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Abstract We introduce trimmed likelihood estimators for processes given by a
stochastic differential equation for which a transition density is known or can
be approximated and present an algorithm to calculate them. To measure the
fit of the observations to a given stochastic process, two performance measures
based on the trimmed likelihood estimator are proposed. The approach is ap-
plied to crack growth data which are obtained from a series of photos by back-
tracking large cracks which were detected in the last photo. Such crack growth
data are contaminated by several outliers caused by errors in the automatic
image analysis. We show that trimming 20% of the data of a growth curve
leads to good results when 100 obtained crack growth curves are fitted with
the Ornstein-Uhlenbeck process and the Cox-Ingersoll-Ross processes while
the fit of the Geometric Brownian Motion is significantly worse. The method
is sensitive in the sense that crack curves obtained under different stress con-
ditions provide significantly different parameter estimates.
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1 Introduction

The motivation of this paper is the analysis of micro crack growth data obtained
from photos of the surface of a steel specimen exposed to cyclic load. A simple
model for crack growth is given by the Paris-Erdogan equation (see e.g. [Pook,
2000)

44 _c(aovay, (1)

dN

where a is the crack length, N the number of load cycles, C and m are usu-
ally unknown constants and A G = Gqx — Omin 1S the range of the cyclic stress
amplitude. Since crack growth is not a deterministic process, several stochas-
tic versions of the Paris-Erdogan equation were developed (see e.g. |Ortiz and
Kiremidjian, (1988} Ray and Tangirala, |1996} [Nicholson et al, 2000; Wu and
N1, 2004; (Chiquet et al, 2009; Hermann et al, [2016alb). Often only models are
developed but no statistical analysis is presented. For example, the books of
Sobczyk and Spencer|(1992), Castillo and Fernandez-Canteli| (2009)), [Sanchez-
Silva and Klutke (2016) are full of models but besides some simple statistical
methods not much is provided.

One approach is to extend equation (1}) with an additive stochastic term lead-
ing to a stochastic differential equation (SDE), see e.g. [Lin and Yang| (1983)),
Sobczyk and Spencer] (1992)), Wu and Ni| (2004), Zarate et al| (2012), Hermann
et all (2016a.b). The advantage of a SDE is that several statistical methods were
developed already, at least for some of them, see e.g. Sgrensen| (2004)) or Iacus
(2008). In particular likelihood methods were proposed as in [Pedersen| (1995)),
Beskos et al| (2006]), Pastorello and Rossi| (2010), |Sun et al| (2015}), Hook and
Lindstrom! (2016). However, the choice of the SDE is still a problem. More-
over, usually the crack growth data are not so nice and numerous as those of
Virkler et al| (1979), who provided 68 series with 164 measurements in a labo-
rious study. These measurements are nice since they do not include many big
jumps and errors in contrast to other crack growth data as those considered in
Kustosz and Miiller| (2014) and [Hermann et al| (2016a) where additionally less
than ten series were observed.

With automatic detection of crack growth from photos it is possible to obtain
a much larger number of series of crack growth data and it is much less labo-
rious. The resulting large data sets allow a better analysis of the crack growth
and the corresponding fatigue behavior of the material. However, those data
contain several errors originated by the automatic detection. These errors are
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for example caused by scratches and contaminations of the material, blurred
photos, shadows on the photos and other image processing problems and pro-
vide outliers in the crack growth curves. In particular they can cause that the
growth curve is not strictly increasing.

To cope with such outliers, we propose to use trimmed likelihood estima-
tors for SDEs. Trimmed likelihood estimators for independent observations
were introduced by [Hadi and Lucefio| (1997). They extend the least median
of squares estimators and the least trimmed squares estimators of |Rousseeuw
(1984) and [Rousseeuw and Leroy|(1987) by replacing the likelihood functions
of the normal distribution by likelihood functions of other distributions. Miiller
and Neykov| (2003) applied them for generalized linear models and other ap-
plications can be found for example inNeykov et all (2007), Cheng and Biswas
(2008), Neykov et al| (2014), Miiller et al| (2016). Because of the trimming of a
proportion of the data, trimmed likelihood estimators can deal with a amount of
outliers up to the trimming proportion. We use trimmed likelihood estimators
here to define two measures for the performance of a fit of a SDE to the data.
One performance measure is based on the median of absolute deviations of
predictions and the other is based on the coverage rate of prediction intervals.

