



Our aim is to construct robust methods which work without prior knowledge of the data.
Thus, we can overcome the problems with Phase I. To take natural variations in the signal
into account, the procedures should adapt to the level of the time series signal. Moreover,
we prefer nonparametric approaches because we do not want to make any assumption
on the distributional origin of the data. In recent years, nonparametric procedures have
become more and more prominent in the control chart context. Overviews are given in
[11I] and [I2]. Theses procedures have in common that they depend on fixed reference
values or samples.

We use two-sample tests in a moving time window to detect sudden changes. The

window is split in a reference and a test window which are compared by the test statistic.
Thus, it is unnecessary to specify a reference value. We examine control charts based on
the two-sample t-test, the Wilcoxon rank-sum test and the median test. Furthermore, we
consider tests based on the difference of the sample medians and the one-sample Hodges-
Lehmann estimators as well as the two-sample Hodges-Lehmann estimator [13],[14]. They
serve as robust alternatives to the ¢-test. In [I4], only classical test properties, i.e. the
size and power of the aforementioned tests, are investigated in different scenarios. Here,
we evaluate the control chart behaviour of detection procedures based on sequential two-
sample testing. We use simulations to investigate their run length, which is the duration
between two successive alarms. In the in-control situation, when there is no shift in the
signal, the run length should be large. When the process is out of control, i.e. after a
shift, the run length should be small. We consider the average run length (ARL) and the
median run length (MRL). The methods are compared in situations with and without
level shifts under several types of distributions.
In [I5] a control chart based on the one-sample Hodges-Lehmann estimator is proposed
as an alternative to the Shewhart control chart. In [16] it is stated that the chart is not
able to achieve a desired in-control ARL and cannot be regarded as distribution free.
Two further control charts using the Hodges-Lehmann estimator are presented in the
article, which are both able to maintain a desired in-control ARL under normality. The
first one compares the Hodges-Lehmann estimate for a sample to control limits based on
the average of the empirical variance of subgroups in historical data. The second chart
uses the control limits from [15] but the control statistic is now a multiple of the Hodges-
Lehmann estimator. However, again, both charts are not distribution free and rely on
prior knowledge. Furthermore, they differ essentially from our approach.

Our results indicate that the moving-window approach is quite promising. It is pos-
sible to construct distribution-free and nearly distribution-free procedures which work
well even in situations with slow trends. In addition, our results suggest that control
procedures based on robust test statistics inherit their robustness against outliers.

The outline of the paper is as follows: In Section [2| the basic model is introduced.
Section [3| presents the two-sample tests we will study. In Section 4] the results of the
simulation studies to asses the performances of the procedures are described. In Section
we illustrate the practical suitability of our approach by applying the procedures to
the intensive care and PAMONO time series. Section [6] summarizes and discusses the
results.



2. Model

Let (Y;:t € N) be a time series which is decomposed using the additive components
model

Y;t:,utﬁLé‘tJrT]t,tEN. (1)

Here, (u; :t € N) is the time-dependent unknown underlying signal. It is assumed to
be smooth and to follow a slow, possibly nonmonotonic trend, with only a few abrupt
jumps. The independent and identically distributed random variables (¢¢ : ¢ € N) describe
additive random noise with expectation E (¢;) = 0 and constant variance Var (g;) = 02 >
0. The process (1, : t € N) represents an outlier-generating mechanism which is usually
zero but sporadically leads to large absolute values. All random variables £; and 1, are
supposed to be independent.

We use a moving time window of width n = h+ k, h, k € N, to detect abrupt shifts in
the signal of a time series generated from model . The window at time £,

Yt:(Y;f—h—‘rlw"7Y;fayz‘+1a"'7yvt+k),7 t=hh+1,...,

is split into two subwindows. They are called the reference window Y;_ of width h and
the test window Y4 of width k. We rename the random variables in both subwindows
so that

/
Yio= (YY) and Yoy = (V5 ¥4
where
Yt_i:}/t—h-i-h i:17...,h, andYt:;:Y}ﬂ‘, j:1,7k

We assume that the signal is constant within both subwindows. In order to check whether
a sudden signal jump occurs between the times ¢t and ¢t + 1, we will use two-sample tests
for the location problem to compare the test window with the reference window as in
[17]. If there are no outliers in the time series, i.e. 7y = 0 for all ¢ € N, the expected
values in the subwindows are given by

E(n;) = Mt—h+i = Ht—, ’i:17...,h, andE(K&E) = Mt+j = M+, j:17"‘7k7

where ps— and psy are constants with p = pus— + Az Here, Ay € R is the unknown
jump magnitude of the signal between ¢t and ¢t + 1. The variances are

Var(Yt;)ZJQ, i=1,...,h, andVar(YZE)zﬁ, j=1,...,k.

