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Abstract

We find optimal designs for linear models using a novel algorithm that iteratively combines a Semidefi-
nite Programming (SDP) approach with adaptive grid (AG) techniques. The search space is first discretized
and SDP is applied to find the optimal design based on the initial grid. The points in the next grid set are
points that maximize the dispersion function of the SDP-generated optimal design using Nonlinear Pro-
gramming (NLP). The procedure is repeated until a user-specified stopping rule is reached. The proposed
algorithm is broadly applicable and we demonstrate its flexibility using (i) models with one or more vari-
ables, and (ii) differentiable design criteria, such as A−, D−optimality, and non-differentiable criterion like
E−optimality, including the mathematically more challenging case when the minimum eigenvalue of the
information matrix of the optimal design has geometric multiplicity larger than 1. Our algorithm is compu-
tationally efficient because it is based on mathematical programming tools and so optimality is assured at
each stage; it also exploits the convexity of the problems whenever possible. Using several linear models,
we show the proposed algorithm can efficiently find both old and new optimal designs.
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1 Motivation

We consider the problem of determining model-based optimal designs of experiments (M-bODE) for algebraic

models. This problem has increasing relevance in many areas, such as engineering, social sciences, food

science and pharmaceutical research (Berger and Wong, 2009; Goos and Jones, 2011; Fedorov and Leonov,

2014). M-bODE is particularly helpful for providing maximum information at minimum cost. For M-bODE

problems discussed in this paper, we assume we are given design criterion, a known compact design space and

a known parametric linear model, apart from unknown parameters in the model. Typically the goal is to find

an efficient design to estimate the model parameters.

Kiefer (1959) proposed viewing a M-bODE problem as equivalent to finding an optimal probability mea-

sure on the given design space X (Kiefer and Wolfowitz, 1960; Kiefer, 1974). The optimal probability measure

specifies the number of design points required, where these design points are in X and the proportions of total

observation to be taken at the design points that optimally meet the design criterion (Atkinson et al., 2007). He

termed these continuous designs and showed there are many advantages of working with continuous designs

(Kiefer, 1959; Kiefer and Wolfowitz, 1960; Kiefer, 1974). Identifying optimal continuous design can be diffi-

cult to determine even for relatively simple models; the main reason is that the optimization problems can be

complex and frequently fall into the NP-hard class (Welch, 1982). Analytical solutions are rarely available for

high-dimensional problems and algorithms are required to find them, especially when the criterion is complex.

The aim of this paper is to apply mathematical programming based algorithms combined with adaptive grid

techniques to find optimal continuous designs for linear models efficiently.

During the last few decades, algorithms have been developed and continually improved for generating

different types of optimal designs for algebraic models. Some examples are those proposed by Fedorov (1972),

Wynn (1972), Mitchell (1974), Galil and Kiefer (1980) and recently, multiplicative algorithms seem to be

gaining in popularity (Torsney and Mandal, 2006; Dette et al., 2008). Some of these algorithms are reviewed,

compared and discussed in Cook and Nachtsheim (1982) and Pronzato (2008), among others. The algorithms

are iterative, requiring a starting design and a stopping criterion to search for the optimal solution. The stopping

criterion may be the maximum number of iterations allowed or the requirement that the value of the optimality

criterion of the generated design does not change from the previous values by some pre-specified tolerance

level. The algorithms iteratively replace current design points by one or more points that are new or already in

the support of the current design. The rule for selecting the point or points for generating the next design vary

depending on the type of algorithms and the design criterion. Some issues of such algorithms are the need to

collapse points very close together to a support point of the design, and how often this procedure needs to be

carried out.

Mathematical programming algorithms have improved substantially over the last two decades and they can

currently solve complex high-dimensional optimization problems, especially when they are P-hard. Exam-

ples of applications of mathematical programming algorithms for finding M-bODE are Linear Programming
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(Gaivoronski, 1986; Harman and Jurík, 2008), Second Order Conic Programming (Sagnol, 2011; Sagnol and

Harman, 2015), Semidefinite Programming (SDP) (Vandenberghe and Boyd, 1999; Papp, 2012; Duarte and

Wong, 2015), Semi Infinite Programming (SIP) (Duarte and Wong, 2014; Duarte et al., 2015), and Nonlin-

ear Programming (NLP) (Chaloner and Larntz, 1989; Molchanov and Zuyev, 2002). In this paper, we focus

on SDP, which is not new; details on general use and application of SDP to search for optimal designs for

linear models are available in Vandenberghe and Boyd (1996). Additional applications include finding (i)

D−optimal designs for multi-response linear models (Filová et al., 2011), (ii) c-optimal designs for single-

response trigonometric regression models (Qi, 2011), (iii) D−optimal designs for polynomial models and

rational functions (Papp, 2012), and (iv) Bayesian optimal designs for nonlinear models (Duarte and Wong,

2015). A key advantage of using SDP to handle the design problem is that it transforms the original problem

into a convex program that allows us to efficiently find the global optimal design. However, drawbacks are that

(i) the design space has to be discretized and consequently this may produce sub-optimal designs when the

design space is continuous and the grid is coarse, and (ii) the success of the strategy depends on the dimension

of the problem and the types of SDP solvers available.

