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Abstract When analyzing time series which are supposed to exhibit long-range dependence (LRD), a basic

issue is the estimation of the LRD parameter, for example the Hurst parameter H ∈ (1/2, 1). Conventional

estimators of H easily lead to spurious detection of long memory if the time series includes a shift in the

mean. This defect has fatal consequences in change-point problems: Tests for a level shift rely on H, which

needs to be estimated before, but this estimation is distorted by the level shift.

We investigate two blocks approaches to adapt estimators of H to the case that the time series includes

a jump and compare them with other natural techniques as well as with estimators based on the trimming

idea via simulations. These techniques improve the estimation of H if there is indeed a change in the mean.

In the absence of such a change, the methods little affect the usual estimation. As adaption, we recommend

an overlapping blocks approach: If one uses a consistent estimator, the adaption will preserve this property

and it performs well in simulations.

Keywords Hurst parameter; estimation; jump; long-range dependence; long memory; change-point

problems

1 Introduction

Long-range dependence is an issue in several fields of time series analysis, ranging from climate sciences

[45] and network data traffic [13], [31], [27] to economics and finance. In the latter context, volatilities may

exhibit long memory [6], and there are discussions whether long-range dependence can be found in stock

market prices [54], [7], [2], [9], [32]; for a survey on long-range dependence in economics, see [1].
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To make ideas precise, we consider a stochastic process (Xi)i≥1 of the type

Xi = µi + εi, (1)

where (µi)i≥1 is a sequence of unknown means and

εi = G(ξi), i ≥ 1, (2)

is a functional of a stationary Gaussian process (ξi)i≥1 with E[ξi] = 0 and E[ξ2
i ] = 1 and autocovariance

function

γ(k) = k−DL(k), k ≥ 1, (3)

where 0 < D < 1 and L(k) is a slowly varying function. G : R → R is a measurable function satisfying

E[G(ξi)] = 0. The process (ξi)i≥1 exhibits long-range dependence (LRD) due to the non-summability of

the autocovariances, and depending on the transformation G, it passes the LRD on to the process (Xi)i≥1.

That means, we consider a stochastic process (Xi)i≥1 which is an instantaneous functional of a stationary

Gaussian LRD process, which has unknown means and may exhibit LRD.

The exponent D ∈ (0, 1) in (3) determines the intensity of the LRD. It is more common to use the

fractional differencing parameter d = (1−D)/2 ∈ (0, 1/2) or the Hurst parameter H = 1−D/2 ∈ (1/2, 1) in

the context of LRD and stationary time series. The higher H is, the slower is the decay of the autocovariance

and the stronger is the dependence of the random variables. The limiting value H = 1/2 implies short range

dependence.

There are various approaches to estimate the Hurst parameter. A parametric Whittle approach involving

the approximate log-Likelihood was introduced by [53]. Based on this estimation technique [30] proposed

the semiparametric local Whittle estimator, while consistency and normality of this estimator was shown

by [39]. Prefiltering and tapering were considered by [42] where they studied the performance of the local

Whittle estimator with and without both preprocessing procedures. Consistency and the distribution of the

local Whittle estimator in the nonstationary case were considered by [48] and [49] involving data tapers.

Dependence of the convergence rate and the limit distribution on H was introduced in [42]. Cases in which

the local Whittle estimator is not consistent are discussed in [36]. Another semiparametric estimator of the

Hurst parameter based on the log-periodogram regression was proposed by [14]. In contrast to the local

Whittle estimator it has a closed form. While [14] used all frequencies and the corresponding periodogram

values in the formula of the estimator, [40] introduced a trimmed version of this estimation procedure by

truncating the lowest and the highest frequencies to improve the performance of the estimator.

If one wants to test whether a sample X1, . . . , Xn includes a change-point, i.e., a point at which the

structure of the data changes (examples of such changes are given below), knowledge about H is essential

since it is involved in the scaling of test statistics. So is the function L which appears in (3), but we do not

concentrate on this issue in this article.

Change-point problems for LRD time series have been in the focus of research for many years. They may

concern a possible change in the mean; here, one wants to test the null hypothesis

H0 : µ1 = . . . = µn (4)

of a constant mean against the alternative

A : µ1 = . . . = µk 6= µk+1 = . . . = µn for some k ∈ {1, . . . , n− 1} (5)
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that there is a change-point at which the level shifts. We will refer to this test problem as (H0, A). CUSUM-

type tests for the test problem (H0, A) have been studied e.g. by [20], [28] or [50]. In [51] a test procedure

based on Wilcoxon rank statistics is analysed, while [10] proposed a test which is based on the Wilcoxon

two-sample test statistic:

Wk,n :=
1

ndn

k∑
i=1

n∑
j=k+1

(
1{Xi≤Xj} −

1

2

)
(6)

where

d2
n ∼ cr n2−r(2−2H)Lr(n) (7)

with the Hermite rank r ∈ N of the class of functions {1G(ξt)≤x − F (x), x ∈ R} and cr = [2r!/(1 − (2 −
2H)r)(2− (2− 2H)r)] being the right scaling for Wk,n to have a non-degenerate limit distribution under H0

if the Xi have a continuous distribution function F . The proposed change-point test for the test problem

(H0, A) rejects the null hypothesis H0 of no change-point for large values of the test statistic

Wn := max
1≤k≤n

|Wk,n| . (8)

Under H0 [10] proved that Wn with r = 1 converges in distribution to

1

2
√
π

sup
0≤ν≤1

|Z1(ν)− νZ1(1)|,

where (Z1(ν))ν≥0 denotes the standard fractional Brownian motion with Hurst parameter H if the obser-

vations are strictly monotone functions of a stationary Gaussian process (ξi)i≥1 with mean zero, variance 1

and autocovariance function as in (3). Upper quantiles of this asymptotic distribution can be used as critical

values for the test. For details and critical values, see [10].

Since the scaling function d2
n in (7) depends on the Hurst parameter H which is not known in practice,

one has to use a suitable consistent estimator Ĥ of H to apply the test. The modified test statistic is then

defined as follows:

W̃n =

√
n2−r(2−2H)

n2−r(2−2Ĥ)
max

1≤k≤n
|Wk,n| = nr(H−Ĥ) max

1≤k≤n
|Wk,n| (9)

Taking the logarithm of W̃n yields

log W̃n = r(H − Ĥ) · log n+ log max
1≤k≤n

|Wk,n| (10)

Combining the continuous mapping theorem with Slutsky’s theorem it is obvious from (10) that W̃n has the

same limit distribution as Wn as long as Ĥ has a convergence rate faster than log n. This is e.g. satisfied by

the Geweke and Porter-Hudak (GPH) and the local Whittle (LW) estimator, see Section 5 in [4] or [22].

Other issues under a structural change occur in the context of testing for long range dependence, see

e.g. [12] where the confusion of long memory with structural changes is stated. This theory is supported

by [17] who consider the relation between the presence of long memory and the number of detected level

shifts by the Schwarz or Bayesian Information criterion: spurious change-points may be found if long range

dependence is not taken into account.

In this article, we will treat the situation where a change in the mean occurs. Note that there are other

change-point problems: changes in the marginal distribution of the observations [16], in the coefficients of

linear regression models where the errors are LRD [29] or in the dependence structure [19], [37]. All these

methods have in common that they require knowledge of the LRD parameter of the data, be it D as in
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(3), the Hurst exponent H = 1 −D/2 or other related quantities to describe the intensity of LRD. For an

overview about change-point analysis, see the book of [8] or the recent article by [25].

For an overview on estimators of the LRD parameter see [46] or [47]. Unfortunately, when one estimates

H in order to apply a change-point test, one may have to deal with a time series that includes a jump, and

such a jump intrinsically gets in the way of estimating the LRD parameter, since the usual estimators do

not consider a change-point and likely misspecify the structure of the data as a more intense LRD. As a

consequence, the power of change-point tests decreases, because the jump may cause an overestimation of

H which may bring the test to interpret the jump as LRD behavior. In [44] it is reported that tests for a

break in persistence, i.e., a break in the long range-dependence structure, are not robust against a shift in

the mean and must be adapted in this case. For an overview about how structural breaks and trends lead to

misspecification of LRD and about methods for distinguishing both effects, see the survey of [43], who also

points out that change-point estimators cannot distinguish between LRD and change-points.

It is thus a challenging problem to distinguish between behavior that originates from long memory and

behavior that originates from change-points. CUSUM-type tests which discriminate between an LRD time

series and a short-range dependent time series with changes in the mean have been proposed by [5] and

by [41], which both contain a lot of references concerning LRD and structural breaks. We focus to some

extent on the situation where a LRD time series may possess one change-point, but also consider situations

with multiple breaks in our simulations. In this situation, especially for change-point tests which usually

require the true, but unknown LRD parameter, there is a strong need for methods which estimate the LRD

parameter without being affected strongly by a level shift. Our goal is thus to develop estimators for H which

are on the one hand not heavily biased by a jump in the mean of the data, and which on the other hand do

not lose much efficiency if there is no jump. To achieve this, [21] proposed usage of a local Whittle estimator

which requires the knowledge of the number of change-points. Such a method was applied to German stock

market data by [18], whereas [33] used a trimmed version of the Geweke and Porter-Hudak estimator to

remove the effect of the change in the mean by trimming the lower frequencies in the spectral domain. The

estimation method of [24] is also based on trimming the lowest frequencies, applied to the local Whittle

estimator, originally proposed by [30]. We will restrict ourselves on the latter two approaches, since the

method proposed by [21] requires knowledge about the number of level shifts.