Thus, the underlying distributions in both subwindows differ at most in location, so that

ii.d.

Y, LY R Fand Y, Y‘lk'G,

t,h

where F, G : R — [0,1] are the distribution functions of the underlying continuous
distributions with G (z) = F (x — A) for all z € R.



Under the null hypothesis, Ho; : Ay = 0, there is no jump between ¢ and ¢t +1. We call a
rejected null hypothesis an alarm. An incorrectly rejected null hypothesis (type I error)
will be referred to as a false alarm.

According to [I8], a benefit of the moving-window approach is that there is no need to

fit a global parametric model to the data. Thus, no assumptions on the global behaviour
of the signal have to be made.
The subwindow widths h and k have to be chosen under consideration of the applica-
tion. Large values help to reduce the influence of outliers in the area of a signal jump.
Subwindows which are too small can cause outliers to have a large effect on the test
decision so that they could be mistaken for a signal change or mask existent changes. If
the subwindow widths are too large, the assumption of a locally constant signal may not
be justified. In addition, the time between the occurrence and the detection of a jump
gets larger. Moreover, large window widths can lead to an easier confusion between a
trend and a true location shift, i.e. the rejection of the null hypothesis is induced by the
trend [18].

3. Methods

In this section, procedures for the detection of sudden changes in the signal underlying
a time series will be introduced. We apply two-sample tests for the location problem in
moving time windows to avoid the need for reference values. Furthermore, we are able
to adapt to the temporal development in the time series. In Subsections and we
present several test statistics which are the basis of our control procedures. A detailed
description of how to achieve a test decision follows in Subsection Subsection
then deals with some criteria to analyse the run length behaviour of the methods.

The time index ¢ will be dropped in the following because we focus on a single window.

3.1. Test statistics based on estimating the location difference

Our test statistics are based on comparing the reference and the test window by esti-
mating the location difference and standardizing it with a suitable scale estimator.

A popular example for this principle is the two-sample t-test. The difference of the
sample means

AP (Y)=Y, -Y_, where Y, =

| =
S| =

k h
dYViandY_ =Y,
j=1 i=1

is standardized by the pooled empirical standard deviation

1 h 2 k 2
&(0) — - _Y t_Y
ST n—2\4 (V=Y )T+ : (YJ Y+>
=1 7j=1
This leads us to the test statistic
. A (0)
TO(Y) = h-k. w
n SO (Y)



If the random variables in both subwindows follow a normal distribution with equal but
unknown variances, T follows a t-distribution with n — 2 degrees of freedom under
the null hypothesis. Because of the central limit theorem, the type I error will also
be controlled well, if the distributions are not normal, but the subwindow widths are
sufficiently large [19, p. 240]. However, the t¢-test is not robust against outliers since a
few can cause a substantial loss in power or an exceedance of the significance level [17].

It is possible to construct robust tests by replacing the sample means and the pooled
standard deviation by robust alternatives [I4]. An obvious choice to estimate the location
difference robustly is the difference of the sample medians,

AV Y)Y=YV, —Y_,

where 17+ = med {Yf, . ,Y,j} and Y_ = med {Yl_, e Yh_}. We consider two robust
scale estimators given by

SO (v) :med{|Y; A L —17,|,...,|Y1+—?+\,...,|Yk+—17+|}

and the sum of the median absolute deviations for both subwindows
S@ (Y)=MAD (Y ) +MAD(Y_),
where
MAD (Y.) = 1.4826 - med {le+ S T U | ﬁy} and

MAD (Y_) = 1.4826-med{m— Y|y - ?_y}.