The paper is organized as follows. In Section 2] the trimmed likelihood es-
timator together with its computation is introduced and the two performance
measures based on the trimmed likelihood estimator are proposed. Section 3]
provides the application to crack growth data obtained from photos. Therefore,
at first, it is described how crack growth curves can be obtained by backtrack-
ing long cracks which were detected in the last photo in a series of photos.
Then the fits of three SDEs to these curves are obtained with trimmed like-
lihood estimators with different trimming rates and are compared via the two
performance measures. Moreover, the fits of curves from two experiments with
different stress conditions lead to significantly different parameter estimates
so that the approach can be used to distinguish between different stress condi-
tions. Finally, Section 4] discusses the results and some further extensions.
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2 Trimmed likelihood estimators for SDEs
2.1 Trimmed likelihood estimators and their computation

A stochastic extension of the Paris-Erdogan equation (I is given by the
stochastic differential equation

dX[ = b(Xt, 9) +S(Xt, e)dBt

where the time-continuous stochastic process (X;);>o provides the crack size,
b and s are known functions, (B;),;>o is the standard Brownian Motion, and 0
is an unknown parameter vector. Special cases are given by

dX; = (6, + 6,X,)dr + 6;X,/dB;,

with 8 = (01,65, 65,7)’ C R* which include the Ornstein-Uhlenbeck process
(y = 0), the Cox-Ingersoll-Ross process (Y = 0.5), and the Geometric Brown-
ian Motion (8; =0,y = 1), see e.g. lacus| (2008). The process is observed at
time points 0 <7y <#; < ... <ty providing observations Xy, , ..., Xz .

The idea of trimming is to use only a subset .# = {n(1),...,n(I)} of
{0,1,...,N} with0 <n(1) <n(2) <...<n(I) <N. Since the conditional dis-
tribution of X; . given X; . is often known or at least can be approximated,
we set

pPo (xtn<i+1> |x’n(i> )

for the transition density of the conditional distribution or its approximation.
Then the likelihood function for the observation vector x s := (x,nm , ...,x,n(l))
is given by

I1-1
lo (Xy) = HPO (xtn(i+1) |xtn(i))'
i=1

If # ={0,1,...,N} then the classical maximum likelihood estimator is given
by

0:= argmglxlg(xj).

We can also define the maximum likelihood for any subset .# C {0, 1,...,N}
as
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0(.7) = argmeaxle(xj)

so that §(.) = 0 if # = {0,1,...,N}. A H-trimmed likelihood estimator is
then defined as (see e.g.[Hadi and Luceno, |1997; Miiller and Neykov,, 2003)

§H = §(JH) with Sy € argmax{l(;(]) (xs); I € Zu},

where ¢y :={% C{0,1,...,N}; §.# =N —H + 1} and A denotes the num-
ber of elements of a set A. In the H-trimmed likelihood estimator, the H most
unlikely observations are trimmed, i.e. not used. If H =0, i.e. no observation is
trimmed, then we get again the maximum likelihood estimator so that 6o =6.

~/ P

1 2 3 i~1 0 i1 i#+2 =2 1-1 |

Fig. 1 Remaining transition densities if the observation at 7,,;) (blue) or at #,(; 1) (green) is trimmed
because the transition density Pit1li (red) is small, for the case i = 1 (on the left), i € {2,...,/ -2}
(in the middle), i = 7 — 1 (on the right)

If N is small or H is very small then the H-trimmed likelihood estimator can
be calculated by considering all subsets .# € _#p. If this is too time consuming
then approximate algorithms based on a genetic algorithm and a concentration
step as proposed in |Neykov and Miiller| (2003) or based on a special selective
iteration as proposed in [Rousseeuw and Driessen|(2006) can be used. However
the concentration step is here much more complicated as in the case of inde-
pendent observations since a single transition density p; 1) := pe (X, [, )
is influenced by two observations, see Figure (I} Hence if pe(x;,,, %, ) 18
small it is not clear whether Xiyinn) OF Xt should be trimmed. Hence we pro-
pose the following procedure as concentration step.

