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Abstract

In the one-parameter regression model with AR(1) and AR(2) errors we find explicit

expressions and a continuous approximation of the optimal discrete design for the signed

least square estimator. The results are used to derive the optimal variance of the best

linear estimator in the continuous time model and to construct efficient estimators and

corresponding optimal designs for finite samples. The resulting procedure (estimator and

design) provides nearly the same efficiency as the weighted least squares and its variance

is close to the optimal variance in the continuous time model. The results are illustrated

by several examples demonstrating the feasibility of our approach.
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1 Introduction

Consider a linear regression model

yj = θTf(tj) + εj (j = 1, . . . , N) , (1.1)

where θ ∈ Rm is a vector of unknown parameters, f(t) = (f1(t), . . . , fm(t))T is a vector of

linearly independent functions defined on some interval, say [A,B], and ε1, . . . , εN are random

errors with E[εj] = 0 for all j = 1, . . . , N and covariances E[εjεk] = ρ(tj − tk). It is well known

that the use of optimal or efficient designs yields to a reduction of costs by a statistical inference

with a minimal number of experiments without loosing any accuracy. Optimal design theory
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has been studied intensively for the case when errors are uncorrelated using tools from convex

optimization theory [see (Pukelsheim, 2006)], but the design problem in the case of dependent

data is substantially harder because the corresponding optimization problems are usually non-

convex. Most authors use asymptotic arguments to construct optimal designs, which do not

solve the problem of non-convexity [see for example Sacks and Ylvisaker (1966, 1968), Bickel

and Herzberg (1979), Näther (1985a), Zhigljavsky et al. (2010), Dette et al. (2015)]. Some op-

timal designs for the location model (in this case the optimization problems are in fact convex)

and for a few one-parameter linear models have been discussed in Boltze and Näther (1982),

Näther (1985a), Ch. 4, Näther (1985b), Pázman and Müller (2001) and Müller and Pázman

(2003) among others]. Recently, for multi-parameter models, Dette et al. (2013) determined

a necessary condition for the optimality of (asymptotic) designs for least squares estimation.

Dette et al. (2014) studied nearly universally optimal designs, while Dette et al. (2016) con-

structed new matrix-weighted estimators with corresponding optimal designs, which are very

close to the best linear unbiased estimator with corresponding optimal designs. Although these

results are promising, they rely on certain structural assumptions on the covariance kernel. For

example, Dette et al. (2013) assume that the regression functions in model (1.1) are eigen-

functions of an integral operator associated with the covariance kernel of the error process and

Dette et al. (2016) assume that the covariance kernel is triangular [see Mehr and McFadden

(1965) for an exact definition]. While these results cover the frequently used AR(1)-process as

error structure, they are not applicable in models with autoregressive error processes of larger

order.

The goal of the present paper is to give first insights in the optimal design problem for lin-

ear regression models with autoregressive error processes. We concentrate on a one-parameter

linear regression model with an AR(1) and AR(2)-error process. In Section 2 we will intro-

duce a signed least squares estimator and consider approximate designs on the design space

T = {t1, . . . , tN}, where the weights are not necessarily non-negative. We determine the opti-

mal (signed) approximate design for signed least squares estimation, such that the signed least

squares estimator has the same variance as the weighted least squares estimator based on obser-

vations at the experimental conditions t1, . . . , tN . In Section 3 we consider the one-parameter

linear regression model with autoregressive errors of order 1 and study the asymptotic behavior

of the signed least squares estimator with corresponding optimal design as the sample size tends

to infinity. Section 4 is devoted to the case of an AR(2)-error process, where the situation is

substantially more complicated. These results are then used in Section 5, where we consider

the problem of constructing designs for signed least squares estimation in finite sample situa-

tions. We provide a procedure such that the signed least squares estimator with corresponding

“optimal” design has nearly the same efficiency as the weighted least squares estimator with

corresponding optimal design. Finally, the results are illustrated in several numerical examples.
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2 Various least squares estimators

For estimating θ, we use the following two estimators: the best linear unbiased estimator

(BLUE)

θ̂BLUE,N = (XTΣ−1X)−1XTΣ−1Y

and the signed least squares estimator (SLSE)

θ̂SLSE,N = (XTSX)−1XTSY, (2.1)

where X = (fi(xj))
N,m
j,i=1 is the design matrix of size N × m, S is an N×N diagonal matrix

with entries +1 and −1 on the diagonal and Σ = (ρ(ti − tj))Ni,j=1 is the covariance matrix of

observations. If S is the N×N identity matrix, then SLSE coincides with the ordinary least

squares estimator (LSE). The covariance matrix of the BLUE and the SLSE are given by

Var(θ̂BLUE,N) = (XTΣ−1X)−1 ,

Var(θ̂SLSE,N) = (XTSX)−1(XTSΣSX)(XTSX)−1,

respectively. Throughout this paper we concentrate on the one-parameter regression model

yj = θf(tj) + εj, (2.2)

and remark that an extension to the multi-parameter model (1.1) could be performed following

the discussion in Dette et al. (2016). A design on the (fixed) design space T = {t1, . . . , tN} is

an arbitrary discrete signed measure of the form ξ = {t1, . . . , tN ;w1, . . . , wN}, where wi = sipi,

si ∈ {−1, 1}, pi ≥ 0, i = 1, . . . , N , and
∑N

i=1 pi = 1. The variance of the SLSE for the design ξ

is given by

D(ξ) = Var(θ̂SLSE,N) =
N∑
i=1

N∑
j=1

ρ(ti − tj)wiwjfifj
/( N∑

i=1

wif
2
i

)2

, (2.3)

where we use the notation fi = f(ti) throughout this paper. The optimal design problem

consists in the minimization of this expression with respect to the weights w1, . . . , wN assuming

that the observation points t1, . . . , tN are fixed. Despite the fact that the functional D in (2.3)

is not convex as a function of w1, . . . , wN , the problem of determining the optimal weights can

be easily solved by a simple application of the Cauchy-Schwarz inequality. The proof of the

following lemma is given in Dette et al. (2016); see also Theorem 5.3 in Näther (1985a), where

this result was proved in a slightly different form.

Lemma 2.1 Assume that the matrix Σ = (ρ(ti − tj))i,j=1,...,N is positive definite and fi 6= 0

for all i = 1, . . . , N . Then the optimal weights w∗1, . . . , w
∗
N minimizing the expression (2.3) are

given by

w∗i = eTi Σ−1f/fi; i = 1, . . . , N, (2.4)
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where f = (f1, . . . , fN)T , ei = (0, . . . , 0, 1, 0, . . . , 0)T ∈ RN is the i-th unit vector. Moreover,

for the design ξ∗ = {t1, . . . , tN ;w∗1, . . . , w
∗
N} with weights (2.4) we have D(ξ∗) = D∗, where

D∗ = 1/(fT Σ−1f) is the variance of the BLUE defined in (2.2).