The factor 1.4286 is used for correction to achieve an asymptotically unbiased estimation
of the standard deviation under the normal distribution |20, p. 33]. The resulting test
statistics are

A (1
TMPY (y) = ———= and TMP2) (V) = AV
SO (v) SO (v)

The tests are called MD1- and MD2-test in the following.
An often mentioned drawback of the sample median is its low efficiency in comparison
to the sample mean under the normal distribution [2I]. We therefore consider some
estimators which lead to a compromise between robustness and efficiency.
The one-sample and the two-sample Hodges-Lehmann estimators have an asymptotic
relative efficiency of % ~ 0.95 under the normal distribution compared to the sample
mean and are considerably more robust [13].

The one-sample Hodges-Lehmann estimator applied to both subwindows with

S Y o S Y +Y; o
Y, = med f: 1<i<j<k; and Y_ = med T: 1<i<j<h

leads to the location-difference estimator

AP (Yy=V, - Y_.



The two-sample Hodges-Lehmann estimator calculates the pairwise differences between
the observations in the subwindows:

A<3>(Y):med{yi+—yj*: i=1,.. ..k jzl,...,h}.

In [14] two scale estimators, which estimate the variability within the subwindows, are
suggested. The estimator

S’(s)(Y):med{Dfi_—Yj_\: L<i<j<h, [Y} -Y/|: 1§i<j§k}
calculates the median of the absolute pairwise differences within the subwindows. It is
related to the two-sample Hodges-LLehmann estimator.

With

SW(Y) = med{|Z;, - Z;|: 1<i<j<n},

where

~ ~ ~ /
(Ziy .., Z) = (Y;—Y,,...,Y,;—Y,,Y1+—Y+,...,Yk+—y+) ,

we calculate the median of the absolute differences within the whole window. The random
variables in each subwindow are corrected by the corresponding sample median. The
resulting test statistics are

_ 7 T(HL21) (Y) —
T(HLQQ) (Y) _

and the corresponding tests will be called HL11-, HL21-, HL12- and HL22-test.

3.2. Test statistics based on linear rank statistics

Let Ry ,...,R; ,Rf,...,R{ betheranksof Y;~,...,Y,”,¥;",...,Y," in the joint sample.
The underlying distributions are assumed to be continuous and thus, the probability of
assigning the same rank to two observations is zero. Nevertheless, in applications the
observed values are typically rounded and two of them could be equal. We will assign
the ranks randomly in such cases.
We consider two different linear rank tests: The two-sample median test and the two-
sample Wilcoxon rank-sum test.

The test statistic of the two-sample median test counts the number of observations in
the test window which are larger than the median of the whole window. It is given by

k

T (v) = 31 <Rj+> ”;1>

Jj=1




where 1(A) is the indicator function with condition A. Under the null hypothesis, the
test statistic follows a hypergeometric distribution.

Another popular nonparametric test is the two-sample Wilcoxon rank-sum test. The
test statistic is the sum of the ranks in the test window Y 4, i.e.

k
TV (Y)=> R/
j=1

The distribution of the test statistic under the null hypothesis can be derived by a
permutation principle [22 p. 113].

The test statistics of the median and the Wilcoxon test follow a discrete distribution.
We use randomization to achieve exact significance levels [23] p. 24].

3.3. Derivation of a test decision

For the t-test the distribution of the test statistic under the null hypothesis is known
under normality. The distributions of the rank-test statistics are also known under the
null hypothesis. For the MD- and the HL-tests the distribution under the null hypothesis
is unknown in finite samples. In [14] it is proposed to use the permutation principle to

n
construct distribution-free tests. In that case, all B = k‘> splits of the complete window

in two subwindows can be determined. For each split the value of the test statistic
is calculated. Let T7,...,Tp be the test statistics for each permutation and Tg,s the
observed value. The p-value for a two-sided test is

Mw

) 1]1(|T1| > |T0bs|)
pu— k4 . 2
p 5 (2)

The enumeration of all possible splits of a window is computationally demanding because
B increases fast with growing h and k. An alternative approach is to take a random
number b < B of all possible splits additionally to the observed one, to derive a p-
value. Again, the value of the test statistic is calculated for each sample, leading to
a randomization distribution. Let T7,...,7;11 be the test statistics calculated for the
selected splits and T the observed value. Then, a p-value is derived as

b
Z 1 (|Tl‘ > |Tobs|) +1

=1

P= b+ 1
We select the splits with replacement which is computationally easier because we do not
have to check for each split whether it was already drawn [24].