As in the independent case, the concentration step starts with an initial sub-
set %y with N — H + 1 elements and provides a new subset .%, with N — H + 1
elements. Set for simplicity 8 = 5(%0) and define the transition densities

pji = pji(¥) := pe(x,, 1x,,) for j>i and p;:=p;y

for any set % = {n(1),...,n(I)} with0 <n(1) <n(2) <...<n(I) <N.The
idea is now to start with the complete sample, i.e. .#(0) ={0,1,...,N}, where
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no observation is trimmed. Then observations one after another are removed
until a set .#, with N — H + 1 elements is obtained. For that, only the transition
densities p;; depending on 6 = 0 () are used.

Algorithm for the concentration step

1) Initialize .# (0) = {0,1,...,N} and I(0) = N+ 1.
2)Forh=0,1,...,H—1 do:

3) Set & = .7 (h), I =1(h).
4) Determine the ordered transition densities inside .#, i.e.

Pr(1) = Pr(2) = --- = Pa(i-1)

with {n(1),7(2),...,x(I—1)} ={1,2,...,]—1}.

5) If (I — 1) = 1 then (see left figure in Figure [1):
if p3j1 < p3pp then S (h+1) =7\ {n(1)}
else Z(h+1)=7\{n(2)}.

6) If (I — 1) = I — 1 then (see right figure in Figure [1)):
if pr1-2 < pr—2 then S (h+1) = I\ {n(I— 1)}
else Z(h+1)=7\{n(I)}.

NIfi:=n(I—1) €{2,...,]—2} then (see middle figure in Figure [I)):
if piyi Pili—1 < Pisajiv1” Pig1)i—1 then F(h+1) = F\{n(i)}
else Z(h+1)=7\{n(i+1)}.

8) h< h+1and I(h) < 1.

9) If lé(](H))(xf(H)) > lé(yo)(xfo) then %, = f(H) else .7, = .

Step 9) is necessary since lg(f(H))(xf(H)) < la(]o)(xfo) could happen so
that .# (H) is worse than .#. This is in opposite to the concentration step for in-
dependent observations where the resulting trimmed likelihood is never worse
then the starting trimmed likelihood.

Then a genetic algorithm for the optimization is proposed as follows.

Genetic algorithm

1) Start with M sets .#1,..., %y € Zq.

2) Concentration: Calculate .7, ...,.%y, with the concentration procedure
and replace A1, ..., Iy by F1uy. .., P, 1.8 Iy — Iy m=1,... .M.

3) Mutation: Exchange in each set .71,..., %y € _#y randomly k elements to
get further sets Fyy1,...,%u € _ZH.
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4) Recombination: Choose randomly N — H + 1 elements of the unions .%,, U
Ipym> m=1,...,M, to get further sets Sopr11,...,- %34 € ZH.

5) Selection: Determine from .71, ..., %3 the M sets with largest l§( ) (x7).
Rename them as .#1,...,.%y.

6) Repeat Steps 2) to 5) until l(;( j)(x ) is not improved anymore or a given
number of repetitions is reached.

2.2 Performance measures based on trimmed likelihood estimators

To define performance measures for the goodness-of-fit of the models esti-
mated with the H-trimmed likelihood estimator 6y, let be %y = {n(1),...,
n(N-H+1)} e argmax{lg(j)(xy); & € Zy}. If the transition density
Po (X, %1, ) is known or is given as approximation then the conditional ex-
pectation Eg (th(l, o |th(,-> = x,n(i)) and the conditional quantiles

— o B

li+1(0) :=F, 1) 0 (5 Kt 7xt"(">> ’
o o B

ui1(0) == Friviye (1 a E‘Xt"“) 7xt”<">>

n(i+1)
The first performance measure is the median absolute deviation (MedAD)
defined as

with Fy 11,9 (x) := Po (X, <x|X,, = x,n(l,)) can be determined.

o) — Eg, Koo Xy = %))
4, -

"xln(N—HJrl) - EéH (th(N—H+1) |Xln(N—H) = Xtyn—m) )l )

MedAD := median (

AN_H

The absolute deviations are divided by A; :=1,;, 1) — ,,(;) to take into account
the different time differences 7,(; 1) — f,(;) between the used observations.

