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Abstract

We consider two problems that are attracting increasing attention in clinical dose

finding studies. First, we assess the similarity of two non-linear regression models

for two non-overlapping subgroups of patients over a restricted covariate space. To

this end, we derive a confidence interval for the maximum difference between the two

given models. If this confidence interval excludes the equivalence margins, similarity

of dose response can be claimed. Second, we address the problem of demonstrating

the similarity of two target doses for two non-overlapping subgroups, using again a

confidence interval based approach. We illustrate the proposed methods with a real

case study and investigate their operating characteristics (coverage probabilities, Type

I error rates, power) via simulation.

Keywords and Phrases: equivalence testing, multiregional trial, target dose estimation, sub-

group analyses
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1 Introduction

Establishing dose response and selecting optimal dosing regimens is a fundamental step in

the investigation of any new compound, be it a medicinal drug, an herbicide or fertilizer,

a molecular entity, an environmental toxin, or an industrial chemical (1). This has been

recognized for many years, especially in the drug development area, where patients are

exposed to a medicinal drug once it has been released on the market (2). An indication

of the importance of properly conducted dose response studies is the early publication of

the tripartite ICH E4 guideline, which gives recommendations on the design and conduct of

studies to assess the relationship between doses, blood levels and clinical response throughout

the clinical development of a new drug (3).

Very often clinical trials are analyzed beyond the primary study objectives by assessing

efficacy and safety profiles in clinically relevant subgroups, such as different gender, age

classes, grades of disease severity, etc. A rising area of particular importance are global

clinical trials, which are run in different countries and potentially serve different submissions.

For example, many pharmaceutical companies focus on running global clinical trials that

include a major Japanese subpopulation for later regulatory submission in Japan. A natural

question is then whether the dose response results for the Japanese and the non-Japanese

populations are consistent (4; 5).

To illustrate the general problem, assume that we are interested in assessing similarity

for (a) two dose response curves or for (b) two same target doses, say for male/female or

Japanese/non-Japanese patients. For question (a) we thus want to show that the maximum

difference in response between two (potentially different) non-linear parametric regression

models is smaller than a pre-specified margin. Figure 1a displays an example, where the two

dose response curves follow an Emax and a logistic model. The maximum response difference

over the dose range is indicated by the arrow. For question (b) we want to show that two

same target doses do not differ relevantly. Figure 1b displays the minimum effective dose

(MED) derived from the two previous dose response models. Here, the MED is defined as

the smallest dose which demonstrates a clinically relevant benefit over placebo, as indicated

by the horizontal line in Figure 1b. If we succeed in demonstrating either (a) or (b), evidence

is provided that the difference in response over the entire dose range under investigation

or the two target doses differ at most marginally. In practice, such a result may provide

sufficient evidence that the same dose can be administered in both subgroups (i.e., the doses

for males/females or Japanese/non-Japanese patients are the same).

Demonstrating similarity of target doses or dose response curves in each of several subgroups

has not been addressed in much detail so far in the literature. One exception is (6), who

proposed a non-standard bootstrap approach for question (a) which addresses the specific

form of the interval hypotheses. In particular, data has to be generated under the null
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Figure 1: Assessing similarity for (a) two dose response curves and (b) two same target doses.

hypothesis using constrained least squares estimates. In this paper we consider different

methods to address both questions (a) and (b). In Section 2 we address problem (a) using

the results from (7) and derive a confidence interval for the maximum difference between

the two given non-linear regression models over the entire covariate space of interest. If

this confidence interval excludes the equivalence margins, similarity of dose response can be

claimed. In Section 3, we consider asymptotic methods to derive confidence intervals for the

difference between two same target doses to address problem (b). Again, if such a confidence

interval excludes a pre-specified relevance margin, similarity in dose can be claimed. In

Section 4 we provide some concluding remarks. Technical details are left for the Appendix.

2 Assessing similarity of two dose response curves

We consider the non-linear regression models

Yℓ,i,j = mℓ(ϑℓ, dℓ,i) + εℓ,i,j , j = 1, . . . , nℓ,i, i = 1, . . . , kℓ, ℓ = 1, 2, dℓ,i ∈ D, (1)

where Yℓ,i,j denotes the jth observed response at the ith dose level dℓ,i under the ℓth dose

response model mℓ. The error terms εℓ,i,j are assumed to be independent and identically

distributed with expectation 0 and variance σ2
ℓ . Further, nℓ =

∑kℓ
i=1 nℓ,i denotes the sample

size in group ℓ where we assume nℓ,i observations in the ith dose level (i = 1, . . . kℓ, ℓ = 1, 2).

We further assume that for both regression models the different dose levels are attained
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on the same (restricted) covariate region D. For the purpose of this paper, we assume

D to be the dose range under investigation, although the results in this section can be

generalized to include other covariates. The functions m1 and m2 in (1) denote the (non-

linear) regression models with fixed but unknown p1- and p2-dimensional parameter vectors

ϑ1 and ϑ2, respectively. Note that both the regression models m1 and m2 and the parameters

ϑ1 and ϑ2 may be different. In particular, the design matrices for the two regression models

may be unequal. This implies that we do not assume the same doses to be investigated for

ℓ = 1, 2 and that the sample sizes nℓ can be unequal. We refer to (8) for an overview of

several linear and non-linear regression models commonly employed in clinical studies.

2.1 Methodology

Using results from (7), we derive in the following a confidence interval for the maximum

absolute absolute difference between the two given non-linear regression models m1 and m2

over the entire covariate space D. We use this confidence interval in order to derive a test

demonstrating similarity of the two dose response curves.

Let U (Y1, Y2, d) denote a 1 − α pointwise upper confidence bound on the difference curve

m2(ϑ2, d) − m1(ϑ1, d), i.e. P {m2(ϑ2, d)−m1(ϑ1, d) ≤ U (Y1, Y2, d)} ≥ 1 − α for all d ∈ D,

where α denotes the pre-specified significance level and Yℓ the vector of observations from

group ℓ = 1, 2. Similarly, let L (Y1, Y2, d) denote a 1−α pointwise lower confidence bound on

m2(ϑ2, d)−m1(ϑ1, d). Using these pointwise confidence bounds we can deduce a confidence

interval for the maximum absolute difference between the two models maxd∈D |m2(ϑ2, d) −
m1(ϑ1, d)| over the region D, that is

P

{
max
d∈D

|m2(ϑ2, d)−m1(ϑ1, d)| ≤ max
{
max
d∈D

U (Y1, Y2, d) ,−min
d∈D

L (Y1, Y2, d)
}}

≥ 1− α.