A potential strategy to circumvent the drawbacks of SDP is to use adaptive grid (AG) strategies where the

grid used to search for the optimal design can increasingly reduced in size and locations of the support points

can be more accurately located at the same time. As we will show, having an adaptive grid search with a

coarse initial grid also does not seem to have an impact on the computational time and quality of the optimal

design generated. Grid adaptation search strategy is commonly employed to solve PDEs and Computational

Fluid Dynamics problems where it is important that “eventual moving fronts are well followed by meshes

not much dense” (Berger, 1982; Peraire et al., 1987). The rationale of the adaptive grid search for the optimal

support points is similar to the step of deletion/exchange of points in the several exchange algorithms (Atkinson

et al., 2007, Chap. 12) previously used in the literature. After the initial user-specified grid used to find the

optimal design, the next grid is generated by points that maximize a specific function formed from the current

design. The steps are repeated until a user-specified rule for convergence is met. Unlike previously proposed

algorithms, such as Fedorov’s algorithm where only one point is allowed to augment the current design in

each iteration, our method has the advantages of (i) working with only points that maximize the directional

derivative of the criterion evaluated at the SDP-generated design, and (ii) the subsequent grid sets can be

substantially smaller than initial grid set so that the optimization problem to find the support points of the

optimal design is increasingly simplified by having to search over a few candidate points.

It is a curiosity that adaptive grid (AG) approaches have never been combined with mathematical program-

ming formulations to find optimal designs, an exception is (Pronzato and Zhigljavsky, 2014, Sec. 3.4). Our

algorithm is more general and includes exchange algorithms as special cases. In our proposed methodology,

we have two levels of optimization: (i) the SDP solver finds the optimal design for a given grid; (ii) the AG

algorithm finds a new grid (node’s placement) that consists of points that maximize the directional derivative
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of the criterion evaluated at the current design, which requires the solution of a constrained nonlinear program.

We present an algorithm that automate the process and test it for linear algebraic models.

Section 2 presents the statistical setup, a brief review of optimal design theory, and how to verify whether

a design is optimal or not. Section 3 describes the mathematical formulations and algorithmic procedure used

to find optimal designs by updating the grid judiciously. Section 4 applies our algorithm to find different types

of optimal designs for various linear models with one or more variables. We offer a summary in section 5.

2 Background

In this section, we provide the background material required for the formulation and numerical solution of

optimal experimental design problems. In section 2.1 we introduce SDP as a tool to find optimal designs, and

in section 2.2, we briefly review the fundamentals of NLP.

Throughout we assume we have a linear model with a given differentiable mean function f (xxx) with linearly

independent components and xxx ∈ X =
⊗nx

i=1[x
LO
i , xUP

i ]⊂ Rnx . The design space X is the cartesian product of

the domains of the variables and has dimension nx and each xi in xxx = (x1,x2, ...,xnx) has a known range of

interest indicated by its lower bound xLO
i and its upper bound xUP

i . The univariate response is y ∈ R, and its

mean response at xxx is modeled by

E[y|xxx, ppp] = ppp> f (xxx), (1)

where the vector of unknown model parameters is ppp∈P, a known np-dimensional cartesian box P≡×np
j=1[l j, u j],

with each interval [l j, u j] representing the plausible range of values for the jth parameter. The symbol E[•] is

the expectation operator. Given a design criterion and a predetermined sample size, n, our goal is to select the

n sets of values for the variables to observe the responses. Replications are allowed and we assume that the

errors of the response are independent and homoscedastic.

Suppose we have a continuous design with k(≤ n) support points at xxx1,xxx2, . . . ,xxxk and the weights at these

points are, respectively, w1,w2, . . . ,wk. To implement the design for a total of n observations, we take roughly

n×wi observations at xxxi, i = 1, · · · ,k subject to n×w1 + · · ·+n×wk = n and each summand is an integer. If

there are nx variables in the model, we denote the ith support point by xxx>i = (xi,1, . . . ,xi,nx) and represent the

design ξ by k rows (xxx>i ,wi), i ∈ {1, · · · ,k} with ∑
k
i=1 wi = 1. In what is to follow, we let Ξ ≡ Xk× [0,1]k be

the space of feasible k-point designs over X and let [k] = {1, · · · ,k}.

Following convention, we measure the worth of a design by its Fisher Information Matrix (FIM). The ele-

ments of the normalized FIM are the negative expectation of the second order derivatives of the log-likelihood

of (1), L (ξ , ppp), with respect to the parameters, given by

M (ξ ) =−E
[

∂

∂ ppp

(
∂L (ξ )

∂ ppp>

)]
=
∫

ξ∈Ξ

M(xxx) d(ξ ) =
k

∑
i=1

wi M(xxxi), (2)
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where M (ξ ) is the global FIM from the design ξ , M(xxxi) is the local FIM from point xxxi. Here and through-

out, we use bold face lowercase letters to represent vectors, bold face capital letters for continuous domains,

blackboard bold capital letters for discrete domains, and capital letters for matrices. For example, let X be the

discretized version of X with, say, q points and let [q] = {1, · · · ,q} be the set containing the point’s identifi-

cation. Without loss of generality, we assume that each covariate space, a subspace of the design space X, is

discretized by uniformly spaced points with possibly different step sizes (∆xi, ∀i) for the different covariate

spaces. The integral in (2) may be represented by

M (ξ ) = ∑
xxx∈X

M(xxx) χ(xxx) (3)

where χ is the continuous design with the same support points and weight distribution on X.

We focus on the class of design criteria proposed by Kiefer (1974). Each member in the class is indexed by

a parameter δ , is positively homogeneous and is defined on the set of symmetric np×np semi-positive definite

matrices given by

Φδ [M (ξ )] =

[
1
np

tr(M (ξ )δ )

]1/δ

. (4)

The maximization of Φδ for δ 6= 0 is equivalent to minimization of tr(M (ξ )δ ) when δ < 0. We note that

Φδ becomes [tr(M (ξ )−1)]−1 for δ = −1, which is A−optimality, and becomes λmin[M (ξ )] when δ = −∞,

which is E−optimality, and [det[M (ξ )]]1/np when δ → 0, which is D−optimality. These design criteria are

suitable for estimating model parameters as they maximize the FIM in various ways. For example, with

D−optimality, the volume of the confidence region of ppp is proportional to det[M−1/2(ξ )], and consequently

maximizing the determinant (or its logarithm or geometric mean) of the FIM leads to the smallest possible

volume.