We investigate a broader approach based on the idea that estimation of the LRD parameter in the

presence of a jump should not use the whole time series, but should first segregate the jump or concentrate

on local environments in the sample. This general idea can be combined with any usual estimation technique.

We examine the overlapping and the non-overlapping blocks approach along with two further variants of this

idea for comparison and verify that they improve the respective standard estimators which ignore jumps.

We compare our proposals with the adapted approaches of [33] and [24].

The rest of this paper is organized as follows: In Section 2 we present our adaption techniques together

with the methods of [33] and [24] for estimating H under a jump in the mean. In Section 3 we prove the

consistency of the blocks estimators, and in Section 4, we analyse the performance of our methods in a large

set of Monte Carlo simulations. In Section 5, we apply the estimation methods to real data. In Section 6, we

give a summary and an outlook.
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2 Adaption techniques

As noted before, conventional estimators of H tend to be positively biased by level shifts. We will investigate

several general techniques to adapt estimators for H to time series with a jump in the mean. These techniques

can be applied in combination with any of the generic estimators reviewed in Subsection 2.1.

2.1 Generic estimation techniques

In what follows we will involve the two following generic techniques in the estimation of the Hurst parameter.

The regression based GPH estimator, which was first introduced in [14], uses the spectral representation

of the long memory processes. The regression is based on the representation

f(λ) = L(λ)λ2H−1 (11)

of the spectral density f(λ) as the frequency λ decreases to zero, and the corresponding periodogram I(λj)

at frequency λj = 2πj/n, j = 1, ..., n. The GPH estimator is defined as

ĤGPH = −0.5

b∑
j=1

(Yj − Ȳ ) log I(λj)/

b∑
j=1

(Yj − Ȳ )2 + 0.5, (12)

where Yj = log |1 − exp(−iλj)|, Ȳ = b−1
∑b
j=1 Yj and b = [nu], u > 0, is the bandwidth parameter which

satisfies b log(b)/n = o(1) for the consistency of the parameter estimator (see [22]).

The local Whittle (LW) estimator ĤLW proposed in [30] minimizes the following approximate frequency

domain likelihood function:

R(H) = log

 1

b− l + 1

b∑
j=1

λ2H−1
j I(λj)

− (2H − 1)
1

b

b∑
j=1

log(λj) (13)

where the relationship

f(λ) = Gλ2H−1 (14)

as the frequency λ decreases to zero with G ∈ (0,∞) is assumed.

2.2 Pre-estimating the jump

The most intuitive approach is removal of a jump before application of any of the previous methods. For

this purpose, we estimate the position and the height of a jump, ignoring that we do not know the LRD

parameter H yet, and then either eliminate the jump and estimate H on the whole (now) approximately

jump-free time series, or we estimate H on the observations before and after the jump separately and take

the average as an estimate for H on the overall sample.

We get down to details: Given the observations X1, . . . , Xn, we apply a change-point test. In principle,

we may take any change-point test we like. Here, we choose the Wilcoxon change-point test from [10] (see

section 1) which rejects the null hypothesis H0 (that there is no change in the mean) for large values of the

test statistic

Wn = max
1≤k≤n

|Wk,n| ,



6 Aeneas Rooch, Ieva Zelo, Roland Fried

where

Wk,n :=
1

ndn

k∑
i=1

n∑
j=k+1

(
1{Xi≤Xj} −

1

2

)
. (15)

For more details see [10]. The change-point is supposed to take place after the observation Xk∗ where

k∗ ∈ {1, . . . , n− 1} is the value of k for which |Wk,n|, as defined in (15), takes its maximum value.

Note that in Wn, H is only included in the scaling factor (ndn)−1. Thus, knowledge about the LRD

parameter H is only essential for a test decision if there is a change-point; the possible location k∗ is

unaffected. This allows us to obtain a candidate for the jump location without knowing H as

k∗ = arg max
1≤k≤n−1

∣∣∣∣∣∣
k∑
i=1

n∑
j=k+1

(
I{Xi≤Xj} −

1

2

)∣∣∣∣∣∣ . (16)

The estimator k∗/n is a weakly consistent estimator for the true jump location τ ∈ (0, 1) as can be proven

using the arguments of [20]. If there is a jump after X[τn] for a τ ∈ (0, 1), k∗ estimates its location [τn]; if

there is no jump in the time series, k∗ is some more or less meaningless index in {1, . . . , n}, but it will not

affect the following estimation procedure.

Given the observations X1, . . . , Xn and an estimate k∗ for the jump location as in (16), we divide the

observations into two parts

X1, . . . , Xk∗ and Xk∗+1, . . . , Xn.

The jump height can be estimated by

ĥ =
1

n− k∗
(Xk∗+1 + . . .+Xn)− 1

k∗
(X1 + . . .+Xk∗),

and so we can remove the most plausible jump by considering the time series

X1, . . . , Xk∗ , Xk∗+1 − ĥ, . . . , Xn − ĥ.

On this new time series, which is regarded as jump-free, we can estimate H; we denote this estimate, which

is based on pre-estimating and one long time series, by Ĥpre,1.

Alternatively, we can estimate H on both arising blocks separately, which yields two estimates Ĥ
(1)
k∗ and

Ĥ
(2)
k∗ , and take their average as an estimate for H on the whole sample:

Ĥpre,2 =
Ĥ

(1)
k∗ + Ĥ

(2)
k∗

2
.

Remark 1 (i) Other change-point tests which can be used to pre-detect the jump (instead of the Wilcoxon

test based on (16) above) may need the LRD parameter H – which is just our aim when applying the

change-point tests here. A way out of this vicious circle could be an iterative procedure: Starting with an

estimate of H on the whole sample, one could apply the change-point test. This yields, by the just described

pre-estimating, a new estimate for H, which can then be used again to execute the change-point test, and

so on. One can cherish hopes that such a procedure converges or yields, when stopped by a certain rule, a

useful estimate for H. This bears, of course, the risk that the initial estimation of H is so heavily affected

by the jump that the jump is not detected.

(ii) Such an iterative procedure cannot be used to refine the estimator Ĥpre,1: The removal of the jump is

error prone since both the location and the height of the jump are estimated, so after removing the jump,

one could again apply the change-point test, remove the resulting jump and estimate H on this new (double)
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jump-free sample, and so on; one could stop the iterations when the estimated value of H does not change

significantly (for example when the difference between the new estimate and the estimate from the previous

iteration is ≤ 0.01). But this does not lead to a useful estimate since the technique removes too much of the

structure of the data and H is heavily underestimated.

(iii) It is not possible to refine Ĥpre,2 with such an iterative procedure: As described, the estimation of the

jump location by k∗ is not affected by the value of H – we would obtain the same estimate Ĥpre,2 in any

iteration step.

2.3 Estimation from two blocks

Instead of application of a change-point test statistic for splitting the sample into two subsets, we can consider

any splitting of the data into two blocks of reasonable size,

X1, . . . , Xk and Xk+1, . . . , Xn

and estimate H on each block separately. This is done for all possible cutting points k. Because the estimation

of LRD intrinsically needs many observations, it is not sensible if one allows early or late cutting points which

produce a small block on which the estimation of H is useless. We consider cutting points k in the set

K = {klow, klow + 1, . . . , kup}

with

klow = max{[n/10], 10}+ 1

kup = n− klow

leading to |K| = kup − klow + 1 pairs of estimations (Ĥ
(1)
k , Ĥ

(2)
k ) of H, derived from the first and the second

block.

As an estimate for the Hurst parameter of the whole sample, we consider two functions of Ĥ
(1)
k , Ĥ

(2)
k , k ∈

K: the mean value of the estimate on the first and the second block, averaged over all cutting points,

Ĥmean =
1

|K|
∑
k∈K

Ĥ
(1)
k + Ĥ

(2)
k

2

and the mean value of the estimate on the first and the second block

Ĥmindiff =
Ĥ

(1)
k∗ + Ĥ

(2)
k∗

2

divided by that cutting point k∗ where both estimates differ least:

k∗ = arg min
k∈K

∣∣∣Ĥ(2)
k − Ĥ

(1)
k

∣∣∣ .
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2.4 Estimation from many blocks

The techniques presented in the previous subsections rely on the existence of only one jump and finding an

adequate splitting into two blocks. Our main proposal extends this idea and splits the data into many blocks

Xc−w, Xc−w+1, . . . , Xc, . . . , Xc+w

of length w̄ = 2w + 1 around the center Xc through the time series X1, . . . , Xn. For each c ∈ M = {w +

1, w+ 2, . . . , n−w}, we estimate H on the window around the center Xc, leading to |M | = n− 2w estimates

Ȟw̄,c for H. Since estimates Ȟw̄,c, c ∈M , derived from moderately large windows will have high variability,

we average all estimations and use

ĤO,w̄ =
1

|M |
∑
m∈M

Ȟw̄,m (17)

to estimate the Hurst parameter H.