Note that the optimal weights in Lemma 2.1 are not uniquely defined. In fact, they can always

be multiplied by a constant without changing their optimality. In the following discussion we

will consider the case where the points ti are given by the equidistant points on the interval

[A,B] and the sample size N tends to infinity. Heuristically the BLUE converges in this case to

the BLUE in the continuous time model, where the full trajectory of the stochastic process can

be observed. Note that for any finite N the SLSE with the optimal weights defined in Lemma

2.1 has the same variance as the BLUE.

Further we study the asymptotic properties of the SLSE and the optimal weights w∗i defined

in (2.4) as the sample size increases. In many cases we will be able to approximate an N -point

design ξ = {t1, . . . , tN ;w∗1, . . . , w
∗
N} with optimal weights defined in (2.4) by a signed measure

(an approximate design) of the form

ξ(dt) = PAδA(dt) + PBδB(dt) + p(t)dt , (2.5)

where δA(dt) and δB(dt) are Dirac-measures concentrated at the point A and B, respectively,

and p(·) is a density function (not necessarily non-negative) on the interval [A,B]. Approximate

designs of the from (2.5) are easier to understand and analyze than discrete designs of the form

ξ = {t1, . . . , tN ;w∗1, . . . , w
∗
N}, and we will illustrate in Section 3 and 4 the derivation of the

limits in the case of autoregressive error processes of order one and two, respectively.

As already mentioned in the introduction the AR(1) process corresponds to a triangular kernel

and could also be treated with methodology developed in Dette et al. (2016). We discuss it

here because for this case the arguments are simpler than for the AR(2). In fact, for the AR(2)

error process the derivation of asymptotically optimal weights w∗1, . . . , w
∗
N of the form (2.4) as

the sample size tends to infinity is substantially harder and we have to slightly modify the

continuous approximation of the form (2.5) [see Section 4 for more details].

3 Autoregressive errors of order one

Consider the regression model (1.1) with N equidistant points

tj = A+ (j − 1)∆ , (j = 1, . . . , N) (3.1)

on the interval [A,B], where ∆ = (B −A)/(N − 1). Assume that the errors ε1, . . . , εN in (2.2)

satisfy the discrete AR(1) equation

εj − aεj−1 = zj (3.2)
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for some 0 < a < 1, where ε1 ∼ N(0, σ2) and z2, . . . , zN are Gaussian independent identically

distributed random variables with mean 0 and variance σ2
z = (1 − a2)σ2. Without loss of

generality, we assume σ2 = 1.

Remark 3.1 Note that discrete AR(1) processes (3.2) are usually considered for the parameter

−1 < a < 1. For the subsequent discussion we need a continuous analogue, say {ε(t)}t∈[A,B], of

the discrete AR(1) error process, which is in fact available in the case 0 < a < 1; see Chan and

Tong (1987). The corresponding process with drift is denoted by y(t) = θf(t)+ε(t), t ∈ [A,B].

However, for −1 < a < 0 the discrete AR(1) process (3.2) does not have a continuous real-

valued analogue and therefore in this case the limiting behavior of our estimators and designs

is much harder to understand.

It is also worthwhile to mention that the autocovariance function of errors ε1, . . . , εN is given

by

E[εjεk] = ρ(tj − tk) = e−λ|tj−tk| = eλtje−λtk if tj ≤ tk,

where λ = − ln(a)/∆. Thus, if a ∈ (0, 1), the AR(1) error process has a triangular covariance

kernel in the sense of Mehr and McFadden (1965), and the results of Dette et al. (2016) are

applicable. In the following discussion we provide a different derivation of the asymptotically

optimal weights, because the arguments will be useful for the discussion of an AR(2)-error

process in Section 4.

For an AR(1)-error process, the inverse of the covariance matrix Σ = (ρ(ti − tj))Ni,j=1 is given

by the tridiagonal matrix

Σ−1 =
1

S



1 k1 0 0 . . .

k1 k0 k1 0 . . .

0 k1 k0 k1 0
...

. . . . . . . . . . . . . . .

0 k1 k0 k1

0 0 k1 1


,

where k0 = 1 + a2 = 1 + e−2λ∆, k1 = −a = −e−λ∆, S = 1− a2 = 1− e−2λ∆ and λ = − ln(a)/∆.

Recalling the definition of the optimal weights w∗i , i = 2, . . . , N − 1, in (2.4) we have

Sw∗i f(ti) = k1fi−1 + k0fi + k1fi+1 = (1 + a2)fi − afi−1 − afi+1

= a(2fi − fi−1 − fi+1) + (1− 2a+ a2)fi

= a(2fi − fi−1 − fi+1) + (a− 1)2fi .

We now assume that λ = − ln(a)/∆ is fixed and ∆ = (B − A)/(N − 1) → 0. Since S(∆) =
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S ′(0)∆ + o(∆) with S ′(0) = 2λ and a = 1− λ∆ + o(∆), we obtain

w∗i f(ti) =
∆

S(∆)
· a(2fi − fi−1 − fi+1) + (a− 1)2fi

∆2
∆

=
1

S ′(0)
[−f ′′(ti) + λ2f(ti)]∆ + o(∆).

Thus, we have

w∗i
∆

=
1

2λf(ti)
[−f ′′(ti) + λ2f(ti)] +O(∆).

Therefore, for small ∆, the discrete signed measure {t2, . . . , tN−1;w∗2, . . . , w
∗
N−1} is approxi-

mated by the continuous signed measure with density

p(t) = − 1

2λf(t)

(
f ′′(t)− λ2f(t)

)
. (3.3)

Now we consider the weights at the boundary points. For the left boundary weight, we obtain

w∗1f(t1) =
f1 + k1f2

S(∆)
=

∆

S(∆)
· f1 − af2

∆

=
∆

S(∆)

[f1 − f2

∆
+
f2 − af2

∆

]
=

1

S ′(0)
[−f ′(t1)− a′(0)f(t1)] +O(∆).

Since t1 = A, for small ∆, we have w∗1 ≈ PA, where

PA =
1

f(A)S ′(0)

(
− f ′(A)− a′(0)f(A)

)
=

1

2λf(A)

(
− f ′(A) + λf(A)

)
. (3.4)

Similarly, for the right boundary weight, we obtain

w∗Nf(tN) =
fN + k1fN−1

S(∆)
=

∆

S(∆)

fN − afN−1

∆

=
∆

S(∆)

[fN − fN−1

∆
+
fN−1 − afN−1

∆

]
=

1

S ′(0)
[f ′(tN)− a′(0)f(tN−1)] +O(∆).