The second performance measure is given by the (1 — a)-prediction inter-
vals for Xboiivn based on the former observations Xy fori=1,....N—H.If 6
is known then a (1 — &v)-prediction interval for X; ., is [li+1(6),ui41(0)], i.e.
Po(Xi, 11y € [liv1(0),ui+1(0)]|X,,, =x,,) = 1 — ais satisfied. If 6 is unknown
then an estimate for 6 can be used. Here we use the H-trimmed likelihood es-
timator 51{ as plug-in estimate. As performance measure, the mean length or
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the coverage rate of the prediction intervals could be used. But it is better to
use a combination of both. Hence the second performance measure is defined
by

l+l QH) Mj+] (OH);xtiz(i+l))

IS¢ :: i 1

i=1

where Sq (L, usx) == (u—1)+ %(l —x) ey + 2(x— )14~y is the interval
score of |Gneiting and Raftery| (2007) for prediction or confidence intervals.
Thereby 1y} denotes the indicator function. For prediction, as used here, the
interval score Sq(/,u;x) combines the length u — [ of the prediction interval
[l,u] with a penalty depending on ¢ for the case that the predicted value x
is not lying in [/,u]. Since larger time differences 7,(i;.1) —t,(;) lead to larger
prediction intervals and smaller coverage rates and thus larger interval scores,
we again divide the interval scores by A;

Remark 1. For example, the conditional distribution of X; . given X, , is a

normal distribution with mean (x,n(i) —l—%) ety % and variance
932(6292tn(i+1)_1)
26,

. , . , 2
with mean x,n(i)eeﬂnml) and variance xfn(,) 202t (¢85t — 1) for the Geomet-
1

ric Brownian Motion, and non-central x> distribution with mean
260300 (i+1) _ 02 n(i+1) 201_,020(i+1))2
0 61, (i+1)_ﬂ . 932(6 " € ) 61 93(1 € )
<x, + 92) e’n s and variance X, % 267
for the Cox-Ingersoll-Ross process (see e.g. [lacus| 2008)).

for the Ornstein-Uhlenbeck process, a log-normal distribution

Remark 2. If the conditional distributions of Xtirn given Xy, are not known,
then approximations of the SDE can be used. The Euler-Maruyama approxi-
mation provides for example (see e.g.|lacus, 2008))

Xiivry = Xoy = b(X1,), 0) Ai 4 5(Xi, 0)\/AE;

where E; has a standard normal distribution so that pg (x,n(l. - \x,n(i)) ~ PN(u0?)»
where y; 1= x;,, +b(x,,,0) Ai, 0; 1= 5(x;,,,0) VA;, and py(, o2 is the den-
sity of the normal distribution with expectation u and variance ¢?. In par-
ticular, we have Eg (th(i o |Xln(i) = x,n<l.)) A Xy, + b(x, ,0)A;. Hence the H-
trimmed likelihood estimator can be calculated via the densmes of the approx-
imated normal distributions and the performance measures can be based on the

expectations and quantiles of the approximated normal distributions.
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Unstressed steel specimen Steel specimen after 18k load cycles

2000
|

1500

1000
|

500
|

500 1000 1500

Fig. 2 Surface of an unstressed steel specimen (left) and after 18 000 load cycles (right) of a tension-
compression-experiments with an external stress of 400 MPa

3 Application to crack growth data from photos
3.1 Obtaining crack growth data from photos

Figure [2 shows two photos of the surface of a steel specimen (Specimen 31),
one before the specimen was exposed to cyclic load and one after 18 000 load
cycles. During the 18 000 load cycles, a large number of micro cracks has ap-
peared, visible by lower (blacker) pixel values. There exist several other photos
at other time points, in this case for example after 1000, 2 000, 3 000, 4 000,
5000, 6000, 7000, 8000, 9000, 10000, 12000, 14000, 16000 load cycles.
For more details of the photos and the underlying experiment, see
(2011).