Although the randomization leads to smaller computation times for a single test, the
long-term monitoring of a time series requires the sequential application of the test.
A computation from scratch for each time window might, especially in high-frequency
applications, lead to unacceptable large computing times. An example for this is given
in Section [d] Hence, we consider two strategies to calculate a fixed reference distribution
which will be used to make all test decisions in the time series.

In the first one, we use the randomization distribution of the observations in the first



time window of the time series as the reference distribution. By doing this, we implicitly
assume that the distributional class of all following observations is the same so that the
reference distribution is still appropriate for later time windows. For the sake of simplicity,
the tests which use this procedure will be called randomized tests. This distribution can
be recalculated at later points in time if necessary.

Our second approach is to simulate the distribution under the null hypothesis by making
a distributional assumption for the observations. We study this approach under the
normality assumption. We draw N random samples of size n from the standard normal
distribution and split it into two subwindows of size h and k. The test statistic is then
calculated for each split. We estimate the p-value by using formula (2|) where B is replaced
by N. This procedure has the benefit that we do not have to recompute the distribution
for each new time series. However, the procedures depend on a distribution. In the
remainder of this paper we will refer to them as simulative tests.

3.4. Selected criteria for the run length analysis

In this subsection, we assume that only one jump of height A € R occurs in the signal.
If there is no location shift, i.e. A = 0, the process is said to be in control, otherwise it
is out of control.

The standard approach to compare statistical tests is to study their size and power. Here,
we use the tests to create control procedures. In this context, their quality is typically
measured by using the run length R which is the number of observations until the first
alarm. It should be large when the process is in control and small when it is out of
control. We assume that the out-of-control situation is present from the beginning of
the monitoring, i.e. the change and the surveillance start at the same time [25]. We
summarize the run length distribution by the popular average run length (ARL), which
is the expected duration until the first alarm and depends on the shift height A,

ARL(A) = Ea (R)

[26]. For A = 0 this is named in-control ARL (ARLg). If A # 0, it is the expected duration
until the detection of the location shift and called the out-of-control ARL (ARL;). A
commonly used way to compare different control procedures is to fix the ARLg to a
desired value and evaluate the methods in terms of their ARL; [27, p. 153]. This works
in analogy to the comparison of statistical tests where the significance level is fixed and
several tests are compared with respect to their power.

Although the ARL is an often applied criterion, it is confronted with some criticism. A
frequently addressed point is that it is not an appropriate measure to represent the run
length distribution because the latter can be very skewed. If the run length distribution
is right skewed, the ARL will be larger than the majority of the actually achieved run
lengths by a control procedure. Therefore, in [28] it is suggested to calculate the median
run length (MRL) instead,

MRL (A) = meda (R).

The MRL is easier to interpret. For a fixed MRL-value one knows that one half of the
run lengths is smaller and the other half is larger. Analogously to the ARL we use the
terms in-control MRL (MRLg) and out-of-control MRL (MRL;).

In the simulation study in Section [4] where we analyse the in-control behaviour, we use
the ARL while we will focus on the MRL in the out-of-control evaluation. The reasoning



behind this is the following: In the in-control situations it is important to trigger false
alarms rarely and the ARL contains more information on the amount of false alarms
than the MRL. In the out-of-control scenario, the MRL delivers more information on
the detection speed because a specific MRL; indicates that with probability 0.5 a signal
change will be detected within the first MRL; time points after its occurrence.

As we use control procedures based on statistical tests, we have to specify an appropri-
ate significance level to fix the ARLy or MRLg. In the case of independent time windows,
the number of tests until the first alarm is geometrically distributed with detection prob-
ability a € (0,1). Thus,

1 1
ARLg = g and MRLg = n - {bgo(‘i(_?)a)]

When a moving time window is used, the test statistics are dependent so that the number
of tests until the first alarm does not follow a geometric distribution and the relationship
between the ARLg (MRLg) and « becomes more difficult to describe. Therefore, in
Subsection 4.1} we use simulations to characterize it.

4. Simulations

We assess the performance of the control procedures described in Section [3|in simulations.
In Subsection we analyse the in-control behaviour. Subsection deals with the
out-of-control case. The methods are evaluated by examining their ARL and MRL as
described in Subsection We use the following error distributions:

Standard normal distribution (NV(0,1))

t-distribution with five degrees of freedom (ts5)

t-distribution with two degrees of freedom (t3)

x2-distribution with three degrees of freedom (X%)a shifted to have expectation zero.