Since tN = B, for small ∆, we have w∗N ≈ PB, where

PB =
1

f(B)S ′(0)

(
f ′(B)− a′(0)f(B)

)
=

1

2λf(B)

(
f ′(B) + λf(B)

)
. (3.5)

Summarizing, we have proved the following result.
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Proposition 3.1 Consider the one-parameter regression model (2.2) with AR(1) errors of the

form (3.2), where 0 < a < 1 and f(·) is a twice continuously differentiable function such that

f(t) 6= 0 for all t ∈ [A,B]. For large N , the optimal discrete SLSE (defined in Lemma 2.1) is

approximated by the continuous SLSE

θ̂=D∗
(
PAf(A)y(A)+PBf(B)y(B)+

∫ B

A

p(t)f(t)y(t)dt
)

(3.6)

where

D∗=
(
PAf

2(A)+PBf
2(B)+

∫ B

A

p(t)f 2(t)dt
)−1

,

and p(t), PA and PB are defined in (3.3), (3.4) and (3.5), respectively. For this approximation,

we have

D∗ = lim
N→∞

Var(θ̂SLSE,N),

i.e. D∗ is the limit of the variance (2.3) of the optimal discrete SLSE design as N →∞.

Throughout the following discussion we call a triple (p, PA, PB) containing a (signed) density p

and two weights PA and PB, an approximate design for the continuous SLSE estimator defined

in (3.6).

Remark 3.2 Observing the discussion in the second part of Remark 3.1 it is reasonable to

compare Proposition 3.1 with Theorem 2.1 in Dette et al. (2016). Note that the expressions

for the optimal signed density p(·) and optimal weights PA and PB at boundary points are

particular cases of the general formulae

p(t) = − 1

f(t)v(t)

[h′(t)
q′(t)

]′
,

PA =
1

f(A)v2(A)q′(A)

[f(A)u′(A)

u(A)
− f ′(A)

]
, PB =

h′(B)

f(B)v(B)q′(B)

with u(t) = eλt and v(s) = e−λs, where q(t) = u(t)/v(t) and h(t) = f(t)/v(t). Indeed,

we easily see that h(t) = f(t)eλt, h′(t) = f ′(t)eλt + f(t)λeλt, q′(t) = 2λe2λt, h′(t)/q′(t) =

f ′(t)e−λt + f(t)λe−λt and, consequently,

p(t) = − 1

f(t)e−λt
(f ′(t)e−λt + f(t)λe−λt)′

= − 1

f(t)e−λt
(f ′′(t)e−λt − λf ′′(t)e−λt + f ′(t)λe−λt − f(t)λ2e−λt)

= − 1

2λf(t)

(
f ′′(t)− λ2f(t)

)
.
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as desired. Similarly, we have

PA =
1

f(A)e−2λA2λe2λA

[f(A)λeλA

eλA
− f ′(A)

]
=

1

2λf(A)

(
− f ′(A) + λf(A)

)
PB =

f ′(B)eλB + f(B)λeλB

f(B)e−λB2λe2λB
=

1

2λf(B)

(
f ′(B) + λf(B)

)
.

4 Autoregressive errors of order two

In this section we assume that the observations in model (2.2) are taken at N equidistant points

of the form (3.1) and that the errors ε1, . . . , εN satisfy the discrete AR(2) equation

εj − a1εj−1 − a2εj−2 = zj, (4.1)

where zj are Gaussian independent identically distributed random variables with mean 0 and

variance σ2
z = σ2(1 + a2)((1− a2)− a2

1)/(1− a2). Here we make a usual assumption that (4.1)

defines the AR(2) process for j ∈ {. . . ,−2,−1, 0, 1, 2, . . .} but we only take the values such

that j ∈ {1, 2, . . . , N}. Let rk = E[εjεj+k] be the autocovariance function of the AR(2) process

{ε1, . . . , εN} and assume without loss of generality that σ2 = 1. It is well known that the inverse

of the covariance matrix Σ = (E[εjεj])j,k of the discrete AR(2) process is a five-diagonal matrix,

i.e.

Σ−1 =
1

S



k11 k12 k2 0 0 0 . . .

k21 k22 k1 k2 0 0 . . .

k2 k1 k0 k1 k2 0 . . .

0 k2 k1 k0 k1 k2

...
. . . . . . . . . . . . . . . . . .

0 k2 k1 k0 k1 k2

0 0 k2 k1 k22 k12

0 0 0 k2 k21 k11


, (4.2)

where the non-vanishing elements are given by k0 = 1 + a2
1 + a2

2, k1 = −a1 + a1a2, k2 = −a2,

k11 = 1, k12 = k21 = −a1, k22 = 1+a2
1 and S = (1+a1−a2)(1−a1−a2)(1+a2)/(1−a2). Using

Lemma 2.1 and the explicit form (4.2) for Σ−1 we immediately obtain the following result.

Corollary 4.1 Consider the linear regression model (2.2) with observations at N equidistant

points (3.1) and errors that follow the discrete AR(2) model (4.1). If fi = f(ti) 6= 0 for

8



i = 1, . . . , N , then the optimal weights in (2.4) can be represented explicitly as follows:

w∗1 =
1

Sf1

(k11f1 + k12f2 + k2f3) ,

w∗2 =
1

Sf2

(k21f1 + k22f2 + k1f3 + k2f4) ,

w∗N =
1

SfN
(k11fN + k21fN−1 + k2fN−2) ,

w∗N−1 =
1

SfN−1

(k12fN + k22fN−1 + k1fN−2 + k4fN−3) ,

w∗i =
1

Sfi
(k2fi−2 + k1fi−1 + k0fi + k1fi+1 + k2fi+2)

for i = 3, . . . , N − 2.

For the approximation of w∗i , we have to study the behavior of the coefficients which depend

on the autocovariance function rk of the AR(2) process (4.1). There are different types of

autocovariance functions which will be introduced and discussed in the remaining part of this

section.

Formally, a continuous AR(2) process is a solution of the linear stochastic differential equation

of the form

dε′(t) = ã1ε
′(t) + ã2ε(t) + σ2

0dW (t),

where W (t) is a standard Wiener process, [see Brockwell et al. (2007)]. Note that the process

ε(t) has the continuous derivative ε′(t) and the continuous process with drift is again denoted

by y(t) = θf(t) + ε(t), t ∈ [A,B]. We also note that y(t) is differentiable on the interval [A,B].

There are in fact three different forms of the autocovarince functions (note that we assume

throughout σ2 = 1) of continuous AR(2) processes [see e.g. formulas (14)–(16) in He and Wang

(1989)], which are given by

ρ(1)(t) =
λ2

λ2 − λ1

e−λ1|t| − λ1

λ2 − λ1

e−λ2|t| , (4.3)

where λ1 6= λ2, λ1 > 0, λ2 > 0, by

ρ(2)(t) = e−λ|t|
{

cos(q|t|) +
λ

q
sin(q|t|)

}
,

where λ > 0, q > 0, and by

ρ(3)(t) = e−λ|t|(1 + λ|t|) ,

where λ > 0. From formulas (11)–(13) in He and Wang (1989) we obtain that the corresponding

three forms of the autocovariances of the discrete AR(2) process of the form (4.1) are given by

r
(1)
k = E[εjεj+k] = Cpk1 + (1− C)pk2, C =

(1− p2
2)p1

(1− p2
2)p1 − (1− p2

1)p2

, (4.4)
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where j ≥ 0, p1 6= p2, 0 < |p1|, |p2| < 1; by

r
(2)
k = pk

(
cos(bk) + C sin(bk)

)
, C = cot(b)

1− p2

1 + p2
, (4.5)

where 0 < p < 1, 0 < b < 2π and b 6= π, and finally by

r
(3)
k = pk (1 + kC), C =

1− p2

1 + p2
, (4.6)

where 0 < |p| < 1. In the following subsections we determine approximations for the optimal

weights w∗i in Lemma 2.1 for the different types of autocovariance functions. All results will be

summarized in Theorem 4.1 below.

