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Abstract

Often, inference on moment properties of unobserved processes are conducted on the basis of estimated

counterparts obtained in a preliminary step. In some situations, the use of residuals instead of the

true quantities a�ects inference even in the limit, while in others there is no asymptotic residual e�ect.

For the case of statistics based on partial sums of nonlinear functions of the residuals, we give here a

characterization of the conditions under which the residual e�ect does not vanish as the sample size goes

to in�nity (generic regularity conditions provided). An o verview of methods to account for the residual

e�ect is also provided. The analysis extends to models with change points in parameters at estimated

time, in spite of the discontinuous manner in which the break time enters the model of interest. To

illustrate the usefulness of the results, we propose a test for constant correlations allowing for breaks

at unknown time in the marginal means and variances. We �nd, in Monte Carlo simulations and in an

application to US and German stock returns, that not accounting for changes in the marginal moments

has severe consequences.

Key words: Two-step procedure; Estimation error; Cumulated sums; Bootstrap; Structural break;

JEL classi�cation: C12 (Hypothesis Testing)

1 Introduction

In many situations, estimated quantities are used for inferring on the properties of a latent data generating

process. For example, in the linear regression model, researchers might investigate the third and fourth

moments of residuals in order to test the normality of error terms; see Jarque and Bera (1980). Another

example are tests for no structural breaks: Brown et al. (1975) use recursive residuals for testing the constancy

of parameters in the linear model, while Ploberger and Krämer (1992) do the same with OLS residuals.1

(Co)Variance stability tests have been proposed by Aue et al. (2009). More recently, Borowski et al. (2014)

and Dette et al. (2015) consider a setting, where a time-varying signal function is added to a stochastic error

term and residuals are used to test for constancy of the variance of the error term. Dette et al. (2015) also

∗Institute for Statistics and Econometrics, Christian-Albrechts-University of Kiel, Olshausenstr. 40-60, D-24118 Kiel, Ger-
many, email: mdeme@stat-econ.uni-kiel.de.
†Institute for Econometrics and Statistics, University of Cologne, Germany, email: dwied@uni-koeln.de. Financial support

by DFG (SFB 823, project A1) is gratefully acknowledged.
1Such stability tests for slope parameters can be conducted in more general frameworks, one well-known example being the

work of Andrews (1993); see also Andrews and Ploberger (1994) and Hansen (2000).
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consider testing for auto-correlation constancy in the case of time-varying variances which, among others,

improves aspects of previous work of Wied, Krämer, and Dehling (2012), who test for cross-correlation

constancy under the assumption of constant, yet unknown, variances.

The purpose of this paper is to provide a general analysis about the relationship between the limiting distri-

bution of test statistics based on residuals and of the test statistics based on the unobservable counterparts.2

To keep the problem tractable, we shall focus on statistics based on sums or partial sums of some trans-

formation of the residuals of interest. Using residuals instead of the true series may have an e�ect3 on the

statistics under scrutiny, but this not need be the case in general. For instance, in the case of the OLS

CUSUM test, the limit distribution is the supremum of the absolute value of a Brownian bridge, while it

would base on the Brownian motion if one used the unobservable disturbances (Ploberger and Krämer, 1992).

On the other hand, the distribution of the Jarque-Bera test for normality is claimed to remain unchanged in

such situations, see Jarque and Bera (1980, p. 257) (although, as a byproduct of our analysis, we actually

show the claim to be unsubstantiated), while Chen and Fan (2006) and Chan et al. (2009) show that the

asymptotic distributions of estimators in copula models are not in�uenced by taking residuals from �tting

marginal models.

Regularity conditions assumed, the e�ect of using residuals depends on both the �lter which maps the

unobservable terms of interest into observations and on the statistic of interest. To conduct the analysis, two

types of �lters are considered here, one which is continuous in unknown parameters and one which exhibits

discontinuities in some of the variables allowing us e.g. to deal with change points. The unknown parameters

are estimated with a full-sample estimator or with a recursive estimator.

The main contribution of this paper is to characterize the speci�c circumstances under which the residual

e�ect appears or not. Moreover, we discuss selected aspects of asymptotic and bootstrap corrections for the

cases where the residual e�ect is not asymptotically negligible. For instance, it turns out that the residual

e�ect does not emerge in the scenario of Borowski et al. (2014) (which is based on the variance constancy

test in Wied, Arnold, Bissantz, and Ziggel, 2012) if the signal function is piecewise constant and the break

point fractions can be consistently estimated. Borowski et al. (2014) provided simulation evidence for this

conjecture, but did not give a formal proof. Furthermore, the theoretical result in our paper complements the

applicability of the variance constancy test in Dette et al. (2015), who only consider a smooth signal function

and do not deal with the question if there might be situations in which the limit distribution remains the

same.

We illustrate the details of our characterization on the basis of a test for constant correlations under breaks in

marginal means or variances, with an application to the correlation of US and German stock market returns.

In this regard, we improve the literature in several ways. While Dette et al. (2015) focus on auto-correlations,

we propose a residual-based test for constant cross-correlations in the case of time-varying variances and show

that taking residuals changes the limit distribution. In particular, we directly improve the work of Wied et al.

(2012) by relaxing the assumption of constant variances and �nd e.g. that the breaks in marginal variances

signi�cantly changes the dating of correlation breaks.

The remainder of the paper is structured as follows. Section 2 introduces the setting in a formal way. Section

3 provides the asymptotic arguments for the smooth case and discusses the conditions under which the use of

residuals instead of the true series does (does not) have an asymptotic e�ect, together with some asymptotic

and bootstrap corrections. Section 4 addresses the case of structural changes and shows that plugging in an

estimated break time is asymptotically equivalent to employing the true break time in what concerns the

2Note that our approach is somewhat related to two other branches in the literature. The �rst one is the topic of generated
regressors, see Mammen et al. (2012), where people analyze the e�ect of estimating regressors on subsequent estimation problems.
The second one is the topic of two-stage parameter estimation, see Newey and McFadden (1994), where the e�ect of the �rst on
the second estimation step is analyzed.

3In conjunction with tests for distribution, this is often called the Durbin e�ect (Durbin, 1973).
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residual e�ect. Section 5 gives concrete examples, introduces the new correlation constancy test, and gives

Monte Carlo illustrations for the proposed test. Section 6 provides the application to the correlation of US

and German stock markets. The proofs have been gathered in the appendix.

2 Setup

Suppose one is interested in inference about the moment properties of some data generating process [DGP]

on the basis of a sample Zt ∈ RK , t = 1, . . . , n, for which the partial sums 1√
n

∑[ns]
t=1 g (Zt) are relevant. The

particular shape of the function g 7→ RL depends on the question of interest; e.g. g(z) =
(
z3, z4

)
for the

test of Jarque and Bera (1980) and g(z) = z1z2 for pairwise covariances (or correlations, if Zt,1 and Zt,2 are

standardized).

We however assume that one only observes n values, say Xt, t = 1, . . . , n, of some (nonlinear) �lter of the

variables of interest Zt; quite often, Zt are disturbances in a (regression) model or Zt are standardized

versions of Xt. In time series, one may well have a linear �nite-order �lter where Zt are the innovations

of a moving average process say, Xt =
∑q
j=0BjZt−j . To nest all these possible scenarios, we assume a

parametric relation between the two, in the most general case

Xt = f (Zt,Zt−1, . . . , t/n;θ) .

Let the length M of the parameter vector θ be �nite.

In practice, the true values θ0 of the parameters are not known so the �lter f cannot be inverted to give the

necessary Zt. Rather, one is forced to resort to estimates thereof, i.e. residuals Ẑt based on some estimators

θ̂ of the unknown parameters. The relation between the limit distributions based on Ẑt and those based on

Zt depends on both g and f , as well as on the properties of the estimators θ̂, which we assume to belong

to the family of generalized method-of-moments [GMM] estimators (Hansen, 1982), which includes e.g. M

estimators as a particular case.

The above formulation is fairly general. For instance, the dependence of f on the index t allows one to model

e.g. trends, say in an additive model such as Xt = t/nθ+Zt. Additivity is not critical for the analysis, while

the smoothness properties of f are.

Regarding smoothness, we shall consider two situations. In the �rst, f is smooth in the parameters θ. In the

second, we model discontinuities explicitly in form of change points (structural breaks).4 In a simple case,

say for the mean, we may encounter E (Xt) = µ1, 1 ≤ t < N and E (Xt) = µ2, N ≤ t < n, so, considering

N = [λn] for some λ ∈ (0, 1), one may work with the model Xt = Zt + µ1I (t/n < λ) + µ2I (t/n ≥ λ)

with E (Zt) = 0 and I the indicator function.5 Here, f (z, t/n, (µ, λ)) = z + µ1I (t/n < λ) + µ2I (t/n ≥ λ) is

discontinuous in the parameter λ, but smooth in µ1 and µ2. This will be captured more generally via the

model

Xt = f (Zt,Zt−1, . . . , t/n;θ1) I (t/n < λ) + f (Zt,Zt−1, . . . , t/n;θ2) I (t/n ≥ λ) ,

where θ1 and θ2 are taken to be estimated for each subsample using the same method as in the smooth case.

In the most general case one may allow for a �nite number of such discontinuity points. Although this is a

particular case of a time-dependent �lter, we treat it separately due to its practical relevance and because of

the discontinuity in λ. We deal with this situation in more detail in Section 4 and focus for now on the case

without breaks.

4The arguments regarding breaks could likely be extended to discuss threshold models; we do not pursue the topic here,
though.

5Although one may add an extra n in the notation to acknowledge the triangular array structure of such DGPs, we omit this
to ease notation.

3



We shall assume the (causal) �lter generating Xt to be invertible in the sense that there exists a (causal)

�lter h such that the series Zt is uniquely given by

Zt = h (Xt,Xt−1, . . . , t/n;θ) ,

i.e. h (Xt,Xt−1, . . . , t/n;θ) = Zt ∀t i� θ = θ0 with θ0 the true parameter value. The corresponding

representation for breaks, when needed, is given by

Zt = h (Xt,Xt−1, . . . , t/n;θ1) I (t/n < λ) + h (Xt,Xt−1, . . . , t/n;θ2) I (t/n ≥ λ) (1)

and is assumed to hold uniquely as well.

In the case of time-series models, except for �nite-order (nonlinear) autoregressive models, the initial con-

ditions play a role since the full relevant past of Xt is not available in �nite samples. In such situations,

one may have to resort to truncated versions of the involved �lters, Zt = h (Xt, . . . ,X1, t/n;θ), and impose

technical conditions such as sups∈[0,1]
1√
n

∥∥∥∑[sn]
t=1 h (Xt, . . . ,X1, t/n;θ)− h (Xt,Xt−1, . . . , t/n;θ)

∥∥∥ p→ 0 that

ensure the di�erence between the truncated and the unfeasible �lter to be asymptotically negligible. We do

not further pursue this topic.

