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Maria Konstantinou, Stefanie Biedermann and Alan Kimber

Abstract

The exponential-based proportional hazards model is often assumed in time-

to-event experiments but may only approximately hold. We consider deviations

in different neighbourhoods of this model that include other widely used paramet-

ric proportional hazards models and we further assume that the data are subject

to censoring. Minimax designs are then found explicitly based on criteria corre-

sponding to classical c- and D-optimality. We provide analytical characterisations

of optimal designs which, unlike optimal designs for related problems in the litera-

ture, have finite support and thus avoid the issues of implementing a density-based

design in practice. Finally, our designs are compared with the balanced design that

is traditionally used in practice, and recommendations for practitioners are given.

Keywords: proportional hazards models, minimax optimal designs, D-optimality, c-optimality,

Type-I censoring

1 Introduction

Optimal experimental designs are often constructed assuming that the model generating

the data is known, up to the values of the parameters involved. In many practical sit-

uations, however, the proposed parametric model may only be approximately true and

thus may cause the vector of parameter estimators to be biased. As illustrated by Box

and Draper (1959) for the case of a linear regression model, the advantages of using an

optimal design that minimises just the variance are lost even if the deviations from the

assumed model are small.

Following Box and Draper (1959), robust designs for approximately linear regression have

been constructed by Wiens (1992) based on classical optimality criteria but involving the

mean squared error matrix. He finds minimax designs which are optimal in that they
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minimise the criteria functions for the worst possible deviation from the linear regression

model. Prediction and extrapolation problems with possible heteroscedasticity are studied

by Wiens (1998) and Fang and Wiens (1999) respectively among others. Sinha and Wiens

(2002) consider the construction of sequential designs which are robust against model

uncertainty for nonlinear models. Further results on misspecified nonlinear regression

include Woods et al. (2006), Wiens and Xu (2008) and Xu (2009a) for prediction and

extrapolation problems.

However, none of these authors considers the case where the data are subject to censoring.

This arises in many time-to-event experiments when a particular event of interest is not

observed for some of the subjects utilised in the experiment. Censoring is often a result

of the fact that the experiments are not run as long as necessary in order to obtain com-

plete data, that is, event times for all the subjects, because of time and cost limitations.

Therefore, it is of interest to find optimal designs which are robust to misspecifications of

the assumed model and which allow for the possibility of the data being censored.

The available literature on model robust designs for time-to-event data is focused on

accelerated life tests for which the subjects are put under extreme conditions in order

for the event of interest to occur sooner than under normal circumstances. In this case,

extrapolation to lower covariate values and prediction problems are often of interest; see,

for example, Pascual and Montepiedra (2003), Xu (2009b) and McGree and Eccleston

(2010).

We study an alternative class of models used for the modelling of time-to-event data,

namely that of proportional hazards models. Such models satisfy the proportional hazards

assumption of constant hazard ratio over time and are frequently used in practice because

of the simple interpretation of the regression coefficients in terms of hazard ratios. When a

specific distribution is assumed for the event times we will refer to the resulting parametric

models as distribution-based proportional hazards models. Cox’s proportional hazards

model, on the other hand, leaves the underlying distribution unspecified and therefore

inference is based on the partial likelihood function (see Collett (2003) for further details).

Konstantinou et al. (2015) consider Cox’s model and show that in the presence of Type-

I censoring an exponential distribution can be assumed without greatly affecting the

optimal choice of design for partial likelihood estimation. They also find that the full and

partial likelihood approaches result in very similar designs for the same assumed model.

Following these findings, we consider small deviations in a neighbourhood of the exponential-

based proportional hazards model formulated via a contamination function. Assuming

that the data are subject to Type-I censoring, we investigate the construction of minimax
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optimal designs for full likelihood estimation which protect against the worst possible

misspecification of the assumed exponential model.

In Section 2 we introduce the assumed and true models considered and define two different

classes of contamination functions to account for the various forms of the true distribution

for the data. Then in Section 3 we derive the asymptotic properties of the maximum like-

lihood estimator for the parameter vector under model uncertainty and Type-I censoring.

Analytical characterisations of minimax c- and D-optimal designs are given in Section 4.

These designs are found using criteria corresponding to the classical c- and D-optimality

criteria but are based on the mean squared error matrix rather than just the information

matrix. In Section 5 we illustrate the behaviour of our designs and compare them with the

balanced design traditionally used in practice. Finally, the main conclusions are discussed

in Section 6.

2 Models and contamination functions

Time-to-event experiments are usually conducted in order to evaluate a particular inter-

vention or treatment. Therefore, throughout this paper we focus on models that involve

one explanatory variable x. We derive the mean squared error matrix for general designs,

and then illustrate design search for the situation in which x takes values in the binary

design space denoted by X = {0, 1} corresponding, for example, to a placebo and an

active treatment in a clinical trial. We further assume that the aim of the experiment is

to estimate one or both of the two model parameters. Also let c be the predetermined

duration of the experiment at which point the observations of subjects for which the event

of interest has not occurred are said to be right-censored. Possibly censored data are sum-

marised mainly using the hazard function which expresses the risk of the event of interest

occurring at any time after the commencement of the experiment (Collett (2003)).