4.1 Autocovariances of the form (4.4)

From Corollary 4.1 we obtain that

Sw∗i fi = −a2fi−2 + (a1a2 − a1)fi−1 + (1 + a2
1 + a2

2)fi + (a1a2 − a1)fi+1 − a2fi+2

= a2(2fi − fi−2 − fi+2)− (a1a2 − a1)(2fi − fi−1 − fi+1)

+(1 + a2
1 + a2

2 − 2a2 + 2a1a2 − 2a1)fi

= a2(2fi − fi−2 − fi+2)− (a1a2 − a1)(2fi − fi−1 − fi+1)

+(a1 + a2 − 1)2fi

for i = 3, 4, . . . , N − 2. Now consider the case when the autocovariance structure of the errors

has the form (4.4) for fixed N . Suppose that the parameters of the autocovariance function

(4.4) satisfy p1 6= p2, 0 < p1, p2 < 1. We do not discuss the case with negative p1 or negative

p2 because discrete AR(2) processes with such parameters do not have continuous real-valued

analogues. From the Yule-Walker equations we obtain that the coefficients a1 and a2 in (4.1)

are given by

a1 = r1
1− r2

1− r2
1

, a2 =
r2 − r2

1

1− r2
1

, (4.7)

where r1 = r
(1)
1 and r2 = r

(1)
2 are defined by (4.4). With the notation λ1 = − log(p1)/∆ and

λ2 = − log(p2)/∆ with ∆ = (B − A)/N we obtain

p1 = e−λ1∆, p2 = e−λ2∆. (4.8)

We will assume that λ1 and λ2 are fixed but ∆ is small and consider the properties of different

quantities as ∆→ 0. By a straightforward Taylor expansion we obtain the approximations

a1 = a1(∆) = 2− (λ1 + λ2)∆ + (λ2
1 + λ2

2)∆2/2 +O(∆3),

a2 = a2(∆) = −1 + (λ1 + λ2)∆− (λ1 + λ2)2∆2/2 +O(∆3),

S = S(∆) = 2λ1λ2(λ1 + λ2)∆3 +O(∆4),

C = C(∆) =
λ2

λ2 − λ1

+
1

6
λ1λ2

λ1 + λ2

λ1 − λ2

∆2 +O(∆4). (4.9)
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Consequently (observing (4.8) and (4.9)), for large N the continuous AR(2) process with au-

tocovariances (4.3) can be considered as an approximation to the discrete AR(2) process with

autocovariances (4.4).

Since S = O(∆3), a1 = 2 +O(∆) and a2 = −1 +O(∆), it follows

S
w∗i
∆4

fi = −4a2
1

∆2
f ′′(ti) + (a1a2 − a1)

1

∆2
f ′′(ti) +

1

∆4
(a1 + a2 − 1)2fi +O(∆)

=
1

∆2
(a1a2 − a1 − 4a2)f ′′(ti) +

1

∆4
(a1 + a2 − 1)2fi +O(∆)

= −(λ2
1 + λ2

2)f ′′(ti) + λ2
1λ

2
2fi +O(∆).

Thus, the optimal weights w∗i , i = 3, . . . , N − 2, are approximated by the signed density

p(t) = − 1

s3f(t)

(
(λ2

1 + λ2
2)f ′′(t)− λ2

1λ
2
2f(t)

)
, (4.10)

where s3 = 2λ1λ2(λ1 + λ2). For the boundary points we obtain

Sw∗1f1 = f1 − a1f2 − a2f3

= (−2f2 + f3 + f1) + (λ1 + λ2)(f2 − f3)∆

+((−1/2f2 + 1/2f3)λ2
1 + f3λ1λ2 + (−1/2f2 + 1/2f3)λ2

2)∆2

+((1/6f2 − 1/6f3)λ3
1 − 1/2f3λ

2
1λ2 − 1/2f3λ1λ

2
2 + (1/6f2 − 1/6f3)λ3

2)∆3 +O(∆4)

=
(
f ′′(t2)− (λ1 + λ2)f ′(t2) + f3λ1λ2

)
∆2 +O(∆3)

and

Sw∗2f2 = −a1f1 + (1 + a2
1)f2 + (a1a2 − a1)f3 − a2f4

= (−2f1 + f4 + 5f2 − 4f3) + (λ1 + λ2)(f1 − 4f2 + 4f3 − f4)∆

+((−1/2f1 + 1/2f4 − 3f3 + 3f2)λ2
1 + (2f2 − 4f3 + f4)λ2λ1

+ (−1/2f1 + 1/2f4 − 3f3 + 3f2)λ2
2)∆2

+((1/6f1 − 5/3f2 + 5/3f3 − 1/6f4)λ3
1 + (−f2 + 3f3 − 1/2f4)λ2λ

2
1

+ (−f2 + 3f3 − 1/2f4)λ2
2λ1 + (1/6f1 − 5/3f2 + 5/3f3 − 1/6f4)λ3

2)∆3 +O(∆4)

=
(
f ′′(t3)− 2f ′′(t2) + (λ1 + λ2)(3f ′(t2)− f ′(t1)− f ′(t3))− f3λ1λ2

)
∆2 +O(∆3)

=
(
− f ′′(t2) + (λ1 + λ2)f ′(t2)− f3λ1λ2

)
∆2 +O(∆3)

Thus, we can see that

w∗1 = −w∗2 +O(1) = QA
1

∆
+O(1),

where

QA =
1

s3f(A)

(
f ′′(A)− (λ1 + λ2)f ′(A) + λ1λ2f(A)

)
. (4.11)
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This means that the coefficients w∗1 and w∗2 at t1 and t2 are large in absolute value and have

different signs. Similarly, we have

w∗N = −w∗N−1 +O(1) = QB
1

∆
+O(1)

where

QB =
1

s3f(B)

(
f ′′(B) + (λ1 + λ2)f ′(B) + λ1λ2f(B)

)
. (4.12)

To do a finer approximation, we have to investigate the quantity

g := Sw∗1f1 + Sw∗2f2,

which is of order O(1). Indeed, we have

g = (3f2 − 3f3 − f1 + f4) + (λ2 + λ1)(f1 − 3f2 + 3f3 − f4)∆

+((−f1 + f4 − 5f3 + 5f2)/2(λ2
1 + λ2

2) + (2f2 − 3f3 + f4)λ2λ1)∆2

+((f1 − 9f2 + 9f3 − f4)/6(λ3
1 + λ3

2)