Given a sample {Xt}, t = 1, . . . , n, and an estimator for the unknown true parameter values θ0, we may

thus estimate the variables of interest Zt. We consider two possible estimation scenarios, �rst a full-sample

approach delivering the estimator θ̂, and, second, an adaptive, or recursive, approach (i.e. based on the

sample 1, . . . , t) delivering the sequence of estimators θ̂t. Note that θ̂ = θ̂n, but also that time variation in

θ is only allowed if modelling it explicitly (like the break case introduced above). Recursive estimation is

involved e.g. in the case of inference on correlations (Wied et al., 2012), where the sample variances in the

denominator of the relevant correlation coe�cient are computed up to time t, but has a much longer history;

see Kianifard and Swallow (1996) for an earlier review. Assuming a that GMM-type estimator with N ≥M
moment restrictions is available for estimating θ, we may represent it as

θ̂t − θ0 =

 t∑
j=1

B′j,nWn

t∑
j=1

Bj,n

−1
t∑

j=1

B′j,nWn

t∑
j=1

Aj,n +Rt,n

with suitable limiting behavior of these generic components Bj,n (N ×M), Aj,n (N × 1) and Rt,n (M × 1);

see Assumption 1 below. For simplicity, the N ×N GMM weighting matrix Wn is not computed recursively.

The components Aj,n, Bj,n and Rt,n depend explicitly on Xt, and implicitly (via the DGP) on θ0.

The residuals are given as

Ẑt = h
(
Xt, . . . ,X1, t/n; θ̂

)
or Z̃t = h

(
Xt, . . . ,X1, t/n; θ̂t

)
,

and inference on E (g (Zt)) is based on the partial sums of the transformed residuals,

1√
n

[ns]∑
t=1

g
(
Ẑt

)
or

1√
n

[ns]∑
t=1

g
(
Z̃t

)
, s ∈ [0, 1] .

We now outline high-level assumptions on the DGP and the estimators that allow for a discussion of the

residual e�ect in a generic framework.

Assumption 1 With �⇒� denoting weak convergence in a space of cadlag functions on [0, 1] endowed with

a suitable metric, it holds that:
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1.
√
n

(
1
n

∑[sn]
t=1 (g (Zt)− E (g (Zt)))

1
n

∑[sn]
t=1 At,n

)
⇒ Ψ (s), where Ψ (s) is an L+N -dimensional Gaussian process

with Ψ (0) = 0 a.s. and Cov (Ψ (1)) = Ξ;

2. 1
n

∑[sn]
t=1 Bt,n ⇒ Π (s) where Π (s) is a deterministic N ×M matrix of Lipschitz functions, of rank M

at all s ∈ (0, 1], Π (0) = 0; furthermore,
√
n sups∈[ε,1]

∣∣R[sn],n

∣∣ p→ 0, ε ∈ (0, 1), and Wn
p→ W with W a

positive de�nite matrix;

3. 1
n

∑[ns]
t=1

∂g
∂z

∣∣∣
z=Zt

∂h
∂θ

∣∣
θ=θ0

⇒ τ (s) where τ (s) is a deterministic matrix of di�erentiable functions;6

4. For some neighbourhood Φn =
{
θ∗ : ‖θ∗ − θ0‖ < Cn−1/2+ε, 0 < ε < 1/2, C > 0

}
of θ0,

sup
θ∗
t∈Φn;t=1,...,n

∥∥∥∥∥ ∂g∂z
∣∣∣∣
z=Z∗

t

∂h

∂θ

∣∣∣∣
θ=θ∗

t

− ∂g

∂z

∣∣∣∣
z=Zt

∂h

∂θ

∣∣∣∣
θ=θ0

∥∥∥∥∥ p→ 0

where Z∗t = h (Xt, . . . , ;θ
∗
t ).

The assumption �rst speci�es the joint behavior of the sample moment conditions for estimation and the

relevant sample moments. Under weak stationarity and short memory of the involved quantities, the limit

process Ψ (s) is a Brownian motion. But a more general Gaussian process is allowed for; e.g. slowly varying

variances can be encompassed and Ψ has independent Gaussian, but not stationary increments. This may

be the case under local stationarity of the DGP; see e.g. Hansen (2000) and, more recently, Zhou (2013), for

speci�c parameter stability tests under local stationarity.

The �rst two conditions together also allow us to describe the asymptotic behavior of the estimators of θ.

Note that the recursive estimators θ̂t do not have proper asymptotics for t = O (1). Still, for any 0 < ε < 1,

we have as a consequence of Assumption 1 the weak convergence

√
n
(
θ̂[sn] − θ0

)
⇒ (Π′(s)W Π(s))

−1
Π′(s)W Ψ(L+1):N (s) for s ∈ [ε, 1] ,

for any 0 < ε < 1. The convergence does not extend to [0, 1]. To deal with this situation one typically adds

a step showing that θ̂t for t ∈ {1, . . . , [εn]} do not have an asymptotic e�ect on the statistic of interest as

ε → 0. See e.g. Wied et al. (2012). This may require additional assumptions on the behavior of Rt,n for

�small� t. Since they would depend on the particular statistic to be analyzed, we do not attempt to give a

set of conditions here and recommend a case-by-case discussion. Obviously, this is not relevant when using

full-sample estimation.

Condition 3 introduces the essential quantity involved in the residual e�ect: we show in Section 3 that the

residual e�ect vanishes in the limit if τ is zero. But there are other interesting special cases where the residual

e�ect vanishes when τ has speci�c forms; see Section 3.2 for the precise details.

Condition 4 imposes a form of uniform smoothness of the relevant model components. Essentially, the

approximation error due to linearization of the estimation noise Ẑt − Zt is assumed to be controlled for

in a neighbourhood of θ0 that is �small enough� to avoind imposing unrealistic assumptions but still �large

enough� to contain the estimators θ̂ (θ̂t) with probability approaching unity. This could e.g. be achieved

by bounding the elements of the Hessians of g and h or suitable bounds for the parameter space, but the

properties of Zt also play a role, so imposing moment properties on Zt may relax the requirements on g or

h. This too has to be discussed on a case-by-case basis.

As a general remark, it comes natural to assume some form of short memory, say mixing properties, for

Zt and require that the assumed model f be restricted in such a way that the resulting random elements

6This is the line vector version of the gradient and the conformable version of the Jacobian.
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(Zt, Xt, At,n and Bt,n ) be mixing themselves, which can then be used to establish the required weak

convergence results. See e.g. Davidson (1994, Chapter 29) for sets of suitable technical conditions. Bootstrap

implementations may require additional smoothness conditions themselves. Note however that e.g. unit root

or cointegrated DGPs are largely excluded since, in such nonstandard cases, θ̂[ns] − θ0 would typically be

non-Gaussian in the limit, and the convergence rate would not be
√
n; while accounting for this is not

conceptually di�cult, the notational e�ort is not trivial and we do not further consider this topic here.

The second assumption is of relevance for the kind of statistics we look at, which require estimation of scaling

matrices. For feasibility of test statistics based on (sample) moments, the following assumption regarding

normalization is useful.

Assumption 2 There exists an estimator Ξ̂ such that Ξ̂
p→ Ξ.

Often, HAC estimators (Newey and West, 1987; Andrews, 1991) would be employed for estimation of Ξ based

on residuals and sample moment conditions, although they are not the only choice (see e.g. Phillips et al.,

2006). Note that HAC estimators are often consistent even for data generating processes that are only locally

stationary; see e.g. Cavaliere (2004) for the case of time-varying variances.

Assumption 1 implies weak convergence of the centered partial sums of g and of the moment conditions Aj,n.

It will be convenient to standardize the limit processes such that, with

Ξ =

(
Ω Λ′

Λ Σ

)
,

we may write

1√
n

[ns]∑
t=1

(g (Zt)− E (g (Zt)))⇒ Ω1/2Γ (s)

where Γ (s) = Ω−1/2Ψ1:L (s) is a Gaussian process with Γ (1) ∼ N (0, IL), and

√
n
(
θ̂[ns] − θ0

)
⇒ (Π′(s)W Π(s))

−1
Π′(s)W Σ1/2Θ (s)

on [ε, 1], where Θ (s) = Σ−1/2Ψ(L+1):(L+N) (s) is a Gaussian process with Θ (1) ∼ N (0, IN ).

If one can base the tests directly on Zt, then only Γ (s) and Ω will be relevant for inference. Otherwise, Σ,

Λ, Π, Θ and τ would play a role. We discuss this role in the following section.

3 The residual e�ect

The e�ect depends on what kind of statistics one is interested in. For estimating E (g (Zt)) via sample

averages of g
(
Ẑt

)
, it is quite plausible that there is no asymptotic e�ect and we do not discuss this formally.

But for centered, normalized partial sums, the picture is di�erent as has been studied in numerous particular

cases (see e.g. Bai and Ng, 2005, Theorem 1, for a formulation for higher-order moments of Zt in a linear

regression setup).

3.1 Residual-based partial sums

We formulate the �rst result in the following
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Proposition 1 Under Assumption 1, it holds as T →∞ that

1√
n

[ns]∑
t=1

(
g
(
Ẑt

)
− E (g (Zt))

)
⇒ Ω1/2Γ (s) + τ (s) (Π′(1)W Π(1))

−1
Π′(1)W Σ1/2Θ (1)

and, on [ε, 1] for any 0 < ε < 1,

1√
n

[ns]∑
t=1

(
g
(
Z̃t

)
− E (g (Zt))

)
⇒ Ω1/2Γ (s) +

(ˆ s

0

Θ′ (r)
(

Σ1/2
)′
W ′Π(r) (Π′(r)W Π(r))

−1
dτ ′ (r)

)′
.

Proof: See the Appendix.

Remark 1 Although Γ and Θ are in general distinct, they are allowed to have common components; in fact,

it is not excluded that they are identical in particular situations. The latter happens e.g. in the simple case

of demeaning where θ̂ = X̄ so Ẑt = Xt − X̄, where Γ ≡ Θ and the proposition reduces, in the full-sample

estimation scenario, to the well-known result of a Brownian bridge.

Remark 2 The proposition requires the inverse �lter h to be di�erentiable in θ. This does not exclude

structural breaks in the parameters, as long as the break time is known. We examine this situation more

closely in Section 4, where we also prove that an unknown break time λ can be dealt with as well, in spite of

entering the model in a discontinuous setup, provided that the estimate is precise enough; see Proposition 2

for details.

The main implication of the proposition is that the residual e�ect appears for partial sums whenever τ is

not zero. Tests based on partial sums would not be a�ected if τ (s) = 0 for all s ∈ [0, 1],7 but there are some

additional situations where speci�c tests are not a�ected even if τ 6= 0.

3.2 Implications for selected tests

We �rst discuss testing simple hypotheses on the expectation of g (Zt). The null is of the form E (g (Zt)) =

µ(0), and the Wald-type test statistic against alternatives of the form E (g (Zt)) 6= µ(0) is

T = n
(
ḡ − µ(0)

)′
Ω−1

(
ḡ − µ(0)

)
where ḡ is the sample average of g (Zt). The scale matrix Ω is typically unknown and is replaced by an

estimate Ω̂; this would typically be the corresponding block of Ξ̂, so a consistent estimator is available under

Assumption 2.