As usually, the choice of the length of the block or window is an important issue. We choose the flank

length w = w(n) (which results in a window of size w̄ = 2w + 1) as a function of the overall sample size n,

w = w(n) = max
{

[
√
n], 10

}
(w̄ = 2w + 1),

since the square root of n has proven to be a good choice in many contexts and since we do not want the

window to be too small as the estimation of an LRD parameter gets bad for a short sample of observations.

For the reason of comparison, we also analyse w as the total window size.

Whenever data are separated into blocks, it is much discussed if the blocks should be overlapping or

non-overlapping. In our context, the latter approach has the advantage that each jump affects only a single

block and thus results only in one most likely erroneous estimate. So it is interesting (and a contribution to

the above discussion) to analyse also separation into non-overlapping blocks

X1, . . . , Xw̄, Xw̄+1, . . . , X2w̄, X2w̄+1, . . . , X3w̄, . . . X([n/w̄]−1)w̄+1, . . . , X[n/w̄]w̄

of length w̄ = 2w + 1, resulting in [n/w̄] estimates Ȟw̄,k, k = 1, . . . , [n/w̄], for H. Again it seems reasonable

to average and consider

ĤNO,w̄ =
1

[n/w̄]

[n/w̄]∑
k=1

Ȟw̄,k (18)

as final estimate for the Hurst parameter H. As block sizes, it is plausible to consider the same choices w

and w̄ as above, since
√
n is widely used in the context of moving windows.

2.5 Trimmed estimators

A trimmed version of the regression based GPH estimator was investigated by [33] where the lowest frequen-

cies are trimmed, as these are affected by changes in the mean. Let I(λj) be the value of the periodogram

at frequency λj = 2πj/n. The trimmed GPH estimator is

Ĥtr
GPH = −0.5

b∑
j=l

(Yj − Ȳ ) log I(λj)/

b∑
j=l

(Yj − Ȳ )2 + 0.5,
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where Yj = log |1 − exp(−iλj)| and Ȳ = (b − l + 1)−1
∑b
j=l Yk. The trimming parameter is denoted by l =

[n1/2+ε], ε > 0, while b = [nu], u > 0, is the bandwidth parameter. Moreover, the adapted GPH estimation

technique was proposed, where the trimming parameter is computed recursively. Let li = [n(2−2Ĥi)/(3−2Ĥi)+ε],

where Ĥ1 is computed using l1 = [n1/2+ε]. The value Ĥi denotes the estimate computed using the trimming

parameter li. Then the Hurst parameter is estimated by Ĥi if |Ĥi − Ĥi−1| < 0.01 or i > 9. The authors

suggest values ε = 0.05 and u = 0.8. We will use the adapted trimmed estimator for comparison in this

paper.

Similarly, [24] proposed the trimmed version of the local Whittle estimator, where the computation of

the estimate is also based only on the higher frequencies – this shall take into account a change in the mean.

The trimmed local Whittle estimator Ĥtr
LW minimizes the function

R(H) = log

 1

b− l + 1

b∑
j=l

λ2H−1
j I(λj)

− (2H − 1)
1

b− l + 1

b∑
j=l

log(λj),

where l is the trimming parameter and b is the bandwidth parameter. Suggested values are l = [1 + 0.2n0.62]

and b = [0.8n0.79].

3 Inheriting asymptotic consistency

In this section we investigate conditions for the asymptotic consistency of our main proposal to split the

data into many blocks and estimate H separately. It turns out that the estimators of H constructed using

overlapping or non-overlapping blocks inherit asymptotic consistency in the absence or presence of one or

even several jumps, as is demonstrated in the following. This is e.g. satisfied by the GPH-estimator under

appropriate assumptions (see remark 2, part (i)).

Theorem 1 Let (ξi)i≥1 be a stationary Gaussian LRD process, with mean 0, variance 1 and autocovariances

satisfying (3) and consider observations X1, . . . , Xn of the type Xi = G(ξi) + µi for a measurable function

G : R→ R satisfying E[G(ξi)] = 0 and µi ∈ R. Consider the null hypothesis

H0 : µ1 = . . . = µn.

and the alternative that at least one change in the mean occurs. Consider the overlapping blocks estimator

(17) with a monotone increasing window length w̄ = o(n). As generic estimation method Ȟw̄,j on the j-th

window choose any estimator Ĥ for H which is asymptotically consistent under H0. Under the modified

alternative A (see (5)) where we are confronted with m = o(n/w̄) structural breaks we assume that the

variance in the perturbed block grows sufficiently slowly with the sample size. Let K̃ denote the index set of

the windows which include a jump, and that on these windows

V ar
(
Ȟw̄,k̃

)
= o

(
n2

(mw̄)2

)
, (19)

E
(
Ȟw̄,k̃ −H

)
= o

( n

mw̄

)
, k̃ ∈ K̃. (20)

Then the non-overlapping blocks estimator (18) is asymptotically unbiased and MSE-consistent.
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Proof Due to the stationarity of the Xi under the null hypothesis H0 we have

E
(
ĤNO,w̄ −H

)
=

1

n− w̄ + 1

n−w̄+1∑
j=1

E(Ȟw̄,j −H) =
n− w̄ + 1

n− w̄ + 1
E(Ȟw̄,1 −H)→ 0.

In the presence of level shifts we obtain by (20)

E
(
ĤNO,w̄ −H

)
=

1

n− w̄ + 1

n−w̄+1∑
j=1,j /∈K̃

E
(
Ȟw̄,j −H

)
+

1

n− w̄ + 1

∑
k̃∈K̃

E
(
Ȟw̄,k̃ −H

)
=
n− w̄ + 1−mw̄

n− w̄ + 1
E(Ȟw̄,1 −H) +

mw̄

n− w̄ + 1
o
( n

mw̄

)
→ 0. (21)

This proves the asymptotic unbiasedness. Moreover, we obtain for the variance

V ar(ĤNO,w̄) =
1

(n− w̄ + 1)2

n−w̄+1∑
k=1

V ar(Ȟw̄,k) +

n−w̄+1∑
k=1,j 6=k

Cov(Ȟw̄,k, Ȟw̄,j)


≤ 1

(n− w̄ + 1)2

n−w̄+1∑
k=1

V ar(Ȟw̄,k) +

n−w̄+1∑
k=1,j 6=k

√
V ar(Ȟw̄,k)

√
V ar(Ȟw̄,j)


=

mw̄

(n− w̄ + 1)2
V ar(Ȟw̄,k̃) (22)

+
n− w̄ + 1−mw̄

(n− w̄ + 1)2
V ar(Ȟw̄,1) (23)

+
2mw̄(n− w̄ + 1−mw̄)

(n− w̄ + 1)2

√
V ar(Ȟw̄,k̃)

√
V ar(Ȟw̄,1) (24)

+
mw̄(mw̄ − 1)

(n− w̄ + 1)2
V ar(Ȟw̄,k̃) (25)

+
(n− w̄ + 1−mw̄)(n− w̄ −mw̄)

(n− w̄ + 1)2
V ar(Ȟw̄,1) (26)

→ 0

ut

Remark 2 (i) We assume that we are dealing with mw̄ jump-contaminated overlapping windows which is

the maximum number and therefore represents the worst case scenario. The terms in (23) and (26) tend to

zero as n→∞, since we are dealing with a consistent estimator of the Hurst parameter.