+(−2f2 + 5f3 − f4)/2(λ2
1λ2 + λ1λ

2
2))∆3 +O(∆4)

= f ′′′(t1)∆3 +O(∆4) + (−f ′(t1)(λ2
1 + λ2

2)− f ′(t1)λ2λ1)∆3

+f(t1)(λ2
1λ2 + λ1λ

2
2)∆3 +O(∆4)

=
(
f ′′′(t1)− (λ2

1 + λ1λ2 + λ2
2)f ′(t1) + λ1λ2(λ1 + λ2)f(t1)

)
∆3 +O(∆4)

and, consequently,

w∗1f1 + w∗2f2 =
1

s3

(
f ′′′(t1)− (λ2

1 + λ1λ2 + λ2
2)f ′(t1) + λ1λ2(λ1 + λ2)f(t1)

)
+O(∆),

where s3 = 2λ1λ2(λ1 + λ2). Therefore, if ∆→ 0, it follows that w∗1 + w∗2 ≈ PA, where

PA =
1

s3f(A)

(
f ′′′(A)− (λ2

1 + λ1λ2 + λ2
2)f ′(A) + λ1λ2(λ1 + λ2)f(A)

)
. (4.13)

Similarly, we obtain w∗N + w∗N−1 ≈ PB if ∆→ 0, where

PB =
1

s3f(B)

(
− f ′′′(B) + (λ2

1 + λ1λ2 + λ2
2)f ′(B) + λ1λ2(λ1 + λ2)f(B)

)
. (4.14)

Summarizing, we have proved the following result.

Proposition 4.1 Consider the one-parameter model (2.2) such that the errors follow the AR(2)

model with autocovariance function (4.4). Assume that f(·) is a three times continuously differ-

entiable and f(t) 6= 0 for all t ∈ [A,B]. Then for large N , the optimal discrete SLSE (defined

in Lemma 2.1) can be approximated by the continuous SLSE

θ̂=D∗
(
QBf(B)y′(B)−QAf(A)y′(A)+PAf(A)y(A)+PBf(B)y(B)+

∫ B

A
p(t)f(t)y(t)dt

)
(4.15)
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where

D∗=
(
QBf(B)f ′(B)−QAf(A)f ′(A)+PAf

2(A)+PBf
2(B)+

∫ B

A

p(t)f 2(t)dt
)−1

and p(t), QA, QB, PA and PB defined in (4.10), (4.11), (4.12), (4.13) and (4.14) respectively.

For this approximation, we have D∗ = limN→∞Var(θ̂SLSE,N), i.e. D∗ is the limit of the variance

(2.3) of the optimal discrete SLSE design as N →∞.

In the following discussion we call a tuple (p,QA, QB, PA, PB) which contains a (signed) density

p(·) and four weights QA, QB, PA, PB, an approximate design for the continuous SLSE estimator

defined in (4.15).

4.2 Autocovariances of the form (4.5)

Consider the autocovariance function of the form (4.5), then the coefficients a1 and a2 are given

by (4.7) where r1 = r
(2)
1 and r2 = r

(2)
2 are defined by (4.5). With the notations λ = − log p/∆

and q = b/∆ (or equivalently p = e−λ∆ and b = q∆) we obtain by a Taylor expansion

a1 = 2− 2λ∆ + (λ2 − q2)∆2 +O(∆3),

a2 = −1 + 2λ∆− 2λ2∆2 +O(∆3),

S = 4λ(λ2 + q2)∆3 +O(∆4)

and

C =
λ

q
− λ(λ2 + q2)

3q
∆2 +O(∆4)

as ∆→ 0. Similarly, we have

S
w∗i
∆4

fi =
1

∆2
(a1a2 − a1 − 4a2)f ′′(ti) +

1

∆4
(a1 + a2 − 1)2fi +O(∆)

= −2(λ2 − q2)f ′′(ti) + (λ2 + q2)2fi +O(∆).

Thus, the optimal weights w∗i , i = 3, . . . , N − 2, are approximated by the signed density

p(t) = − 1

s3f(t)

(
2(λ2 − q2)f ′′(t)− (λ2 + q2)2f(t)

)
, (4.16)

where s3 = 4λ(λ2 + q2). Similarly, we obtain that

w∗1 = −w∗2 +O(1) = QA
1

∆
+O(1),

w∗N = −w∗N−1 +O(1) = QB
1

∆
+O(1),
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where

QA =
1

s3f(A)

(
f ′′(A)− 2λf ′(A) + (λ2 + q2)f(A)

)
, (4.17)

QB =
1

s3f(B)

(
f ′′(B) + 2λf ′(B) + (λ2 + q2)f(B)

)
. (4.18)

Calculating g := Sw∗1f1 + Sw∗2f2 we have

g = (3f2 − f1 − 3f3 + f4) + 2λ(f1 − 3f2 + 3f3 − f4)∆

+((−f1 + 7f2 − 8f3 + 2f4)λ2 + q2(f1 − 3f2 + 2f3))∆2

+((−f1 + 7f2 − 4f3)λq2 + (f1 − 15f2 + 24f3 − 4f4)/3λ3)∆3 +O(∆4)

= f ′′′(t1)∆3 − (3λ2 − q2)f ′(t1)∆3 + 2λ(λ2 + q2)f(t1)∆3 +O(∆4).

Therefore, it follows that w∗1 + w∗2 ≈ PA if ∆→ 0, where

PA =
1

s3f(A)

(
f ′′′(A)− (3λ2 − q2)f ′(A) + 2λ(λ2 + q2)f(A)

)
, (4.19)

and s3 = 4λ(λ2 + q2). Similarly, we obtain the approximation w∗N + w∗N−1 ≈ PB if ∆ → 0,

where

PB =
1

s3f(B)

(
− f ′′′(B) + (3λ2 − q2)f ′(B) + 2λ(λ2 + q2)f(B)

)
. (4.20)

Summarizing, we have proved the following result.

Proposition 4.2 Consider the one-parameter model (2.2) such that the errors follow the AR(2)

model with autocovariance function (4.5). Assume that f(·) is a three times continuously dif-

ferentiable and f(t) 6= 0 for all t ∈ [A,B]. Then for large N , the optimal discrete SLSE

(defined in Lemma 2.1) can be approximated by the continuous SLSE (4.15), where the tuple

(p,QA, QB, PA, PB) is defined by (4.16), (4.17), (4.18), (4.19) and (4.20) respectively.