The naive feasible versions of the test statistic are

T̂ = n
(

¯̂g − µ(0)
)′

Ω̂−1
(

¯̂g − µ(0)
)

and

T̃ = n
(

¯̃g − µ(0)
)′

Ω̂−1
(

¯̃g − µ(0)
)

where ¯̂g is the sample average of g
(
Ẑt

)
and ¯̃g the sample average of g

(
Z̃t

)
.

7Newey and McFadden (1994) derive a similar condition under which the �rst-stage estimation has no e�ect on the limiting
distribution of the second-stage estimators.
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It follows from Proposition 1 together with Assumption 2 that, under the null E (g (Zt)) = µ0

T̂ d→ Γ̂
′
(1) Γ̂ (1)

where

Γ̂ (s) = Γ (s) + Ω−1/2τ (s) (Π′(1)W Π(1))
−1

Π′(1)W Σ1/2Θ (1)

and

T̃ d→ Γ̃
′
(1) Γ̃ (1)

where

Γ̃ (s) = Γ (s) + Ω−1/2

(ˆ s

0

Θ′ (r)
(

Σ1/2
)′
W ′Π(r) (Π′(r)W Π(r))

−1
dτ ′ (r)

)′
.

Without residuals, T d→ Γ (1)
′
Γ (1) under the null and follows as such a χ2

L limiting null distribution according

to Assumption 1, so the naive feasible versions are not pivotal in general, except for the obvious situation

where τ = 0 for all s ∈ [0, 1]; the other exception is when τ (1) = 0, at least for full-sample estimation, as

pointed out by the following

Corollary 1 Under Assumptions 1 � 2, the statistics T , T̂ and T̃ are asymptotically equivalent under the

null if τ (s) = 0 for all s ∈ [0, 1]. Furthermore, the statistics T and T̂ are asymptotically equivalent if

τ (1) = 0.

It is not straightforward (but also not inconceivable) to imagine a situation where τ (1) = 0 but τ is not zero.

Still, τ (s) = 0 for all s ∈ [0, 1] is the more plausible mechanism of making the residual e�ect negligible in

this case. We give some examples in Section 5, while the following subsection considers correction strategies.

Moving on to testing hypotheses of constancy, E (g (Z1)) = . . . = E (g (Zn)) the classical multivariate

CUSUM statistic is given by

Qn = max
1≤j≤n

j√
n

√
(Sj − Sn)

′
Ω−1 (Sj − Sn) with Sj =

1

j

j∑
t=1

g (Zt) ,

while the naive feasible versions are

Q̂n = max
1≤j≤n

j√
n

√(
Ŝj − Ŝn

)′
Ω̂−1

(
Ŝj − Ŝn

)
with Ŝj =

1

j

j∑
t=1

g
(
Ẑt

)
(2)

and

Q̃n = max
1≤j≤n

j√
n

√(
S̃j − S̃n

)′
Ω̂−1

(
S̃j − S̃n

)
with S̃j =

j∑
t=1

g
(
Z̃t

)
.

As a consequence of Proposition 1 and Assumption 2, we have

Q̂n ⇒ sup
s∈[0,1]

√(
Γ̂ (s)− sΓ̂ (1)

)′ (
Γ̂ (s)− sΓ̂ (1)

)
,

and

Q̃n ⇒ sup
s∈[0,1]

√(
Γ̃ (s)− sΓ̃ (1)

)′ (
Γ̃ (s)− sΓ̃ (1)

)
.

Had one computed the statistic using the unobserved Zt, the following well-known (pivotal) distribution

8



would have been obtained,

Qn ⇒ sup
s∈[0,1]

√
(Γ (s)− sΓ (1))

′
(Γ (s)− sΓ (1));

so it is interesting to ask, when is the distribution not a�ected by the residual e�ect.

Again, Q̂n and Q̃n are asymptotically equivalent with Qn when τ (s) = 0; but, in addition, there is another

interesting case where equivalence of CUSUM statistics is given, at least for Q̂n:

Corollary 2 Under Assumptions 1 � 2, the statistics Qn, Q̂n and Q̃n are asymptotically equivalent if τ (s) =

0 for all s ∈ [0, 1]. Moreover, the statistics Qn and Q̂n are asymptotically equivalent if τ (s) = sτ for some

constant L×M matrix τ .

The condition under which the corollary holds is likely to be ful�lled in strictly stationary data generating

processes, and unlikely to be ful�lled in data generating processes with structural breaks; see Section 5 for

examples. Essentially, it requires �rst-order stationarity of ∂g
∂z

∣∣∣
z=Zt

∂h
∂θ

∣∣
θ=θ0

, but note that this actually is

compatible with breaks when τ = 0.

Finally, note that one may resort to a Cramér-von Mises type functional instead of the sup functional; this

does not a�ect the validity of Corollary 2.

3.3 Asymptotic and bootstrap corrections

For the cases where there is a residual e�ect, corrections are required. We �rst discuss the more straightfor-

ward case of simple hypotheses, E (g (Zt)) = µ(0).

If basing the test on residuals with full-sample parameter estimation, we note that, under the null,

√
n
(
ḡ − µ(0)

)
⇒ Ω1/2Γ (1) + τ (1) (Π′(1)W Π(1))

−1
Π′(1)W Σ1/2Θ (1)

which is actually multivariate normally distributed, so making the distribution of this quadratic form pivotal

is just a matter of using the right covariance matrix estimator: Ω̂ is only correct when τ is zero; see the

corollaries above. Otherwise, one should have used

(
IL;W ′Π(1) (Π′(1)W Π(1))

−1
τ ′ (1)

)
Ξ̂

(
IL

τ (1) (Π′(1)W Π(1))
−1

Π′(1)W

)
(3)

instead of Ω̂. This situation is quite often encountered in the literature; see e.g. Bai and Ng (2005).

This correction is not available for recursive estimation of the parameters. The di�erence is that Cov
(
Γ̃ (1)

)
depends on the entire path of τ which makes a correct estimation of the required covariance matrix di�cult.

While this is feasible, it would perhaps be easier to resort to a bootstrap scheme, as is not uncommon in the

literature; see e.g. Zhou (2013) and Hansen (2000).

This too is not without disadvantages, though; see the discussion below.

Note also the following. If g (Zt) is weakly stationary then Ω1/2Γ is a Brownian motion, fully speci�ed by

Ω, and Γ is just a vector of independent Wiener processes. Under time-varying 2nd moments of g (Zt),

however, the process Ω1/2Γ would have nonlinear (at best piecewise linear) quadratic covariation. In this

case Γ cannot be a vector of independent Wiener processes, and setting the covariance matrix at s = 1 to

be unity only norms Ω as quadratic covariance matrix of the limit process of centered partial sums of g (Zt);

9



the same holds for Θ, and the test statistic is not asymptotically pivotal under the null. E.g. Zhou (2013)

suggests the use of the block wild bootstrap to accommodate locally stationary DGPs.

Moving on to the case of moment constancy tests, it is worth asking the question whether Q̂n or Q̃n could

be corrected using the right covariance matrix estimator, like in the case of simple hypotheses. This is more

di�cult to achieve since the test statistic depends on the entire path of Ψ and not only on the properties of

Γ and Θ at s = 1. For such a correction to work, one needs linear combinations of Γ and Θ to have the same

properties as Γ only. This, as can be easily checked, is the case when Γ and Θ are Gaussian processes with

covariance pro�le of the form η (s) Υ with η(s) a suitable scalar function and Υ a constant positive de�nite

matrix, but not in general. Should the correction be applicable, this works immediately for Q̂n, but becomes

decisively more complex for Q̃n where the integral of Θ over [0, s] is a Gaussian process, but no Brownian

motion.

Finally, since the analytical corrections may stop short of being straightforward, and sometimes nonlinear

quadratic covariances need to be accounted for, bootstrap implementations of the tests suggest themselves

to obtain asymptotically correctly-sized inference.

Since the e�ect depends also on the properties of estimator θ̂ (in particular on At,n or Bt,n), on which it is

di�cult to get more precise without becoming too model-speci�c, a thorough analysis of bootstrap validity is

out of reach. Instead, we would rather like to emphasize some pitfalls associated to standard (block) i.i.d. and

wild bootstrap schemes.

Denote by X∗t,b the bootstrapped sample (which may be obtained either by bootstrapping Xt, or by boot-

strapping Ẑt or Z̃t and �ltering through an estimated version of f). For testing, we shall assume that the

null is suitably imposed when bootstrapping.8

Then, with �
p⇒� denoting weak convergence in probability and E∗ expectation in the bootstrap population,

the critical step would be to ensure that

1√
n

[ns]∑
t=1

(
g
(
Ẑ
∗
t,b

)
− E∗

(
g
(
Z∗t,b

))) p⇒ Ω1/2Γ (s) + τ (s) (Π′(1)W Π(1))
−1

Π′(1)W Σ1/2Θ (1)

for the full sample estimation, and

1√
n

[ns]∑
t=1

(
g
(
Z̃
∗
t,b

)
− E∗

(
g
(
Z∗t,b

))) p⇒ Ω1/2Γ (s) +

(ˆ s

0

Θ′ (r)
(

Σ1/2
)′
W ′Π(r) (Π′(r)W Π(r))

−1
dτ ′ (r)

)′
for recursive estimation. In other words, the bootstrapped partial sums should converge in a suitable mode

(weakly in probability) to the same limit process as in Proposition 1, such that the residual e�ect is correctly

replicated by the bootstrap procedure.

This, however, is not guaranteed with any bootstrap scheme. Consider e.g. the well-understood case of

the i.i.d. bootstrap performed on Xt. Then, the bootstrap samples do not replicate serial correlation or

nonstationarities of the DGP. One could of course use the block bootstrap to side-step the �rst issue, and

resort to the residual i.i.d. bootstrap, if the source of the nonstationarity lies in the �lter or in the structure

of the estimator.

If on the other hand the quantities g
(
Z̃t

)
or At,n are not stationary, but only piecewise locally stationary,

one may have resort to wild or block wild bootstraps as suggested by Hansen (2000) or Zhou (2013) in

related contexts. A seminal reference for this bootstrap is Wu (1986). This too is not always going to lead

to valid results. To see why, take a basic example where At,n = a (Xt). Then, wild bootstrapping Xt or

8This may not be di�cult if constancy is of interest, but one may have to go at some lengths to impose say zero skewness in
the bootstrap population.
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Ẑt (Z̃t), even in block versions, does not produce the desired result in general: in an extreme case, g or

a may be even functions such as the square, and using e.g. Rademacher random variables Rt,b to generate

bootstrap samples X∗t,b = XtRt,b would not give bootstrap sampling variability at all. But the issue is more

subtle, because even if we don't use the Rademacher distribution, the covariance of g
(
X∗t,b

)
and a

(
X∗t,b

)
need not equal the covariance of g (Xt) and a (Xt).

9 (A related case of wild bootstrap failure is given

in Brüggemann et al., 2016.) The solution here would be to block wild bootstrap g (Zt) and At,n jointly,

e.g. (g (Xt) ,a (Xt))
∗

= (g (Xt) ,a (Xt))Rt,b. The bottom line is that bootstrapping without understanding

the asymptotics of the residual e�ect is likely to fail.