The terms (22), (24) and (25) represent the decomposition of the covariance part where it has to be ensured

that the growth rate of V ar(Ȟw̄,k̃) is not faster than the decay rate of the remaining factors. This is e.g.

satisfied by the ordinary GPH estimator if the window length w̄, bandwidth b = [w̄u] and the number of

jumps m satisfy

w̄2

nb
= O(1), (27)

log3(b)mw̄

n

(
m+

w̄2−2H

b

)
= o(1). (28)

Condition (27) requires that the window length does not grow faster than the number of blocks. To be on the

safe side we assume that we are dealing with a sample contaminated by structural changes so the interest in

considering only few windows does not arise. Condition (28) guarantees that the number of level shifts grows

sufficiently slowly. Moreover, this condition ensures that the test statistic W̃n in (9) has the same limiting

distribution as Wn.
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Proof of Remark 2 (i) The variance of the ordinary GPH estimator is given by [22]:

V ar(Ȟw̄,k̃) =
1

4S2
Y Y

b∑
j=1

a2
jV ar(ej) +

1

2S2
Y Y

b∑
k=1

b∑
j=k+1

akajCov(ek, ej) (29)

where ej = log(I(λj)/f(λj)) + C, C is Euler’s constant, aj = Yj − Ȳ and SY Y =
∑b
k=1 a

2
k. We will use the

approximations of aj and SY Y by [23]:

aj = O(log(b)) (30)

SY Y = b+ o(b) (31)

and the approximation of V ar(ej) by [33]:

V ar(ej) =
π2

6
+O

(
log(j)

j

)
+O

(
w̄2−2H

j3−2H

)
(32)

to express the variance V ar(Ȟw̄,k̃) of the GPH estimator in a perturbed block in terms of the Landau

notation:

V ar(Ȟw̄,k̃) ≤ 1

4S2
Y Y

b∑
j=1

a2
jV ar(ej) +

1

2S2
Y Y

b∑
k=1

b∑
j=k+1

|akaj |
√
V ar(ej)V ar(ek)

=
1

4S2
Y Y

b∑
j=1

a2
jV ar(ej) +

1

2S2
Y Y

b∑
k=1

b∑
j=k+1

|akaj |O (V ar(ek)) (33)

=
1

4(b+ o(b))2

(
π2b

6
+ o(b) +O

(
b log2(b)

)
+O

(
log2(b)w̄2−2H

))
(34)

+
1

2(b+ o(b))2
O
(
log2(b)

)(
O

(
b2
π2

6

)
+O

(
b2
)

+O
(
bw̄2−2H

))
. (35)

In (33) we used the fact that the terms log(j)/j and w̄2−2H/j3−2H are monotonously decreasing in

j. Obviously the dominating terms of V ar(Ȟw̄,k̃) are log2(b)b2/(b + o(b))2 and log2(b)w̄2−2Hb/(b + o(b))2.

Considering (22), (25) and the square of (24) together with the relationship V ar(Ȟw̄,1) = O(π2/(24b) +

o(1/b)) (see e.g. [22]) we observe that the following term is dominating:

V ar(Ȟw̄,k̃)
(mw̄)2

(n− w̄ + 1)2
= log2(b)

b2 + w̄2−2Hb

(b+ o(b))2

(mw̄)2

(n− w̄ + 1)2

=
log2(b)m2w̄

n− w̄ + 1

(b2 + w̄2−2Hb)w̄

(b+ o(b))2(n− w̄ + 1)
. (36)

Combining (36) with conditions (27) and (28) we conclude that the term (25) tends to zero. It is easy to see

that the remaining terms (22) and (26) also converge to zero.

The asymptotic unbiasedness (21) of the non-overlapping blocks estimator follows from condition (28)

and the following relationship (see [33]):

E(Ȟw̄,k̃ −H) = O

(
b2

w̄2

)
+O

(
log3(b)

b

)
+O

(
w̄2−2H log2(b)

b

)
. (37)

ut
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Thus the bias and the variance of the averaged estimator ĤO,w̄ tend to zero regardless of whether there is a

level shift or not.

(ii) The proof for the above Theorem does not use the specific window length [
√
n]. It remains valid for any

monotone sequence which is increasing in n and satisfies condition (27).

(iii) The consistency of the non-overlapping blocks estimator from Subsection 2.4 is proven analogously.

(iv) The derivation of the distribution of the blocks estimators involves asymptotic theory of triangular

arrays in the case of LRD processes and is beyond the scope of this paper.

4 Simulations

In this section we analyse the performance of the adaption techniques described in Section 2.

4.1 Simulation scenarios

As generic (not adapted) estimation methods for the Hurst parameter H we choose the local Whittle esti-

mator and the GPH estimator in order to compare the results with the trimmed counterparts. We simulate

fGn time series X1, . . . , Xn with H = 0.5, 0.7, 0.9 of length n = 500, 1000, 1500, by generating ξ1, . . . , ξn

from fGn with the corresponding Hurst parameter H, using the fArma package in R, and choosing G as the

identity G(t) = t or the quantile transform

G(t) = (3/4)−(1/2)
(

(Φ(t))−1/3 − 3/2
)
,

where Φ denotes the standard Gaussian c.d.f., so that the observations are Pareto(3,1) distributed. This

corresponds to two extreme cases: Well-behaved Gaussian data on the one hand and heavy tailed data on

the other hand.

We add a jump of height h = 0.5, 1, 2 after a proportion of τ = 0.1, 0.5 of the data (i.e., after 0.1 · n
or after 0.5 · n observations) to these time series. To the resulting seven types of time series (one without

a jump, six with a jump at different positions and of different heights) for each n we apply the adapted

estimators. For comparison, we also apply the two estimation techniques proposed by [33] and [24], Ĥtr
GPH

and Ĥtr
LW described in Section 2.5, to the generated time series.

We repeat these simulations 1000 times for each scenario, leading to 1000 estimates H̃1 . . . , H̃1000 for

each combination of the generic estimation method, adaption technique H̃ and data situation. We use the

root mean-squared error (RMSE) in order to compare the quality of the estimates. RMSE is widely used

as evaluation criterion also for the memory parameter (see e.g. the simulation studies of [33] and [24]) as it

takes bias and variance of the estimators into account, while being on the same scale as the parameter to be

estimated.

For the case of multiple breaks we will add three jumps after proportions τ = 0.1, 0.5, 0.75. Moreover, we

simulate from a fractionally integrated ARMA model, i.e., ARFIMA(p, d, q) model

(1− ϕB)xt = (1− θB)εt (38)

with p = 0, q = 1 (i.e. ARFIMA(0, d, 1)) and θ = −0.6, using the arfima package in R and following the

simulation study of [33], where d = H − 0.5 is the differencing parameter. Finally, we consider the short
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range dependent series from the ARMA model. Since fractional Gaussian noise and ARFIMA(0, d, 0) are

equivalent models (see e.g. [14]) the latter model is included implicitly in this simulation study.

4.2 Simulation results for H = 0.7

We will discuss in detail the results for H = 0.7 in the following and comment on the results for H = 0.5

and H = 0.9 thereafter.

Tables 1 and 2 report the RMSE when applying our adaption techniques with the local Whittle estimator.

We see that there is no uniformly best estimator; instead we observe the following:

– For fGn time series

– if there is no jump, all estimation procedures yield similar results.

– the overlapping blocks technique ĤO,w̄ with block length w̄ = 2
√
n+1 performs better than the other

estimators when dealing with a small number of observations and low jumps.

– the overlapping blocks estimator ĤO,w with window length w =
√
n yields the best results in all

other cases, followed by the non-overlapping blocks estimator ĤNO,w. The performance of the blocks

estimators depends on the sample size rather than the jump height.

– For the Pareto(3,1)-transformed fGn

– with the estimation on two blocks Ĥmean we obtain the best results in the case of low jumps in the

mean.

– the overlapping blocks estimator ĤO,w̄ dominates if the jump in the mean is high and in the jump-free

scenario.

– most of the estimators yield better results when dealing with high jumps rather than low jumps. Figure

3 suggests that the Hurst parameter is being underestimated under the heavy-tailed distribution,

which is compensated by the overestimation, originating from a high jump in the mean.

4.3 Simulation results for H = 0.5 and H = 0.9

For the case of H = 0.5 and H = 0.9 we report the results in the Figures 4 and 5 in the appendix. Here

we restrict the graphical illustration of the boxplots to the case of fGn and n = 1000. The results are

similar to the case H = 0.7, see Section 4.2. The overlapping blocks estimator ĤO,w̄ and the non-overlapping

blocks approach ĤNO,w̄ exhibit small variability and yield rather small bias in the case of short memory,

i.e., H = 0.5. The estimators Ĥpre,1 and Ĥpre,2 perform well for jumps in the middle. The trimmed version

of the local Whittle estimator ĤLW,tr overestimates the parameter if the jump is high. Both ĤLW,tr and

ĤGPH,tr exhibit rather high variability in comparison to the blocks estimators. For H = 0.9, i.e., very strong

dependence, again the blocks and the pre-estimation approaches yield good results and outperform the

trimmed versions of the local Whittle and the GPH estimators.

In the case of the GPH estimator as a generic estimation technique we present the boxplots of the

estimates for H = 0.7 in Figure 6 in the appendix. We can observe that the pre-estimation techniques yield

the least bias in most cases, while having rather high variability. When dealing with early and high jumps

the overlapping blocks estimator ĤO,w̄ exhibits the least bias and variability. In the case of H = 0.5 and

H = 0.9 the corresponding figures show similar results and are omitted in this paper.
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Table 1: Estimated RMSE of different estimators for the Hurst parameter H = 0.7 in time series without

(h = 0) and with change-point (jump of height h after a proportion of τ of the data), each based on 1000

simulation runs with n = 500, n = 1000 and n = 1500 values from fGn, based on the local Whittle estimator.