When the design criterion is convex or concave (which is the case for the above criteria), the global opti-

mality of a design ξ in X can be verified using an equivalence theorem based on directional derivative consid-

erations, (Kiefer and Wolfowitz, 1960; Fedorov, 1972; Whittle, 1973; Kiefer, 1974; Silvey, 1980; Pukelsheim,

1993). For instance, if we let δδδ x be the degenerate design at the point xxx ∈X, the equivalence theorems for D−,

A−, and E−optimality are as follow: (i) ξD is D-optimal if and only if

tr
{
[M (ξD)]

−1 M(δδδ x)
}
−np ≤ 0, ∀xxx ∈ X; (5)

(ii) ξA is globally A-optimal if and only if

tr
{
[M (ξA)]

−2 M(δδδ x)
}
− tr

{
[M (ξA)]

−1}≤ 0, ∀xxx ∈ X, (6)

and (iii) ξE is globally E-optimal if and only if (Dette and Studden, 1993)

min
E∈E

tr{E M(δδδ x)}−λmin ≤ 0, ∀xxx ∈ X, (7)
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where E is the space of np×np positive semidefinite matrices with trace equal to 1 and E ∈ E has the form

E =
mλ

∑
i=1

αi

(
eeeλmin,i eeeᵀ

λmin,i

)
. (8)

Here eeeλmin,1, . . . ,eeeλmin,mλ
are normalized linearly independent eigenvectors of M (ξE) corresponding to λmin

with geometric multiplicity mλ and α1, . . . ,αmλ
are nonnegative weights that sum to unity. We recall the ge-

ometric multiplicity, or simply the multiplicity of an eigenvalue is the number of linearly independent eigen-

vectors associated with the eigenvalue.

We call the functions on the left side of the inequalities (5)-(7) as dispersion functions. They are different

for different optimality concave criteria and we denote it by Ψ(xxx|ξ ).

2.1 Semidefinite programming

Semidefinite programming is employed to solve the optimal design problems for D−, A− and E−optimality

criteria over a given discrete domain X. In this section, we introduce the fundamentals of this class of mathe-

matical programs.

Let Snp be the space of np×np symmetric semidefinite positive matrices. A function ϕ : Rm1 7→R is called

semidefinite representable (SDr) if and only if inequalities of the form u≤ϕ(ζζζ ), where ζζζ ∈Rm1 is a vector, can

be expressed by linear matrix inequalities (LMI) (Ben-Tal and Nemirovski, 2001; Boyd and Vandenberghe,

2004). That is, ϕ(ζζζ ) is SDr if and only if there exists some symmetric matrices M0, · · · ,Mm1, · · · ,Mm1+m2 ∈ Snp

such that

u≤ ϕ(ζζζ ) ⇐⇒ ∃vvv ∈ Rm2 : u M0 +
m1

∑
i=1

ζi Mi +
m2

∑
j=1

v j Mm1+ j � 0. (9)

Here,� is the semidefinite operator, i.e. A� 0 ⇐⇒ 〈A ζζζ ,ζζζ 〉> 0, ∀ζζζ ∈H , where 〈., .〉 is the Frobenius inner

product operator and H is the Hilbert space. The optimal values, ζζζ , of SDr functions are then formulated as

semidefinite programs of the form:

max
ζζζ

{
cccᵀ ζζζ ,

m1

∑
i=1

ζi Mi−M0 � 0

}
(10)

In our design context, ccc is a vector of known constants that depends on the design problem, and matrices

Mi, i = {0, · · · ,m1} contain local FIM’s and other matrices produced by the reformulation of the functions

ϕ(ζζζ ). The decision variables in vector ζζζ are the weights wi, i ∈ [q] of the optimal design and other auxiliary

variables required. The problem corresponding to find a design for pre-specified grid G of points xxxi is solved

with the formulation (10) complemented with the linear constraints on www: (i) www� 0, and (ii) 111ᵀ www = 1.

A list of SDr functions was compiled by Ben-Tal and Nemirovski (2001, Chap. 2-3), and used for deriving

SDP formulations for the M-bODE problem, see Boyd and Vandenberghe (2004, Sec. 7.3). Sagnol (2013)

showed that each criterion in the Kiefer’s class of optimality criteria defined by (4) is SDr for all rational values

of δ ∈ (−∞,−1] and general SDP formulations exist. This result is also applicable to the case where δ → 0.
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2.2 Nonlinear Programming

In this section we introduce NLP which is used to find the points that maximize the dispersion function over

the continuous design domain.

Nonlinear Programming seeks to find the global optimum xxx of a convex nonlinear function f : X 7→R in a

compact domain X with possibly nonlinear constraints. The general structure of the NLP problems is:

min
xxx∈X

f (xxx) (11a)

s.t. ggg(xxx)≤ 000 (11b)

hhh(xxx) = 000 (11c)

where (11b) represents a set of ri inequalities, and (11b) represents a set of re equality constraints. The

functions f (xxx), ggg(xxx) and hhh(xxx) are twice differentiable and in our context, the variable xxx ∈X are points that we

want to choose from to maximize the dispersion function Ψ(xxx|ξ ), and f (xxx) is a convex linear combination of

Ψ(x|ξ ) for a pre-specified k−point design obtained with SDP. The variables are subject to bounds previously

set based on the SDP-generated design, and this topic is further discussed in section 3.2.