4 Structural changes

Let Dt,λ = I (t/n > λ) for some nontrivial break time λ ∈ (0, 1) and write the model with breaks as outlined

in Subsection 3.1,

hλ (ϑ) = h (θ1) (1−Dt,λ) + h (θ2)Dt,λ

where ϑ =
(
θ′1,θ

′
2

)′
. We only model one break at a common time for all parameters to avoid notational

overhead.

In this model having formally 2M parameters, observations for t < λn are noninformative about θ2 (and the

other way round), so we make the convention that

θ̂t,1 − θ1,0 =


(∑t

j=1B
′
j,nWn

∑t
j=1Bj,n

)−1∑t
j=1B

′
j,nWn

∑t
j=1Aj,n +Rt,n t < λn(∑λn

j=1B
′
j,nWn

∑λn
j=1Bj,n

)−1∑λn
j=1B

′
j,nWn

∑λn
j=1Aj,n +Rλn,n t ≥ λn

and

θ̂t,2 − θ2,0 =

0 t < λn(∑t
j=λn+1B

′
j,nWn

∑t
j=λn+1Bj,n

)−1∑t
j=λn+1B

′
j,nWn

∑t
j=λn+1Aj,n +Rt,n t ≥ λn

where the components essentially obey Assumption 1 for the two subsamples, 1 ≤ t < λ0n and λ0n < t ≤ n.
Since, in this formulation, the model has as parameter vector ϑ, this leads to a speci�c structure of the

quantities of relevance; say Ψλ, the analog of Ψ for the case with breaks, is given by

Ψλ (s) =

 Γ (s)

Θ (s) I (s < λ) + Θ (λ) I (s ≥ λ)

(Θ (s)−Θ (λ)) I (s ≥ λ)

 =

(
Γ (s)

Θλ (s)

)
,

while

Πλ (s) =

(
Π (s) I (s < λ) + Π (λ) I (s ≥ λ)

(Π (s)−Π (λ)) I (s ≥ λ)

)
and the GMM weighting matrix Wnλ has a block-diagonal structure,

Wnλ =

(
Wn 0

0 Wn

)
;

also,

τλ (s) =
(
τ θ1 (s) I (s < λ) + τ θ1 (λ) I (s ≥ λ) (τ θ2 (s)− τ θ2 (λ)) I (s ≥ λ)

)
9Consider e.g. g the identity function and a the square function; then, unless E

(
R3

t,b

)
= 1, the wild bootstrap fails.
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with obvious notation τ θ1,2 (s).

If the true break date λ0 is known, Assumption 3 is not needed and Proposition 1 leads immediately to

Corollary 3 Under the assumptions of Proposition 1, it holds as T →∞ that

1√
n

[ns]∑
t=1

(
g
(
Ẑt,λ0

)
− E (g (Zt))

)
⇒ Ω1/2Γ (s) + τλ0 (s)

(
Π′λ0

(s)Wλ Πλ0(s)
)−1

Π′λ0
(s)Wλ Σ

1/2
λ0

Θλ0 (1)

and, on [ε, λ0] ∪ [λ0 + ε, 1] for any 0 < ε < min {λ0, 1− λ0},

1√
n

[ns]∑
t=1

(
g
(
Z̃t,λ0

)
− E (g (Zt))

)
⇒ Ω1/2Γ (s)+

(ˆ s

0

Θ′λ0
(r)
(

Σ
1/2
λ0

)′
W ′λΠλ0

(r)
(
Π′λ0

(r)Wλ Πλ0
(r)
)−1

dτ ′λ0
(r)

)′
.

When it comes to unknown break times, we may not treat an estimated λ the same way as an estimated θ

due to the discontinuity of the indicator function. It turns out, however, that plugging in an estimated λ,

should its convergence rate be high enough (see e.g. Bai, 1997) is asymptotically equivalent to plugging in

the true λ.

To establish this equivalence, we shall however need an additional assumption, since, in the cases cases where

one has no knowledge on the true break date, one ends up using data from one regime to estimate the

parameters of the other. E.g., the moment conditions Aj,n need not have zero expectation anymore in the

wrong regime, and h (Xt, . . . ;θ) 6= Zt ifXt comes from the wrong regime, but we require minimal regularity

conditions would side-step this problem if an estimated break time is close enough to the true one.

Assumption 3 It holds that

1. Aj,n is uniformly (in j, n) L2+α-bounded and Bj,n is uniformly (in j, n) L1+α-bounded for some α > 0;

2.
√
n sups∈[ε,λ0]∪[λ0+ε,1]

∣∣R[sn],n

∣∣ p→ 0, 0 < ε < min {λ0, 1− λ0};
√
n sups∈[λ0,λ0+ε]

∣∣R[sn],n −R[λ0n],n

∣∣ p→
0;

3. For θ̄ = θ1,2, maxt=1,...,n

∥∥g (h (Xt, . . . ; θ̄
))∥∥ = op (

√
n) and maxt=1,...,n

∥∥∥∥ ∂gl∂z ∣∣∣
z=h(Xt,...;θ̄)

∂h
∂θ

∣∣
θ=θ̄

∥∥∥∥ =

op (n);

4. For Φ̄n =
{
θ∗ :

∥∥θ∗ − θ̄∥∥ < Cn−1/2+ε, 0 < ε < 1/2, C > 0
}
, θ̄ = θ1,2,

sup
θ∗
t∈Φ̄n;t=1,...,n

∥∥∥∥∥ ∂g∂z
∣∣∣∣
z=h(Xt,...;θ∗

t )

∂h

∂θ

∣∣∣∣
θ=θ∗

t

− ∂g

∂z

∣∣∣∣
z=h(Xt,...;θ̄)

∂h

∂θ

∣∣∣∣
θ=θ̄

∥∥∥∥∥ p→ 0.

We also introduce some extra notation. Namely, θ̂1 and θ̂2 depend on the assumed break time, so we make

this dependence explicit by writing θ̂1 (λ) etc. for λ = λ0 or λ = λ̂. They lead to residuals Ẑt (λ) and Z̃t (λ).

We examine the di�erence between the partial sums of g
(
Ẑt,λ0

)
and g

(
Ẑt,λ̂

)
in the following

Proposition 2 Let λ̂ = λ0 + Op
(
n−1

)
and 0 < λ ≤ λ̂ ≤ λ < 1 a.s. Then, under Assumptions 1 and 3, it

holds as T →∞,

1√
n

[ns]∑
t=1

(
g
(
Ẑt,λ̂

)
− E (g (Zt))

)
⇒ Ω1/2Γ (s) + τλ0 (s)

(
Π′λ0

(s)W Πλ0(s)
)−1

Π′λ0
(s)W Σ

1/2
λ0

Θλ0 (1)
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and, on [ε, λ0] ∪ [λ0 + ε, 1] for any 0 < ε < min{λ0, 1− λ0},

1√
n

[ns]∑
t=1

(
g
(
Z̃t,λ̂

)
− E (g (Zt))

)
⇒ Ω1/2Γ (s)+

(ˆ s

0

Θ′λ0
(r)
(

Σ
1/2
λ0

)′
W ′Πλ0

(r)
(
Π′λ0

(r)W Πλ0
(r)
)−1

dτ ′λ0
(r)

)′
.

Proof: See the Appendix.

These are the same limits as in Corollary 3 so the e�ect of plugging in an estimated break time is indeed

asymptotically negligible.

Remark 3 Also Dette and Wied (2016) make use of the fact that certain limit distributions do not change if

one replaces the true breakpoint fraction t with an estimator which converges faster than
√
n to t. Dette and

Wied (2016) propose tests for relevant changes in time series models based on a CUSUM-approach. Their

tests are based on the integral of certain di�erences between estimated moments. The variance of the integral

depends on t and the convergence rate of the integral is
√
n so that t̂− t must be op(

√
n).

Remark 4 Should there be no break, the break time estimator can typically be shown to converge in distri-

bution, and the weak limit in Corollary 3 changes; note that a di�erent limiting distribution of statistics of

interest would arise (one taking the behavior of λ̂ into account). Since we explicitly model a break, we don't

pursue this topic here.

Remark 5 Sofar, g has been assumed to be smooth. Since we focus on capturing structural breaks, this

is a natural assumption to make. We may however speculate as to what happens if g is only piecewise

smooth. Assuming e.g. continuity of g with jump discontinuity its the derivatives, it should su�ce to assume

continuous density of Zt to ensure that the results still hold. If letting g itself exhibit a jump discontinuity,

one may formally apply the result from Proposition 1 to conclude that the density of Zt at the discontinuity

plays a role in quantifying the e�ect;10 we leave this topic for further research.

5 Some examples

5.1 Examples without breaks

Let us �rst consider testing hypotheses about the higher-order moments of a (univariate latent) i.i.d. series

Zt in a location-scale model,

Xt = µ+ σZt with Zt ∼ iid (0, 1) .

Given that we work under iid sampling, the assumptions in Section 3 can easily be shown to hold, provided

that enough moments of Zt are �nite and the parameter space is compact, so we do not spell out the details

here to save space.

Letting

Ẑt =
Xt − µ̂
σ̂

with σ̂2 =
1

n

∑
(Xt − µ̂)

2
and µ̂ = X̄,

we may test hypotheses about the skewness µ3 of Zt (or equivalently the standardized skewness of Xt)

building on the statistic

T =
1√
n

n∑
t=1

(
Ẑ3
t − µ

(0)
3

)
.

10This is less of a trick than one might think; see Phillips (1991).
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The relevant quantities are

g (z) = z3, θ =
(
µ, σ2

)′
and h (x) =

x− θ1√
θ2

,

such that
∂g

∂z
= 3z2 and

∂h

∂θ
=

(
− 1√

θ2

,−1

2

x− θ1

θ
3/2
2

)
,

leading to

1

n

[ns]∑
t=1

∂g

∂z

∣∣∣∣
z=Zt

∂h

∂θ

∣∣∣∣
θ=θ0

=
1

n

[ns]∑
t=1

3Z2
t

(
− 1

σ0
,−1

2

Zt
σ2

0

)
⇒ −3s

(
1

σ0
,
µ3,0

2σ2
0

)
≡ τ (s) .

Hence

1√
n

[sn]∑
t=1

(
Ẑ3
t − µ

(0)
3

)
⇒ Ω

1/2Γ (s)− 3s

(
1

σ0
,
µ3,0

2σ2
0

)
Σ

1/2Θ (1)

where

1√
n

[sn]∑
t=1

 Z3
t − µ3

σZt

σ2Z2
t − σ2

⇒ Ψ (s) ≡

(
Ω1/2Γ (s)

Σ1/2Θ (s)

)

with Ψ a Brownian motion with quadratic covariation process

[Ψ] (s) = s

 µ6,0 − µ2
3,0 σ0µ4,0 σ2

0 (µ5,0 − µ3,0)

σ0µ4,0 σ2
0 σ3

0µ3,0

σ2
0 (µ5,0 − µ3,0) σ3

0µ3,0 σ4
0 (µ4,0 − 1)

 ,

hence Ω = µ6,0 − µ2
3,0, Σ =

(
σ2

0 σ3
0µ3,0

σ3
0µ3,0 σ4

0 (µ4,0 − 1)

)
and Λ =

(
σµ4

σ2
0 (µ5,0 − µ3,0)

)
. Also, Π(s) = sI2 is

this case, as we deal with estimators that are essentially sample averages. (This is the case for the following

examples as well.)