We consider the situation where the experimenter assumes the exponential-based propor-

tional hazards model specified by the hazard function

h1(t) = exp{α + βx}, t > 0, x ∈ X ⊆ IR, (1)

where α and β are real parameters, when in fact this is only an approximation to the true

underlying model. Denote the hazard function of the unknown true model by

h2(t) = exp

{
α + βx+

g(t)√
n

}
, t > 0, x ∈ X ⊆ IR, g(t) ∈ G. (2)
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Here the function g(t) represents uncertainty about the exact form of the underlying dis-

tribution for the data and following the literature we call this the contamination function

or just the contaminant. We assume that g(t) is unknown and ranges in a neighbourhood

specified by the class G.

The parametrisation in (2) allows us to remain within a proportional hazards framework

and ensures that the model parameters are well defined. In particular, unlike the existing

literature, see, for example, Wiens (1992), our contamination function is independent

of the covariate value x. Therefore the parameter β corresponds to the effect of the

explanatory variable. For identifiability reasons we further require that g(t) does not

involve an additive constant. If this were not the case, the constant term would be

absorbed in the quantity exp{α} that represents the baseline hazard for model (1), that

is, the hazard function for a subject with x = 0.

The factor n−1/2 is included so that the deviations are of the order O(1/
√
n) resulting in

models that are in a neighbourhood of the exponential model (1). At the same time, the

dependence of g on the time t ensures that the general form of the true model includes

widely used parametric proportional hazards models based, such as, for example, the

Weibull and Gompertz distributions with known shape parameter γ. These distributions

correspond to the cases where g(t) is equal to (γ − 1) log t and γt respectively.

We now define two classes of contamination functions which allow various forms of g,

including those that correspond to the Weibull and Gompertz distributions. With the

exception of Li and Notz (1982), the existing literature on model robustness considers

the construction of designs that are absolutely continuous with respect to the Lebesque

measure. On the other hand, the formulation of our classes ensures the use of designs

with finite support on the design space X . This allows us to obtain exact solutions which

can then be compared with the corresponding solutions we would have in the case of the

assumed model being true (see Section 4).

The first class of contaminants we study is specified by

G1 =

{
g : max

t∈[0,c]
|g(t)| ≤ c1

}
, (3)

where c1 is a specified positive constant assumed. This class includes contamination

functions g(t) which are bounded on the time interval [0, c] and was also used in Li and

Notz (1982). They, however, considered extrapolation and interpolation problems for

linear regression models with complete data.
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Now consider the case of unbounded contamination functions such as g(t) = (γ − 1) log t

for which limt→0 g(t) = −∞. A class that can be used to include such contaminants is

G2 =

{
g :

∣∣∣∣∣
∫ c

0

e−te
α+βx

g(t) dt

∣∣∣∣∣ ≤ c2, ∀x ∈ X and

∣∣∣∣∣
∫ c

0

g(s) ds

∣∣∣∣∣ <∞
}
, (4)

where, as before, c2 is a specified positive constant. This class is defined so that the

integral expression involved in the asymptotic expectation of the score function b(ξ, g),

evaluated in Section 3, is bounded in the design space X .

3 Estimation under model uncertainty and Type-I

censoring

For the estimation of the model parameters we adopt the full likelihood approach since the

assumed parametric model is completely specified as the exponential-based proportional

hazards model. Throughout this section we follow a similar procedure to that used in

Xu (2009b) in order to incorporate both censoring and model misspecification in the

maximum likelihood estimation method and to obtain the asymptotic properties of the

resulting estimator vector.

Let T1, . . . , Tn be the independent random variables indicating the times to the occurrence

of the event of interest for the n subjects utilised in the experiment with corresponding

observed values t1, . . . , tn. Under the right-censored data scenario we consider here, Type-

I censoring corresponds to the case where all the subjects enter the experiment at the same

time, indicated by zero, and so the censoring time c is common for all the subjects. This

situation occurs commonly in reliability applications. Alternatively, as is more common

in clinical studies, subjects may enter the study at different calendar times but each be

followed up for c time units. Therefore, in the presence of Type-I censoring, what we

actually observe are the values yj of the random variables Yj = max{Tj, c}, j = 1, . . . , n.

This is formulated using an indicator variable δj that is equal to unity if observation j is

an event time and zero if it is a right-censored observation. That is,

δj =

1, if Yj = Tj

0, if Yj = c
.