Transferring the remarks of [29, p. 2] to our situation, a control procedure should work
well over a wide range of error distributions. The A/(0, 1)-distribution is treated as an
ideal case and serves as a reference in the following. The t5- and to-distributions are
examples of heavy-tailed distributions, while the X%—distribution represents a skewed dis-
tribution. It is expected that a procedure which works well for all distributions considered
here, will also deliver good results in less extreme situations.

We concentrate on the subwindow widths h = k£ = 10. For the randomized tests, we use
b = 10000 random samples. The distributions of the simulative tests are calculated with
N = 50000 random samples from a A (0, 1)-distribution.

The simulations are conducted on the Linux HPC cluster LiDo in Dortmund by using
the statistical software R, version 3.1.0 [30]. On each node, we have a 3.00 GHz Intel
Xeon E5450 machine with 15 GB RAM. The computations are carried out with the R
package BatchExperiments [31]. We evaluate the simulation results on our local machine
using R, version 3.2.1 [32]. Graphics are created with the R packages ggplot2 [33] and
tikzDevice [34].

To illustrate the gain in computational speed when using a fixed randomized reference
distribution instead of calculating a new one for each time window, we compare both
approaches exemplarily for the randomized HL11-test. We generate 20000 observations
from a N/ (0, 1)-distribution in 100 replications and apply both versions to the time series.
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The classical randomization test needs, on average, about 12800 seconds. When using a
fixed reference distribution, we only have a mean time of approximately 8 seconds.

4.1. Analysis of the in-control behaviour

In this subsection, we analyse the control methods in several in-control situations. Our
main interest lies in studying the relationship between the ARLg and the significance
level .. The goal is to choose an appropriate o to achieve a desired ARLg. Ideally, the
relationship between o and the ARLy would be distribution free, i.e. a fixed « leads to
the same ARLg under each error distribution. However, most of the considered control
methods depend on a distributional assumption so that this cannot be expected.
We compare the achieved ARLg-values under the t5-, to- and X%—distribution to those of
the N(0,1)-distribution. When the ARLy is larger than for the A/(0, 1)-distribution, we
call the method conservative for this distribution. If it is smaller, the procedure is called
anti-conservative.

In Subsection we present the simulation results. We specify the relationship be-
tween « and the ARLg in Subsection [4.1.2] For the sake of simplicity, the control methods
based on the two-sample tests will be referred to by the name of the underlying test.

4.1.1.  ARLgy-curves under different distributions

We generate 20000 time series of length 20000 for each error distribution. The procedures
are applied with o = 0.005,0.01,0.015,...,0.1. The ARLy is estimated by calculating the
arithmetic mean over all run lengths for each procedure and «. Although the probability
for a false alarm in finite time is one, the time series may be too short to give an alarm.
Missing run lengths are replaced by their lower bound 20001 in such cases. This may
lead to an underestimation of the true run length. As the proportion of missing values
is smaller than 1% in all cases, the effect will be negligible.

We structure the simulation results by splitting the methods into different groups.
The first group consists of the randomized control procedures, the second comprises the
simulative methods and the third one covers the ¢-, the median and the Wilcoxon test.
Figures [2] - [4] show the achieved ARLg as a function of the significance level « for the
different distributions. We cut off the y-axis at 400 to emphasize the differences between
the different distributions. For all methods one has to keep the randomness of the simu-
lation in mind. Thus, it is possible that the curves for the different distributions intersect
in some cases. Hence, we only describe the general tendency regarding conservatism and
anti-conservatism.

Figure [2] shows the ARLg-curves for the randomized procedures. The t-test is slightly
conservative for all distributions. Under the t5-distribution, the procedures behave sim-
ilar as under the N(0, 1)-distribution. Only for the HL1-tests large deviations to the
N (0,1)-curve are visible as these procedures have the tendency to be conservative for
a > 0.01. The HL2- and MD-tests, in contrast, behave nearly distribution free. Gener-
ally, the deviation to the N (0, 1)-curve gets smaller with increasing « for all considered
procedures. The scale estimator S used for the Hodges-Lehmann based procedures,
seems to result in a somewhat smaller difference to the AV(0,1)-curve.