We note that demeaning always has an e�ect on the partial sums, but whether estimating the variance has

an e�ect or not depends explicitly on the true skewness µ3,0 of the considered DGP. If one is interested in

testing the constancy of the skewness, both e�ects cancel out in the statistic according to Corollary 2.

Note also that Jarque and Bera (1980) claim that there is no e�ect when testing the null of normality in the

Pearson family of distributions. Jarque and Bera (1980, p. 257) indicate m2
3/6m

3
2 as unfeasible statistic, with

mk = n−1
∑n
t=1 Z

k
t , and the analog m̂2

3/6m̂
3
2, with m̂k = n−1

∑n
t=1 Ẑ

k
t , as residual-based one. So, as it is

known that the residual-based statistic works, their conclusion seems correct. However, since the 6th centered

moment of the normal distribution is 15σ6, it is immediately seen that the statistic m2
3/6m

3
2 is not χ2

1 in

the limit (and the correct unfeasible statistic would have been m2
3/15m3

2), so the residual e�ect is actually

present, as discussed above.

Now, for testing the kurtosis of Zt, h is the same but

g(z) = z4 and
∂g

∂z
= 4z3,
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such that

1

n

[ns]∑
t=1

∂g

∂z

∣∣∣∣
z=Zt

∂h

∂θ

∣∣∣∣
θ=θ0

=
1

n

[ns]∑
t=1

4Z3
t

(
− 1

σ0
,−1

2

Zt
σ2

0

)
⇒ −4s

(
µ3

σ0
,
µ4

2σ2
0

)
≡ τ (s) .

The process Ψ(s) (in particular the component Γ(s)) is di�erent,

1√
n

[sn]∑
t=1

 Z4
t − µ4,0

σ0Zt

σ2
0Z

2
t − σ2

0

⇒ Ψ (s) ,

having a di�erent quadratic covariation,

[Ψ] (s) = s

 µ8,0 − µ2
4,0 σ0µ5,0 σ2

0 (µ6,0 − µ4,0)

σ0µ5,0 σ2
0 σ3

0µ3,0

σ2
0 (µ6,0 − µ4,0) σ3

0µ3,0 σ4
0 (µ4,0 − 1)

 .

Contrary to the case of the skewness, estimating the variance has an e�ect on the partial sums irrespective of

the skewness, but the actual skewness µ3,0 controls now whether demeaning has an e�ect. Again, if interested

in the constancy of the kurtosis, both e�ects cancel out and the asymptotics is not a�ected by the residual

e�ect.

These are more or less familiar cases that have been extensively discussed in the literature (see e.g. Bai and

Ng, 2005). Let us now put some bivariate cases into perspective, say the covariance of some bivariate Xt

which has unknown mean but only the covariance (matrix) is subject to inference. Then,

g (z) = z1z2, Ẑt = Xt − X̄t and h (x) =

(
x1 − θ1

x2 − θ2

)

with θ̂1 = µ̂1 and θ̂2 = µ̂2. Hence

∂g

∂z1
= z2

∂g

∂z2
= z1,

∂h

∂θ
=

(
−1 0

0 −1

)
,

leading to

1

n

[ns]∑
t=1

∂g

∂z

∣∣∣∣
z=Zt

∂h

∂θ

∣∣∣∣
θ=θ0

=
1

n

[ns]∑
t=1

(−Zt2,−Zt1)

⇒ 0

such that here the distribution is not asymptotically a�ected compared to the test based on Zt,1Zt,2 directly.

Then again, if looking at the correlation ρ rather than the covariance of Zt1 and Zt2, the residual e�ect is

present. We have like before

g (z) = z1z2,

but, for i = 1, 2, we have that

Ẑti =
Xti − µ̂i

σ̂i
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with µ̂i = X̄i and

σ̂2
i =

1

n

n∑
i=1

(
Xti − X̄i

)2
=

1

n

n∑
i=1

σ2
i

(
Zti − Z̄i

)2
=

1

n

n∑
i=1

σ2
iZ

2
ti +Op

(
n−1

)
,

such that, with θ3 = σ2
1 and θ4 = σ2

2 , we write

h (x) =

(
x1−θ1√

θ3
x2−θ2√

θ4

)
.

While ∂g
∂z is the same as in the case of the covariance,

∂h

∂θ
=

(
− 1
σ1

0 − 1
2
x1−µ1

σ3
1

0

0 − 1
σ2

0 − 1
2
x2−µ2

σ3
2

)

such that

1

n

[ns]∑
t=1

∂g

∂z

∣∣∣∣
z=Zt

∂h

∂θ

∣∣∣∣
θ=θ0

=
1

n

[ns]∑
t=1

(Zt2, Zt1)

 − 1
σ1,0

0 − 1
2
Zt1
σ2
1,0

0

0 − 1
σ2,0

0 − 1
2
Zt2
σ2
2,0


⇒ −ρ0 s

(
0 0 1

2σ2
1,0

1
2σ2

2,0

)
≡ τ (s)

and the variance estimation matters whenever the correlation is nonzero, but not the demeaning. Kicking

out the irrelevant zero elements, τ (s) = −ρ0 s
(

1
2σ2

1,0

1
2σ2

2,0

)
and the relevant Brownian motion is

1√
n

[sn]∑
t=1

 Zt1Zt2 − ρ0

σ2
1,0Z

2
t1 − σ2

1,0

σ2
2,0Z

2
t2 − σ2

2,0

⇒ Ψ (s)

with quadratic covariation

[Ψ] (s) = s

 E
(
Z2
t1Z

2
t2

)
− ρ2

0 σ2
1,0

(
E
(
Z3
t1Zt2

)
− ρ0

)
σ2

2,0

(
E
(
Zt1Z

3
t2

)
− ρ0

)
σ2

1,0

(
E
(
Z3
t1Zt2

)
− ρ0

)
σ4

1,0 (µ4,1,0 − 1) σ2
1,0σ

2
2,0

(
E
(
Z2
t1Z

2
t2

)
− 1
)

σ2
2,0

(
E
(
Zt1Z

3
t2

)
− ρ0

)
σ2

1,0σ
2
2,0

(
E
(
Z2
t1Z

2
t2

)
− 1
)

σ4
2,0 (µ4,2,0 − 1)

 .

If interested in tests on constant correlation, τ is linear in s so the estimation e�ect cancels out.

5.2 Examples with breaks

Let us now consider situations where there is a break in the mean. Concretely, let

Xt = µ0,1I (t < λ0n) + µ0,2I (t ≥ λ0n) + Zt, Zt ∼ iid
(
0, σ2

)
,

and test simple hypotheses on E
(
Z2
t

)
. Therefore, g (z) = z2 and

Ẑt = Zt − (µ̂1 − µ1,0) (1−Dt,λ0
) + (µ̂2 − µ2,0)Dt,λ0

.

Then, ∂g∂z = 2z, ∂h∂θ =
(
− (1−Dt,λ0

) −Dt,λ0

)
such that

1

n

[sn]∑
t=1

∂g

∂z

∣∣∣∣
z=Zt

∂h

∂θ

∣∣∣∣
θ=θ0

=
2

n

[sn]∑
t=1

Zt

(
− (1−Dt,λ0) −Dt,λ0

)
⇒
(

0 0
)
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and there is no residual e�ect from piecewise demeaning on the variance test.

This extends to the case of tests on the correlation if the breaks accounted for are only in the mean but not

in the variance as follows. Let

Xt = µ1,0 (1−Dt,λ0) + µ2,0Dt,λ0 +

(
σ1,0 0

0 σ2,0

)
Zt

with λ0 known. We still have

g (z) = z1z2,

but

Ẑti =
Xti − µ̂1,i (1−Dt,λ)− µ̂2,iDt,λ

σ̂i
(4)

such that, with θ1 = µ1, θ2 = µ2, θ3 = σ2
1 and θ4 = σ2

2 , and de�ning for brevity D̄t,λ = 1−Dt,λ, we obtain

hλ (x) =

(
x1−θ1D̄t,λ−θ2Dt,λ√

θ5
x2−θ3D̄t,λ−θ4Dt,λ√

θ6

)
.

While ∂g
∂z = (z2, z1), we now have

∂h

∂θ
= −

(
1
σ1
D̄t,λ

1
σ1
Dt,λ 0 0 1

2
x1−µ1,1D̄t,λ−µ2,1Dt,λ

σ3
1

0

0 0 1
σ2
D̄t,λ

1
σ2
Dt,λ 0 1

2
x2−µ2,1−µ2,2Dt,λ

σ3
2

)
,

hence

1

n

[ns]∑
t=1

∂g

∂z

∣∣∣∣
z=Zt

∂h

∂θ

∣∣∣∣
θ=θ0

= − 1

n

[ns]∑
t=1

(Zt2, Zt1)

 1
σ1,0

D̄t,λ0

1
σ1,0

Dt,λ0 0 0 1
2
Zt1
σ2
1,0

0

0 0 1
σ2,0

D̄t,λ0

1
σ2,0

Dt,λ0
0 1

2
Zt2
σ2
2,0


⇒ −ρ0 s

(
0 0 0 0 1

2σ2
1,0

1
2σ2

2,0

)
≡ τλ0 (s)

and only the variance estimation has an e�ect on the limiting behavior of the partial sums, which would

cancel out if testing the constancy of the correlation. The relevant Brownian motion is the same as for

demeaning only, and breaks in the mean (accounted for) do not matter for testing the correlation either.