(2)

The proof is given in Appendix A. For moderate sample sizes the pointwise confidence bounds

U (Y1, Y2, d) and L (Y1, Y2, d) can be derived from the delta method (9). Let u1−α denote the

1− α quantile of the standard normal distribution. Then,

U (Y1, Y2, d) = m2(ϑ̂2, d)−m1(ϑ̂1, d) + u1−αρ̂(d)

and

L (Y1, Y2, d) = m2(ϑ̂2, d)−m1(ϑ̂1, d)− u1−αρ̂(d)

are the desired 1−α asymptotic pointwise upper and lower confidence bounds, respectively,

for m2(ϑ2, d)−m1(ϑ1, d). Here, ϑ̂ℓ denotes the least squares estimate of ϑℓ and

ρ̂2(d) =
σ̂2
1

n1

(
∂

∂ϑ1
m1(ϑ̂1, d)

)T
Σ̂−1

1

(
∂

∂ϑ1
m1(ϑ̂1, d)

)
+
σ̂2
2

n2

(
∂

∂ϑ2
m2(ϑ̂2, d)

)T
Σ̂−1

2

(
∂

∂ϑ2
m2(ϑ̂2, d)

)
(3)
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is an estimate of the variance of m2(ϑ̂2, d) − m1(ϑ̂1, d). In (3) σ̂2
ℓ , is the common variance

estimate in the ℓth group (ℓ = 1, 2) and Σ̂ℓ =
∑kℓ

i=1
nℓ,i

nℓ

∂
∂ϑℓ

mℓ(xℓ,i,, ϑ̂ℓ)
(

∂
∂ϑℓ

mℓ(xℓ,i,, ϑ̂ℓ)
)T

.

Note that the matrix
σ̂2
ℓ

nℓ
Σ̂−1

ℓ is a consistent estimator of the covariance matrix of ϑ̂ℓ (ℓ = 1, 2).

Next we are interested in demonstrating that the maximum absolute difference in response

between the two regression models in (1) over the covariate space D is not larger than a

pre-specified margin δ > 0. Formally, we test the null hypothesis

H : max
d∈D

|m2(ϑ2, d)−m1(ϑ1, d)| ≥ δ (4)

against the alternative hypothesis

K : max
d∈D

|m2(ϑ2, d)−m1(ϑ1, d)| < δ. (5)

Consequently, using the confidence interval (2), equivalence is claimed if

max
{
max
d∈D

U (Y1, Y2, d) ,−min
d∈D

L (Y1, Y2, d)
}
< δ.

Thus, we reject the null hypothesis H at level α and assume similarity of m1 and m2 if

−δ < min
d∈D

L (Y1, Y2, d) and max
d∈D

U (Y1, Y2, d) < δ. (6)

2.2 Case study

To illustrate the methodology described in Section 2.1, we consider a dose finding trial for

a weight loss drug given to patients suffering from overweight or obesity. This trial aims at

comparing the dose response relationship for two regimens, namely a once-daily (o.d.) and

a twice-daily (b.i.d.) application of the drug. The primary objective in this trial is not to

apply a joint model that includes both regimen, but rather treat both regimen separately

and assess the similarity of dose response. Because this study has not been completed yet, we

simulate data based on the assumptions made at the trial design stage. For confidentiality

reasons, we use blinded dose levels and all chosen dose levels denote the total daily dose.

These limitations do not change the utility of the calculations below.

In this trial, the dose levels for the o.d. and b.i.d. regimens are given by 0.033, 0.1, 1 and

0.067, 0.3, 1, respectively. Patients are thus randomized to receive either placebo or one of

the six active treatments. In total, we assume that 350 patients are allocated equally across

the seven arms, resulting in a sample size of 50 patients per treatment group. The primary

endpoint of the study was the percentage of weight loss after a treatment duration of 20

weeks, with smaller values corresponding to a better treatment effect.

We used the nls function in R (10) to compute the non-linear least squares estimates ϑ̂ℓ of ϑℓ

and the standard errors necessary for calculating U (Y1, Y2, d) and L (Y1, Y2, d) from Section
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2.1. The R code for this example and all other calculations in this paper is available from

the authors upon request.

For this example, we fitted two Emax models: m1(ϑ1, d) = ϑ1,1 + ϑ1,2
d

ϑ1,3+d
for the o.d.

regimen and m2(ϑ2, d) = ϑ2,1 + ϑ2,2
d

ϑ2,3+d
for the b.i.d. regimen, where ϑ1 = (ϑ1,1, ϑ1,2, ϑ1,3)

and ϑ2 = (ϑ2,1, ϑ2,2, ϑ2,3). For the data set at hand, ϑ̂1 = (0.03,−5.17, 7.94) and ϑ̂2 =

(−0.09,−6.56, 31.24). Figure 2a displays the fitted dose response models m1(ϑ̂1, d) and

m2(ϑ̂2, d), d ∈ [0, 1], together with the individual observations, where the y-axis is truncated

to [−7, 1] for better readability. Figure 2b displays the difference m2(ϑ̂2, d) − m1(ϑ̂1, d)

together with the associated 90% pointwise confidence intervals for each dose d ∈ [0, 1].