We note that δj ∼ Bin(1, Pj), where Pj = P (δj = 1) = P (Yj = Tj).
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The likelihood function for possibly censored data involves the survivor and probability

density functions which are defined in terms of the hazard function as

S(y) = exp

{
−
∫ y

0

h(s) ds

}
and f(y) = h(y)S(y), y ∈ [0, c],

respectively (Collett (2003)). Therefore, assuming that model (1) is correct, the corre-

sponding log-likelihood function of the jth observation yj with covariate value xj is given

by

l := l(xj, α, β) = δj log f1(yj) + (1− δj) logS1(c)

= δj
(
α + βxj − yjeα+βxj

)
− (1− δj)ceα+βxj .

To find the limiting properties of the maximum likelihood estimator for the vector of model

parameters requires the evaluation of the asymptotic expectation and variance-covariance

matrix of the score function where

∂l

∂α
= δj

(
1− yjeα+βxj

)
− (1− δj)ceα+βxj ,

∂l

∂β
= xj

∂l(xj, α, β)

∂α
,

for the jth observation and also the calculation of the asymptotic information matrix

involving the second order derivatives

∂2l

∂α2
= −eα+βxj [δjyj + c(1− δj)] ,

∂2l

∂α∂β
= xj

∂2l

∂α2
,

∂2l

∂β2
= x2j

∂2l

∂α2
.

At this stage we must take into account that the true model is actually specified by

(2). Based on this true model and observing that the above expressions involve only two

random quantities via δj and δjYj, we obtain

E

[
∂l

∂α

]
= eα+βxj

∫ c

0

e−yje
α+βxj g(yj)√

n
dyj + o

(
1√
n

)
,

V ar

(
∂l

∂α

)
= 1− e−ce

α+βxj
+ eα+βxje−ce

α+βxj

∫ c

0

g(s)√
n
ds

− (eα+βxj)2
∫ c

0

2
yjg(yj)√

n
e−yje

α+βxj
dyj + o

(
1√
n

)
,

E

[
− ∂

2l

∂α2

]
= 1− e−ce

α+βxj
+ eα+βxje−ce

α+βxj

∫ c

0

g(s)√
n
ds

− eα+βxj
∫ c

0

g(yj)√
n
e−yje

α+βxj
dyj + o

(
1√
n

)
,

(5)
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using Taylor expansions. The calculations for the derivation of the set of expressions (5)

can be found in the appendix.

Now let θ = (α, β)T be the vector of model parameters and θ0 the vector of their true

values. Also let

ξ =

{
x1 x2 . . . xm

ω1 ω2 . . . ωm

}
, 0 < ωi ≤ 1,

m∑
i=1

ωi = 1, (6)

where x1, . . . , xm (m ≤ n) are the distinct experimental points where observations are

taken and ω1, . . . , ωm represent the relative proportions of observations taken at the cor-

responding point xi. Using the expressions given in (5) we obtain the asymptotic infor-

mation matrix of θ0

M(ξ) = M(ξ,θ0) = lim
n→∞

1

n
E

[
−

n∑
j=1

∂2l

∂θ∂θT

∣∣∣
θ=θ0

]

=
m∑
i=1

ωi(1− e−ce
α+βxi )

(
1 xi

xi x2i

)
,

the asymptotic expectation of the score function evaluated at θ0

b̃(ξ, g) = b̃(ξ, g,θ0) =
1√
n

lim
n→∞

1

n
E

[
√
n

n∑
j=1

∂l

∂θ

∣∣∣
θ=θ0

]

=
1√
n

m∑
i=1

ωie
α+βxi

∫ c

0

e−yje
α+βxig(yj) dyj

(
1

xi

)
:=

1√
n
b(ξ, g),

and finally the asymptotic variance-covariance matrix of the score function evaluated at

θ0 which is given by

C(ξ) = C(ξ,θ0) = lim
n→∞

1

n

n∑
j=1

Cov

(
∂l

∂θ

∣∣∣
θ=θ0

)

=
m∑
i=1

ωi(1− e−ce
α+βxi )

(
1 xi

xi x2i

)
.

Now expanding the score function s(θ) around θ0 gives

s(θ) = s(θ0) + s′(θ0)(θ − θ0) + . . . ,
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and using the fact that the maximum likelihood estimate θ̂ is a root of the score function

we have

0 ≈ s(θ0) + s′(θ0)(θ̂ − θ0)

(θ̂ − θ0) ≈M−1(ξ,θ0)s(θ0).

Now
√
n s(θ0) ∼ AN(b(ξ, g), C(ξ)) and therefore the asymptotic distribution of the max-

imum likelihood estimator is described by

√
n(θ̂ − θ0) ∼ AN

(
M−1(ξ)b(ξ, g),M−1(ξ)C(ξ)M−1(ξ)

)
. (7)

4 Minimax optimal designs

The optimal planning of time-to-event experiments is concerned with finding the experi-

mental points and the number of subjects that should be assigned to each point so that

the parameters are estimated as precisely as possible. To illustrate our methodology,

we will focus on binary design spaces X = {0, 1}, corresponding for example to placebo

and active treatment, respectively. Following Kiefer (1974), we formulate this problem

through an approximate design of the form (6) with support points 0 and 1 and corre-

sponding weights ω and 1 − ω. In practice, if an approximate design is available and a

total number of n observations can be taken, the quantities ωn and (1−ω)n are rounded

to integers using an efficient rounding procedure in order for the design to be used (see

Pukelsheim and Rieder (1992)).