Nested and Gradient Projection methods are commonly used to solve NP problems and they include Gen-

eral Reduced Gradient (GRG) (Drud, 1985, 1994) and Trust-Region (Coleman and Li, 1994) algorithms. Other

methods are Sequential Quadratic Programming (SQP) (Gill et al., 2005) and Interior-Point (IP) (Byrd et al.,

1999). For an overview of NLP algorithms, the reader is referred to Ruszczyński (2006).

3 Algorithm

This section describes an algorithm for finding D−, A− and E-optimal designs for linear models employing

an SDP based procedure combined with AG. In section 3.1 we introduce the formulation to find SDP-based

designs, and in §3.2, we discuss the adaptive grid algorithm. Because the E−optimality criterion is not dif-

ferentiable, the grid adaptation procedure has to be modified, particularly when the problem has multiple

minimum eigenvalues; subsection 3.3 describes the strategy used for this case.

3.1 Semidefinite Programming formulation

The SDP formulations for finding optimal designs for linear models are based on the representations of (Boyd

and Vandenberghe, 2004), and require a pre-specified grid G = {xxx : x1 ≤ x2 ≤ ·· · ≤ xq−1 ≤ xq} of points

over X. The global FIM is constructed by averaging the local FIM’s, and the SDP solver determines the

weights at each point so that the design optimality criterion as a function of the FIM is optimized. The solver

determines automatically the number of support point of the SDP-generated design, and these are from points

in the current grid with positive weights.
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The SDP formulation for solving the D−optimal design problem can be more compactly represented by

z = max
www∈Rq

[det(M (ξ ))]1/np (12a)

s.t.
q

∑
i=1

wi = 1 (12b)

M (ξ )� 0 (12c)

wi ≥ 0, ∀i ∈ [q], (12d)

which can then be transformed into LMIs and solved with a SDP solver. As an illustration, suppose we

specialize this general approach to find a D−optimal design. We recall that the LMI τ ≤ (det[M (ξ )])1/np

holds if and only if there exists a np×np−lower triangular matrix C such thatM (ξ ) C T

C diag(C )

� 0 and τ ≤

(
np

∏
j=1

C j, j

)1/np

,

where diag(C ) is the diagonal matrix with diagonal entries C j, j and the geometric mean of the C j, j on the

extreme right can, in turn, be expressed as a series of 2×2 LMIs (Ben-Tal and Nemirovski, 2001).

The formulations for finding A− and E−optimal designs are given below in (13) and (14), respectively:

z = max
www∈Rq

[tr(M−1(ξ ))]−1 (13a)

s.t.
q

∑
i=1

wi = 1 (13b)

M (ξ )� 0 (13c)

wi ≥ 0, ∀i ∈ [q] (13d)

z = max
www∈Rq

[λmin(M (ξ ))] (14a)

s.t.
q

∑
i=1

wi = 1 (14b)

M (ξ )� 0 (14c)

wi ≥ 0, ∀i ∈ [q]. (14d)

We denote the design problems (12-14) by P1 and employ an user-friendly interface, cvx (Grant et al.,

2012), to solve them. The cvx environment automatically transforms the constraints of the form τ ≤ϕ(ζζζ ) into

a series of LMIs, which are then passed on to SDP solvers such as SeDuMi (Sturm, 1999) or Mosek (Andersen

et al., 2009). All the results presented in section 4 were obtained with Mosek.
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3.2 Adaptive grid procedure

This section describes the procedure to adaptively refine the grid and delete candidate nodes when they are not

required in the design. We assume the search space is one-dimensional, i.e. X ∈ R and discuss extension to

nx ≥ 2 later on.

We begin the procedure with an equidistributed grid G (0), where the superscript indicates the iteration

number, so at iteration j, the grid set becomes G ( j). The value of ∆x is self-selected to be automatically

computed from the number of candidate points q in X. For this grid set, we solve the problem of interest in

P1 and denote the SDP-optimal design and the criterion value by ξ (0) and z(0), respectively.

Suppose ξ (0) has k(0) support points and its dispersion function is Ψ(xxx|ξ (0)), xxx ∈ X. Points in X that

maximize this dispersion function become points in the new grid set forming G (1); this is accomplished by

solving a constrained NLP problem. To distinguish the support points of the design ξ (0) from the candidate

points in the updated grid G (1), we designate the former by sss(0)i , i ∈ [k(0)], and the latter set by xxx(1)i , i ∈ [k(0)].

The grid G (1) has up to k(0) points and is determined by solving the problem (15). Practically, the grid G (1)

has k(0) potential points, but may be fewer if some of the solutions are the same or very close, in which case,

they are collapsed to a single point.

max
xxx(1)∈X

1
k(0)

k(0)

∑
i=1

Ψ(xxx(1)i |ξ
(0)) (15a)

s.t xxx(1)i ≥ sss(0)i −∆xxx, xxx(1)i ≤ sss(0)i+1−∆xxx, i ∈ {2, · · · ,k(0)−1} (15b)

xxx(1)1 ≥ xxxLO, xxx(1)i ≤ sss(0)2 −∆xxx (15c)

xxx(1)
k(0)
≤ xxxUP, xxx(1)i ≥ sss(0)

k(0)−1
−∆xxx (15d)

where (15a) is the objective function and (15b-15d) are bound constraints for each maximum of the dispersion

function, where the bounds are the support points of the previous SDP design. The problem (15) is designated

P2, and two aspects are noteworthy. First, the dispersion function is often nonconvex and finding a single

maximum is a challenging task. However, a linear combination of maxima (all with the same weight) and

non overlapping due to the constraints (15b) makes the problem convex and easily tractable with NLP solvers.

Second, each maximum is independent on the others so that the problem has a diagonal jacobian matrix.