The maximum upper confidence bound for α = 0.1 is maxd∈D U (Y1, Y2, d) = 2.137 at dose

d = 0.08 and the minimum lower confidence bound is mind∈D L (Y1, Y2, d) = −1.848 at

the maximum dose d = 1. That is, the maximum difference in response between the two

regimens over the dose range D = [0, 1] lies between −1.848 and 2.137. Therefore, similarity

of the dose response curves can be claimed at level α = 0.1 as long as δ is larger than 2.137,

according to (6).
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Figure 2: Plots for the weight loss case study. (a) The fitted Emax model m1 (m2) for the

o.d. (b.i.d.) regimen is given by the solid (dashed) line with observations marked by “x”

(“o”). (b) Mean difference curve with associated pointwise 90% confidence bounds. Bold

dots denote the maximum upper and minimum lower confidence bound over D = [0, 1].
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2.3 Simulations

We conducted a simulation study to investigate the operating characteristics of the method

described in Section 2.1. We investigated coverage probabilities of the confidence intervals

as well as Type I error rates and power of the test (6) for different scenarios. To simplify

the simulations, we assumed balanced designs and that dose is the only covariate. For all

simulations below, we generated data as follows:

Step 1: Specify the models m1,m2, their parameters ϑ1, ϑ2, a common variance σ2 and the

actual dose levels dℓ,i.

Step 2: Generate nℓ,i values mℓ(ϑℓ, dℓ,i) at each dose dℓ,i.

Step 3: Generate normally distributed residual errors εℓ,i,j ∼ N(0, σ2) and use the final

response data

Yℓ,i,j = mℓ(ϑℓ, dℓ,i) + εℓ,i,j, j = 1, . . . , nℓ,i, i = 1, . . . kℓ, ℓ = 1, 2. (7)

This procedure is repeated using 10, 000 simulation runs.

2.3.1 Coverage probabilities

In the following we report the coverage probabilities of the confidence intervals for the

maximum absolute difference derived in (2) under two different scenarios.

Scenario 1 We start with the comparison of a linear and a quadratic model. More specif-

ically, we chose the linear model m1(d) = d and the quadratic model m2(d) = 3δ1 + (1 −
4δ1)d + δ1d

2, d ∈ [1, 3]; see Figure 3a for δ1 = 1. We assumed identical dose levels dℓ,i = i,

i = 1, 2, 3 for both regression models ℓ = 1, 2. Consequently, the two curves coincide at

the two boundary doses d = 1, 3, and the maximum difference δ1 occurs at dose d = 2.

For each configuration of σ2 = 1, 2, 3 and δ1 = 1, 2, 3 we used (7) to simulate nℓ,i = 10(50)

observations at each dose level dℓ,i, resulting in nℓ = 30(150), ℓ = 1, 2.

The left side of Table 1 displays the coverage probabilities for α = 0.05, 0.1. We observe

that the nominal level of 1 − α is reached in all cases under consideration, which confirms

(2). The confidence intervals are more accurate for larger sample sizes and smaller variances,

because we used the asymptotic quantiles from the normal distribution. If, instead, we select

the quantiles from the t distribution, the simulated coverage probabilities are closer to the

nominal 1 − α level (results not shown here). Note that the confidence bounds perform

better for larger values of δ1. This effect can be explained by a careful look at the proof

given in Appendix A and the particular example under consideration. First note that the

maximum absolute difference δ1 between the two curves is attained at a single point, say

7
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Figure 3: Graphical illustration of the two scenarios used for the simulations. Open dots

in the left panel indicate the actual dose levels. In the right panel they indicate the doses

where the maximum distance to the reference curve m1 (dashed line) is observed.

d0; see Figure 3a. If this difference is large then either maxd∈D U (Y1, Y2, d) = U (Y1, Y2, d0)

or −mind∈D L (Y1, Y2, d) = L (Y1, Y2, d0) with high probability and consequently there is

equality either in (16) or (17) in Appendix A. The same effect appears for increasing sample

sizes and smaller values of δ1 as in this case the parameter estimates and approximation of

the coverage probability of the confidence interval are more precise.

Scenario 2 We now consider the comparison of two different Emax models, where the
maximum distances with respect to the same reference model are 0.25, 0.5, 1, 1.5 and 2.
More specifically, we compared the reference Emax model m1(d) = 1 + 9.70d

6.70+d
with

m1
2(d) = 1+

6.88d

3.60 + d
, m2

2(d) = 1+
5.66d

2.25 + d
, m3

2(d) = 1+
4.52d

1 + d
, m4

2(d) = 1+
4.05d

0.48 + d
, m5

2(d) = 1+
3.82d

0.22 + d
,

(8)

where the dose range is given by D = [0, 4]. Note that the placebo response at d = 0 is 1 and

the response at the highest dose d = 4 is 4.62 for all five models; see Figure 3b. The difference

curve is given by mh
2(ϑ

h
2 , d)−m1(ϑ1, d) for h = 1, 2, 3, 4, 5. Note that the dose which produces

the maximum difference is different for each h. More precisely, these doses are given by

1.4, 1.28, 1.04, 0.82 and 0.61 for h = 1, . . . , 5; see again Figure 3b. The maximum absolute

distance attained at each of these doses is denoted by δ∞ = maxd∈D
∣∣mh

2(ϑ
h
2 , d)−m1(ϑ1, d)

∣∣.
8



Coverage probabilities Type I error rates

α = 0.05 α = 0.1 α = 0.05 α = 0.1

δ1 σ2 nℓ = 30 nℓ = 150 nℓ = 30 nℓ = 150 nℓ = 30 nℓ = 150 nℓ = 30 nℓ = 150

1 1 0.987 0.950 0.953 0.906 0.012 0.050 0.046 0.095

1 2 0.999 0.956 0.991 0.906 0.001 0.042 0.009 0.088

1 3 1.000 0.971 0.999 0.923 0.000 0.031 0.001 0.077

2 1 0.949 0.952 0.901 0.907 0.047 0.049 0.096 0.105

2 2 0.960 0.951 0.913 0.901 0.039 0.048 0.079 0.095

2 3 0.977 0.950 0.936 0.902 0.025 0.047 0.065 0.097

3 1 0.951 0.954 0.906 0.908 0.053 0.048 0.102 0.100

3 2 0.952 0.954 0.905 0.907 0.048 0.047 0.094 0.099

3 3 0.949 0.952 0.900 0.903 0.052 0.049 0.098 0.099

Table 1: Simulated coverage probabilities and Type I error rates for different configurations

of δ1, σ
2, α, and nℓ under Scenario 1.