4.3 Autocovariances of the form (4.6)

For the autocovariance function (4.6) the coefficients a1 and a2 in the AR(2) process are given

by (4.7) where r1 = r
(3)
1 and r2 = r

(3)
2 are defined by (4.6). With the notation λ = − log p/∆

(or equivalently p = e−λ∆) we obtain the Taylor expansions

a1 = 2− 2λ∆ + λ2∆2 +O(∆3),

a2 = −1 + 2λ∆− 2λ2∆2 +O(∆3),

S = 4λ3∆3 +O(∆4),

C = λ∆− λ3

3
∆3 +O(∆5)
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as ∆→ 0. Similar calculations as given in the previous paragraphs give

S
w∗i
∆4

fi =
1

∆2
(a1a2 − a1 − 4a2)f ′′(ti) +

1

∆4
(a1 + a2 − 1)2fi +O(∆)

= −2λ2f ′′(ti) + λ4fi +O(∆).

Thus, the optimal weights w∗i , i = 3, . . . , N − 2, are approximated by the signed density

p(t) = − 1

s3f(t)

(
2λ2f ′′(t)− λ4f(t)

)
, (4.21)

where s3 = 4λ3. For the remaining weighs w∗1 and w∗2 we obtain

w∗1 = −w∗2 +O(1) = QA
1

∆
+O(1),

w∗N = −w∗N−1 +O(1) = QB
1

∆
+O(1),

with

QA =
1

s3f(A)

(
f ′′(A)− 2λf ′(A) + λ2f(A)

)
, (4.22)

QB =
1

s3f(B)

(
f ′′(B) + 2λf ′(B) + λ2f(B)

)
. (4.23)

Calculating g := Sw∗1f1 + Sw∗2f2 we have

g = (3f2 − 3f3 − f1 + f4) + 2λ(f1 − 3f2 + 3f3 − f4)∆

−λ2(f1 − 7f2 + 8f3 − 2f4)∆2

+1/3λ3(f1 − 15f2 + 24f3 − 4f4)∆3 +O(∆4)

= f ′′′(t1)∆3 − 3λ2f ′(t1)∆3 + 2λ3f(t1)∆3 +O(∆4).

Therefore, if ∆→ 0, it follows that w∗1 + w∗2 ≈ PA, where

PA =
1

s3f(A)

(
f ′′′(A)− 3λ2f ′(A) + 2λ3f(A)

)
, (4.24)

and s3 = 4λ3. Similarly, we obtain the approximation w∗N + w∗N−1 ≈ PB if ∆→ 0, where

PB =
1

s3f(B)

(
− f ′′′(B) + 3λ2f ′(B) + 2λ3f(B)

)
. (4.25)

Summarizing, we have proved the following result.

Proposition 4.3 Consider the one-parameter model (2.2) such that the errors follow the AR(2)

model with autocovariance function (4.6). Then for large N , the optimal discrete SLSE (de-

fined in Lemma 2.1) can be approximated by the continuous SLSE (4.15), where the tuple

(p,QA, QB, PA, PB) is defined in (4.21), (4.22), (4.23), (4.24) and (4.25) respectively.
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4.4 General statement

Propositions 4.1 - 4.3 can be combined in the following statement.

Theorem 4.1 Consider the one-parameter model (2.2) such that the errors follow the AR(2)

model. Assume that f(·) is a three times continuously differentiable and f(t) 6= 0 for all

t ∈ [A,B]. Define the following constants depending on the form of the autocovariance function

rk. If rk is of the form (4.4), set

λ1 = − ln(p1)

∆
, λ2 = − ln(p2)

∆
,

τ0 = λ2
1λ

2
2, τ2 = λ2

1 + λ2
2, β1 = λ1 + λ2, β0 = λ1λ2,

γ1 = λ2
1 + λ1λ2 + λ2

2 , γ0 = λ1λ2(λ1 + λ2), s3 = 2λ1λ2(λ1 + λ2).

If rk is of the form (4.5), set

λ = − ln(p)

∆
, q = − b

∆
,

τ0 = (λ2 + q2)2, τ2 = 2(λ2 − q2), β1 = 2λ, β0 = λ2 + q2,

γ1 = (3λ2 − q2) , γ0 = 2λ(λ2 + q2), s3 = 4λ(λ2 + q2).

If rk is of the form (4.6), set

λ = − ln(p)

∆
, τ0 = λ4, τ2 = 2λ2, β1 = 2λ, β0 = λ2,

γ1 = 3λ2 , γ0 = 2λ3, s3 = 4λ3.

For large N , the optimal discrete SLSE (defined in Lemma 2.1) can be approximated by the

continuous SLSE

θ̂=D∗
(
QBf(B)y′(B)−QAf(A)y′(A)+PAf(A)y(A)+PBf(B)y(B)+

∫ B

A
p(t)f(t)y(t)dt

)
where

D∗=
(
QBf(B)f ′(B)−QAf(A)f ′(A)+PAf

2(A)+PBf
2(B)+

∫ B

A

p(t)f 2(t)dt
)−1

.

For this approximation, we have D∗ = limN→∞Var(θ̂SLSE,N), i.e. D∗ is the limit of the variance

(2.3) of the optimal discrete SLSE design as N → ∞. Here the quantities p(t), QA, QB, PA
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and PB in the continuous SLSE are defined by

p(t) = − 1

s3f(t)

(
τ2f
′′(t)− τ0f(t)

)
, (4.26)

PA =
1

s3f(A)

(
f ′′′(A)− γ1f

′(A) + γ0f(A)
)
,

PB =
1

s3f(B)

(
− f ′′′(B) + γ1f

′(B) + γ0f(B)
)
,

QA =
1

s3f(A)

(
f ′′(A)− β1f

′(A) + β0f(A)
)
,

QB =
1

s3f(B)

(
f ′′(B) + β1f

′(B) + β0f(B)
)
. (4.27)

5 Examples

5.1 Approximations of the discrete SLSE

Consider the one-parameter model with f(t) = tα and AR(1) errors (0 < a < 1). The design

space is given by an interval [A,B] such that f(t) 6= 0 for all t ∈ [A,B]. Then the optimal

discrete design for the SLSE is approximated by a design of the form (2.5), where the density

p(t), and the weights PA and PB are defined by

p(t) = − 1

2λ

(
α(α− 1)t−2 − λ2

)
,

PA =
1

2λ

(
− αA−1 + λ

)
,

PB =
1

2λ

(
αB−1 + λ

)
.

In Table 1 we display values of p(t), P (A) and PB for several exponents α and also for the

regression function f(t) = et For example, if f(t) = et we observe that PA is positive for λ > 1

and negative for 0 < λ < 1, PB is positive for λ > 0, p(t) is positive for λ > 1 and negative for

λ ∈ (0, 1). For large λ, the contribution of observations at the interval (A,B) to the continuous

SLSE is significant. For the location model f(t) = 1, we can see that PB = PB = 1/2 and

p(t) = λ/2. This implies that for small λ the contribution of observations at boundary points to

the continuous SLSE is large and the contribution of observations at the interval (A,B) to the

continuous SLSE is small. For large λ, the contribution of observations at the interval (A,B)

to the continuous SLSE is essential.