As mentioned in the introduction and as can be seen in (7), fitting the exponential-

based proportional hazards model given in (1) when in fact the true underlying model

is specified by (2) adds a bias to the maximum likelihood estimator for the vector of

parameters. Therefore, a suitable measure for the precision of the parameter estimates is

the mean squared error matrix which, using (7), is given by

MSE(ξ, g) =
(
M−1(ξ)b(ξ, g)

) (
M−1(ξ)bT (ξ, g)

)
+M−1(ξ)C(ξ)M−1(ξ)

= M−1(ξ)
(
b(ξ, g)bT (ξ, g) + C(ξ)

)
M−1(ξ). (8)

Furthermore, we adopt the minimax approach and find designs that ensure precise pa-

rameter estimation for the worst case scenario among all possible model departures in the

class of contamination functions (either G1 or G2).
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4.1 Optimality criteria

The optimality criteria we use correspond to classical optimality criteria but they are

based on the mean squared error matrix rather than just the information matrix. The

resulting minimax optimal designs minimise the corresponding criteria functions with

respect to the design, for the worst possible contamination function g.

The first criterion we study corresponds to the c-optimality criterion for estimating only

the parameter β, treating α as a nuisance parameter. This is often the case in time-to-

event experiments since β represents the explanatory variable effect and is therefore of

primary interest. We call ξ∗ a minimax c-optimal design for estimating β if (0 1)T is in

the range of MSE(ξ∗, g) and

ξ∗ = arg min
ξ

max
g∈G1 or G2

(0 1)MSE−1(ξ, g)

(
0

1

)
. (9)

We also consider the case corresponding to D-optimality, that is, when one is interested

in estimating both model parameters α and β. A design ξ∗ is minimax D-optimal if

ξ∗ = arg min
ξ

max
g∈G1 or G2

det {MSE(ξ, g)} . (10)

We note that under both optimality criteria the resulting optimal designs depend on

the parameter values and therefore, following Chernoff (1953), these are referred to as

locally optimal designs. The corresponding locally optimal designs for the case of the

exponential-based proportional hazards model being the true model are readily available

in Konstantinou et al. (2014).

4.2 Minimax c-optimal designs for β

We illustrate design search through the special case of a binary design space X = {0, 1}.
Hence a candidate design for estimating the parameter β can have either one or two

support points. However, in the former case the mean squared error matrix cannot be

defined since the information matrix M(ξ) is singular. Therefore, the designs must be

supported at both 0 and 1, and let ω and 1 − ω be their corresponding weights. The

following theorem gives the minimax c-optimal design for estimating β for both the cases

of g ∈ G1 and g ∈ G2 (see the appendix for a proof).
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Theorem 1. Regardless of whether the contamination function belongs in G1 or G2, the
minimax c-optimal design for estimating β on X = {0, 1} allocates a proportion of ω∗ of

observations at point x = 0, where

ω∗ =

√
1− e−ceα+β

√
1− e−ceα +

√
1− e−ceα+β

. (11)

The minimax c-optimal weight given in (11) is the same as the c-optimal weight for

estimating β when the exponential-based proportional hazards model is true (see Kon-

stantinou et al. (2014)). Therefore, the contamination function g does not affect the

minimax c-optimal design for β and the exponential distribution can be assumed without

loss of generality. This result is in line with the findings of Konstantinou et al. (2015) for

partial likelihood estimation.

4.3 Minimax D-optimal designs

To allow estimation of both parameters a design must have at least two support points. For

X = {0, 1} this means that both points 0 and 1 must be support points of the minimax D-

optimal design. However, now the choice of contamination class and therefore the worst

possible contaminant affects the optimal choice of design. Theorems 2 and 3 provide

analytical characterisations of the minimax D-optimal designs when g ∈ G1 and g ∈ G2
respectively and are proven in the appendix.

Theorem 2. Let g ∈ G1. The minimax D-optimal design on X = {0, 1} allocates a

proportion of ω∗ observations at point x = 0, where

ω∗ =

√
c21(1− e−ce

α+β) + 1
[√

c21(1− e−ce
α) + 1−

√
c21(1− e−ce

α+β) + 1
]

c21(e
−ceα+β − e−ceα)

. (12)

Theorem 3. Let g ∈ G2. The minimax D-optimal design on X = {0, 1} allocates a

proportion of ω∗ observations at point x = 0, where

ω∗ =

√
c22(e

α+β)2

(1−e−ceα+β )
+ 1

[√
c22(e

α)2

(1−e−ceα ) + 1−
√

c22(e
α+β)2

(1−e−ceα+β )
+ 1

]
c22

[
(eα)2

(1−e−ceα ) −
(eα+β)2

(1−e−ceα+β )

] . (13)

We note that the D-optimal design when model (1) is true allocates equal proportions

of observations at point 0 and 1. Furthermore, it is easy to check that both minimax
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D-optimal weights have limiting values as our uncertainty about the size of the contami-

nation, c1 or c2, increases. These are

lim
c1→∞

ω∗ =

√
1− e−ceα+β

√
1− e−ceα +

√
1− e−ceα+β

, when g ∈ G1,

and

lim
c2→∞

ω∗ =
eβ
√

1− e−ceα

eβ
√

1− e−ceα +
√

1− e−ceα+β
, when g ∈ G2.