We measure the distance between successive candidate points in xxx(1) by

d(x(1)i+1,x
(1)
i ) =

∥∥∥x(1)i+1− x(1)i

∥∥∥
2
, i ∈ [k(0)−1] (16)

When they are ε-close for a pre-defined ε , i.e. d(x(1)i+1,x
(1)
i )< ε , the points are collapsed and a single point is

included in the new grid G (1); otherwise both points are included.

The grid G (1) replaces G (0) and the optimal design ξ (1) for this new grid is obtained with the SDP formu-

lation. The optimum is saved as z(1), and the procedure terminates if the following convergence criterion (17)
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is met: ∣∣∣∣∣z( j)− z( j−1)

z( j)

∣∣∣∣∣≤ ε1 (17)

The value of the relative tolerance ε1 is also user-specified. If the condition (17) is not satisfied, the

procedure is repeated, starting with the solution of P2 for the dispersion function obtained from k(1)-support

points design ξ (1). In every iteration the NLP problem (15) is solved with an Interior Point based solver,

IPOPT (Wächter and Biegler, 2005). To increase the accuracy, the gradient and Jacobian matrix required by

the solver are constructed employing an automatic differentiation tool, ADiMat (Bischof et al., 2002).

Algorithm 1 below summarizes the procedure. The distinguishing feature of the proposed algorithm is that

it converges to the global optimal design, ξ ∗. This follows because (i) at each iteration the solver guarantees

that the SDP-generated design is optimal and (ii) by construction, Φδ [M (ξ ( j+1))] ≥ Φδ [M (ξ ( j))] which is

ensured because the grids in successive iterations, G ( j+1) and G ( j), respectively, are constructed such that

maxxxx Ψ(xxx|ξ ( j+1)) ≥ maxxxx Ψ(xxx|ξ ( j)), and consequently lim j→∞ G ( j) 7→ S ∗, where S ∗ contains the set of

support points of ξ ∗. Since NLP global solvers are required to find the optimum of Ψ(xxx|ξ ), the last inequality

holds in every iteration.

All computation in this paper were carried using on an Intel Core i7 machine (Intel Corporation, Santa

Clara, CA) running 64 bits Windows 10 operating system with 2.80 GHz. The relative and absolute tolerances

used to solve the SDP and NLP problems were set to 10−5. The values of ε and ε1 in (16) and (17), respectively,

are also set to 10−5 for all the problems addressed.

3.3 Adaptive strategy for finding E−optimal designs

Section 3.2 applied the adaptive grid strategy to construct D− and A− designs. The methodology can also

be extended to E−optimality, which is a non-differentiable criterion. For E−optimality, we focus on the

minimum eigenvalue of the information matrix and consider separately, the simpler case when its geometric

multiplicity is mλ = 1 and the more difficult case when it is larger than 1. When the multiplicity of the

minimum eigenvalue, mλ , is 1, there is only one non-zero α in (8), resulting in a simple dispersion function to

maximize, and Algorithm 1 can be used without modification.

The case with mλ ≥ 2 occurs in applications, such as in one dimension polynomial models with “large”

design spaces (Melas, 2006), or in studying response surface models (Dette and Grigoriev, 2014). When mλ ≥

2, it is harder to verify condition (7) because we now have to additionally determine the weights α1, . . . ,αmλ
.

These weights play a crucial role because (i) failure to determine the weights correctly may lead us to continue

search for the optimal design even when the current design is optimal, and (ii) the computational time to find

the optimal design depends on how fast these weights are identified correctly. The upshot is that maximizing

the dispersion function of the SDP-generated design using NLP becomes more challenging.

We recall that given an initial grid G (0), we first use SDP to find a k(0)-point optimal design and use its

dispersion function to ascertain whether it satisfies the conditions in §2, cf. (7). Let λ
(0)
min be the minimum
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Algorithm 1 Algorithm to find optimal designs combining SDP with AG.
procedure OPTIMALDESIGN(xL, xU , q, ε , criterion)

∆x← (xU − xL)/(q−1) . Compute the disc. interval

j← 0 . Initialize the it. counter

Construct G ( j) using intervals ∆x . Discretization of the design space

Find ξ ( j) . Solve SDP problem P1

z( j)← z

Find new candidate points . Solve NLP problem P2

Check points distance using (16) . Collapse points if needed

j← j+1

G ( j)← xxx( j−1) . Update the grid

Find ξ ( j) . Solve SDP problem P1

z( j)← z

while |(z( j)− z( j−1))/z( j)|> ε do . Convergence checking

Find new candidate points . Solve NLP problem P2

Check points distance using (16) . Collapse points if needed

j← j+1

G ( j)← xxx( j−1) . Update the grid

Find ξ ( j) . Solve SDP problem P1

z( j)← z

end while

end procedure

12



eigenvalue of M (ξ
(0)
E ), mλ be its multiplicity, and S (0) = sssl, l ∈ [k(0)] be the set of support points of the

design ξ
(0)
E . First, we determine the optimal combination of ααα that minimizes the mean absolute deviation

of the dispersion function at the support points sssl, l ∈ [k(0)] of ξ
(0)
E . This task is carried out by solving the

following constrained Linear Programming (LP) problem similar to Arthanari and Dodge (1993, Chap. 2):

min
ttt,ααα

k(0)

∑
l=1

tl (18a)

s.t. tr

[
mλ

∑
i=1

αi

(
eeeλmin,i eeeᵀ

λmin,i

)
M(δsssl)

]
−λ

(0)
min ≤ tl, sssl ∈S (0) (18b)

tr

[
mλ

∑
i=1

αi

(
eeeλmin,i eeeᵀ

λmin,i

)
M(δsssl)

]
−λ

(0)
min ≥−tl, sssl ∈S (0) (18c)

tr

[
mλ

∑
i=1

αi

(
eeeλmin,i eeeᵀ

λmin,i

)
M(δxxx j)

]
−λ

(0)
min ≤ 0, xxx j ∈ G (0) \S (0) (18d)

mλ

∑
i=1

αi = 1, (18e)

and tl ≥ 0. (18f)

Here (18b) and (18c) represent the upper and lower bounds of the error of the dispersion function at the support

points, respectively, and eeeλmin,i is the eigenvector associated to ith smallest eigenvalue of M (ξ
(0)
E ). Equation

(18d) guarantees that the fitted dispersion function is below λ
(0)
min for all points from the initial grid except the

support points. Since the problem (18) falls into LP class and the number of decision variables, mλ + k(0), is

small, very little computational effort is required to find the global optimum. We also use Mosek to handle

(18) using a tolerance level of 10−5.