Finally, if allowing for a break in the variance, say a model

Xt =

 √
σ2

1,1 (1−Dt,λ) + σ2
1,2Dt,λ 0

0
√
σ2

2,1 (1−Dt,λ) + σ2
2,2Dt,λ

Zt
(for simplicity with known zero mean since demeaning does not have an asymptotic e�ect in this setup), we

obtain

Ẑti =
Xti√

σ̂2
i,1 (1−Dt,λ) + σ̂2

i,2Dt,λ

and h (x) =

 x1√
θ1D̄t,λ+θ2Dt,λ

x2√
θ3D̄t,λ+θ4Dt,λ


and consequently

∂h

∂θ
= −1

2

 x1D̄t,λ

(σ2
1,1D̄t,λ+σ2

1,2Dt,λ)
3/2

x1Dt,λ

(σ2
1,1D̄t,λ+σ2

1,2Dt,λ)
3/2 0 0

0 0
x1D̄t,λ

(σ2
2,1D̄t,λ+σ2

2,2Dt,λ)
3/2

x1Dt,λ

(σ2
2,1D̄t,λ+σ2

2,2Dt,λ)
3/2

 .
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Then,

1

n

[ns]∑
t=1

∂g

∂z

∣∣∣∣
z=Zt

∂h

∂θ

∣∣∣∣
θ=θ0

= − 1

2n

[ns]∑
t=1

(Zt2, Zt1)

 Zt1D̄t,λ0
σ2
1,1,0D̄t,λ0+σ2

1,2,0Dt,λ0

Zt1Dt,λ0
σ2
1,1,0D̄t,λ0+σ2

1,2,0Dt,λ0
0 0

0 0
Zt2D̄t,λ0

σ2
2,1,0D̄t,λ0+σ2

2,2,0Dt,λ0

Zt2Dt,λ0
σ2
2,1,0D̄t,λ0+σ2

2,2,0Dt,λ0


⇒ −ρ0

2

(
I(s<λ0)
σ2
1,1,0

s I(s≥λ0)
σ2
1,2,0

(s− λ0) I(s<λ0)
σ2
2,1,0

s I(s≥λ0)
σ2
2,2,0

(s− λ0)
)
≡ τλ0 (s)

which is piecewise linear for s ∈ [0, 1]. Hence the e�ect of accounting for breaks in the variance is not

negligible when concerned about the correlation, not even when testing the constancy, unless ρ0 = 0. The

corresponding process is also not a Brownian motion,

1√
n

[sn]∑
t=1


Zt1Zt2 − ρ0

σ2
1,1,0

(
Z2
t1 − 1

)
(1−Dt,λ0

)

σ2
1,2,0

(
Z2
t1 − 1

)
Dt,λ0

σ2
2,1,0

(
Z2
t2 − 1

)
(1−Dt,λ0)

σ2
2,0,2

(
Z2
t2 − 1

)
Dt,λ0

⇒ Ψλ0 (s) ≡

(
Ω1/2Γ (s)

Σ1/2Θλ0
(s)

)
.

This motivates us in de�ning a new test for constant correlations, since the above one accounts for breaks in

variances and means in a perhaps more convenient way. Concretely, compute (2) with

g
(
Ẑt1, Ẑt2

)
= Ẑt1Ẑt2 and Ẑti =

Xti − µ̂1,i (1−Dt,λ)− µ̂2,iDt,λ√
σ̂2
i,1 (1−Dt,λ) + σ̂2

i,2Dt,λ

. (5)

Since the residual e�ect is di�cult to account for analytically in this case, we resort to a bootstrap procedure

and for this reason we may use as standardizing matrix Ω̂ the sample variance of Ẑt1Ẑt2. The change point

is either known, λ = λ0, or can be estimated superconsistently, λ = λ̂. We analyze the behavior of the new,

robust test in the following subsection and use it with real data in Section 6.

5.3 Experimental evidence on the robusti�ed constant correlation test

5.3.1 Robustness with respect to non-constant variances

In this subsection, we analyze the �nite-sample behavior of the test for constant correlation if the marginal

variances are time-varying. A simulation study illustrates the robustness with respect to non-constant vari-

ances of our new test in contrast to the non-robust Wied et al. (2012)-test. Moreover, we will see that the

new test has considerable power in �nite samples. The new robusti�ed test is based on (2) in combination

with (5) but without demeaning in the numerator as we generate the series with zero mean.

First, for analyzing the size properties, we generate independent data from a bivariate normal distribution

with constant correlation 0.4. The marginal variances are 1 in the �rst half of the sample and take the values

{0.1, 0.2, . . . , 1.9, 2} in the second part of the sample. The sample size is 500 and we use 10000 Monte Carlo

replications. The critical values of our new test are obtained by an i.i.d. bootstrap based on drawing with

replacement from the joint empirical distribution of the demeaned Xt1 and Xt2; for this, we use 199 bootstrap

repetitions to keep the computational e�ort to a minimum. After being drawn, the bootstrap samples are

transformed as follows: the univariate series are split into two parts based on the estimated variance change

points in the original sample and both parts are variance-standardized such that they have the same empirical
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variance as the original series. We consider both the case of estimated and of true variance change point

locations. In both cases, we take the validity of the block bootstrap to be granted.

The plot of the empirical sizes is given in Figure 1. One sees that our test generally keeps its size, in particular

also if the variance change point locations are estimated. Practically, there are no di�erences between the

test with true and the test with estimated locations, although the size is marginally lower in the latter case

if the true variances do not change. The size of the nonrobust Wied et al. (2012)-test is smaller than α in

the case of decreasing variances and larger than α in the case of increasing variances. The intuition to this

comes from the structure of the non-robust test in which successively estimated correlations are compared.

In the extreme case that the variances are zero in the second part, the recursive correlations do not change

any more after the middle. So, the supremum of the correlation di�erences is attained only in the �rst half

of the sample, which leads to a smaller test statistic. On the other hand, if the variances are extremely large

in the second half, there is an extreme, sudden shift towards ±1 in the successively estimated correlations

slightly after the middle. The mechanism leading to this behavior is ultimately the sensitivity of the empirical

correlation coe�cient with respect to outliers. This peak leads to a high test statistic and thus to higher

rejection rates.
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Figure 1: Empirical rejection probabilities of the non-robust and the robust test in a setting with constant
cross-correlations and non-constant marginal variances

Figure 2 shows the empirical power of both tests in a setting under which the Wied et al. (2012)-test works, i.e.,

we generate i.i.d. data from a zero-mean bivariate normal distribution with constant unity marginal variances.

The cross-correlation is 0.4 in the �rst half of the sample and takes the values {−0.4,−0.3, . . . , 0.7, 0.8} in the

second part of the sample. One sees that the power of both tests is rather similar, although, not surprisingly,

robustifying has a minor cost in terms of power for changes to higher values of the correlation coe�cient.

Again, there are practically no consequences of plugging in an estimated break time.

Figure 3 shows the empirical power of both tests in a setting under which the Wied et al. (2012)-test does not

work, i.e. we generate independent data from a bivariate normal distribution with zero mean and constant

marginal variances 1 in the �rst half and 2 in the second half of the sample. The cross-correlation is 0.4 in the

�rst half of the sample and takes the values {−0.4,−0.3, . . . , 0.7, 0.8} in the second part of the sample. One

sees that our new test has high power in the case of a large jump. The non-robust test has higher rejection

frequencies than the new test but, of course, it must be taken into account that it is quite oversized.

5.3.2 Robustness with respect to non-constant expectations

This subsection repeats the analysis from the last subsection, but with a focus on non-constant expectations

and not on non-constant variances. This means that the residuals of our new robust test are obtained
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Figure 2: Empirical rejection probabilities of the non-robust and the robust test in a setting with changing
cross-correlations and constant marginal variances

● ● ● ●
●

●

●

●

●

●

●

●

●

−0.4 −0.2 0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Correlations second part

E
m

pi
ric

al
 r

ej
ec

tio
n 

pr
ob

ab
ili

tie
s

−0.4 −0.2 0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Correlations second part

E
m

pi
ric

al
 r

ej
ec

tio
n 

pr
ob

ab
ili

tie
s

−0.4 −0.2 0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Correlations second part

E
m

pi
ric

al
 r

ej
ec

tio
n 

pr
ob

ab
ili

tie
s

● Robust test estimated CP
Robust test true CP
Non−robust test

Figure 3: Empirical rejection probabilities of the non-robust and the robust test in a setting with changing
cross-correlations and changing marginal variances

by �ltering out change points in the �rst moment, i.e. use residuals from (4). Since this does not induce a

residual e�ect (see Subsection 5.2), we do not have to use a bootstrap approximation. Instead, the asymptotic

distribution of our test statistic is sups∈[0,1] |B(s)|, where B(·) is a Brownian bridge. For signi�cance level

α = 0.05, the critical value is 1.358.

At �rst, we analyze the size in a setting in which the variances are constant, equal to 1, and the expectations

take the value 0 in the �rst half and {−1,−0.9, . . . , 0.9, 1} in the second half of the sample.

The results are plotted in Figure 4. More so than in the variance case, Figure 1, estimating the change point

makes no di�erence in the robust test's behavior; the test is slightly conservative in both cases. The Wied

et al. (2012)-case is oversized if the expectations decrease or increase.

Figure 5 compares (in a way similar to Figure 2) the robust and nonrobust tests in a setting with constant

expectation zero. As in Figure 4, estimating change point locations does not make any di�erence compared

to using the true change point locations. However, the Wied et al. (2012)-test performs relatively better

when the change in the correlation is upwards (cf. Figure 2).

Finally, Figure 6 (in a similar way as Figure 3) shows the empirical power of both tests in a setting under

which the Wied et al. (2012)-test does not work, i.e., the expectations are zero in the �rst half and unity in

the second half of the sample. The result is, at �rst sight, quite interesting: While our new robust test has

considerable power, which increases with the di�erence of the correlation in the second half of the sample

(cf. Figure 5), the power curve of the Wied et al. (2012)-test has a minimum at 0.1. One must of course

consider that the Wied et al. (2012)-test rejects almost every time under the null for the unity jump in the
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Figure 4: Empirical rejection probabilities of the non-robust and the robust test in a setting with constant
cross-correlations and non-constant marginal expectations
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Figure 5: Empirical rejection probabilities of the non-robust and the robust test in a setting with changing
cross-correlations and constant marginal expectations

mean, so it is actually not surprising that the non-robust test, in addition to not controlling size, is also

severely biased.
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Figure 6: Empirical rejection probabilities of the non-robust and the robust test in a setting with changing
cross-correlations and changing marginal expectations
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6 Correlation of stock returns

In this section, we provide an empirical illustration of our methods, whereas we focus on the cross-correlation

constancy case and revisit the analysis in Wied et al. (2012) using the robusti�ed test. We thus reexamine

the correlation of DAX and S&P 500 returns around the insolvency of Lehman Brothers in September 2008,

which is often considered as the climax of the global �nancial crisis 2007-2008. Concretely, we use data from

the beginning of 2005 until the end of 2009, which yields T = 1244 daily continuous returns, i.e., the �rst

di�erence of the log-prices.

A picture of empirical correlations calculated in a rolling window of 50 days (Figure 7 a) gives some evidence

for increasing correlations around the climax in the spirit of the �diversi�cation meltdown�-hypothesis. This

evidence is supported by the outcome of the test proposed in Wied et al. (2012), with a statistic given by

max
2≤j≤n

P (j) with P (j) =

∣∣∣∣D̂ j√
n

(ρ̂j − ρ̂n)

∣∣∣∣ ,
where ρ̂j are recursively estimated correlations and D̂ is a kernel-based estimator for the asymptotic variance

of ρ̂n (for the exact implementation details see Wied et al., 2012).

Figure 7 b) shows the graph of the function P (j) and it is clearly seen that the maximum is larger than the

critical value (at the signi�cance level 0.05) of 1.358. The (argmax) estimator for the break date is February

20th, 2008.
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Figure 7: (a) Rolling correlations / (b) weighted di�erences of successively calculated correlations

A potential problem arises due to the fact that this test does not accommodate an (asymptotically non-

vanishing) shift in the marginal variances. Instead, the power of the test close to 0 in the case of a sudden

decrease and close to 1 in the case of a sudden increase; see Figure 1. Figures 8 a) and b) show the empirical

variances calculated in rolling windows of 50 days of the two returns, respectively. There is evidence for a

model with two variance regimes, where the variance in the second regime is higher than in the �rst one.