We assumed identical dose levels dℓ,i = i − 1, i = 1, 2, 3, 4, 5 for both regression models

ℓ = 1, 2. For each configuration of σ2 = 1, 2, 3 and δ∞ = 0.25, 0.5, 1, 1.5, 2, we used (7) to

simulate nℓ,i = 30 observations at each dose level dℓ,i, resulting in nℓ = 150, ℓ = 1, 2.

The left side of Table 2 displays the coverage probabilities for α = 0.05, 0.1. As already

seen under Scenario 1, the confidence intervals are more accurate for smaller variances (and

larger sample sizes, results not shown here) and for increasing values of δ∞. As before,

asymptotically the coverage probability is at least 1−α under all configurations investigated

here.

2.3.2 Type 1 error rates

For the Type I error rate simulations we investigated the two scenarios from Figure 3 for

each configuration of α = 0.05, 0.1 and σ2 = 1, 2, 3. Further, we set δ = δ∞ in (4). For

a fixed configuration, we generated data according to (7), fit both models, performed the

hypothesis test (6) and counted the proportion of rejecting the null hypothesis H. Note that

due to the choice of δ both Scenarios 1 and 2 belong to the null hypothesis H defined in (4).

Thus, rejecting H would be a Type I error, i.e. we would erroneously claim similarity of the

two dose response curves.

The right side of Table 1 displays the simulated Type I error rates under Scenario 1. We

observe that the simulated Type I error rate is bounded by the nominal significance level

α for all configurations investigated here, indicating that the hypothesis test (6) is indeed

a level-α test, even under total sample sizes as small as 30. Note also that the significance

level is actually well exhausted under many configurations. For small sample sizes and

small values of δ the test becomes conservative, matching the observed performance of the

9



Coverage probabilities Type I error rates

(m1,m2) δ∞ σ2 α = 0.05 α = 0.1 α = 0.05 α = 0.1

(m1,m
1
2) 0.25 1 1.000 1.000 0.000 0.000

2 1.000 1.000 0.000 0.000

3 1.000 1.000 0.000 0.000

(m1,m
2
2) 0.5 1 0.994 0.960 0.006 0.040

2 1.000 0.993 0.000 0.007

3 1.000 1.000 0.000 0.000

(m1,m
3
2) 1 1 0.954 0.893 0.036 0.107

2 0.963 0.903 0.047 0.097

3 0.983 0.942 0.015 0.058

(m1,m
4
2) 1.5 1 0.952 0.899 0.048 0.101

2 0.962 0.913 0.038 0.087

3 0.949 0.897 0.051 0.103

(m1,m
5
2) 2 1 0.945 0.902 0.055 0.098

2 0.942 0.889 0.068 0.118

3 0.941 0.896 0.065 0.116

Table 2: Simulated coverage probabilities and Type I error rates for different model choices

and configurations of σ2 and α under Scenario 2, for nℓ = 150, ℓ = 1, 2.

confidence bounds shown in the left side of Table 1. Again, this conservatism disappears for

large sample sizes.

The right side of Table 2 displays the simulated Type I error rates under Scenario 2. As

before, the simulated Type I error rate is bounded by the nominal significance level α under

all configurations. However, we observe that the test is very conservative for small values of

δ∞, as already expected from the previously reported results on the coverage probabilities.

2.3.3 Power

We now consider testing the null hypothesis H in (4) for δ = 1, where in fact the maximum

difference is smaller than 1. We start with the comparison of the models from Scenario 1 for

different values of δ1 under the alternative; see Figure 4. The dose levels remain the same

as under Scenario 1. For each configuration of σ2 = 1, 2, 3 and δ1 = 0, 0.25, 0.5, 0.75, 0.9, we

used (7) to simulate n = 10(30, 50) observations under m1 and m2 at each dose level dℓ,i,

resulting in nℓ = 30(90, 150), ℓ = 1, 2. Table 3 summarizes the results for α = 0.05, 0.1. The

power increases with decreasing values of δ1. For large values of σ
2 the power remains small,

even for δ1 = 0. In these cases we need larger sample sizes nℓ in order to achieve reliable

10



results, as otherwise, due to the large variances, the confidence intervals in (2) become too

wide and hence the test very conservative.
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Figure 4: Graphical illustration of Scenario 1 used for the power simulations. Open dots

indicate the actual dose levels.

Regarding Scenario 2, we tested the null hypothesis H in (4) using δ = 1 and generating

data under the models m1, m
1
2 and m2

2 defined in (8). Hence we simulated the performance

of the test under the alternative K in (5) for different choices of σ and α. For the sake of

brevity we restrict ourselves again to a fixed total sample size of nℓ = 150, ℓ = 1, 2. Table 4

displays the simulated power. We observe that the test achieves high power, even for larger

variances. However, the power decreases for an increasing true maximum distance between

the models and for increasing variances.

2.4 Placebo-adjusted modeling

So far we assessed the similarity of two dose response models in terms of the maximum

difference over the dose range under investigation. Sometimes one might be interested in

adjusting for the placebo response, that is, the treatment effect relative to the placebo

response, before comparing two dose response curves. In this case one has to modify the

results from Section 2.1 as follows. Different to model (1), we consider the placebo-adjusted

responses

Yℓ,i,j = mℓ (ϑℓ, dℓ,i)−mℓ (ϑℓ, 0) + εℓ,i,j, j = 1, . . . , nℓ,i, i = 1, . . . kℓ, ℓ = 1, 2, dℓ,i ∈ D.
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α = 0.05 α = 0.1

δ1 σ2 nℓ = 30 nℓ = 90 nℓ = 150 nℓ = 30 nℓ = 90 nℓ = 150

0.00 1 0.211 0.966 0.999 0.426 0.988 0.999

0.25 1 0.170 0.939 0.997 0.377 0.974 0.999

0.50 1 0.102 0.731 0.917 0.268 0.843 0.958

0.75 1 0.046 0.306 0.444 0.143 0.433 0.583

0.90 1 0.023 0.111 0.144 0.074 0.195 0.245

0.00 2 0.002 0.544 0.911 0.046 0.749 0.967

0.25 2 0.001 0.479 0.867 0.045 0.692 0.941

0.50 2 0.001 0.302 0.628 0.030 0.500 0.770

0.75 2 0.000 0.119 0.247 0.012 0.245 0.391

0.90 2 0.000 0.050 0.098 0.011 0.128 0.181

0.00 3 0.000 0.196 0.651 0.007 0.434 0.822

0.25 3 0.000 0.162 0.576 0.005 0.382 0.758

0.50 3 0.000 0.098 0.365 0.004 0.263 0.558

0.75 3 0.000 0.040 0.142 0.002 0.128 0.276

0.90 3 0.000 0.021 0.050 0.001 0.072 0.126

Table 3: Simulated power for δ = 1 and different configurations of δ1, σ
2, α, and nℓ in

Scenario 1.