The next step in the extended algorithm computes the matrix E from ααα using Equation (8) and solves

problem (15) by finding points xxx(1) that maximize the dispersion function. From this point on, the extended

algorithm runs the same way it did in section 3.2 for mλ = 1. If Algorithm 1 requires a few iterations to

converge, problem (18) is solved at every iteration after replacing G (0) by the latest grid, and replacing the

k(0)−point design ξ
(0)
E by the SDP-generated design obtained with the latest grid.

4 Applications to find D−, A− and E−optimal designs

We apply our algorithms in §3 to find D−, A− and E−optimal designs for a battery of linear models in Table

1. For models 1-7, the design space is X = [−1,1] and for models 8-10, the design space is X = [0.5,2.5]. In

all cases the initial grid is equidistributed having 101 points, ∆x = 0.02 and ε = ε1 = 10−5, cf. §3.2. We also

assess the effects of having different initial grid sets on the performance of our algorithm for finding optimal

designs for Models 4 and 10. In section 4.1, we test how well the extended algorithm generates E−optimal

designs when mλ > 1, and in section 4.2 we report optimal designs found when there are 2 or more variables

in the model, i.e. nx ≥ 2.
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Table 1: Battery of linear statistical models.

Model Form Design space (X)

1 β0 +β1 x [−1,1]

2 β0 +β1 x+β2 x2 [−1,1]

3 β0 +β1 x+β2 x2 +β3 x3 [−1,1]

4 β0 +β1 x+β2 x2 +β3 x3 +β4 x4 [−1,1]

5 β0 +β1 x+β2 x2 +β3 x3 +β4 x4 +β5 x5 [−1,1]

6 β0 +β1 exp(x)+β2 exp(−x) [−1,1]

7 β0 +β1 x+β2 exp(x)+β3 exp(−x) [−1,1]

8 β0 +β1 x+β2 log(x) [0.5,2.5]

9 β0 +β1 x+β2 x−1 [0.5,2.5]

10 β0 +β1 x+β2 x−1 +β3 exp(−x) [0.5,2.5]

Tables 2-4 present A−, D− and E−optimal designs for all the models in Table 1, with values in the first

line representing the support points, xi, i ∈ [k] and values in the second line representing the corresponding

weights, wi, i ∈ [k]. The results are in good agreement with those found by other authors, see (Atkinson et al.,

2007; Pronzato and Zhigljavsky, 2014; Yu, 2010). The computation time required for solving all the problems

is short compared with the other algorithms, and in all cases, the proposed algorithms converge in 2 or 3

iterations. The main difference in computation time are due to the need of additional iterations to reach the

convergence criterion (17).

The speed of the algorithm depends on two factors. First, the SDP-generated design usually has efficiency

close to 1 and so provides an accurate initial solution. Consequently, the computed directional derivative of the

design criterion evaluated at the SDP-generated design is accurate. This directional derivative in turn provides

good candidate points for the new grid, determined by solving the NLP problem (15). For instance, Figure

1(b) displays the dispersion function of the D−optimal design for Model 4 in successive iterations, and Figure

2(b) displays the corresponding plot for the A−optimal design for Model 10. In both examples we observe

that the design resulting from the first iteration is close to the optimal solution. Second, all the candidate

points for maximizing the dispersion function are determined simultaneously, and consequently all points of

the new grid are updated in a single step. This is different from other algorithms where the location of each

point of the grid is updated sequentially, one at a time. Figure 1(a) and Figure 2(a) show the grid evolution

for both problems. We observe that most of the initial candidate points are discarded in the first iteration and

the optimal design obtained with SDP includes only a few nodes located in the vicinity of the maxima of the

dispersion function. We next apply the NLP procedure to find the support points and use the distance checking

procedure to collapse them when they are close. Afterwards, the points remaining form the new grid, used to

construct local FIM’s, subsequently provided to SDP solver to determine an updated optimal design.

14



Table 2: D−optimal designs for Models in Table 1, and the initial grid has 101 uniformly spaced points.

Model Design
CPU

(s)
Iterations

1

−1.0000, 1.0000

0.5000, 0.5000

 4.08 2

2

−1.0000, 0.0000, 1.0000

0.3333, 0.3333, 0.3333

 4.10 2

3

−1.0000, −0.4500, 0.45000, 1.0000

0.2500, 0.2500, 0.2500, 0.2500

 5.64 3

4

−1.0000, −0.6501, 0.0000, 0.6501, 1.0000

0.2000, 0.2000, 0.2000, 0.2000, 0.2000

 4.77 2

5

−1.0000, −0.7688, −0.2900, 0.2900, 0.7688, 1.0000

0.1667, 0.1667, 0.1667, 0.1667, 0.1667, 0.1667

 5.73 2

6

−1.0000, 0.0000, 1.0000

0.3333, 0.3333, 0.3333

 4.23 2

7

−1.0000, −0.4534, 0.4534, 1.0000

0.2500, 0.2500, 0.2500, 0.2500

 5.61 2

8

0.5000, 1.2435, 2.5000

0.3333, 0.3333, 0.3333

 5.80 2

9

0.5000, 1.175, 2.5000

0.3333, 0.3333, 0.3333

 4.56 2

10

0.5000, 0.7773, 1.5800, 2.5000

0.2500, 0.2500, 0.2500, 0.2500

 4.95 2

Now we analyze the impact of the initial grid on the optimal design found by the Algorithm 1. We consider