Next we consider the same models with an AR(2) error process. For example, if f(t) = tα the
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Table 1: The function p(t) and the weights PA and PB of the continuous SLSE for several

functions f(t) and an AR(1) error process.

f(t) PA PB p(t)

1
1

2

1

2

λ

2

t
1

2
− 1

2Aλ

1

2
+

1

2Bλ

λ

2

t2
1

2
− 1

Aλ

1

2
+

1

Bλ

λ

2
− 1

λt2

t3
1

2
− 3

2Aλ

1

2
+

3

2Bλ

λ

2
− 3

λt2

t4
1

2
− 2

Aλ

1

2
+

2

Bλ

λ

2
− 6

λt2

et
1

2
− 1

2λ

1

2
+

1

2λ

λ

2
− 1

2λ

SLSE is approximated by the continuous SLSE of the form (2.5), where

p(t) = − 1

s3

(
τ2α(α− 1)t−2 − τ0

)
,

PA =
1

s3

(
α(α− 1)(α− 2)A−3 − γ1αA

−1 + γ0

)
,

PB =
1

s3

(
− α(α− 1)(α− 2)B−3 + γ1αB

−1 + γ0

)
,

QA =
1

s3

(
α(α− 1)A−2 − β1αA

−1 + β0

)
,

QB =
1

s3

(
α(α− 1)B−2 + β1αB

−1 + β0

)
.

Note that signs of p(t), QA, QB, PA and PB depend on the form of the autocovariance function

and its parameters. For the form (4.6), we provide values of p(t), QA, QB, PA and PB for several

functions f(t) in Table 2. The other cases can be obtained similarly and are not displayed for

the sake of brevity.

For example, if f(t) = et we can see that both PA andQA are positive for all λ 6= 1, PB is positive

for λ > 0.5 and negative for λ ∈ (0, 0.5), p(t) is positive for λ >
√

2 and negative for λ ∈ (0,
√

2).

For large λ, the contribution of observations at the interval (A,B) to the continuous SLSE is

notable. For the location model f(t) = 1, we can see that PA = PB = 1/2, QA = QB = 1/(4λ)

and p(t) = λ/4. This implies that for small λ the contribution of observations at boundary

points to the continuous SLSE is very large and the contribution of observations at the interval

18



(A,B) to the continuous SLSE is small. For large λ, the contribution of observations at the

interval (A,B) to the continuous SLSE is essential.

Table 2: The function p(t) and the weights PA, PB, QA and QB in the continuous SLSE for

several functions f(t) and an AR(2) error process with the autocovariance function (4.6).

f(t) PA PB p(t) QA QB

1 1
2

1
2

λ
4

1
4λ

1
4λ

t 1
2
− 3

4Aλ
1
2

+ 3
4Bλ

λ
4

1
4λ
− 1

2Aλ2
1

4λ
+ 1

2Bλ2

t2 1
2
− 3

2Aλ
1
2

+ 3
2Bλ

λ
4
− 1

λt2
1

4λ
− 1

Aλ2
+ 1

2A2λ3
1

4λ
+ 1

Bλ2
+ 1

2B2λ3

t3 1
2
− 9

4Aλ
+ 3

2A3λ3
1
2

+ 9
4Bλ
− 3

2B3λ3
λ
4
− 3

λt2
1

4λ
− 3

2Aλ2
+ 3

2A2λ3
1

4λ
+ 3

2Bλ2
+ 3

2B2λ3

t4 1
2
− 3

Aλ
+ 6

A3λ3
1
2

+ 3
Bλ
− 6

B3λ3
λ
4
− 6

λt2
1

4λ
− 2

Aλ2
+ 3

A2λ3
1

4λ
+ 2

Bλ2
+ 3

B2λ3

et 1
2
− 3

4λ
+ 1

4λ3
1
2

+ 3
4λ
− 1

4λ3
λ
4
− 1

2λ
1

4λ
− 1

2λ2
+ 1

4λ3
1

4λ
+ 1

2λ2
+ 1

4λ3

5.2 Practical implementation

Suppose that the N equidistant points defined in (3.1) are the potential observation points.

Let K + 2 be the number of observations actually taken in the experiment and that we want

to construct a discrete design, which can be implemented in practice. Suppose that K is small

and N is large, then efficient designs and corresponding estimators for the model (2.2) can

be derived from the continuous approximations, which have been developed in the previous

sections.

In Dette et al. (2016) a procedure with a good finite sample performance is proposed. It consists

of a slight modification of the SLSE given in (2.1) and a discretization of the density p(t) defined

in (3.3) for AR(1) errors and (4.27) for AR(2) errors. To be precise consider a continuous SLSE

with weights at the points A and B (the end-points of the interval [A,B]), which correspond

to the masses PA and PB and, for the AR(2) errors, QA and QB as well. We thus only need

to approximate the continuous part of the design, which has a density on (A,B), by a K-point

design with equal masses.

We assume that the density p(·) is not identically zero on the interval (A,B). Define ϕ(t) =

κ|p(t)| for t ∈ (A,B) and choose the constant κ such that
∫ B
A
ϕ(t)dt = 1, that is,

κ =
1∫ B

A
|p(t)|dt

.

Denote by F (t) =
∫ t
A
ϕ(s)ds the corresponding cumulative distribution function. As K-point

design we use a K-point approximation to the measure with density ϕ(t), that is ξ̂K =
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{t1,K , . . . , tK,K ; 1/K, . . . , 1/K}, where ti,K = R(F−1(i/(K + 1))) i = 1, 2, . . . , K. Here R(t)

is the operator of rounding a number t towards the set of points defined by (3.1), that is

R(F (i/(K + 1)) = ti,K := A+ (i∗ − 1)∆, where

|F (i/(K + 1))− A+ (i∗ − 1)∆| = min{|F (i/(K + 1))− A+ (j − 1)∆| ; j = 1, . . . , N}.

If p(t) = 0 on a sub-interval of [A,B] and F−1(i/(K+1)) is not uniquely defined then we choose

the smallest element from the set R(F−1(i/(K + 1)) as ti,K . Also we define si,K = sign(p(ti,K))

and obtain from the representation of the continuous SLSE for AR(1) errors in Proposition 3.1 a

reasonable estimator with corresponding design. To be precise, y1, . . . , yK+2 should be observed

at experimental conditions A, t1,K , t2,K , . . . , tK,K , B, respectively, and the parameter θ has to

be estimated by the modified SLSE

θ̂K+2 =DK+2

(
PAf(A)yA+PBf(B)yB+

B − A
κK

K∑
i=1

si,Kf(ti,K)yi

)
,

where

DK+2 =
(
PAf

2(A)+PBf
2(B)+

B − A
κK

K∑
i=1

si,Kf
2(ti,K)

)−1

.