(m1,m2) δ∞ σ2 α = 0.05 α = 0.1

(m1,m1) 0 1 0.986 0.996

(m1,m
1
2) 0.25 1 0.980 0.992

(m1,m
2
2) 0.5 1 0.871 0.938

(m1,m1) 0 2 0.719 0.873

(m1,m
1
2) 0.25 2 0.657 0.833

(m1,m
2
2) 0.5 2 0.442 0.655

(m1,m1) 0 3 0.350 0.622

(m1,m
1
2) 0.25 3 0.286 0.553

(m1,m
2
2) 0.5 3 0.183 0.400

Table 4: Simulated power for different model choices and configurations of σ2 and α under

Scenario 2, for δ = 1 and nℓ = 150, l = 1, 2.

The confidence interval for the maximum absolute difference between the placebo-adjusted
curves is then given by

P

{
max
d∈D

|(m2(ϑ2, d)−m2(ϑ2, 0))− (m1(ϑ1, d)−m1(ϑ1, 0))| ≤ max
{
max
d∈D

U ′ (Y1, Y2, d) ,−min
d∈D

L′ (Y1, Y2, d)
}}

≥ 1− α, 12



where U ′ (Y1, Y2, d) and L′ (Y1, Y2, d) denote the pointwise confidence bounds for the placebo-

adjusted differences derived by the delta method. For example,

U ′ (Y1, Y2, d) = (m2(ϑ̂2, d)−m2(ϑ̂2, 0))− (m1(ϑ̂1, d)−m1(ϑ̂1, 0)) + u1−αρ̂
′(d),

where ρ̂′(d) is calculated for the difference of two placebo-adjusted dose response curves.

Proceeding, the null hypothesis of interest becomes

H ′ : max
d∈D

|(m2(ϑ2, d)−m2(ϑ2, 0))− (m1(ϑ1, d)−m1(ϑ1, 0))| ≥ δ

and following (6) we reject H ′ if

−δ < min
d∈D

L′ (Y1, Y2, d) and max
d∈D

U ′ (Y1, Y2, d) < δ. (9)

To illustrate this methodology, we revisit the weight loss case study from Section 2.2. The

individual model fits remain the same, i.e. m1(ϑ1, d) = 0.03−5.17 d
7.94+d

for the o.d. regimen

and m2(ϑ2, d) = −0.09− 6.56 d
31.24+d

for the b.i.d. regimen. Figure 5a displays the placebo-

adjusted model fits m1(ϑ̂1, d)−m1(ϑ̂1, 0) and m2(ϑ̂2, d)−m2(ϑ̂2, 0), d ∈ [0, 1], together with

the individual observations, where only the range [−7, 1] is displayed on the vertical axis for

better readability. Figure 5b displays the difference (m2(ϑ̂2, d) − m2(ϑ̂2, 0)) − (m1(ϑ̂1, d) −
m1(ϑ̂1, 0)) together with the associated 90% pointwise confidence intervals for each dose

d ∈ [0, 1]. In this example, the estimated placebo effects are very similar compared with the

original fits. Thus, the placebo-adjusted difference curve and its confidence bounds do not

change much compared with the previous results of Section 2.2; see Figure 2. The maximum

upper confidence bound for α = 0.1 is maxd∈D U ′ (Y1, Y2, d) = 2.255, again observed at dose

d = 0.08, and the minimum lower confidence bound is mind∈D L′ (Y1, Y2, d) = −1.730 at

dose d = 1. That is, the maximum placebo-adjusted difference between the two regimens

over the dose range D = [0, 1] lies between −1.730 and 2.255. Therefore, similarity of the

placebo-adjusted dose response curves can be claimed according to (9) as long as δ is larger

than 2.255.

3 Assessing the similarity of two target doses

This section focuses on assessing the similarity of two target doses. We consider the difference

between the minimum effective doses (MEDs) of two dose response curves from two non-

overlapping subgroups. We derive confidence intervals and statistical tests to decide at a

given level α whether the absolute difference of two MEDs is smaller than a prespecified

margin η. Furthermore, we illustrate the proposed methodology by revisiting the case study

from 2.2 and investigate its operating characteristics.

13
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Figure 5: Placebo-adjusted plots for the weight loss case study. (a) The placebo-adjusted

Emax model fit m1 (m2) for the o.d. (b.i.d.) regimen is given by the solid (dashed) line with

observations marked by “x” (“o”). (b) Mean difference curve with associated pointwise 90%

confidence bounds. Bold dots denote the maximum upper and minimum lower confidence

bound over D = [0, 1].

3.1 Methodology

Following (1), the MED is defined as the smallest dose that produces a clinically relevant

response ∆ on top of the placebo effect (i.e. at dose d = 0). That is,

MEDℓ = MEDℓ(ϑℓ) = inf
d∈D

{mℓ(ϑℓ, 0) < mℓ(ϑℓ, d)−∆} , ℓ = 1, 2. (10)

From now on we assume strict monotonicity of the dose response curves mℓ such that (10)

becomes

MEDℓ = MEDℓ(ϑℓ) = m−1
ℓ (ϑℓ,mℓ(ϑℓ, 0) + ∆), ℓ = 1, 2,

where the inverse is calculated with respect to d for fixed model parameters ϑ1 and ϑ2.