The best results for every scenario are emphasized in bold.

h ĤLW Ĥmean Ĥmindiff ĤO,w ĤO,w̄ ĤNO,w ĤNO,w̄ Ĥpre,1 Ĥpre,2 Ĥtr
LW Ĥtr

GPH

n = 500

0 0.0552 0.0513 0.0810 0.0488 0.0479 0.0560 0.0539 0.0620 0.0614 0.0846 0.1093

τ = 0.1

0.5 0.0592 0.0554 0.0912 0.0482 0.0477 0.0553 0.0542 0.0581 0.0616 0.0848 0.1094

1 0.0844 0.0731 0.1143 0.0469 0.0485 0.0539 0.0547 0.0579 0.0715 0.0865 0.1158

2 0.1720 0.1223 0.1922 0.0447 0.0518 0.0514 0.0566 0.0872 0.1068 0.0992 0.1410

τ = 0.5

0.5 0.0705 0.0544 0.0833 0.0484 0.0480 0.0556 0.0541 0.0597 0.0552 0.0853 0.1092

1 0.1269 0.0708 0.1011 0.0472 0.0487 0.0544 0.0558 0.0568 0.0531 0.0879 0.1131

2 0.2394 0.1181 0.1367 0.0453 0.0513 0.0523 0.0593 0.0564 0.0538 0.1033 0.1299

n = 1000

0 0.0419 0.0394 0.0648 0.0321 0.0356 0.0363 0.0385 0.0446 0.0442 0.0625 0.0716

τ = 0.1

0.5 0.0473 0.0446 0.0697 0.0320 0.0360 0.0361 0.0392 0.0426 0.0476 0.0633 0.0729

1 0.0759 0.0647 0.1107 0.0318 0.0374 0.0359 0.0411 0.0455 0.0578 0.0659 0.0769

2 0.1609 0.1149 0.1938 0.0317 0.0409 0.0359 0.0450 0.0774 0.0967 0.0806 0.0947

τ = 0.5

0.5 0.0601 0.0439 0.0659 0.0321 0.0361 0.0363 0.0388 0.0437 0.0406 0.0635 0.0729

1 0.1159 0.0627 0.0832 0.0319 0.0374 0.0361 0.0401 0.0428 0.0403 0.0661 0.0761

2 0.2186 0.1087 0.1179 0.0318 0.0408 0.0360 0.0438 0.0424 0.0407 0.0806 0.0922

n = 1500

0 0.0341 0.0326 0.0559 0.0259 0.0329 0.0300 0.0350 0.0357 0.0358 0.0538 0.0569

τ = 0.1

0.5 0.0409 0.0384 0.0601 0.0258 0.0335 0.0299 0.0352 0.0343 0.0392 0.0545 0.0580

1 0.0716 0.0597 0.1114 0.0259 0.0353 0.0300 0.0358 0.0395 0.0532 0.0562 0.0616

2 0.1542 0.1092 0.2026 0.0264 0.0389 0.0303 0.0381 0.0691 0.0892 0.0660 0.0757

τ = 0.5

0.5 0.0548 0.0384 0.0591 0.0259 0.0337 0.0300 0.0363 0.0345 0.0325 0.0544 0.0578

1 0.1101 0.0581 0.0749 0.0261 0.0354 0.0302 0.0386 0.0340 0.0328 0.0562 0.0610

2 0.2074 0.1027 0.1061 0.0265 0.0389 0.0308 0.0423 0.0340 0.0332 0.0660 0.0745

4.4 Multiple breaks

It is also interesting to investigate how the proposed methods perform in the case of multiple breaks. For this

purpose we generate time series ξ1, . . . , ξn from fGn with the Hurst parameter H = 0.7 choosing G as the

identity G(t) = t. We add three jumps of equal height h = 0.5, 1, 2 after a proportion of τ = 0.1, 0.5, 0.75 of

the data (i.e., after 0.1 · n, 0.5 · n and 0.75 · n observations) to these time series. To the resulting three types

of time series we apply the adapted estimators. For comparison we also apply the two adapted estimation

techniques Ĥtr
LW and Ĥtr

GPH proposed by [24] and [33] to the generated time series. We repeat these simulations

1000 times for each scenario, leading to 1000 estimates H̃1 . . . , H̃1000 for each estimator H̃ and each data

situation.
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Table 2: Estimated RMSE of different estimators for the Hurst parameter H = 0.7 in time series without

(h = 0) and with change-point (jump of height h after a proportion of τ of the data), each based on 1000

simulation runs with n = 500, n = 1000 and n = 1500 values from Pareto(3,1)-transformed fGn, based on

the local Whittle estimator. The best results for every scenario are emphasized in bold.

h ĤLW Ĥmean Ĥmindiff ĤO,w ĤO,w̄ ĤNO,w ĤNO,w̄ Ĥpre,1 Ĥpre,2 Ĥtr
LW Ĥtr

GPH

n = 500

0 0.0818 0.0760 0.1063 0.0863 0.0750 0.0905 0.0792 0.1045 0.0924 0.1086 0.1476

τ = 0.1

0.5 0.0661 0.0600 0.1244 0.0828 0.0692 0.0868 0.0765 0.0904 0.0866 0.1054 0.1474

1 0.0831 0.0609 0.1548 0.0790 0.0617 0.0822 0.0706 0.0798 0.0894 0.0992 0.1458

2 0.1888 0.1000 0.2073 0.0755 0.0544 0.0781 0.0617 0.1074 0.1081 0.0992 0.1551

τ = 0.5

0.5 0.0650 0.0560 0.0875 0.0831 0.0694 0.0876 0.0715 0.0934 0.0794 0.1057 0.1471

1 0.1339 0.0527 0.0811 0.0795 0.0622 0.0834 0.0629 0.0920 0.0783 0.1000 0.1446

2 0.2501 0.0925 0.1134 0.0761 0.0551 0.0792 0.0564 0.0914 0.0781 0.1027 0.1491

n = 1000

0 0.0721 0.0672 0.0913 0.0712 0.0642 0.0732 0.0673 0.0873 0.0783 0.0908 0.1139

τ = 0.1

0.5 0.0531 0.0498 0.1024 0.0688 0.0600 0.0710 0.0615 0.0755 0.0703 0.0881 0.1125

1 0.0670 0.0483 0.1581 0.0661 0.0543 0.0681 0.0547 0.0669 0.0704 0.0816 0.1094

2 0.1674 0.0920 0.2159 0.0634 0.0483 0.0649 0.0494 0.0889 0.0959 0.0747 0.1078

τ = 0.5

0.5 0.0508 0.0473 0.0678 0.0688 0.0601 0.0710 0.0630 0.0811 0.0707 0.0880 0.1124

1 0.1136 0.0417 0.0579 0.0659 0.0545 0.0680 0.0571 0.0801 0.0703 0.0814 0.1106

2 0.2271 0.0833 0.0932 0.0633 0.0488 0.0647 0.0510 0.0795 0.0699 0.0741 0.1081

n = 1500

0 0.0681 0.0643 0.0801 0.0655 0.0564 0.0668 0.0579 0.0814 0.0735 0.0847 0.1012

τ = 0.1

0.5 0.0467 0.0448 0.0964 0.0636 0.0531 0.0658 0.0566 0.0692 0.0650 0.0829 0.1011

1 0.0582 0.0398 0.1593 0.0613 0.0485 0.0639 0.0538 0.0603 0.0639 0.0777 0.0988

2 0.1548 0.0839 0.2224 0.0591 0.0436 0.0611 0.0484 0.0777 0.0896 0.0649 0.0946

τ = 0.5

0.5 0.0430 0.0434 0.0529 0.0636 0.0532 0.0643 0.0536 0.0748 0.0665 0.0826 0.1009

1 0.1029 0.0342 0.0523 0.0614 0.0486 0.0614 0.0483 0.0742 0.0661 0.0771 0.0990

2 0.2117 0.0746 0.0804 0.0592 0.0440 0.0592 0.0441 0.0739 0.0657 0.0645 0.0942

Table 3 reports the estimated RMSE for fGn time series. In the case of three change-points, the overlap-

ping and non-overlapping blocks estimators with window length
√
n perform best. The overlapping blocks

estimator ĤO,w outperforms the other estimation methods. This can be explained by the fact that only a few

blocks are contaminated with the jumps in the mean, so the biased estimates of the corresponding blocks do

not influence the resulting estimates dramatically. The other methods suffer from a high number of change

points and are highly biased then. The methods proposed by [24] and [33] are outperformed by our adapted

blocks techniques in every case. Taking into account the fast computation and the good performance of the

overlapping blocks estimator it can be recommended in our survey.
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Table 3: Estimated RMSE of different estimators for the Hurst parameter H = 0.7 in time series with three

change-points (jumps of height h after a proportion of τ = 0.25, 0.5 and 0.75 of the data), each based on

1000 simulation runs with n = 500 and n = 1000 values from fGn, based on the local Whittle estimator.