The first step is to detect the micro cracks in each of these photos by an
existing crack detection algorithm as given for example by (1983),
(Cheu| (1984), Buckley and Yang| (1997), [Fletcher et al (2003)), Tyer and Sinha
(2005), [Fujita et al| (2006)), [Yamaguchi and Hashimoto| (2010)), |Gunkel et al|
(2012)), Wilcox et al (2016). Figure [3] shows the detected cracks after 1000,
3000, 6000, 10000, 14000, 18000 load cycles in a cutout of the images.
These cracks were detected by the crack detection algorithm of the package
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} Loading Axis : =1

Fig. 3 Detected cracks in a cutout of the image after 1 000, 3 000, 6 000, 10 000, 14 000, 18 000 load
cycles where T stands for the time in 1 000 load cycles

crackrec of |Gunkel et all (2012), which is an R package (R Core Team,
2015) and free available at Miller| (2016). This algorithm determines at first
so called crack clusters as connected sets of pixel positions below a threshold
value. Then a so called crack path in a crack cluster is the longest path which
can be found by Dijkstra’s shortest path algorithm connecting arbitrary pixel
positions of the crack cluster. These paths are marked in black in Figure [3]
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The start and the end point of a crack path are connected by a straight line to
highlight the crack paths. Figure 3| shows clearly how the number of detected
cracks increases and how existing cracks becomes longer when the number of
load cycles increases. Thereby, cracks can become longer also by the fusion of
two or more cracks. Similar results will be obtained by other crack detection
tools. For example UTHSCSA Image Tool of |Wilcox et al (2016) provides
also crack clusters but describe the orientation of cracks only by ellipses and
rectangles. Crack paths are not detected.

The second step is to backtrack large cracks which were detected at the
end. Large cracks could mean large crack clusters or long crack paths if paths
are detected. However, since all crack paths are surrounded by crack clusters
and paths are thin, the backtracking is based on crack clusters. Hence this step
can be performed also by crack detection methods which provide only crack
clusters.

The backtracking step is iterative. Assume that there are time points fy <
t] < ... <ty for which detected cracks exist. For any chosen crack at time 7,
with 1 <n < N, all detected crack clusters at time #,_; are calculated which
intersect with the chosen crack cluster. Then the largest crack is chosen as
the predecessor of the chosen crack and becomes the starting crack for the
next iteration. Thereby largest crack can mean a cluster with largest number
of pixels or a cluster with longest detected path in the cluster. The K largest
cracks at the last time point #y are used as starting cracks.

If, for example, cracks are determined by crackrec of/Gunkel et al|(2012])
then the K, detected crack clusters C,(1),...C,(K,) of an image at time 7, are
given as a list called crackclusters which includes K, matrices M, (k) €
R (k) of the corresponding pixel positions for k = 1,...,K,. Moreover, the
list element cracks is a 6 x K,, matrix which provides, for each of the K,
clusters, the number n, (k) of pixels in the cluster, the length of the detected
crack path in the cluster and the start and end points of the detected crack path.
Hence easily the largest cracks can be determined independently whether the
size is measured in number of pixels of the cluster or the length of the crack
path. Assume that Cy(1),...Cy(K) are the K largest clusters at the last time
point #y. Then the proposed algorithm is as follows.

Backtracking algorithm
1) For kg € {1,...,K}:
2) For n from N to 1:
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3)Ifn=N setk=ky.
4) For any column cn( ) € R? of M, (k):
Forj=1,....K,_1:
If the ﬁrst component of ¢, (k) is contained in the first row of
M,_1(j), i.e. the first component of ¢, (k) is contained in the first
components of members of cluster C,_; () at time #,_;, then cre-
ate a submatrix of M, _;(j) for which the first row is identical with
the first component of ¢, (k).
If the second component of ¢, (k) is contained in the second row
of this submatrix, then the intersection of C,, (k) and C,,— (/) is not
empty. Hence C,,_ () is a candidate for the predecessor of C, (k)
and j is stored in the list of predecessor candidates of k.
5) If the list of predecessor candidates is empty then set n = 0 so that the
algorithm stops.
Else determine j as the largest crack within the predecessor candi-
dates, set k = j, and reduce n by 1

After 16k load cycles After 18k load cycles

50 100 150 200 50 100 150 200

Fig. 4 Right: chosen crack in green after 18 000 load cycles, left: all detected cracks paths after
16000 load cycles in blue, red, green, all predecessor cracks of the crack on the right in red and
green, and the largest predecessor in green.