Estimates for the MED are then given by

M̂EDℓ = m−1
ℓ (ϑ̂ℓ,mℓ(ϑ̂ℓ, 0) + ∆), ℓ = 1, 2,

where ϑ̂1 and ϑ̂2 are the non-linear least squares estimators for the true parameters. Due to

the asymptotic normality of the estimates ϑ̂1 and ϑ̂2, the estimated difference of the MEDs

14



is approximately normal distributed (11). To be more precise, the delta method (12) gives

M̂ED1 − M̂ED2 − (MED1 −MED2) ≈ N (0, τ 2), (11)

for

τ 2 =
(

∂
∂ϑ1

m−1
1 (ϑ1,∆1)

)T
σ2
1

n1
Σ−1

1
∂

∂ϑ1
m−1

1 (ϑ1,∆1) +
(

∂
∂ϑ2

m−1
2 (ϑ2,∆2)

)T
σ2
2

n2
Σ−1

2
∂

∂ϑ2
m−1

2 (ϑ2,∆2)

and ∆ℓ = mℓ(ϑℓ, 0) + ∆, ℓ = 1, 2. The variance τ 2 can be estimated by replacing ϑℓ and

Σℓ by their estimates ϑ̂ℓ and Σ̂ℓ, ℓ = 1, 2; see Section 2.1. The corresponding estimator is
denoted by τ̂ 2. It then follows from (11) that

P
{
MED1 −MED2 ∈

[
M̂ED1 − M̂ED2 − u1−α/2τ̂ , M̂ED1 − M̂ED2 + u1−α/2τ̂

]}
n1,n2→∞−→ 1− α, (12)

and an asymptotic (1− α)-confidence interval for the difference of the MEDs is given by[
M̂ED1 − M̂ED2 − u1−α/2τ̂ , M̂ED1 − M̂ED2 + u1−α/2τ̂

]
.

In order to derive a test for similarity of two target doses we consider the problem of testing

H ′′ : |MED1 −MED2| ≥ η against K ′′ : |MED1 −MED2| < η. (13)

In Appendix B we show that rejecting H ′′ if

|M̂ED1 − M̂ED2| < c, (14)

gives an asymptotic (uniformly most powerful) level α test, where c is the unique solution

of the equation

α = Φ

(
c− η

τ̂

)
− Φ

(
−c− η

τ̂

)
. (15)

Note that (15) can easily be solved by using Newton’s algorithm (13).

3.2 Case study revisited

To illustrate the methodology in the previous subsection, we revisit the weight loss case study

from Section 2.2. Recall the individual model fits m1(ϑ̂1, d) = 0.03− 5.17 d
7.94+d

for the o.d.

regimen and m2(ϑ̂2, d) = −0.09 − 6.56 d
31.24+d

for the b.i.d. regimen. We chose a clinically

relevant difference of ∆ = −3. That is, a weight loss of 3% compared to the placebo response

is assumed to be a clinically relevant effect on top of the placebo response at dose d = 0.

Therefore, M̂ED1 = m−1
1 (ϑ̂1, 0.03 − 3) = 0.073, M̂ED2 = m−1

2 (ϑ̂2,−0.09 − 3) = 0.176 and

M̂ED1 − M̂ED2 = −0.103. Figure 6(a) displays the model fits mℓ(ϑ̂ℓ, d), together with the

estimates M̂EDℓ, ℓ = 1, 2.

The 1 − α confidence interval for the true difference MED1 − MED2 is then given by[
−0.103− u1−α/20.119,−0.103 + u1−α/20.119

]
. For example,

15



MED1 −MED2 ∈ [−0.338, 0.133] for α = 0.05 and MED1 −MED2 ∈ [−0.300, 0.094] for

α = 0.1. Applying the test in (14) for α = 0.05 allows us to claim similarity of the twoMEDs

whenever η > 0.3 as we have for the unique solution of (15) c > 0.103 = |M̂ED1 − M̂ED2|
in this case. Figure 6(b) displays the value of c as a function of η. For α = 0.1 we obtain by

similar calculations that η has to be larger than 0.255 in order to claim similarity.
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Figure 6: Plots for the revisited weight loss case study. (a) The fitted Emax model m1 (m2)

for the o.d. (b.i.d.) regimen is given by the solid (dashed) line, together with the estimated

MEDs for ∆ = −3. (b) Plot of the unique solution c of equation (15) as a function of η.

The dashed lines indicate the absolute difference of the MED estimates and the minimum

choice of η in order to claim similarity for α = 0.05.

3.3 Simulations

We now report the results of a simulation study to investigate the operating characteristics

of the method described in Section 3.1. Adapting the data generation algorithm from Sec-

tion 2.3, we investigated the coverage probabilities of the confidence intervals in (12) as well

as the Type I error rates and power of the test (14) for different scenarios. All results were

obtained using 10, 000 simulation runs.
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Figure 7: Graphical illustration of Scenarios 3 and 4 used for the simulations. (a) displays

the shifted Emax models with δ1 = 2. (b) displays the curves for Scenario 4, together with

the MEDs corresponding to ∆ = 1.6.

3.3.1 Coverage probabilities

Scenario 3 We start with the comparison of two shifted Emax models m1(d, ϑ1) = δ1 +

5d/(1 + d) and m2(d, ϑ2) = 5d/(1 + d) over D = [0, 4], with identical dose levels dℓ,i =

i − 1, i = 1, . . . , 5 for both regression models ℓ = 1, 2; see Figure 7a. Because the models

are shifted by the constant δ1, the true difference MED1 − MED2 = 0 regardless of the

value for ∆. For each configuration of σ2 = 1, 2 and δ1 = 1, 2, 3 we used (7) to simulate

nℓ,i = 6(30) observations at each dose level dℓ,i, resulting in nℓ = 30(150), ℓ = 1, 2.

The left side of Table 5 displays the coverage probabilities for α = 0.05, 0.1. We observe that

the coverage probability is at least 1−α under all configurations. The confidence intervals are

more accurate for larger sample sizes and smaller variances, which confirms the asymptotic

result from (12). Furthermore, the simulated differences between the MED estimates are

very close to the true difference under all configurations (results not shown here).