Note that that the minimax D-optimal weight for g ∈ G1 given in (12) tends to the

c-optimal weight for β when the exponential-based proportional hazards model is true.

5 Numerical results

For time-to-event experiments comparing two treatments, or equivalently a placebo with

an active treatment, practitioners traditionally use the balanced design allocating equal

proportions of observations at the two treatments. Our aim here is to illustrate our

theoretical results on minimax optimal designs found in the previous section and also to

examine the efficiency of the balanced design in the presence of model uncertainty and

possibly censored data.

5.1 Minimax c-optimal designs for β

As shown in Section 4.2, the minimax c-optimal design for estimating β does not depend

on the contamination function g but is locally optimal through the parameter values

(see Theorem 1). To illustrate this parameter dependence we use β-values correspond-

ing to small, moderate and large covariate effects with various proportions of censored

observations. Following Kalish and Harrington (1988), the proportion of censoring is

characterised as the overall probability of censoring for model (1) had a balanced design

been used. That is,

1− 0.5(1− e−ceα)− 0.5(1− e−ceα+β).

Setting α = 0 for illustration purposes, this equation provides the value of the censoring

time c for each scenario.

We consider two different contamination scenarios. For g ∈ G1, we select the Gompertz

distribution for which g(t) = γt, where γ is the shape parameter. A value of γ = 0 would
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correspond to the exponential regression model. For the class G2 of possibly unbounded

contamination functions we study the Weibull distribution with shape parameter γ for

which g(t) = (γ − 1) ln t, so a value of γ = 1 would correspond to the exponential

distribution.

We present the case of γ = 1 for the Gompertz model and γ = 2 for the Weibull model.

For both contamination types, various different values for γ gave similar results, and are

thus omitted. Table 1 shows the minimax c-optimal design weights and the efficiencies

of the balanced design for several combinations of β-values and proportions of censoring

for the Gompertz model. The corresponding efficiencies of the balanced design for the

Weibull model are given in Table 2.

Table 1: Minimax c-optimal weights ω∗ at x = 0 and efficiency, in percent, of the balanced
design, for the Gompertz model with γ = 1 (in brackets)

proportion eβ(β)
of 0.03 0.1 0.25 0.5 2 4 10 33.3

censoring (-3.51) (-2.30) (-1.39) (-0.69) (0.69) (1.39) (2.30) (3.51)

0.1
0.47 0.47 0.47 0.48 0.52 0.53 0.53 0.53

(100.0) (100.0) (99.8) (99.8) (99.8) (99.7) (99.7) (99.7)

0.3
0.39 0.39 0.42 0.46 0.54 0.58 0.61 0.61

(99.4) (96.4) (97.4) (99.2) (99.2) (97.4) (95.4) (95.2)

0.5
0.22 0.31 0.38 0.44 0.56 0.62 0.69 0.78

(76.5) (87.2) (94.7) (98.6) (98.6) (94.7) (87.1) (76.3)

0.7
0.17 0.27 0.36 0.43 0.57 0.64 0.73 0.83

(70.1) (82.6) (92.5) (98.0) (98.0) (92.5) (82.6) (70.1)

0.9
0.15 0.25 0.34 0.43 0.58 0.66 0.75 0.85

(67.6) (79.8) (90.8) (97.4) (97.4) (90.8) (79.8) (67.7)

Table 2: Efficiency, in percent, of the balanced design, for the Weibull model with γ = 2

proportion eβ(β)
of 0.03 0.1 0.25 0.5 2 4 10 33.3

censoring (-3.51) (-2.30) (-1.39) (-0.69) (0.69) (1.39) (2.30) (3.51)
0.1 99.9 99.8 99.8 99.9 99.9 99.8 99.8 99.9
0.3 97.2 96.1 97.5 99.2 99.2 97.5 96.1 97.2
0.5 76.7 87.3 94.7 98.6 98.6 94.7 87.3 76.7
0.7 70.1 82.6 92.5 98.0 98.0 92.5 82.6 70.1
0.9 67.6 79.8 90.8 97.4 97.4 90.8 79.8 67.7

We observe that the minimax c-optimal design for β allocates more observations at point
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x = 0 when β > 0, that is, when the probability of occurrence of the event increases

with x, and less when β < 0. Therefore, the design puts more weight at the experimental

point where censoring is more likely. Furthermore, the balanced design is highly efficient

for small proportions of censoring whereas its efficiency drops below 90% for absolute

β-values of 2.3 or more and proportion of censoring of 50% or more.