In the investigated situations, the randomization principle can lead to approximately
distribution-free procedures, but this is not guaranteed. The HLI1-tests seem to have
problems in situations where the error distribution is heavy tailed or asymmetric. Ac-
cording to [35] the one-sample Hodges-Lehmann estimator is not recommended in such
scenarios. Hence, the influence of a distribution on the estimator also has an impact on

11
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Figure 2.: ARLg of the randomized control methods as a function of « for different error
distributions.

the control procedure.

In Figure 3| the results for the simulative control procedures are presented. All methods
are conservative for the heavy-tailed distributions. As expected, the to-distribution leads
to larger deviations from the A/(0, 1)-distribution than the t5-distribution. Except for the
HL22- and the ¢-test, which are slightly conservative, all procedures are anti-conservative
under the X%—distribution. In this respect, the HL22-test seems to be a little more advan-
tageous because the deviations to the N(0,1)-curve are smaller for o < 0.035 than for
the t-test. Considering the heavy-tailed distributions, the HL1-tests lead to good results.
Due to the normality assumption, the simulative control procedures are much more prone
to the error distribution. Differences between these methods regarding the underlying dis-
tribution are mostly visible for small values of a. These are the more interesting cases in
applications, as one is often interested in having a large ARLg.
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Simulative Tests
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Figure 3.: ARLg of the simulative control methods as a function of « for different error
distributions.

Figure[d] presents the results for the ¢-, the median and the Wilcoxon test. The Wilcoxon
and the median test lead to a distribution-free ARLg. The t-test behaves similar to its
simulative version shown in Figure

The MRLg, which is not shown here, has a similar behaviour for the simulative and the
classical tests as the ARLy. The main difference is that the MRLg is generally smaller
than the ARLg because the run length distributions are right-skewed. For the randomized
tests we see that now all procedures show a nearly distribution-free behaviour. Only
for the HL1-tests some smaller differences occur at the beginning, but these are much
less apparent than for the ARLg. The HLI1-tests are now clearly anti-conservative for
o < 0.02 for the ¢9- and the X%—distribution. This is also true for the ¢-test in case of the
to-distribution.
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Classical Tests
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Figure 4.: ARLg of the control methods based on classical two-sample tests as a function
of a for different error distributions.

4.1.2.  Relationship between the ARLqy and the significance level

We use our simulation results to specify the functional relationship between a and the
ARLy. Figures 2] - [] suggest the functional form

ARLO = 50 . 046 !
with unknown parameters 5y > 0 and ; < 0. This generalises the formula for indepen-
dent time windows, where 8y = n and 87 = —1. Linearisation with the logarithm leads
to

log (ARLg) — Vo) . (3)

log (ARLg) = log (50) +\,Bi/'log (o) & v =exp < -

=%Yo0 =N

We estimate the parameters vg and +; by ordinary least squares. For the MRLg the
relationship can be described analogously.

4.2. Analysis of the out-of-control performance

In this subsection, we compare the control procedures regarding their out-of-control be-
haviour. We fix the ARLg in {100,300} and evaluate the performance of the procedures
with respect to their MRL;. The necessary values for « are calculated by using rela-
tionship , repeating the simulations described in Subsection with smaller spaces
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between « for a better approximation of the true values. We determine the values under
the N(0, 1)-distribution. This has to be considered when we interpret the simulation
outcome because it will be affected by the conservatism and anti-conservatism of some
of our methods.

We generate 10000 time series of length 20000 + h + k + 1 for each error distribution and
insert a permanent location shift starting at time ¢ = h 4+ k + 1. The first time window
contains the observations at t = 2,...,h+k+1 so that only the rightmost observation is
shifted and the monitoring begins with the change. The observations at t =1,...,h+ k
will be used to calculate the reference distributions for the randomized tests. We use
multiples A = 0.5,1,1.5,2 of the difference between the 84.13%- and the 50%-quantile
of the error distributions as jump heights for a better comparability between the distri-
butions [I4]. This difference equals one for the N(0, 1)-distribution.

We again replace missing run lengths by 20001. In all considered cases, the number of
missing run lengths is smaller than 0.1%.

Table in the appendix shows the smallest MRL; for the different error distributions
split by the jump heights and both ARLg-values. We compare the methods by using
the relative efficiency which is calculated as the minimal MRL; from Table divided
by the actually achieved MRL; in the different situations. This criterion describes how
much worse a procedure is in comparison to the best one. A good method should lead
to a large relative efficiency close to one. We calculate worst-case relative efficiencies by
computing a method’s minimal relative efficiency (MRE) for each jump-height over all
distributions. This is in a similar spirit as the Minimax approach for estimators, see [29,
p. 60].