The iteration is demonstrated in Figure [ On the right-hand side of this
figure, the chosen crack k at a time point after 18 000 load cycles is given in
green by its crack path. It is seen that the surrounding black area do not follow
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completely the path so that the corresponding crack cluster is must larger. The
left-hand side of the Figure [ provides the detected crack paths after 16 000
load cycles which is the predecessor time point with an available photo. All
detected crack paths are marked in blue, red, and green. All paths of the prede-
cessor candidates, i.e. of crack clusters which intersect with the chosen crack
cluster on the right-hand side, are marked in red and green. Clearly the green
one is the longest predecessor so that it is chosen as predecessor crack and
provides the new k for the next iteration. Its crack path is quite different from
the green crack on the right-hand side since the crack cluster on the right-hand
side is not given around one line. But it is the predecessor crack in any case,
using the number of pixels in the cluster as well as the path length as crack
size.

150
I
150
L

crack length

o
1
°
1
°
|
°
°
1Y
crack length
\o
|
/ °
\o

T T T T T T T
[ 5000 10000 15000 0 5000 10000 15000

load cycles load cycles

Fig. 5 Two resulting crack growth curves

For getting crack growth curves, one can use the number of pixels of the
crack cluster as well as the length of the crack path in the cluster indepen-
dently how the predecessor crack was obtained. Figure [5| shows two resulting
crack growth curves based on lengths of crack paths. The one on the left-hand
side looks quite reasonable since it is almost strictly increasing. However, the
one on the right-hand side is not a real growth curve. Deviations from a strict
increasing growth are caused by several sources of errors which appear in the
automatic calculation of the crack growth from the photos:

e A single image may consist of several photos as can be seen easily in the
left-hand image of Figure [2] where 54 single photos were pieced together.
This is sometimes necessary when the area of interest is so large that it could
not be caught by one photo. The boundaries of the singles photos are clearly
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-

- * L v’
. - .

Fig. 6 A large contamination (left) and different sharpness of photos (right)

visible because of shadows at the boundaries and different illuminations.
One error source in that particular case is that the pieces are not put together
exactly.

Images at different time points may differ in their location so that they have
to be shifted so that the pixel positions concern the same part of the image.
The calculation of the shift may be erroneous.

Shadows and different illuminations cause problems in detecting the crack
clusters. This can happen between images at different time points but also
between different pieces of an image as can be seen in the left-hand side of
Figure[d

The sharpness of the single photos can differ between time points and pieces
as can be seen in the right-hand side of Figure[6]

The surface usually contains some pits, scratches and other contaminations
of the material which are falsely detected as cracks by an automatic crack
detection method. Pits are visible in the left-hand image of Figure[2)as black
spots. A big contamination can be seen in the top of this image. This is also
presented in the left-hand side of Figure [6] It provides already in the first
image a large crack which shows almost no increase of growth over time.
Moreover the corresponding “crack” is included in the 100 largest cracks
detected at the end.
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Fig. 7 Untrimmed predicted
(expected) values and predic-
tion intervals using an OU
model for the curve on the
right-hand of Figure[j]

Fig. 8 10% trimmed pre-
dicted (expected) values and
prediction intervals using an
OU model for the curve on
the right-hand of Figure 3]