The best results for every scenario are emphasized in bold.

h ĤLW Ĥmean Ĥmindiff ĤO,w ĤO,w̄ ĤNO,w ĤNO,w̄ Ĥpre,1 Ĥpre,2 Ĥtr
LW Ĥtr

GPH

n = 500

0.5 0.1277 0.0757 0.1022 0.0475 0.0484 0.0547 0.0548 0.0573 0.0595 0.0894 0.1162

1 0.2463 0.1484 0.1686 0.0444 0.0547 0.0520 0.0617 0.1201 0.1208 0.1147 0.1590

2 0.2999 0.2463 0.2184 0.0420 0.0755 0.0501 0.0838 0.2547 0.2444 0.2176 0.3258

n = 1000

0.5 0.1177 0.0682 0.0854 0.0319 0.0374 0.0360 0.0410 0.0485 0.0503 0.0681 0.0789

1 0.2272 0.1386 0.1499 0.0319 0.0438 0.0361 0.0490 0.1149 0.1117 0.0922 0.1094

2 0.2999 0.2416 0.2338 0.0343 0.0600 0.0393 0.0678 0.2375 0.2259 0.1893 0.2391

4.5 ARFIMA model

As already mentioned in [33], the estimators of the differencing parameter d tend to be positively biased in

the ARFIMA(p, d, q) model. We simulated ARFIMA(0, d, 1) time series with θ = −0.6 for d = 0.2 and

d = 0 of length n = 1000. Again, jumps of various heights were added at the beginning or in the middle of

the data in order to compare the performance of the estimators in absence and presence of level shifts. In

Table 4 we can observe that the blocks procedures fail to estimate the parameter correctly when the block

size is small. The best results are obtained by Ĥpre,1. In the case of short memory, i.e. ARFIMA(0, 0, 1),

again, the pre-estimating procedure Ĥpre,1 performs best in the short memory scenario, since it involves all

data points in the estimation procedure.

The two blocks approaches perform similarly and do not yield desirable results for the ARFIMA model

when a small block size is chosen. In Table 7 in the appendix we show the results corresponding to further

block sizes of the non-overlapping blocks estimator (the results for the overlapping blocks approach are

similar throughout the simulation study, though the 1000 simulation runs require more computation time).

We observe that its performance can be improved by choosing a larger block size w̄. Moreover, in the fGn-

scenario, selecting a higher value for w̄ does not worsen the performance of ĤO,w̄ compared to the case of

the block length
√
n considerably, see Table 7. Still, the results are not satisfying when dealing with both,

long and short memory.

Therefore we followed the ARMA correction procedure, proposed by [38], where the differencing parameter

d in the ARFIMA(p, d, q) model is estimated recursively in several steps:

1. Obtain an estimate d̂ of d in the ARFIMA(p, d, q) model.

2. Calculate Ŷt = (1−B)d̂Xt.

3. Identify and estimate the order and the parameters in the ARMA(p, q) model Φ(B)Ŷt = Θ(B)εt.

4. Calculate Ẑt = Φ̂(B)

Θ̂(B)
Xt.

5. Obtain new estimate d̂ of d in the ARFIMA(0, d, 0) model (1−B)dẐt = εt.
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6. Repeat steps 2 to 5, until the difference between two consecutive estimates of d is less than 0.01 or the

number of steps exceeds 10.

The RMSE values obtained using the above procedure are given in Table 8. We observe that in the case

of the non-overlapping blocks approach the results could be improved considerably. For d = 0, i.e. short

memory, higher window values are preferred, while for LRD with d = 0.2 (H = 0.7) the block length
√
n

yields the lowest RMSE. Moreover, the results are nearly the same when dealing with fGn, i.e. when no short

memory components are involved. In the case of the overlapping blocks approach we show the results for

n = 1000, λ = 0.5 and h = 2 at the end of Table 8. We can observe that even lower RMSE values can be

achieved when choosing overlapping instead of non-overlapping blocks, hence it can be recommended in our

survey. To be on the safe side, we suggest choosing a block length w̄ equal to a multiple of
√
n, preferably

w̄ > 100 in order to obtain desirable results.

Table 4: Estimated RMSE of different estimators for the differencing parameters d = 0.2 (H = 0.7) and

d = 0 (H = 0.5) in time series without (h = 0) and with change-point (jump of height h after a proportion of

τ of the data), each based on 1000 simulation runs with n = 1000 values from the ARFIMA(0, d, 1) model,

based on the local Whittle estimator. The best results for every scenario are emphasized in bold.

ARFIMA(0, 0.2, 1)
h ĤLW Ĥmean Ĥmindiff ĤO,w ĤO,w̄ ĤNO,w ĤNO,w̄ Ĥpre,1 Ĥpre,2 Ĥtr

LW Ĥtr
GPH

n = 1000

0 0.0638 0.0856 0.0915 0.2150 0.1768 0.2171 0.1782 0.0537 0.0743 0.1029 0.1274

τ = 0.1

0.5 0.0698 0.0897 0.0930 0.2152 0.1761 0.2165 0.1779 0.0552 0.0799 0.1016 0.1279

1 0.0824 0.1025 0.1032 0.2151 0.1773 0.2150 0.1803 0.0595 0.0942 0.1064 0.1347

2 0.1319 0.1351 0.1393 0.2162 0.1807 0.2179 0.1834 0.0809 0.1210 0.1133 0.1570

τ = 0.5

0.5 0.0767 0.0870 0.0960 0.2157 0.1770 0.2161 0.1764 0.0519 0.0751 0.1025 0.1297

1 0.1056 0.1016 0.1170 0.2162 0.1779 0.2150 0.1787 0.0558 0.0730 0.1053 0.1366

2 0.1753 0.1326 0.1554 0.2166 0.1820 0.2176 0.1821 0.0570 0.0762 0.1140 0.1530

ARFIMA(0, 0, 1)
h ĤLW Ĥmean Ĥmindiff ĤO,w ĤO,w̄ ĤNO,w ĤNO,w̄ Ĥpre,1 Ĥpre,2 Ĥtr

LW Ĥtr
GPH

n = 1000

0 0.0560 0.0743 0.0874 0.2629 0.1717 0.2661 0.1733 0.0486 0.0728 0.0914 0.1469

τ = 0.1

0.5 0.0818 0.0925 0.0993 0.2650 0.1745 0.2644 0.1745 0.0535 0.0878 0.0899 0.1469

1 0.1361 0.1268 0.1449 0.2646 0.1777 0.2662 0.1802 0.0703 0.1124 0.0961 0.1511

2 0.2431 0.1872 0.2264 0.2673 0.1867 0.2691 0.1903 0.1018 0.1540 0.1165 0.1608

τ = 0.5

0.5 0.1201 0.0965 0.1181 0.2633 0.1738 0.2646 0.1738 0.0500 0.0649 0.0960 0.1501

1 0.2038 0.1298 0.1540 0.2654 0.1768 0.2667 0.1785 0.0538 0.0658 0.0968 0.1505

2 0.3234 0.1856 0.1916 0.2664 0.1864 0.2684 0.1883 0.0528 0.0675 0.1174 0.1635
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5 Application to real data

We illustrate our improved estimation techniques with the help of two real data sets. We use the famous Nile

River minima, yearly minimal water levels of the Nile River for the years 773 to 1281; the data is available

e.g. in the R-package wavelets1. It is a widely-used example for LRD time series. Log-periodogram values of

the Nile data were considered in [3, p. 21] where the evidence of long range dependence was found. A broad

analysis of the data was carried out by [34] where the authors applied several techniques to estimate the

LRD parameter taking the seasonality of the river data into account. It was pointed out that the dataset

may exhibit seasonal long memory rather than nonseasonal long range dependence.

We also apply the estimation techniques to the global temperature for the northern hemisphere for the

years 1854–1989; the data is available in the R-package longmemo2. This dataset was discussed in [3, p. 29]

where a linear trend rather than a possible structural change in the data was considered. This was supported

by [11], and [26] assumed that the temperature growth is rather due to impact of human activity or climate

change. Evidence of long range dependence was found by [3, p. 173] and [15]. A possible change point in the

data was detected by [52] using kernel and nearest neighbour regression methods.

5.1 Nile River minima
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Fig. 1: Annual minima of the water level of the Nile River near Cairo.

The data is displayed in Figure 1. In order to estimate the LRD parameter H from this data, we have

applied the local Whittle estimator to it – as well as the adaption methods investigated in this article. The

results are given in Table 5. The blocks estimators with ARMA correction from Section 4.5 are denoted

by ĤARMA
O,w and ĤARMA

NO,w . For analysing the data [35, p. 386] use wavelets and the maximum-likelihood

1 http://artax.karlin.mff.cuni.cz/r-help/library/wavelets/html/nile.html
2 http://cran.r-project.org/web/packages/longmemo/longmemo.pdf
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method yielding 0.9452 as an estimate for the Hurst parameter which is similar to the value ĤLW = 0.9706

obtained by the ordinary local Whittle estimator. As opposed to this the overlapping blocks approach with

ARMA correction with the window length
√
n yields the smaller value ĤARMA

O,w = 0.7820. The two estimation

techniques Ĥtr
GPH and Ĥtr

LW described in Section 2.5 yield the higher values 0.9999 and 1.0071. The discrepancy

between the estimates suggests that the time series might be contaminated by a level shift.

Table 5: LRD parameter H of the Nile River Minima data, estimated by different adaption methods, based

on the local Whittle estimator.