First, we concentrate on ARLy = 100. The results are shown in the upper row of Figure
Bl The randomized tests lead to the best worst-case relative efficiencies for A = 0.5 of
at least 69%. They are closely followed by the Wilcoxon, the median and the simulative
HLI1-tests with minimal relative efficiencies of more than 60%. For A = 1, the classical
and the simulative ¢-test with values of about 75% perform considerably worse than the
other methods which have a minimal relative efficiency of at least 87%. For A > 1.5
all worst-case relative efficiencies are larger than 90%, so that the differences can be
regarded as negligible.

When the t9-distribution is ignored in the calculation of the minimum, none of the relative
efficiencies decreases. Especially for the classical and the simulative t-test, the results gain
a comparatively large amount of efficiency for A = 0.5. It is now 66% compared to 44%
in the situation with all error distributions. The increasing efficiency is not surprising
since all procedures are conservative under the to-distribution and thus the detection of
a jump is delayed. The removal of the y3-distribution instead of the t-distribution has a
large effect on the MD2-test where the minimal relative efficiencies are now close to one
for all jump heights.

The efficiencies get generally smaller for ARLy = 300. Again, the randomized procedures
deliver the best results. The removal of the to- or the x3-distribution from the calculation
of the minimum has a similar effect as for ARLgy = 100.

When interpreting the simulation outcome one has to take the in-control results into
account. We fixed the ARLg to the same value for all procedures, but this does not mean
that the MRLg will be the same for all methods as well. For example, the MRLg-values for
the randomized MD-tests are about 20 smaller than those for the remaining randomized
tests in case of ARLg = 100 and approximately 60 for ARLy = 300. This means that the
probability of an early false alarm is higher which explains why the randomized MD-tests
deliver such good results. Except for the randomized MD-tests, only the randomized HL2-
and the Wilcoxon and median tests deliver nearly the same MRLg under all distributions
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Figure 5.: Minimal relative efficiency based on the MRL for each control method over all
considered distributions depending on the jump height.

for our considered ARLg-values. The HL2-tests have a smaller MRLg than the Wilcoxon
and the median test. Recommending a specific procedure is therefore difficult. The MD-
results seem to be too optimistic because of the small MRLg. Thus, the method of choice
should be one of the nonparametric tests or the randomized HL2-tests. This is confirmed
by a comparison of the minimal relative efficiencies regarding the ARL;. The randomized
HL2-tests and the nonparametric tests clearly outperform the randomized MD-tests in
this respect (see Figure in the appendix).

5. Applications

In this section, we apply the control procedures based on the t-test, the Wilcoxon test
and the randomized HL22-test to the time series presented in Section [I} The ¢-test is
considered because it is the standard procedure for the two-sample location problem. The
Wilcoxon test is its most popular nonparametric competitor and the HL22-test delivered
good results in our simulation studies. The significance level will be chosen to achieve
ARLy = 300 under the N(0, 1)-distribution. The subwindow widths are h = k = 10.
Furthermore, we use N = 10000 for the HL22-test.

First, we consider the PAMONO time series, where we know the true times of the
location shifts. To challenge the procedures, we insert artificial outliers in two different
scenarios. Figure shows the original time series that does not contain any outlier.
The vertical lines in the upper part indicate the alarms given by the three procedures
and the true shift times. The methods detect only the first two location shifts. The last
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shift at ¢ = 539 is comparatively small. Considering that the time series consists of 1000
observations, the number of false alarms is fairly small.

Next, we look at two scenarios with one outlier each. We concentrate on the jump at
time ¢ = 478 because it triggers the highest numbers of alarms. We include either a
positive outlier (0.52 instead of 0.44) at time ¢ = 472 or a negative one at time t = 482
(0.4 instead of 0.47) to mask this shift. The positive outlier (Figure before and
the negative one (Figure after the true jump prevent it from being detected by the
t-test. The Wilcoxon test now only raises two alarms in the area around the shift while
it leads to eight alarms in the outlier-free situation. The HL22-test is less affected as it
induces eight alarms in the clean scenario, triggers seven for the positive outlier and six
for the negative one. Thus, it is still reliable in both situations.