We further observe that the efficiencies are almost identical for both contamination func-

tions. This can be explained by the form of the objective function (14), which is dominated

by the terms involving ω but not g.

5.2 Minimax D-optimal designs

The minimax D-optimal designs also depend on the choice of contamination class and

therefore on the values of the positive constants c1 or c2 (see Theorems 2 and 3). In order

to illustrate the contaminant dependence we give a numerical example that is based on

the study reported by Freireich et al. (1963), for which the maximum likelihood estimates

are α̂ = −2.163 and β̂ = −1.526 with approximately 30% of the observations right-

censored. We use these α̂ and β̂ values as our α and β and, from the characterisation

of the proportion of censoring defined in section 5.1, we take c = 30. Figures 1 and 2

illustrate the limiting behaviour of the minimax D-optimal weights ω∗ on x = 0 given in

(12) and (13) respectively as c1 and c2 increase.
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Figure 1: Minimax D-optimal weight at
point 0 for g ∈ G1
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Figure 2: Minimax D-optimal weight at
point 0 for g ∈ G2
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For both cases of G1 and G2, the weight at point x = 0 is smaller than 0.5, that is, the

D-optimal weight when model (1) is true, and its value further decreases with c1 and c2,

with the limiting weight for g ∈ G1 being larger than that for g ∈ G2.

To investigate the performance of the D-optimal minimax design with respect to con-

tamination functions g ∈ G1 and G2, we again considered the Gompertz and the Weibull

distributions respectively. It turned out that in this situation the results are less clear cut

than for c-optimality. In particular, the relative efficiencies of the balanced design were

close to 1 in all scenarios, and sometimes even exceeding 1. It is not surprising that an

optimal minimax design can be less efficient than a non-optimal design in some scenar-

ios, since the minimax designs protect against a whole class of contamination functions

whereas each scenario is characterised by just one function from this class. This phe-

nomenon is similar in nature to situations where parameter robust designs over a range

of values are outperformed for specific values in this range.

Overall, the conclusion here is that if estimation of both parameters, α and β, is of interest,

the balanced design is highly efficient, and can be used in practice. If, however, the main

focus is on the treatment effect β, then the minimax c-optimal designs are recommended.

6 Conclusions

In practice when parametric models are used for time-to-event experiments, often the

exponential distribution is naturally assumed for the event times along with the propor-

tional hazards assumption. However, this assumed model may only be an approximation

of the true underlying parametric proportional hazards model.

Following this practical scenario we consider deviations in a neighbourhood of the exponential-

based proportional hazards model which are specified by a contamination function g. Two

different classes of contamination functions are defined which can be used to include var-

ious forms of g but most importantly they include the next most frequently considered

parametric proportional hazards models based on the Weibull and Gompertz distribu-

tions.

Assuming that the time-to-event data are subject to Type-I censoring, we investigate

the construction of designs which are robust to model misspecifications. Following Wiens

(1992), we use optimality criteria corresponding to the classical c- and D-optimality crite-

ria but based on the mean squared error matrix, and find minimax optimal designs which

guard against the worst possible deviation from the assumed model. We therefore extend
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previous results on minimax optimal designs by considering both possibly censored data

as well as the class of proportional hazards models. However, our choice of contamination

classes enables us to use designs with finite support and therefore we provide analytical

characterisations of minimax c- and D-optimal designs.

We have established this framework for general designs, hence optimal designs on contin-

uous design spaces X corresponding to for example doses of a drug can easily be found

numerically. We have then illustrated design search for the important special case of a

binary design space, and have presented some analytical results.

Our results on minimax c-optimal designs for estimating the covariate coefficient β, show

that the deviations from the exponential distribution do not affect the optimal choice

of design if we remain in a proportional hazards framework. This is in accordance with

the result for partial likelihood estimation, stating that under Type-I censoring the ex-

ponential distribution can be assumed for design search without loss of generality (see

Konstantinou et al. (2015)).

If estimation of both parameters is required, that is, ifD-optimality is the desired criterion,

then Theorems 2 and 3 give the minimax optimal weights for deviations in the class G1
and G2 respectively. Both of these weights have limiting values if we allow the deviations

to become large and in particular when g ∈ G1 the minimax D-optimal weight tends

to the c-optimal weight corresponding to the case of the assumed model being true, as

c1 →∞. This again highlights the importance of the latter design in a model uncertainty

situation.

Our analytical characterisations of minimax optimal designs along with the numerical

results of Section 5 suggest that if the main interest is in estimating the treatment effect

we have to move away from the traditional balanced design to guard against misspecifi-

cations of the assumed exponential model. A suitable candidate for practical use would

appear to be the classical c-optimal design for estimating the covariate effect assuming

the exponential-based proportional hazards model. It is minimax c-optimal for both con-

tamination classes, is (in the limit) minimax D-optimal for G1, and is also highly efficient

if Cox’s proportional hazard model is fitted via partial likelihood estimation (see Kon-

stantinou et al. (2015)). It is also easy to find using the results in Konstantinou et al.