ĤLW Ĥmean Ĥmindiff Ĥpre,1 Ĥpre,2 ĤO,w ĤNO,w ĤARMA
O,w ĤARMA

NO,w Ĥtr
LW Ĥtr

GPH

0.9706 0.9639 0.9607 0.9339 0.9486 0.8358 0.8749 0.7820 0.8294 0.9999 1.0071

5.2 Global temperature for the northern hemisphere

year

m
on

th
ly

 te
m

pe
ra

tu
re

1860 1880 1900 1920 1940 1960 1980

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5

Fig. 2: Monthly global temperature for the northern hemisphere for the years 1854-1989. The vertical lines

denote a change-point, suggested by [52] (dashed) and detected using the Wilcoxon change-point test (bold).

The grey part of the time series was excluded from the estimation procedure.

Figure 2 shows the global temperature for the northern hemisphere. A presence of a level shift after the

year 1923 was suggested by [52]. Moreover, we can observe a change in the scale after the year 1880. Since we

are interested in changes in the mean only, we reduce the data to the years 1880-1989 yielding 1320 monthly

observations.

We have applied the local Whittle estimator together with the adaption methods to this data. The results

are given in Table 6. The ordinary local Whittle estimator yields ĤLW = 0.9383, while the other estimates

obtained by the adapted methods are smaller. The overlapping blocks approach with ARMA correction

and window length
√
n yields ĤARMA

O,w = 0.8378 which is similar to the value obtained by Ĥpre,1 = 0.8457.

It can be assumed that the pre-estimation technique was able to determine the location of a level shift
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adequately and estimated the Hurst parameter precisely in the two blocks with considerably large number of

observations. Hence, we assume that we are dealing with a change in the mean in the presented time series.

Table 6: LRD parameter H of the global temperature for the northern hemisphere, estimated by different

adaption methods, based on the local Whittle estimator.

ĤLW Ĥmean Ĥmindiff Ĥpre,1 Ĥpre,2 ĤO,w ĤNO,w ĤARMA
O,w ĤARMA

NO,w Ĥtr
LW Ĥtr

GPH

0.9383 0.9109 0.9005 0.8457 0.8658 0.8541 0.8618 0.8378 0.8568 0.9052 0.9300

6 Conclusion and outlook

In time series which are supposed to exhibit LRD, it is important for statistical inference to estimate the LRD

parameter like the Hurst parameter H ∈ (0.5, 1), respectively D = 2H−2 in (3). Different approaches for this

problem exist, but most of them suffer from the defect that they are disturbed by structural changes in the

data: If there is a shift in the mean, the usual estimation methods easily misjudge the structure of the data

and may detect spurious or too heavy LRD. This drawback is a fatal double bind when it comes to testing

for change-points in LRD time series: Change-point tests naturally require knowledge of the Hurst parameter

H in order to discriminate between a change-point and behavior which originates from the long memory,

but in practical situations, H must be estimated. Hence, a jump in the data may lead to overestimating H

which may lead to overlooking the jump.

We have investigated techniques to adapt estimation procedures to time series with a change in the

mean. In a simulation study, we have compared these proposals with different tuning parameters and in

different jump-contaminated and also jump-free situations, using the local Whittle and the Geweke and

Porter-Hudak estimators as generic estimation techniques. Our research shows that estimation of H can

be considerably improved by such techniques which yield better estimates when there is a jump in the

time series and which little affect the estimation when there is none. We compared the performance of the

adapted estimation techniques with the trimmed versions of the local Whittle and the Geweke and Porter-

Hudak estimators proposed by [24] and [33], respectively. We could observe that our proposals outperform

the trimmed counterparts of the two generic estimation techniques used in this paper in most simulation

scenarios.

We recommend estimation of H by averaging estimates obtained from overlapping blocks with length

approximately equal to a multiple of
√
n. This adaption inherits asymptotic consistency from its underlying

estimation method, while offering fast computation. A minimum of 100 observations per block should be

available for the estimation when dealing with ARFIMA models. In this case the estimation should be carried

out using the ARMA correction from Section 4.5.

Our approach opens up some ideas for future research:

– One could explore possible improvements by e.g. choosing other monotone increasing subsequences of

n as window sizes for the moving window methods or by introducing weighted means for the methods

which separate the sample into two blocks, taking the different block lengths into account.

– In the moving window or the non-overlapping blocks approach, one could use a trimmed mean in order

to trim the estimations on blocks which are influenced by the jump.
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20. L. Horváth, P. Kokoszka, The effect of long-range dependence on change-point estimators, J. Statist. Plann. Inference, 64,

57–81 (1997)

21. C.-C. Hsu, Long memory or structural changes: An empirical examination on inflation rates, Economics Letters, 88(2),

289–294 (2005)

22. C. M. Hurvich, R. Deo, J. Brodsky, The mean squared error of Geweke and Porter-Hudak’s estimator of the memory

parameter of a long-memory time series, Journal of Time Series Analysis, 19(1), 19–46 (1998)

23. C. M. Hurvich, K. I. Beltrao, Asymptotics for the Low Frequency Ordinates of the Periodogram of a Long-Memory Time

Series, Journal of Time Series Analysis, 14(5), 455–472 (1993)



22 Aeneas Rooch, Ieva Zelo, Roland Fried

24. F. Iacone, Local Whittle estimation of the memory parameter in presence of deterministic components, Journal of Time

Series Analysis, 31(1), 37-49 (2010)

25. V. Jandhyala, S. Fotopoulos, I. MacNeill, P. Liu, Inference for single and multiple change-points in time series, Journal of

Time Series Analysis, doi: 10.1111/jtsa12035 (2013)

26. D. Jaruskova, Some problems with application of change-point detection methods to environmental data, Environmetrics,

8(5), 469–484 (1997)

27. T. Karagiannis, M. Faloutsos, R. H. Riedi, Long-Range Dependence: Now you see it, now you don’t!, Global Telecommu-

nications Conference, 3, 2165–2169 (2002)

28. P. Kokoszka, R. Leipus, Change-point in the mean of dependent observations, Stat. & Prob. Letters, 40, 385–393 (1998)

29. W. Krämer, P. Sibbertsen, Testing for Structural Changes in the Persistence of Long Me- mory. International Journal of

Business and Economics, 1, 235–242 (2002)
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Applications, Birkhäuser, Boston 1998, 177–217 (1998)

47. M. S. Taqqu, V. Teverovsky, W. Willinger, Estimators for long-range dependence: an emprical study, Fractals, 3, 785–798

(1995)

48. C. Velasco, Gaussian Semiparametric Estimation of Non-stationary Time Series, Journal of Time Series Analysis, 20(1),

87–127 (1999)

49. C. Velasco, P. M. Robinson, Whittle pseudo-maximum likelihood estimation for nonstationary time series, Journal of the

American Statistical Association, 95(452), 1229–1243 (2000)

50. L. Wang, Change-in-mean problem for long memory time series models with applications, Journal of Statistical Computation

and Simulation, 78(7), 653–668 (2008)

51. L. Wang (2008), Change-point detection with rank statistics in long-memory time-series models, Australian and New

Zealand Journal of Statistics, 50(3), 241–256



Estimation methods for the LRD parameter under a change in the mean 23

52. L. Wang, Change-point estimation in long memory nonparametric models with applications. Communications in Statistics-

Simulation and Computation, 37(1), 48–61 (2008)

53. P. Whittle, Estimation and information in stationary time series, Arkiv för matematik, 2(5), 423–434 (1953)

54. W. Willinger, M. S. Taqqu, V. Teverovsky, Stock market prices and long-range dependence, Finance and Stochastics, 3(1),

1–13 (1999)



24 Aeneas Rooch, Ieva Zelo, Roland Fried

●

●
●
●
●

●

●

●●
●
●

●

●
●

●

●

●

●●

●●
●

●●●
●

●

●

●●

●

●

●

●

●

●●

●
●●
●
●

●

●●

●●

●

●

●

●

●

●

●●

●

●
●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●●●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
● ●●