the D−optimality criterion for Model 4, and the A−optimality criterion for Model 10, and varied the number

of points of the initial grid which in all cases is equidistributed. Table 5 shows the generated designs using

different grid sets are very close, suggesting that the initial grid may have only a marginal impact on the

optimal design. Initial coarser grids require more iterations to reach the convergence and so longer CPU time

even though the initial SDP problem has fewer variables to solve. We also note that when the SDP-generated

design has more points the NLP procedure requires more computational time. We also observe A−optimal

designs take longer time to find compared to other optimal designs even though an automatic scaling procedure

has already been implemented.
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Table 3: A−optimal designs for Models in Table 1, and the initial grid has 101 uniformly spaced points.

Model Design
CPU

(s)
Iterations

1

−1.0000, 1.0000

0.5000, 0.5000

 3.67 2

2

−1.0000, 0.0000, 1.0000

0.2500, 0.5000, 0.2500

 4.03 2

3

−1.0000, −0.4667, 0.4667, 1.0000

0.1510, 0.3490, 0.3490, 0.1510

 4.45 2

4

−1.0000, −0.6800, 0.0000, 0.68000, 1.0000

0.1015, 0.2504, 0.2883, 0.2504, 0.1015

 4.14 2

5

−1.0000, −0.7902, −0.2927, 0.2927, 0.7902, 1.0000

0.0806, 0.1880, 0.2313, 0.2313, 0.1880, 0.0806

 8.14 3

6

−1.0000, 0.0000, 1.0000

0.2138, 0.5725, 0.2138

 4.06 2

7

−1.0000, −0.4970, 0.4970, 1.0000

0.1606, 0.3394, 0.3394, 0.1606

 5.38 2

8

0.5000, 1.2370, 2.5000

0.2426, 0.5228, 0.2346

 4.81 2

9

0.5000, 1.172, 2.5000

0.2329, 0.5470, 0.2202

 4.42 2

10

0.5000, 0.7571, 1.6718, 2.5000

0.1546, 0.3351, 0.3452, 0.1650

 12.22 2

4.1 E−optimal designs with mλ ≥ 1

E−optimal designs with the property that its minimum eigenvalue has multiplicity greater than unity are

harder, and they commonly serve as benchmark tests for M-bODE algorithms. The verification of the global

optimality is particularly difficult because a minmax problem needs to be solved, so that the dispersion function

is maximized in the design space for a feasible combination of the ααα’s. Our proposed algorithm is one a few

that can successfully handle the added complexity.

Table 6 lists the models for testing the algorithm, all of them yielding FIM’s where the minimum eigenvalue

has multiplicity 2. The E−optimal designs for models 2 and 3 were constructed by Melas (2006, Chap. 3) via

functional analysis, and we compare them with those found by our proposed algorithm using their E−optimal
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Table 4: E−optimal designs for Models in Table 1, and the initial grid has 101 uniformly spaced points.

Model Design
CPU

(s)
Iterations

1

−1.0000, 1.0000

0.5000, 0.5000

 3.80 2

2

−1.0000, 0.0000, 1.0000

0.2000, 0.6000, 0.2000

 3.70 2

3

−1.0000, −0.5000, 0.5000, 1.0000

0.1267, 0.3733, 0.3733, 0.1267

 3.98 2

4

−1.0000, −0.7072, 0.0000, 0.7072, 1.0000

0.0930, 0.2481, 0.3178, 0.2481, 0.0930

 6.17 3

5

−1.0000, −0.8090, −0.3091, 0.3091, 0.8090, 1.0000

0.0736, 0.1804, 0.2460, 0.2460, 0.1804, 0.0736

 5.47 3

6

−1.0000, 0.0000, 1.0000

0.2093, 0.5815, 0.2093

 3.90 2

7

−1.0000, −0.5062, 0.5062, 1.0000

0.1588, 0.3411, 0.3411, 0.1588

 5.14 2

8

0.5000, 1.2427, 2.5000

0.2351, 0.5290, 0.2359

 4.11 2

9

0.5000, 1.1180, 2.5000

0.2292, 0.5531, 0.2178

 4.09 2

10

0.5000, 0.7552, 1.6800, 2.5000

0.1486, 0.3294, 0.3541, 0.1677

 5.97 3

efficiencies defined by:

EffE =
λmin(M (ξ )

λmin(M (ξ ∗)
(19)

where M (ξ ) is the FIM of the design constructed with our algorithm and M (ξ ∗) is the FIM of the optimal

design found by Melas (2006, Chap. 3).

To analyze the details and the mechanics of the algorithm let us consider the Model 3 in Table 6. The

initial grid G (0) is equidistributed and is formed by 201 points. The discrete domain based optimal design ξ (0)

has six points, two of them in the extremes of X, two close to −1, and two in the vicinity of +1:

ξ
(0) =

−5.0000, −1.000, −0.9500, 0.9500, 1.0000, 5.0000

0.0184, 0.2853, 0.1963, 0.1963, 0.2853, 0.0184


The design is symmetric, and includes two pairs of neighbor support points. A simple analysis of ξ (0)
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Figure 1: Construction of the D−optimal design for Model 4, X = [−1,1] and ∆x = 0.02: (a) Grid evolution;

(b) Dispersion function evolution.
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Figure 2: Construction of the A−optimal design for Model 10, X = [−1,1] and ∆x = 0.02: (a) Grid evolution;

(b) Dispersion function evolution.

reveals that the optimal design obtained considering a continuous space should have four support points, one

in the interval [−1.00,−0.95], the other in [0.95,1.00], plus the extremes. The minimum eigenvalue of the FIM

of the design ξ (0) is 0.852267 and the corresponding eigenvalue for the design found by Melas (2006, Chap.