Scenario 4 We now consider the comparison of the Emax model m1(d, ϑ1) = 1+4d/(2+d)

with the linear model m2(d, ϑ2) = 1 + 0.8d for the same set of doses as in Scenario 3. Note

that the responses at doses d = 0 and d = 3 are the same in both models; see Figure 7b.

For each configuration of σ2 = 1, 2, 3 and ∆ = 0.8, 1.6, 2.4, we used again (7) to simulate
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Coverage probabilities Type I error rates

α = 0.05 α = 0.1 α = 0.05 α = 0.1

δ1 σ2 nℓ = 30 nℓ = 150 nℓ = 30 nℓ = 150 nℓ = 30 nℓ = 150 nℓ = 30 nℓ = 150

1 1 0.979 0.959 0.941 0.907 0.050 0.050 0.103 0.103

2 1 0.982 0.958 0.945 0.909 0.053 0.048 0.105 0.105

3 1 0.980 0.961 0.946 0.908 0.053 0.052 0.099 0.105

1 2 0.996 0.967 0.977 0.917 0.049 0.051 0.104 0.101

2 2 0.996 0.968 0.978 0.922 0.052 0.049 0.103 0.101

3 2 0.995 0.966 0.976 0.916 0.045 0.049 0.100 0.099

Table 5: Simulated coverage probabilities and Type I error rates for different configurations

of δ1, σ
2, α, and nℓ under Scenario 3.

nℓ,i = 6(30) observations at each dose level dℓ,i, resulting in nℓ = 30(150), ℓ = 1, 2.

The left side of Table 6 displays the coverage probabilities for α = 0.05, 0.1. As before,

asymptotically the coverage probability is at least 1−α under all configurations investigated

here, except for small sample sizes and ∆ = 2.4 (in which case the MEDs coincide). This

is a direct consequence of the definition of the MED. Inverting an Emax model m(ϑ, d) =

y = ϑ1 + ϑ2d/(ϑ3 + d) gives m−1
1 (ϑ, y) = ϑ3(y − ϑ1)/(ϑ1 + ϑ3 − y). Therefore higher values

of ∆ result in being closer to the pole of m−1, which is at ϑ1 +ϑ2 = 5 in this case. However,

further simulations show that the results get better for larger sample sizes and the coverage

probabilities converge quickly to their nominal values. Finally, the simulated differences

between the MED estimates are very close to the true difference under all configurations,

except in the case where the MEDs coincide (i.e. ∆ = 2.4; results not shown here).

Coverage probabilities Type I error rates

α = 0.05 α = 0.1 α = 0.05 α = 0.1

∆ σ2 nℓ = 30 nℓ = 150 nℓ = 30 nℓ = 150 nℓ = 30 nℓ = 150 nℓ = 30 nℓ = 150

0.8 1 0.964 0.965 0.929 0.908 0.036 0.025 0.077 0.068

1.6 1 0.953 0.946 0.922 0.903 0.051 0.040 0.098 0.087

2.4 1 0.920 0.949 0.877 0.916 0.069 0.057 0.137 0.116

0.8 2 0.989 0.968 0.960 0.928 0.050 0.026 0.101 0.061

1.6 2 0.967 0.956 0.936 0.913 0.053 0.045 0.111 0.088

2.4 2 0.918 0.932 0.870 0.901 0.069 0.060 0.143 0.124

Table 6: Simulated coverage probabilities and Type I error rates for different configurations

of ∆, σ2, α, and nℓ under Scenario 4.
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3.3.2 Type 1 error rates

For the Type I error rate simulations we investigated the two scenarios from Figure 7.

We start with Scenario 3. Because |MED1 − MED2| = 0 for all values of ∆, we chose

η = 0. For a fixed configuration of parameters, we generated data according to (7), fit both

models, performed the hypothesis test (14) and counted the proportion of rejecting the null

hypothesis H ′′. The right side of Table 5 displays the simulated Type I error rates under

Scenario 3. We observe that the simulated Type I error rate is well exhausted at the nominal

significance level α for all configurations investigated here, indicating that the hypothesis

test (14) is indeed a level-α test, even under total sample sizes as small as 30.

The right side of Table 6 displays the simulated Type I error rates under Scenario 4. As

before, the simulated Type I error rate is bounded by the nominal significance level α under

almost all configurations. The test can be liberal for small sample sizes and large values of

∆, matching the observed performance of the confidence bounds shown in the left side of

Table 6. Again, this size inflation disappears for large sample sizes.

3.3.3 Power

For the power simulations we again considered the two scenarios from Figure 7 and start

with Scenario 3. Because |MED1 −MED2| = 0 for all values of ∆, the power of the test

depends only on the given threshold η. For the concrete simulations, we set ∆ = 1 and used

δ1 = 1 for convenience. For each configuration of σ2 = 1, 2, 3 and η = 0.1, 0.2, 0.5, 1, we used

(7) to simulate n = 10(30, 50) observations under m1 and m2 at each dose level dℓ,i, resulting

in nℓ = 30(90, 150), ℓ = 1, 2. All configurations belong to the alternative in (13). Table 7

summarizes the results for α = 0.05, 0.1. The power increases with increasing values of η.

The power decreases for larger values of σ2, especially for small values of η. In these cases

we need larger sample sizes nℓ in order to achieve reliable results.

For the final set of simulations, we revisit Scenario 4 and investigate the power for different

values of σ2 and ∆. We set η = 0.8 and nℓ = 30, 150 for ℓ = 1, 2 and summarize the results

in Table 8. In alignment with all former results, the performance of the test is worse in case

of ∆ = 2.4 due to the already mentioned numerical problems when calculating the MEDs.

In general, the power increases with increasing sample sizes and decreasing variances under

all observed configurations. The power converges to 1 for n1, n2 → ∞.