This is con�rmed by an application of the variance constancy test from Wied, Arnold, Bissantz, and Ziggel

(2012) in combination with a binary segmentation algorithm applied in a similar way as in Galeano and Wied

(2014). Applied on the two time series, the test yields a variance change point at the 14th of January 2008

for the DAX series and at the 3rd of September 2008 for the S&P500 series. After this, the data is split

into the interval before the change point (including the point) and after in order to test in both segments

again. To account for multiple testing, the smallest of the two p-values is compared with the signi�cance

level α = 1 − 0.951/2. If smaller, a new change point is detected at the argmax of the corresponding series,

the time series is split at this point again. The procedure is repeated with decreasing signi�cance levels until

no further change points can be found or until the distance between further change points is smaller than

0.05 · T . a re�nement step is applied in order to improve the precision of the estimators. Here, the test is

applied on each interval, which contains exactly one change point, and only statistically signi�cant change
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points are kept. After this re�nement step, no other change points except of the ones from the �rst step

remain. We consider them as �xed in the following and no further variance change point estimations are

performed, neither in the tests themselves nor in the bootstrap replications.
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Figure 8: Rolling variances of (a) the DAX and (b) the S&P500 returns

We apply the test from (2) in combination with (5) which explicitly allows for a two-regime-model in the

variances. The mean of daily returns is taken to be negligible, so we do not demean the series. Due to the

complexity of the limit distribution, we rely on a bootstrap approximation following Subsection 5.3.1, with

one modi�cation: we resort to a block bootstrap, as the ACF of the product of the residuals Ẑt,1Ẑt,2 from (5)

reveals autocorrelation (Figure 9) (once we eliminate variance breaks, stationarity of the series is plausible

under the null of no changing correlations and we see no need to account for further possible nonstationarities).

Consequently, we draw non-overlapping blocks of length T 1/3 and use B = 9999 bootstrap replications. Figure

10 shows a similar graph as Figure 7 b) for (2). The hypothesis of constant cross-correlation is rejected under

these milder assumptions as well, but the date of the change point (estimated by the arg max statistic) is

located half an year earlier, at the 9th of July 2007. Although small, the date can be tied to the 2007 liquidity

crisis marking the beginning of the global �nancial crisis; the timing of the correlation break by the nonrobust

test in February 2008 can be seen as a confusion with the variance break in January 2008 of the DAX returns

series.
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Figure 9: ACF of the residuals (4)

Moreover, Figure 10 raises doubt at the one-break-assumption. In particular, there is some evidence for at

least one other change point after the 9th of July 2007. For clari�cation, we apply a binary segmentation

algorithm in a similar way as in Galeano and Wied (2014) as described above. Before the iteration step, we

get the additional dates 2nd of April 2009 in step 2 and 26th of September 2008 in step 3. In the iteration

step, all three change points remain statistically signi�cant, but the location of the point 2nd of April 2009

changes to the 2nd of December 2008. In the iteration step, the p-value of all tests is smaller than 0.001.
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Figure 10: Weighted di�erences of successively calculated correlations (without the assumption of constant
variances)

Regime Correlation

Jan 4th 2005 - Jul 9th 2007 0.478
Jul 10th 2007 - Sep 25th 2008 0.505
Sep 26th 2008 - Dec 1st 2008 0.711
Dec 2nd 2008 - Dec 30th 2009 0.672

Table 1: Estimated regimes and corresponding empirical correlations

Table 6 gives an overview of the estimated regimes and the corresponding correlations. To sum up, we

�nd that the correlation severely increases at the end of September 2008, corresponding quite closely to the

Lehman bancruptcy, and drops somewhat in 2009 as the crysis appears to be getting under control.

Appendix

Before providing the main proofs, we state and prove an auxiliary result.

Lemma 1 It holds under Assumptions 1 and 3 that

θ̂1

(
λ̂
)
− θ̂1 (λ0) = op

(
n−1/2

)
= θ̂2

(
λ̂
)
− θ̂2 (λ0) .

as n→∞, provided that θ1,0 6= θ2,0.

Proof of Lemma 1

Let us �rst discuss the behavior of

θ̂1

(
λ̂
)
− θ̂1 (λ0) =

 λ̂n∑
j=1

B′j,nWn

λ̂n∑
j=1

Bj,n

−1
λ̂n∑
j=1

B′j,nWn

λ̂n∑
j=1

Aj,n +Rλ̂n,n

−

λ0n∑
j=1

B′j,nWn

λ0n∑
j=1

Bj,n

−1
λ0n∑
j=1

B′j,nWn

λ0n∑
j=1

Aj,n −Rλ0n,n

= P−1
n

(
λ̂
)
Qn

(
λ̂
)
− P−1

n (λ0)Qn (λ0) +Rλ̂n,n −Rλ0n,n,
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where Pn (λ) =
∑λn
j=1B

′
j,nWn

∑λn
j=1Bj,n and Qn (λ) =

∑λn
j=1B

′
j,nWn

∑λn
j=1Aj,n, such that

P−1
n (λ0) = Op

(
n−2

)
and Qn (λ0) = Op

(
n3/2

)
given the behavior of the individual components from Assumption 1 and 3. Since both λ0 and λ̂ (w.p. 1) are

interior points of [0, 1], we also have from Assumption 3 that∣∣∣Rλ̂n,n −Rλ0n,n

∣∣∣ = op

(
n−

1/2
)

for either λ̂ ≤ λ0 or λ̂ > λ0. Furthermore,∥∥∥P−1
n

(
λ̂
)
Qn

(
λ̂
)
− P−1

n (λ0)Qn (λ0)
∥∥∥

≤
∥∥∥P−1

n

(
λ̂
)
− P−1

n (λ0)
∥∥∥∥∥∥Qn (λ̂)∥∥∥+

∥∥P−1
n (λ0)

∥∥∥∥∥Qn (λ̂)−Qn (λ0)
∥∥∥ .

To assess
∥∥∥Qn (λ̂)−Qn (λ0)

∥∥∥, write
∥∥∥Qn (λ̂)−Qn (λ0)

∥∥∥ ≤
∥∥∥∥∥∥
λ̂n∑
j=1

Bj,n

∥∥∥∥∥∥ ‖Wn‖

∥∥∥∥∥∥
λ0n∑
j=λ̂n

Aj,n

∥∥∥∥∥∥+

∥∥∥∥∥∥
λ0n∑
j=λ̂n

Bj,n

∥∥∥∥∥∥ ‖Wn‖

∥∥∥∥∥∥
λ0n∑
j=1

Aj,n

∥∥∥∥∥∥
where we make the convention that

∑λ0n

j=λ̂n
= −

∑λ̂n
j=λ0n

if λ̂ > λ, such that

∥∥∥∥∥∥
λ0n∑
j=λ̂n

Aj,n

∥∥∥∥∥∥ ≤ n
∣∣∣λ0 − λ̂

∣∣∣ sup
1≤j≤n

‖Aj,n‖ = Op

(
n1/(2+α)

)
.

(The uniform L2+α boundedness of Aj,n has been used to derive the magnitude of the maximum.) We the

have analogously that ∥∥∥∥∥∥
λ0n∑
j=λ̂n

Bj,n

∥∥∥∥∥∥ = Op

(
n1/(1+α)

)
,

such that∥∥∥∥∥∥
λ̂n∑
j=1

Bj,n

∥∥∥∥∥∥ = Op

(
n1/(1+α)

)
≤

∥∥∥∥∥∥
λ0n∑
j=1

Bj,n

∥∥∥∥∥∥ = Op

(
n1/(1+α)

)
+

∥∥∥∥∥∥
λ0n∑
j=λ̂n

Bj,n

∥∥∥∥∥∥ = Op

(
n1/(1+α)

)
= Op (n)

and, summing up, that∥∥∥Qn (λ̂)−Qn (λ0)
∥∥∥ = Op

(
max

{
n1+1/(2+α), n1/2+1/(1+α)

})
= op

(
n3/2

)
.

Furthermore, this implies that∥∥∥Qn (λ̂)∥∥∥ ≤ ‖Qn (λ0)‖+
∥∥∥Qn (λ̂)−Qn (λ0)

∥∥∥ = Op

(
n3/2

)
.

Now, Lütkepohl (1996, Section 8.4.1, Eq. (11c)) implies that

∥∥∥n2P−1
n

(
λ̂
)
− n2P−1

n (λ0)
∥∥∥ ≤ ∥∥n2P−1

n (λ0)
∥∥ ∥∥n2P−1

n (λ0)
∥∥∥∥∥ 1

n2Pn

(
λ̂
)
− 1

n2Pn (λ0)
∥∥∥

1−
∥∥n2P−1

n (λ0)
∥∥ ∥∥∥ 1

n2Pn

(
λ̂
)
− 1

n2Pn (λ0)
∥∥∥
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if
∥∥n2P−1

n (λ0)
∥∥ ∥∥∥ 1

n2Pn

(
λ̂
)
− 1

n2Pn (λ0)
∥∥∥ < 1 and

∥∥∥n2Pn (λ0)
(

1
n2Pn

(
λ̂
)
− 1

n2Pn (λ0)
)∥∥∥ < 1, where

∥∥∥Pn (λ̂)− Pn (λ0)
∥∥∥ ≤ 2

∥∥∥∥∥∥
λ̂n∑
j=1

Bj,n

∥∥∥∥∥∥ ‖Wn‖

∥∥∥∥∥∥
λ0n∑
j=λ̂n

Bj,n

∥∥∥∥∥∥ = Op

(
n1+1/(1+α)

)
= op

(
n2
)
.

Consequently,
(

1
n2Pn

(
λ̂
)
− 1

n2Pn (λ0)
)

p→ 0 so the two conditions are ful�lled and we have that

∥∥∥P−1
n

(
λ̂
)
− P−1

n (λ0)
∥∥∥ = op

(
n−2

)
.

Summing up, ∥∥∥P−1
n

(
λ̂
)
Qn

(
λ̂
)
− P−1

n (λ0)Qn (λ0)
∥∥∥ = op

(
n−1/2

)
= θ̂1

(
λ̂
)
− θ̂1 (λ0) .

The result for θ̂2

(
λ̂
)
− θ̂2 (λ0) is derived analogously and we omit the details.