crack length

crack length

150

100

50
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100

50

6,=15.83,0,=0.17,6;=17.18,y=0

MedAE = 5.55, Interval Score = 30.12

Observations
Trimmed observation
Expected value
Prediction interval

5000 10000 15000

load cycles

0,=14.62,8,=0.14,0;=14.37,y=0

MedAE = 3.45, Interval Score = 46.78

Observations
Trimmed observation
Expected value
Prediction interval

Ky

+1

/‘\l/'l ‘

T T T
5000 10000 15000

load cycles

3.2 Performance measures for the crack growth data

Figure [/| shows the predicted (expected) values and prediction intervals us-
ing the classical untrimmed maximum likelihood estimator for an Ornstein-
Uhlenbeck process (OU) for the path on the right-hand side of Figure [5] This
path is not monotone because of extreme outlying observations. These outliers
cause bad fits for the Ornstein-Uhlenbeck process using the classical maxi-
mum likelihood estimator so that the performance measure MedAE is equal to
5.55 and the performance measure based on the interval score ISg g5 is 30.12.
Using an 10%-trimmed estimator leads to the result shown in Figure [§] with
improved MedAE of 3.45 because one observation is trimmed. However, the
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0,=8.92,6,=0.05,6;=10.02,y=0

MedAE = 6.64, Interval Score = 8.79

o Observations
= Trimmed observation
Expected value
—— Prediction interval

150
1

100
1
_\. SN

g5 | =y
\/‘\\/&/W |
A7
Fig. 9 20% trimmed pre- ° 1]
dicted (expected) values and : : : :
prediction intervals using an 0 5000 10000 15000

OU model for the curve on
the right-hand of Figure[j]

load cycles

performance measure based on the interval score has increased to 48.78 since
the prediction intervals became smaller so that the 7’th prediction interval is
more far away from the observed value as for the untrimmed estimator. If 20%,
i.e. two observations, are trimmed then the performance measure based on the
interval score has decreased to the very small value of 8.79 since all predic-
tion intervals include the observations as seen in Figure 0] However, here the
MedAE is worse than for using the untrimmed estimator. This extreme exam-
ple shows that trimming some few observations improve the two performance
measures differently. Here a higher trimming rate is necessary to improve both
performance measures simultaneously.

However, the most crack growth curves are not so contaminated as that one
on the right-hand side of Figure [5} 20% trimming and even 10% trimming
lead to reasonable fits of an Ornstein-Uhlenbeck process, a Cox-Ingersoll-Ross
process, or a Geometric Brownian Motion for the majority of the 100 crack
growth curves which are backtracked from the 100 largest detected cracks at
the end. This can be seen from the boxplots in Figure [10| for the 100 obtained
performance measures based on the median absolute deviation (MedAD) and
in Figure @ for the 100 obtained performance measures 1Sy o5 based on the
interval score. Thereby 20% trimming leads to the best result for both perfor-
mance measure and this is independent whether an Ornstein-Uhlenbeck pro-
cess, a Cox-Ingersoll-Ross process, or a Geometric Brownian Motion is fitted.
However, the Geometric Brownian Motion provides the largest performance
meausure while the performance measures for the Ornstein-Uhlenbeck process
and the Cox-Ingersoll-Ross process are very similar. The same result was ob-
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Fig. 10 Boxplots of the median absolute deviations (MedAD) of the growth curves of the 100 largest
cracks in Specimen 31 fitted by three SDEs without trimming, 10% trimming and 20% trimming
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Fig. 11 Boxplots of the interval score 1Sq o5 of the growth curves of the 100 largest cracks in Speci-
men 31 fitted by three SDEs without trimming, 10% trimming and 20% trimming

tained when the method was applied to a series of photos of another specimen
(Specimen 10) which was exposed to lower stress so that photos are availabe
at 29 time points and the crack growth curves are more flat.

The boxplots indicate that the performance measures of the growth curves of
the 100 largest cracks do not follow a normal distribution which was also con-
firmed by Shapiro-Wilk tests. Therefore, to test whether the trimming improve
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the performance, a closed testing principle based on the H-test (Kruskal-Wallis
test) and followed by two Wilcoxon rank-sum tests (Mann-Whitney U-tests)
was applied. Table [I] clearly shows that there is a significant difference be-
tween no trimming, 10% trimming, and 20% trimming for both performance
measures and all three regarded processes. Again only the results for Specimen
31 are presented in Table (1| But for Specimen 10, the P-values are either the
same or even smaller.