4 Conclusions

The choice of the equivalence margins δ and η in (4) and (13), respectively, is a delicate

problem. This choice depends on the particular application and has to be made by clinical

experts, possibly with input from statisticians and other quantitative scientists. Regulatory
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α = 0.05 α = 0.1

η σ2 nℓ = 30 nℓ = 90 nℓ = 150 nℓ = 30 nℓ = 90 nℓ = 150

1 1 0.979 1.000 1.000 0.989 1.000 1.000

0.5 1 0.679 0.988 0.999 0.783 0.995 1.000

0.2 1 0.116 0.364 0.641 0.226 0.543 0.784

0.1 1 0.061 0.086 0.123 0.123 0.179 0.232

1 2 0.823 0.997 1.000 0.893 0.999 1.000

0.5 2 0.400 0.853 0.975 0.524 0.915 0.987

0.2 2 0.078 0.167 0.283 0.163 0.288 0.462

0.1 2 0.055 0.066 0.077 0.109 0.132 0.156

Table 7: Simulated power for different configurations of η, σ2, α, and nℓ in Scenario 3.

α = 0.05 α = 0.1

∆ σ2 nℓ = 30 nℓ = 150 nℓ = 30 nℓ = 150

0.4 1 0.914 1.000 0.958 1.000

0.8 1 0.116 0.625 0.261 0.778

1.6 1 0.057 0.080 0.118 0.152

2.4 1 0.090 0.118 0.163 0.233

0.4 2 0.668 0.999 0.806 0.999

0.8 2 0.089 0.324 0.183 0.523

1.6 2 0.058 0.060 0.116 0.122

2.4 2 0.081 0.093 0.165 0.189

Table 8: Simulated power for different configurations of ∆, σ2, α, and nℓ in Scenario 4.

guidance documents are available in specific settings, such as for the problem of demon-

strating bioequivalence. For example, (14) discusses how the thresholds for bioequivalence

hypotheses of the form considered in this paper can be defined in various settings. For

the comparison of curves as considered in this paper we refer to Appendix 1 of (14), with

emphasis on dissolution profiles on the basis of specific measures.

In this paper we investigated the problem of assessing similarity of dose response curves

or target doses for two non-overlapping subgroups of patients for normally distributed re-

sponses. We leave several extensions of this basic problem for further research. For example,

in certain applications it may be necessary to demonstrate similarity of dose response curves

or target doses for more than two non-overlapping subgroups (such as more than two ge-

ographic regions or age classes). Finally, the research of this paper was motivated by the
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need of comparing the dose response information from males with female or Japanese with

non-Japanese patients. In practice, one may equally be interested in comparing males or

Japanese with the overall population rather than the complementary subgroup. These cases

are more difficult to handle because the data for the specific subgroup of interest is also in-

cluded in the overall population, thus introducing correlations through nested data structure

that need special attention. Again, we leave this topic for future research.
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A. Coverage probability of the confidence interval for

the maximum absolute difference

In the following we prove equation (2) from Section 2.1. To this end, let d0 ∈ D such that

max
d∈D

|m2(ϑ2, d)−m1(ϑ1, d)| = |m2(ϑ2, d0)−m1(ϑ1, d0)|.

Hence

P = P
{
max
d∈D

|m2(ϑ2, d)−m1(ϑ1, d)| ≤ max
{
max
d∈D

U (Y1, Y2, d) ,−min
d∈D

L (Y1, Y2, d)
}}

= P
{
|m2(ϑ2, d0)−m1(ϑ1, d0)| ≤ max

{
max
d∈D

U (Y1, Y2, d) ,−min
d∈D

L (Y1, Y2, d)
}}

≥ P
{
|m2(ϑ2, d0)−m1(ϑ1, d0)| ≤ max

{
U (Y1, Y2, d0) ,−L (Y1, Y2, d0)

}}
.
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Now we distinguish two cases. If m2(ϑ2, d0)−m1(ϑ1, d0) ≥ 0 we have

P ≥ P
{
m2(ϑ2, d0)−m1(ϑ1, d0) ≤ U (Y1, Y2, d0)

}
n1,n2→∞−→ 1− α, (16)

as U (Y1, Y2, d) is a 1− α pointwise upper confidence bound on m2(ϑ2, d)−m1(ϑ1, d). Oth-

erwise, m2(ϑ2, d0)−m1(ϑ1, d0) ≤ 0 and the same argument applies to L (Y1, Y2, d), yielding

P ≥ P
{
m2(ϑ2, d0)−m1(ϑ1, d0) ≥ L (Y1, Y2, d0)

}
n1,n2→∞−→ 1− α. (17)

B. Asymptotic level of the test for similarity of two tar-

get doses

We show that the test (14) defined in Section 3.1 has asymptotic level α, that is

lim
n1,n2→∞

P
(
|M̂ED1 − M̂ED2| ≤ c

)
≤ α (18)

under the null hypothesis. First note that the solution of equation (15) is unique as the

function c → Φ
(
c−η
τ̂

)
−Φ

(−c−η
τ̂

)
is strictly increasing with limits −1 and 1 as c → −∞ and

∞, respectively. Next, let t = MED1 −MED2, t̂ = M̂ED1 − M̂ED2 and denote the power

function of the test by

Gn1,n2(θ) = P
(∣∣t̂∣∣ < c

)
.

The assertion (18) is then equivalent to

lim
n1,n2→∞

Gn1,n2(θ) ≤ α for all |t| ≥ η. (19)

A standard calculation shows that

Gn1,n2(t) = P (|t̂| ≤ c) = P (−c ≤ t̂ ≤ c) = P
(−c− t

τ̂
≤ t̂− t

τ̂
≤ c− t

τ̂

)
n1,n2→∞−→ G̃(t) := Φ

(c− t

τ

)
− Φ

(−c− t

τ

)
Now consider the problem of testing the hypotheses H : |t| ≥ η against K : |t| < η for

normally distributed data X ∼ N (t, τ 2). A simple calculation shows that the (asymptotic)

power function G̃ coincides with the power of the test, which rejects the null hypothesis

H : |t| ≥ η whenever |X| ≤ c. Considering the discussion in Lehmann et al. (15, p. 81),

it follows that this test is uniformly most powerful and unbiased of size α. This implies

G̃(t) ≤ G̃(η) = α for all |t| ≥ η and proves (19).
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