(2014).

The designs derived in this paper are locally optimal, hence - while robust against model

misspecifications - they depend on the values of the unknown model parameters. Finding

designs which are robust to both sources of uncertainty could be an interesting area

of future research. A promising starting point for such an investigation could be the
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parameter robust designs derived in Konstantinou et al. (2014).
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Appendix

Proof of set of expressions in (5)

The true underlying model specified by (2) has corresponding probability density function

given by

f2(yj) = exp

{
α + βxj +

g(yj)√
n

}
exp

{
−eα+βxj

∫ yj

0

eg(s)/
√
n ds

}
, j = 1, . . . , n.

Taking this into account we obtain

E(δj) = Pj = P (Yj = Tj) =

∫ c

0

f2(yj) dyj = 1− exp

{
−eα+βxj

∫ c

0

eg(s)/
√
n ds

}
.

Since we consider small deviations from the exponential-based proportional hazards model,

we can take the Taylor expansion of eg(s)/
√
n around g(s) = 0. Then the above expression

becomes

E(δj) = 1− exp

{
−eα+βxj

∫ c

0

1 +
g(s)√
n

+ o

(
g(s)√
n

)
ds

}
= 1− exp

{
−ceα+βxj

}
exp

{
−eα+βxj

[∫ c

0

g(s)√
n
ds+ o

(
1√
n

)]}
.

By further expanding around
∫ c
0
g(s)√
n
ds+ o

(
1√
n

)
= 0, we find that the expectation of the

random variable δj is

E(δj) = 1− e−ce
α+βxj

+ eα+βxje−ce
α+βxj

∫ c

0

g(s)√
n
ds+ o

(
1√
n

)
,
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where the first term, 1 − e−ceα+βxi , corresponds to the expectation if the assumed expo-

nential model was in fact the true model. Using this expression the variance of δj can be

found without making any further calculations and is given by

V ar(δj) = Pj(1− Pj) = e−ce
α+βxj

(1− e−ce
α+βxj

)

+ eα+βxje−ce
α+βxj

(2e−ce
α+βxj − 1)

∫ c

0

g(s)√
n
ds+ o

(
1√
n

)
.

We note that

δjYj =

Yj, if Yj = Tj

0, if Yj = c

Following along the same lines as for the random quantity δj, that is, using two consecutive

Taylor expansions, we obtain

E(δjYj) =
(1− e−ce

α+βxj
)

eα+βxj
− ce−ce

α+βxj
+ e−ce

α+βxj
(ceα+βxj + 1)

∫ c

0

g(s)√
n
ds

−
∫ c

0

g(yi)√
n
e−yje

α+βxj
dyj + o

(
1√
n

)
,

V ar(δjYj) =− c2e−ce
α+βxj

(1 + e−ce
α+βxj

) +
(1− e−2ce

α+βxj
)

(eα+βxj)2
− 2ce−2ce

α+βxj

eα+βxj
+ e−ce

α+βxj

(
c2eα+βxj + 4ce−ce

α+βxj
+

2e−ce
α+βxj

eα+βxj
+ 2c2eα+βxje−ce

α+βxj

)∫ c

0

g(s)√
n
ds

−

∫ c

0

2e−yje
α+βxj

(
yj +

e−ce
α+βxj

eα+βxj
+ ce−ce

α+βxj

)
g(yj)√
n
dyj + o

(
1√
n

)
,

Cov(δj, δjYj) = e−ce
α+βxj

(1− e−ce
α+βxj

)/eα+βxj − ce−2ce
α+βxj

+ e−ce
α+βxj

(
2ceα+βxje−ce

α+βxj
+ 2e−ce

α+βxj − 1
)∫ c

0

g(s)√
n
ds

− e−ce
α+βxj

∫ c

0

g(yj)√
n
e−yje

α+βxj
dyj + o

(
1√
n

)
.
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The set of expressions given in (5) then follow since

E

(
∂l

∂α

)
= E(δj)− eα+βxjE(δjYj)− ceα+βxjE(1− δj),

V ar

(
∂l

∂α

)
= V ar(δj) + e2(α+βxj)V ar(δjYj) + c2e2(α+βxj)V ar(δj)

− 2eα+βxj(1 + ceα+βxj)Cov(δj, δjYj),

E

(
− ∂

2l

∂α2

)
= −eα+βxj [E(δjYj) + cE(1− δj)] .