In the PAMONO context, several further analysis steps are used to decide, whether a
structure in the image sequence is caused by a virus. Hence, some false alarms are no
major drawback of a method in this scenario. For this time series, all procedures seem
to be equally suited.

In the heart-rate time series from intensive care (Figure [7)) we cannot be sure about
the positions of relevant signal changes. Intuitively, we would regard the large jump at
t = 121 as relevant. The spikes at ¢t = 178 and ¢t = 355 could be artefacts but a detection
by the procedures is likely because of their duration and magnitude. At ¢ = 90 there is a
small negative shift. The HL22-test rejections concentrate on the area around the jump
at t = 121. The ¢- and the Wilcoxon test lead to a considerably larger number of alarms
at the ascending slope after this jump. All methods trigger an alarm at both peaks and
for the negative shift. The HL22-test does not lead to rejections at the negative slope
starting at ¢ = 1 and the peak at ¢ = 317, while the ¢- and the Wilcoxon test do so. Thus,
for this time series, the HL22-test delivers promising results as the control procedure only
reacts to the larger changes, whereas it ignores smaller fluctuations. This fits well with
the objective of reducing the large number of false alarms in such applications [2].

In this context, the question can arise, if the large shift is only detected because of the
two positive outliers. Replacing them by smaller values so that they fit into the other
observations turns out to have no influence.

6. Conclusion

We study control methods for the detection of abrupt level shifts in time series. The
procedures are based on two-sample tests for the location problem in a moving time
window. For each time point, we test if it is a change point by splitting the window into
two subwindows. They are then compared by the test statistic. In contrast to classical
control charts like the Shewhart control chart, the test-based methods do not need a
fixed reference value and thus do not depend on historical data or prior knowledge. Fur-
thermore, they can be easily applied in situations with multiple jumps and adapt to the
current level of the time series.

We compare procedures based on selected two-sample tests in extensive simulation stud-
ies by analysing their run lengths. We examine the average run length (ARL) and the
median run length (MRL). We consider different error distributions, i.e. the A/(0,1)-
distribution, t5-distribution, to-distribution and y3-distribution in various in- and out-
of-control scenarios. Thus, we implicitly deal with outliers in the data.

Control methods based on the Wilcoxon and median test lead to a distribution-free in-
control ARL. This has the advantage that we can fix the significance level of a test
to achieve a desired in-control ARL under an arbitrary error distribution. Randomized
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Figure 6.: PAMONO time series with two artificial outlier scenarios. The times of the
level shifts and the rejection times of selected control procedures are marked by vertical
lines.
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tests based on the two-sample Hodges-Lehmann (HL2) estimator and the difference of
the sample medians (MD) lead to approximately distribution-free in-control ARL-values.
Our randomization principle differs from the one classically used because we calculate
only one reference distribution based on the first n observations in the time series, where
n is the window width. The distribution will be used for all following time windows.
This assumes that the distributional structure of the observations does not change over
time. If this assumption is dubious, we can update the reference distribution occasionally
and thus adapt to the new structure. In the out-of-control situation we use the MRL to
compare the methods because of its better interpretability. The randomized HL2-test
leads to quite good results in this respect. The Wilcoxon and the median test are only
slightly worse for small jump heights.

Two real-world examples indicate that the presented approach is suitable for the detec-
tion of sudden changes. Even in the case of small trends, the methods work reliably in
the sense that not too many false alarms are triggered. Here, robust methods like the
HL2-test delivered better results than non-robust ones like the t-test.

If steeper trends are expected under control, the proposed control charts could be com-
bined with methods for adaptive robust signal extraction as developed in [36]. We then
could apply the charts to the residuals of such a procedure.
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Figure Al.: Minimal relative efficiency based on the ARL for each control method over
all considered distributions depending on the jump height.

Appendix B. Tables

Table B1.: Minimal MRL; achieved for the different error distributions split by jump
height and fixed ARLg over all control procedures.

Jump factor A
ARLgy Distribution 05 1 1.5 2
N(0,1) 41 29 39 26

ts 42 29 28 26

100 to 39 28 26 26
X3 31 26 25 24

N(0,1) 90 46 28 27

t5 90 41 28 27

300 to 88 32 28 27
X3 31 26 25 24
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