Proof of Proposition 1

Use the mean value theorem to expand the vector function 1√
n

∑[ns]
t=1 g

(
Ẑt

)
elementwise about θ0 to obtain

with Z∗t = h (Xt, . . . ;θ
∗)

1√
n

[ns]∑
t=1

gl

(
Ẑt

)
=

1√
n

[ns]∑
t=1

gl (Zt) +
1√
n

[ns]∑
t=1

∂gl
∂z

∣∣∣∣
z=Zt

∂h

∂θ

∣∣∣∣
θ=θ0

(
θ̂ − θ0

)

+
1√
n

[ns]∑
t=1

(
∂gl
∂z

∣∣∣∣
z=Z∗

t

∂h

∂θ

∣∣∣∣
θ=θ∗

− ∂gl
∂z

∣∣∣∣
z=Zt

∂h

∂θ

∣∣∣∣
θ=θ0

)(
θ̂ − θ0

)

where θ∗ is a convex combination of θ0 and θ̂. Since θ̂−θ0 = Op
(
n−1/2

)
, θ∗ belongs to a

√
n-neighbourhood

of θ0 and thus to Φn; we pick θ
∗
t = θ∗ 1 ≤ t ≤ n, and Assumption 1 ensures uniform negligibility of the third

term on the r.h.s. for l = 1, . . . , L,∥∥∥∥∥∥ 1√
n

[ns]∑
t=1

(
∂gl
∂z

∣∣∣∣
z=Z∗

t

∂h

∂θ

∣∣∣∣
θ=θ∗

− ∂gl
∂z

∣∣∣∣
z=Zt

∂h

∂θ

∣∣∣∣
θ=θ0

)(
θ̂ − θ0

)∥∥∥∥∥∥
≤
∥∥∥√n(θ̂ − θ0

)∥∥∥ sup
θ∗,t

∥∥∥∥∥ ∂gl∂z

∣∣∣∣
z=Z∗

t

∂h

∂θ

∣∣∣∣
θ=θ∗

− ∂gl
∂z

∣∣∣∣
z=Zt

∂h

∂θ

∣∣∣∣
θ=θ0

∥∥∥∥∥
p→ 0.

The �rst result follows with Assumption 1 and the CMT.

Let us now examine the case of the recursive estimation scheme. Since gl

(
Z̃t

)
is a function of θ̂t, we have

n convex combinations θ∗t of θ0 and θ̂t in the mean-value expansion about θ0, leading to

1√
n

[ns]∑
t=1

gl

(
Z̃t

)
=

1√
n

[ns]∑
t=1

gl (Zt) +
1√
n

[ns]∑
t=1

∂gl
∂z

∣∣∣∣
z=Zt

∂h

∂θ

∣∣∣∣
θ=θ0

(
θ̂t − θ0

)

+
1√
n

[ns]∑
t=1

(
∂gl
∂z

∣∣∣∣
z=Z∗

t

∂h

∂θ

∣∣∣∣
θ=θ∗

t

− ∂gl
∂z

∣∣∣∣
z=Zt

∂h

∂θ

∣∣∣∣
θ=θ0

)(
θ̂t − θ0

)
.

Since sups∈[ε,1]

∥∥∥θ̂[sn] − θ0

∥∥∥ = Op
(
n−1/2

)
when Ψ is bounded in probability, the third term on the r.h.s. is
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immediately seen to vanish like before, such that

1√
n

[ns]∑
t=1

g
(
Z̃t

)
=

1√
n

[ns]∑
t=1

g (Zt) +
1√
n

[ns]∑
t=1

∂g

∂z

∣∣∣∣
z=Zt

∂h

∂θ

∣∣∣∣
θ=θ0

(
θ̂t − θ0

)
+ op (1)

where the op term is uniform on [ε, 1], and the result is completed with Assumption 1 and the CMT.

Proof of Proposition 2

The desired asymptotic equivalence follows for the case of full-sample estimation from the condition

sup
s∈[0,1]

∣∣∣∣∣∣ 1√
n

[ns]∑
t=1

(
g
(
Ẑt

(
λ̂
))
− g

(
Ẑt (λ0)

))∣∣∣∣∣∣ = op (1) .

Examining Ẑt

(
λ̂
)
, we have (writing explicitly only the dependence on Xt to simplify notation)

g
(
Ẑt

(
λ̂
))

= g
(
h
(
Xt, θ̂1

(
λ̂
)))(

1−Dt,λ̂

)
+ g

(
h
(
Xt, θ̂2

(
λ̂
)))

Dt,λ̂

and analogously

g
(
Ẑt (λ0)

)
= g

(
h
(
Xt, θ̂1 (λ0)

))
(1−Dt,λ0) + g

(
h
(
Xt, θ̂2 (λ0)

))
Dt,λ0

such that

g
(
Ẑt

(
λ̂
))
− g

(
Ẑt (λ0)

)
= g

(
h
(
Xt, θ̂1

(
λ̂
)))(

1−Dt,λ̂

)
− g

(
h
(
Xt, θ̂1 (λ0)

))
(1−Dt,λ0

)

+g
(
h
(
Xt, θ̂2

(
λ̂
)))

Dt,λ̂ − g
(
h
(
Xt, θ̂2 (λ0)

))
Dt,λ0

.

= Mt +Nt

Then,

Mt =
(
g
(
h
(
Xt, θ̂1

(
λ̂
)))

− g
(
h
(
Xt, θ̂1 (λ0)

)))(
1−Dt,λ̂

)
+ g

(
h
(
Xt, θ̂1 (λ0)

))(
Dt,λ0

−Dt,λ̂

)
= M1t +M2t.

Now, Dt,λ̂ is either zero or unity, so we may focus on g
(
h
(
Xt, θ̂1

(
λ̂
)))
−g

(
h
(
Xt, θ̂1 (λ0)

))
in discussing

cumulated sums of M1t, for which we resort to the mean value theorem elementwise and obtain like in the

proof of Proposition 1 that, for each l, and t ≤ λ0n,

gl

(
h
(
Xt, θ̂1

(
λ̂
)))

= gl (Zt) +
∂gl
∂z

∣∣∣∣
z=Zt

∂h

∂θ

∣∣∣∣
θ=θ1,0

(
θ̂1

(
λ̂
)
− θ1,0

)
+

(
∂gl
∂z

∣∣∣∣
z=Z∗

t

∂h

∂θ

∣∣∣∣
θ=θ∗

t

− ∂gl
∂z

∣∣∣∣
z=Zt

∂h

∂θ

∣∣∣∣
θ=θ1,0

)(
θ̂1

(
λ̂
)
− θ1,0

)
and

gl

(
h
(
Xt, θ̂1 (λ0)

))
= gl (Zt) +

∂gl
∂z

∣∣∣∣
z=Zt

∂h

∂θ

∣∣∣∣
θ=θ1,0

(
θ̂1 (λ0)− θ1,0

)
+

(
∂gl
∂z

∣∣∣∣
z=Z∗

t

∂h

∂θ

∣∣∣∣
θ=θ0∗

t

− ∂gl
∂z

∣∣∣∣
z=Zt

∂h

∂θ

∣∣∣∣
θ=θ1,0

)(
θ̂1 (λ0)− θ1,0

)
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for suitable θ∗t (θ
0∗
t ) between θ1,0 and θ̂1

(
λ̂
)
(between θ1,0 and θ̂1 (λ0)), such that, for all 1 ≤ t ≤ λ0n,

g
(
h
(
Xt, θ̂1

(
λ̂
)))

− g
(
h
(
Xt, θ̂1 (λ0)

))
=

∂g

∂z

∣∣∣∣
z=Zt

∂h

∂θ

∣∣∣∣
θ=θ1,0

(
θ̂1

(
λ̂
)
− θ̂1 (λ0)

)
+ op

(
1√
n

)

where the op

(
1√
n

)
term is uniform in t following Assumption 3. For t > λ0n, we expand gl

(
h
(
Xt, θ̂1

(
λ̂
)))

and gl

(
h
(
Xt, θ̂1 (λ0)

))
about the same θ1,0, but note that h (Xt,θ1,0) 6= Zt for t in the second regime.

We obtain however similarly

g
(
h
(
Xt, θ̂1

(
λ̂
)))

− g
(
h
(
Xt, θ̂1 (λ0)

))
=

∂g

∂z

∣∣∣∣
z=h(Xt,θ1,0)

∂h

∂θ

∣∣∣∣
θ=θ1,0

(
θ̂1

(
λ̂
)
− θ̂1 (λ0)

)
+ op

(
1√
n

)
thanks to Assumption 3. Using now Lemma 1, we obtain immediately

sup
s∈[0,1]

∣∣∣∣∣∣ 1√
n

[sn]∑
t=1

M1t

∣∣∣∣∣∣ = op (1) .

For M2t we note that
∑∣∣∣Dt,λ̂ −Dt,λ0

∣∣∣ = Op (1) since λ̂ − λ0 = Op
(
n−1

)
. Then, for each t < λ0n and l,

write again

gl

(
h
(
Xt, θ̂1 (λ0)

))
= gl (Zt) +

∂gl
∂z

∣∣∣∣
z=Zt

∂h

∂θ

∣∣∣∣
θ=θ1,0

(
θ̂1 (λ0)− θ1,0

)
+

(
∂gl
∂z

∣∣∣∣
z=Z∗

t

∂h

∂θ

∣∣∣∣
θ=θ∗

− ∂gl
∂z

∣∣∣∣
z=Zt

∂h

∂θ

∣∣∣∣
θ=θ1,0

)(
θ̂1 (λ0)− θ1,0

)

where supt=1,...,n |gl (Zt)| = op (
√
n) and supt=1,...,n

∥∥∥∥ ∂gl∂z ∣∣∣
z=Zt

∂h
∂θ

∣∣
θ=θ1,0

∥∥∥∥ = op (n) thanks to Assumption 3,

and the third summand on the r.h.s. can be dealt with using Assumption 3 such that

sup
t=1,...,λ0n

∥∥∥g (h(Xt, θ̂1 (λ0)
))∥∥∥ = op

(√
n
)
.

For each t ≥ λ0n and l, we have like before

gl

(
h
(
Xt, θ̂1 (λ0)

))
= gl (h (Xt,θ1,0)) +

∂gl
∂z

∣∣∣∣
z=h(Xt,θ1,0)

∂h

∂θ

∣∣∣∣
θ=θ1,0

(
θ̂1 (λ0)− θ1,0

)
+

(
∂gl
∂z

∣∣∣∣
z=h(Xt,θ∗)

∂h

∂θ

∣∣∣∣
θ=θ∗

− ∂gl
∂z

∣∣∣∣
z=h(Xt,θ1,0)

∂h

∂θ

∣∣∣∣
θ=θ1,0

)(
θ̂1 (λ0)− θ1,0

)
and Assumption 3 leads analogously to

max
λ0n≤t≤n

∥∥∥g (h(Xt, θ̂1 (λ0)
))∥∥∥ = op(

√
n)

such that, summing up,

sup
s∈[0,1]

∣∣∣∣∣∣ 1√
n

[sn]∑
t=1

M2t

∣∣∣∣∣∣ ≤ sup
t=1,...,n

∥∥∥g (h(Xt, θ̂1 (λ0)
))∥∥∥ 1√

n

n∑
t=1

∣∣∣Dt,λ̂ −Dt,λ0

∣∣∣ = op (1) .

The partial sums of Nt are evaluated in the same manner and the �rst result follows.

The case of recursive estimation follows along the same lines (but taking into account the fact that, at the

28



beginning of the sample and after the break, the recursive estimator does not have proper asymptotics) and

we omit the details.
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