Proof of Theorem 1

Let ξ = {0, 1;ω, 1− ω}. The objective function defined in (9) becomes[
eα+β

(1− e−ceα+β)

∫ c

0

e−yje
α+β

g(yj) dyj −
eα

(1− e−ceα)

∫ c

0

e−yje
α

g(yj) dyj

]2
+

1

ω(1− e−ceα)

+
1

(1− ω)(1− e−ceα+β)
. (14)

The minimax c-optimal design for β is found by minimising the above expression with

respect to ω for the worst possible contaminant. We observe that the term involving the

contamination function g is independent of the weight ω and therefore, it is enough to

minimise
1

ω(1− e−ceα)
+

1

(1− ω)(1− e−ceα+β)
,

which gives the optimal weight

ω∗ =

√
1− e−ceα+β

√
1− e−ceα +

√
1− e−ceα+β

.

Proof of Theorem 2

For ξ = {0, 1;ω, 1− ω} the determinant of the mean squared error matrix is given by

1

ω(1− ω)(1− e−ceα)(1− e−ceα+β)

{
1 + ω

[
eα
∫ c
0
e−yje

α
g(yj) dyj

]2
(1− e−ceα)

+ (1− ω)

[
eα+β

∫ c
0
e−yje

α+β
g(yj) dyj

]2
(1− e−ceα+β)

}
.
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Since g ∈ G1 then maxyj∈[0,c] |g(yj)| ≤ c1 ∀j = 1, . . . , n and so∣∣∣∣∣
∫ c

0

e−yje
α+βx

g(yj) dyj

∣∣∣∣∣ ≤
∫ c

0

e−yje
α+βx |g(yj)| dyj ≤

∫ c

0

e−yje
α+βx

c1 dyj

= c1(1− e−ce
α+βx

)/eα+βx, ∀x ∈ {0, 1}

Therefore, for contamination functions g in the class G1 the maximum value of the deter-

minant of the mean squared error matrix is given by

c21
ω(1− e−ceα)

+
c21

(1− ω)(1− e−ceα+β)
+

1

ω(1− ω)(1− e−ceα)(1− e−ceα+β)
.

Taking the first order derivative of this expression with respect to ω and equating it to

zero gives

c21ω
2(1− e−ceα)− c21(1− ω)2(1− e−ceα+β)− (1− 2ω) = 0

⇐⇒ ω1,2 =
−[c21(1− e−ce

α+β
) + 1]±

√
c21(1− e−ce

α) + 1
√
c21(1− e−ce

α+β) + 1

c21(e
−ceα+β − e−ceα)

.

When β is positive, it is easy to see that both the numerator and the denominator of the

above expression are non-positive. We reject the negative root of the numerator as

− c21(1− e−ce
α+β

)− 1−
√
c21(1− e−ce

α) + 1
√
c21(1− e−ce

α+β) + 1

< −c21(1− e−ce
α+β

) + c21(1− e−ce
α

) = c21(e
−ceα+β − e−ceα),

and the weight must always be always less than or equal to unity. In the case of negative

β-values the denominator is positive and since ω > 0, again we accept the positive root.

Therefore, whatever the sign of the parameter β, the minimax D-optimal weight at point

0 is given by (12).

Proof of Theorem 3

Since g ∈ G2 then

∣∣∣∣∣
∫ c

0

e−yje
α+βx

g(yj) dyj

∣∣∣∣∣ ≤ c2 ∀x ∈ {0, 1}. Therefore, for a fixed design

ξ supported at 0 and 1 with corresponding weights ω and 1 − ω the determinant of the

19



mean squared error matrix is smaller than or equal to

1

ω(1− ω)(1− e−ceα)(1− e−ceα+β)

{
1 + ω

(c2e
α)2

(1− e−ceα)
+ (1− ω)

(c2e
α+β)2

(1− e−ceα+β)

}
.

Taking the first order derivative of this expression with respect to ω and equating it to

zero gives

(c2e
α)2

(1− e−ceα)
ω2 − (c2e

α+β)2

(1− e−ceα+β)
(1− ω)2 − (1− 2ω) = 0

⇐⇒ ω1,2 =
−
[

(c2eα+β)2

(1−e−ceα+β )
+ 1
]
±
√

(c2eα)2

(1−e−ceα ) + 1
√

(c2eα+β)2

(1−e−ceα+β )
+ 1

c22

(
(eα)2

(1−e−ceα ) −
(eα+β)2

(1−e−ceα+β )

) .

When β is positive, it is easy to check that both the numerator and the denominator of

the above expression are non-positive. We reject the negative root of the numerator since

− (c2e
α+β)2

(1− e−ceα+β)
− 1−

√
(c2eα)2

(1− e−ceα)
+ 1

√
(c2eα+β)2

(1− e−ceα+β)
+ 1

< − (c2e
α+β)2

(1− e−ceα+β)
< c22

(
(eα)2

(1− e−ceα)
− (eα+β)2

(1− e−ceα+β)

)
,

and the weight must always be always less than or equal to unity. In the case of negative

β-values the denominator is positive and since ω > 0, again we accept the positive root.

Therefore, whatever the sign of the parameter β, the minimax D-optimal weight at point

0 is given by (13).
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