Table 1 P-values of H-tests and Wilcoxon-Rang-Sum tests for the performance measures obtained
from Specimen 31 based on no trimmimg (Py), 10% trimming (Pjp), and 20% trimming (Pa)

Null hypothesis  Py=Pio=Po Py <Pio Pio<Py

Test procedure H-test Rank-Sum Rank-Sum
MedAE (OU) < 0.0001 0.0005 0.0010
MedAE (CIR) < 0.0001 0.0012 0.0052

MedAE (GBM) < 0.0001 < 0.0001 0.0125
Interval Score (OU) < 0.0001 < 0.0001 < 0.0001
Interval Score (CIR) < 0.0001 < 0.0001 < 0.0001

Interval Score (GBM) < 0.0001 < 0.0001 < 0.0001

Table [2] provides the P-values of a closed testing principle based on the H-
test and followed by two Wilcoxon rank-sum tests for testing the equality of the
performance measures for the three processes if 20% trimming is used. As in-
dicated by the boxplots, there is no significant different between the Ornstein-
Uhlenbeck process and the Cox-Ingersoll-Ross process where both differ sig-
nificantly from the Geometric Brownian Motion. The results are shown for
Specimen 31 but are the same for Specimen 10.

Table 2 Comparison between the performance measures Poy, Pcir, Popy applied to the three
stochastic processes with 20% trimming in Specimen 31

Nullhypothesis Test MedAE Interval Score

POU = PCIR = PGBM H-Test < 0.0001 < 0.0001
Pou = Fcir Rank-Sum 0.8498 0.6087
Pou = Pom Rank-Sum < 0.0001 < 0.0001
Feir = Peam Rank-Sum < 0.0001 < 0.0001

Finally, it was tested whether the three parameters of the processes with
best fit with 20% trimming, i.e. the Ornstein-Uhlenbeck process and the Cox-
Ingersoll-Ross, are different for the two specimens. The estimated parameters
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are given in Table [3| and the test results in Table 4] This shows that there is
no significant different in the drift term 6, where the slope term 6; and the
diffusion term 65 are significantly higher for higher stress. Note that Sepcimen
10 was exposed to an external stress of 360 MPa and Specimen 31 to 400 MPa.

Table 3 Median of the estimated parameters of the Ornstein-Uhlenbeck processes and the Cox-
Ingersoll-Ross processes using 20% trimming for Specimens 10 and 31

Specimen (Process) med(6;) med(6,) med(63)

10 (OU) 22779 0.0814 1.6697
31 (0U) 6.4637 0.0799 3.4209

Difference -4.1858 0.0016 -1.7512

10 (CIR) 2.0858 0.0709 0.4636
31 (CIR) 6.5832  0.0985 0.7547

Difference -4.4974 —0.0275 -0.2911

Table 4 P-values for a two-sided Wilcoxon-Rank-Sum test in order to check whether the estimated
parameters are significantly different between Specimens 10 and 31 for the Ornstein-Uhlenbeck pro-
cess and the Cox-Ingersoll-Ross process.

Nullhypothesis 6" = 61" 6{'” — g{*) {10 — g3!

Ornstein-Uhlenbeck < 0.0001 0.5486 < 0.0001
Cox-Ingersoll-Ross < 0.0001 0.9229 < 0.0001

4 Discussion

We introduced trimmed likelihood estimators for processes given by stochas-
tic differential equations and showed how they can be computed efficiently.
To study their performance on a large data set, we proposed an automatic de-
tection method to obtain crack growth data from a series of photos by back-
tracking large cracks detected in the last photo. The application of the trimmed
likelihood estimators to these data showed that these estimators can deal with
a high amount of contamination of the data caused by the automatic detection
method. In particular, the fits of obtained 100 crack growth curves measured
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by two proposed performance measures were significantly better for trimming
20% than 10% of the data of a growth curve. For simplicity, only the fits of
the Ornstein-Uhlenbeck process, the Cox-Ingersoll-Ross process, and the Ge-
ometric Brownian Motion were studied. But similarly other processes can be
fitted. Within the regarded three processes, the Ornstein-Uhlenbeck process
and the Cox-Ingersoll-Ross process provided the best fits and estimated pa-
rameters which differ significantly between different stress conditions. Hence
the influence of the stress conditions on these parameters maybe used in fu-
ture work to predict the damage development of material by analyzing cracks
detected from photos as described in this paper.
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