●

●●

●

●

●●

●
●

● ●

●
●●

●

●
●

●●

●

●●●●●

●●

●
●

●

●

●

●

●

●

●●

●

●●●

●

●

●
●

●
●●

●
●●
●●●
●●
●●
●●

●

●

●

LW

m
ea

n

m
in

.d
iff

O
, w

O
, w

N
O

, w

N
O

, w

pr
e,

1

pr
e,

2

LW
,tr

G
P

H
,tr

0.
5

0.
7

0.
9

1
λ = 0.1, h = 0.5

●

●

●

●●
●●●●

●

●

●

●

●●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●●●

●
●

●

●

●

●●

●●

●

●●●

●●●

●

●
●●

●

●

●●

●

●

●
●

●
●

●●

●

●
●●
●
●

●

●●

LW

m
ea

n

m
in

.d
iff

O
, w

O
, w

N
O

, w

N
O

, w

pr
e,

1

pr
e,

2

LW
,tr

G
P

H
,tr

0.
5

0.
7

0.
9

1

λ = 0.1, h = 2

●●

●

●

●
●
●
●

●
●●
●

●

●

●

●●●●
●

●

●

●

●

●●
●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●
●
●
●●

●

●

●●●●

●
●
●

●
●

●●

●

●●
●

●●●●

●
●
●

● ●●

●
●

●

●●

●
●

●
●●●

●

●

●
●
●
●●

●●●●
●●
●●
●
●

●

●●

●

●

●

LW

m
ea

n

m
in

.d
iff

O
, w

O
, w

N
O

, w

N
O

, w

pr
e,

1

pr
e,

2

LW
,tr

G
P

H
,tr

0.
5

0.
7

0.
9

1

λ = 0.5, h = 0.5

●

●

●

●
●●

●

●●

●

●
●

●
●
●

●
●

●

●

●

●
●●
●●●

●

●●

● ●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●
●●●
●

●

●

●

●

●
●●●

●

●

●

●

●
●

●●●●

●
●

●

●
●

●

●

●

●
●

●

●●●
●●

●

●

●●

●

●●

●

●
●●

●

●
●
●

●

LW

m
ea

n

m
in

.d
iff

O
, w

O
, w

N
O

, w

N
O

, w

pr
e,

1

pr
e,

2

LW
,tr

G
P

H
,tr

0.
5

0.
7

0.
9

1

λ = 0.5, h = 2

Fig. 3: Boxplots of the estimators based on the local Whittle estimator for the Hurst parameter H = 0.7

in time series with change-point (jump of height h after a proportion of τ of the data), each based on 1000

simulation runs with n = 1000 realizations of Pareto(3,1)-transformed fGn.
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Fig. 4: Boxplots of the estimators based on the local Whittle estimator for the Hurst parameter H = 0.5

in time series with change-point (jump of height h after a proportion of τ of the data), based on each 1000

simulation runs with n = 1000 realizations of fGn.
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Fig. 5: Boxplots of the estimators based on the local Whittle estimator for the Hurst parameter H = 0.9

in time series with change-point (jump of height h after a proportion of τ of the data), based on each 1000

simulation runs with n = 1000 realizations of fGn.
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Fig. 6: Boxplots of the estimators based on the GPH estimator for the Hurst parameter H = 0.7 in time

series with change-point (jump of height h after a proportion of τ of the data), based on each 1000 simulation

runs with n = 1000 realizations of fGn.
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Table 7: Estimated RMSE of non-overlapping blocks estimator with different block sizes for the differencing

parameters d = 0 (H = 0.5) and d = 0.2 (H = 0.7) in time series without (h = 0) and with change-point

(jump of height h after a proportion of τ of the data, each based on 1000 simulation runs with n = 1000 and

n = 1500 values from the ARFIMA(0, d, -0.6) model and fGn), based on the local Whittle estimator.

ARFIMA(0, d, -0.6)
d = 0 d = 0.2

h
√
n 2

√
n+1 3

√
n+1 4

√
n+1 7

√
n+1

√
n 2

√
n+1 3

√
n+1 4

√
n+1 7

√
n+1

n = 1000

0 0.2661 0.1733 0.1399 0.1200 0.0935 0.2171 0.1782 0.1548 0.1390 0.1059

τ = 0.1

0.5 0.2644 0.1745 0.1404 0.1267 0.1040 0.2165 0.1779 0.1544 0.1387 0.1116

1 0.2662 0.1802 0.1415 0.1346 0.1250 0.2150 0.1803 0.1572 0.1421 0.1203

2 0.2691 0.1903 0.1463 0.1535 0.1618 0.2179 0.1834 0.1578 0.1515 0.1397

τ = 0.5

0.5 0.2646 0.1738 0.1447 0.1221 0.1020 0.2161 0.1764 0.1558 0.1378 0.1100

1 0.2667 0.1785 0.1508 0.1251 0.1198 0.2150 0.1787 0.1587 0.1387 0.1180

2 0.2684 0.1883 0.1636 0.1380 0.1539 0.2176 0.1821 0.1652 0.1444 0.1376

n = 1500

0 0.2322 0.1506 0.1230 0.1069 0.0807 0.2051 0.1626 0.1408 0.1257 0.0962

τ = 0.1

0.5 0.2337 0.1515 0.1277 0.1095 0.0926 0.2055 0.1622 0.1425 0.1264 0.0986

1 0.2330 0.1524 0.1324 0.1087 0.1095 0.2053 0.1631 0.1435 0.1264 0.1054

2 0.2356 0.1588 0.1460 0.1136 0.1341 0.2054 0.1652 0.1514 0.1298 0.1215

τ = 0.5

0.5 0.2343 0.1545 0.1280 0.1121 0.0913 0.2057 0.1630 0.1430 0.1269 0.0969

1 0.2367 0.1589 0.1351 0.1173 0.1033 0.2054 0.1646 0.1425 0.1299 0.1043

2 0.2380 0.1664 0.1454 0.1316 0.1293 0.2057 0.1684 0.1522 0.1365 0.1198

fGn
d = 0 d = 0.2

h
√
n 2

√
n+1 3

√
n+1 4

√
n+1 7

√
n+1

√
n 2

√
n+1 3

√
n+1 4

√
n+1 7

√
n+1

n = 1000

τ = 0.5

2 0.0403 0.0386 0.0442 0.0459 0.0968 0.0360 0.0438 0.0496 0.0495 0.0763

n = 1500

τ = 0.5

2 0.0324 0.0332 0.0402 0.0471 0.0755 0.0308 0.0423 0.0458 0.0508 0.0632
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Table 8: Estimated RMSE of non-overlapping and overlapping blocks estimator based on the local Whittle

estimator with different block sizes for the differencing parameters d = 0 (H = 0.5) and d = 0.2 (H = 0.7)

in time series without (h = 0) and with change-point (jump of height h after a proportion of τ of the data),

each based on 1000 simulation runs with n = 1000 and n = 1500 values from the ARFIMA(0, d, 1) model

and fGn. The ARMA-structure is removed in several steps.

non-overlapping
ARFIMA(0, d, 1)

d = 0 d = 0.2
h

√
n 2

√
n+1 3

√
n+1 4

√
n+1 7

√
n+1

√
n 2

√
n+1 3

√
n+1 4

√
n+1 7

√
n+1

n = 1000

0 0.1206 0.0595 0.0552 0.0633 0.0557 0.0554 0.0552 0.0569 0.0664 0.0633

τ = 0.1

0.5 0.1183 0.0639 0.0569 0.0664 0.0640 0.0528 0.0534 0.0580 0.0662 0.0671

1 0.1196 0.0708 0.0629 0.0776 0.0871 0.0527 0.0566 0.0599 0.0692 0.0708

2 0.1190 0.0806 0.0691 0.1029 0.1271 0.0488 0.0597 0.0586 0.0767 0.0869

τ = 0.5

0.5 0.1167 0.0607 0.0590 0.0646 0.0613 0.0513 0.0531 0.0603 0.0677 0.0673

1 0.1191 0.0668 0.0622 0.0701 0.0783 0.0512 0.0553 0.0587 0.0677 0.0689

2 0.1190 0.0717 0.0759 0.0758 0.1097 0.0526 0.0563 0.0656 0.0733 0.0854

n = 1500

0 0.0745 0.0516 0.0512 0.0509 0.0476 0.0412 0.0485 0.0522 0.0538 0.0518

τ = 0.1

0.5 0.0751 0.0536 0.0558 0.0550 0.0519 0.0413 0.0514 0.0545 0.0579 0.0529

1 0.0783 0.0585 0.0643 0.0571 0.0706 0.0405 0.0505 0.0562 0.0588 0.0566

2 0.0781 0.0636 0.0769 0.0624 0.1033 0.0406 0.0533 0.0616 0.0581 0.0726

τ = 0.5

0.5 0.0771 0.0570 0.0563 0.0550 0.0511 0.0405 0.0502 0.0546 0.0574 0.0533

1 0.0789 0.0614 0.0636 0.0623 0.0621 0.0424 0.0506 0.0587 0.0592 0.0546

2 0.0812 0.0681 0.0750 0.0776 0.0903 0.0412 0.0559 0.0628 0.0659 0.0679

fGn
H = 0.5 H = 0.7

h
√
n 2

√
n+1 3

√
n+1 4

√
n+1 7

√
n+1

√
n 2

√
n+1 3

√
n+1 4

√
n+1 7

√
n+1

n = 1000

τ = 0.5

2 0.0417 0.0454 0.0517 0.0561 0.1028 0.0398 0.0456 0.0507 0.0563 0.0818

n = 1500

τ = 0.5

2 0.0339 0.0396 0.0471 0.0554 0.0880 0.0335 0.0415 0.0455 0.0493 0.0608

overlapping
ARFIMA(0, d, 1)

d = 0 d = 0.2
h

√
n 2

√
n+1 3

√
n+1 4

√
n+1 7

√
n+1

√
n 2

√
n+1 3

√
n+1 4

√
n+1 7

√
n+1

n = 1000

τ = 0.5

2 0.1181 0.0651 0.0706 0.0854 0.1046 0.0369 0.0479 0.0543 0.0661 0.0722



 



 



 