It follows from the discussion of the previous paragraph that Var(θ̂K+2) ≈ D∗, where D∗ is

defined in (3.6). Similarly, the modified SLSE for AR(2) errors is defined by

θ̂K+2 =DK+2

(
QBf(B)y′(B)−QAf(A)y′(A)

+PAf(A)yA+PBf(B)yB+
B −A
κK

K∑
i=1

si,Kf(ti,K)y(ti,K)
)

(4.28)

where

DK+2 =
(
QBf(B)f ′(B)−QAf(A)f ′(A)+PAf

2(A)+PBf
2(B)+

B−A
κK

K∑
i=1

si,Kf
2(ti,K)

)−1

.

In (4.28) the expressions are the derivatives y′(A) and y′(B) of the continuous approximation

{y(t)}t∈[A,B], which are usually not available in practice. Therefore, we recommend to make

two additional observations at the points A + ∆ and B −∆ and to replace the derivatives by

their approximations (yA+∆−yA)/∆ and (yB−yB−∆)/∆. Thus, we replace the estimator (4.28)

by the weighted least squares estimator (WLSE)

θ̃K+4 = (XTWX)−1XTWY, (4.29)

where Y = (yA, yA+∆, yt1,K , . . . , ytK,K
, yB−∆, yB)T and the matrix W is defined by

W = diag
{PA

2
+
QA

∆
,
PA
2
− QA

∆
, s1,K

B−A
κK

, . . . , sK,K
B−A
κK

,
PB
2
− QB

∆
,
PB
2

+
QB

∆

}
. (4.30)

Note that the variance of θ̃K+4 is given by

Var(θ̃K+4) = (XTWX)−1(XTWΣWX)(XTWX)−1.
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5.3 Practical performance

Consider the regression model (2.2) with f(t) = 1, [A,B] = [0, 1] and AR(2) errors. Suppose

that N = 101 so that ti = i/100, i = 0, 1, . . . , N , are potential observation points. We also

assume that the autocorrelation function rk is of the form (4.6) with λ = 1. We investigate

the design ξK+2 with (K + 2) points 0, t1,K , t2,K , . . . , tK,K , 1 and the design ξK+4 with (K + 4)

points 0, 0.01, t1,K , t2,K , . . . , tK,K , 0.99, 1. The points t1,K , t2,K , . . . , tK,K are shown in the second

column of Table 3. In this table we also display the variances of the WLSE θ̃K+4, defined by

(4.30), the LSE θ̂LSE,K+2 based on the design ξK+2 and the BLUE θ̂BLUE,K+2 and θ̂BLUE,K+4 for

the designs ξK+2 and ξK+4, respectively. Let θ̂BLUE denote the BLUE based on 101 observations

at the points { i
100
| i = 0, . . . , 100}, then we observe that 0.80158449 = Var(θ̂BLUE) ≈ D∗ = 0.8

that is in agreement with Theorem 4.1. We also observe that Var(θ̂BLUE,K+4) ∼= Var(θ̂BLUE)

and Var(θ̂BLUE,K+2) 6∼= Var(θ̂BLUE) showing the importance of taking one additional observation

at each boundary point A and B. Note that the proposed estimator θ̃K+4 defined in (4.30) is

nearly as accurate as the BLUE θ̂BLUE,K+4 at the same points and that the LSE θ̂LSE,K+2 is about

10− 15% worse than the BLUE.

Table 3: The variances of the LSE, the WLSE defined by (4.30) and the BLUE for designs with

K + 2 and K + 4 points. f(t) = 1, [A,B] = [0, 1], N = 101, the autocovariance structure is

given by (4.6) with λ = 1, which yields D∗ = 0.80000 and Var(θ̂BLUE) = 0.80158449.

K t1,K , . . . , tK,K Var(θ̂LSE,K+2) Var(θ̃K+4) Var(θ̂BLUE,K+2) Var(θ̂BLUE,K+4)

2 0.33, 0.67 0.914 0.80170 0.82663 0.80158714

3 0.25, 0.5, 0.75 0.921 0.80165 0.82022 0.80158533

4 0.2, 0.4, 0.6, 0.8 0.925 0.80162 0.81681 0.80158484

5 0.17, 0.33, 0.5, 0.67, 0.83 0.928 0.80161 0.81443 0.80158466

As a second example, consider the regression model (2.2) with f(t) = t2, [A,B] = [0.1, 1.1]

and AR(2) errors. Suppose that N = 101 so that ti = 0.1 + i/100, i = 0, 1, . . . , N , are

potential observation points. We also assume that the autocorrelation function rj is of the

form (4.6) with λ = 2. We investigate the design ξK+2 with (K + 2) points 0.1, t1,K , t2,K , . . . ,

tK,K , 1.1 and the design ξK+4 with (K + 4) points 0.1, 0.11, t1,K , t2,K , . . . , tK,K , 1.09, 1.1. The

non-trivial points are shown in the second column of Table 4. In the other columns we display

the variances of the different estimators introduced in the previous paragraph. We observe

again that 0.37055791 = Var(θ̂BLUE) ≈ D∗ = 0.36543 that is in line with Theorem 4.1. Note

also that Var(θ̂BLUE,K+4) ∼= Var(θ̂BLUE) and the estimator θ̂BLUE,K+2 without the two additional

observations at the boundary is not efficient. Again the proposed estimator θ̃K+4 is nearly as

accurate as the BLUE at the same points but the LSE θ̂LSE,K+2 is dramatically worse than the
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BLUE.

Table 4: The variances of the LSE, the WLSE and the BLUE for designs with K+2 and K+4

points. f(t) = t2, [A,B] = [0.1, 1.1], N = 101 and the autocovariance is given by (4.6) with

λ = 2, which yields D∗ = 60000/164189 ∼= 0.36543 and Var(θ̂BLUE) = 0.37055791.

K t1,K , . . . , tK,K Var(θ̂LSE,K+2) Var(θ̃K+4) Var(θ̂BLUE,K+2) Var(θ̂BLUE,K+4)

2 0.14, 0.22 0.723 0.40218 0.53175 0.37079053

3 0.12, 0.17, 0.27 0.751 0.40204 0.52509 0.37072082

4 0.12, 0.15, 0.20, 0.30 0.783 0.40176 0.52089 0.37068565

5 0.12, 0.14, 0.17, 0.22, 0.33 0.818 0.40139 0.51689 0.37065785
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Näther, W. (1985b). Exact design for regression models with correlated errors. Statistics,

16:479–484.

Pázman, A. and Müller, W. G. (2001). Optimal design of experiments subject to correlated

errors. Statistics and Probability Letters, 52:29–34.

Pukelsheim, F. (2006). Optimal Design of Experiments. SIAM, Philadelphia.

Sacks, J. and Ylvisaker, N. D. (1966). Designs for regression problems with correlated errors.

Annals of Mathematical Statistics, 37:66–89.

Sacks, J. and Ylvisaker, N. D. (1968). Designs for regression problems with correlated errors;

many parameters. Annals of Mathematical Statistics, 39:49–69.

Zhigljavsky, A., Dette, H., and Pepelyshev, A. (2010). A new approach to optimal design for

linear models with correlated observations. Journal of the American Statistical Association,

105:1093–1103.

23



 



 



 