3) is 0.852281, which leads to EffE = 0.99998. It is noteworthy that the efficiency of the SDP initial design

is high even considering that it includes two additional support points than the one obtained with functional

analysis.

The analysis of the FIM for ξ (0) also reveals that mλ = 2, the normalized eigenvectors associated to both
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Table 5: A− and D-optimal designs found using different numbers of uniformly distributed points in the design

space.

Model Criterion Domain ∆x Design CPU (s) Iterations

4 D− [−1,1]

0.01

−1.0000, −0.6550, 0.0000, 0.6550, 1.0000

0.2000, 0.2000, 0.2000, 0.2000, 0.2000

 5.25 2

0.02

−1.0000, −0.6501, 0.0000, 0.6501, 1.0000

0.2000, 0.2000, 0.2000, 0.2000, 0.2000

 4.77 2

0.04

−1.0000, −0.6594, 0.0000, 0.6594, 1.0000

0.2000, 0.2000, 0.2000, 0.2000, 0.2000

 6.31 3

0.10

−1.0000, −0.6563, 0.0000, 0.6563, 1.0000

0.2000, 0.2000, 0.2000, 0.2000, 0.2000

 6.92 3

10 A− [0.5,2.5]

0.01

0.5000, 0.7543, 1.6698, 2.5000

0.1561, 0.3358, 0.3439, 0.1642

 10.66 3

0.02

0.5000, 0.7571, 1.6718, 2.5000

0.1546, 0.3351, 0.3452, 0.1650

 12.22 2

0.04

0.5000, 0.7543, 1.6720, 2.5000

0.1560, 0.3353, 0.3440, 0.1657

 11.66 3

0.10

0.5000, 0.7545, 1.6672, 2.5000

0.1562, 0.3363, 0.3439, 0.1636

 21.06 5

Table 6: Models for which the minimum eigenvalue of the information matrix of the optimal design has

multiplicity 2.

Model Form Design space (X)

2 β0 +β1 x+β2 x2 [−5,5]

3 β0 +β1 x+β2 x2 +β3 x3 [−5,5]

4 β0 +β1 x+β2 x2 +β3 x3 +β4 x4 [−5,5]

5 β0 +β1 x+β2 x2 +β3 x3 +β4 x4 +β5 x5 [−5,5]

λmin are

eeeλmin,1 =


−0.996814

0.000125

0.079750

−0.000005

 and eeeλmin,2 =


0.000124

0.999138

−0.000009

−0.041509

 ,

and consequently, the dispersion functions constructed for each eigenvector eeeλmin,i, i ∈ {1,2} are

Ψi(xxx|ξ (0)) = tr
[(

eeeλmin,i eeeᵀ
λmin,i

)
M(δxxx)

]
−λmin, i ∈ {1,2}, xxx ∈ X. (20)

Finally, the dispersion function for the optimal convex matrix E constructed weighting the eigenvectors

eeeλmin,i is

Ψ3(xxx|ξ (0)) = tr

[
2

∑
i=1

αi

(
eeeλmin,i eeeᵀ

λmin,i

)
M(δxxx)

]
−λmin, xxx ∈ X (21)

The vector of weights found solving the mean absolute deviation problem (18) is ααα = (0.85192,0.14808)ᵀ,
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Figure 3: Dispersion functions Ψi(xxx|ξ (0)), i ∈ {1,2,3} for the design obtained via SDP in the first iteration

for Model 3.

and Figure 3 displays all three dispersion functions where Ψ3(xxx|ξ (0)) demonstrates the optimality of the de-

sign ξ (0). Next, the maxima of Ψ3(xxx|ξ (0)) are determined solving the problem (15). The solution found

is xxx = (−5.0000,−0.9783,−0.9783,0.9783,0.9783,5.0000)ᵀ, and subsequently second and third points col-

lapse into one, the same occurring with fourth and fifth points. The grid of candidate points for the second

iteration of the algorithm, G (1), contains the four remaining points. This grid is then used to find a new design

ξ (1) which is based on 4 support points, cf. Table 7, and the FIM has λmin = 0.852154 where mλ = 2. This

design satisfies the convergence condition (17), and the iteration procedure stops. The Figure 4(a) illustrates

the grid adaptation, and Figure 4(b) presents the evolution of the dispersion function. We observe that the

dispersion function constructed from ξ (1) is very similar to that of ξ (0) which strengthen the accuracy of the

first design obtained with SDP although of having two points more than the latest.

The results in Table 7 show good agreement with those of Melas (2006, Chap. 3) and denote the ability

of the algorithm to handle E−optimal designs with multiple minimum eigenvalues. The efficiency of the

design found for models 2 and 3 are 1.0000 and 0.9999, respectively, which corroborates the accuracy of

the algorithm. We also observe that the algorithm requires more computation time than that used for similar

models that lead to mλ = 1 because of the additional linear program solved in each iteration.

4.2 Extension to higher dimensionality models

In this section we consider linear models with nx ≥ 2. The extension to nx-dimensional problems is straight-

forward and Algorithm 1 does not need additional or special updates. The design space X is a cartesian
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Figure 4: Construction of the E−optimal design for Model 3, X = [−5,5] and ∆x = 0.05: (a) Grid evolution;

(b) Dispersion function evolution.

closed domain, and the candidate points included in G (0) are the points of the nx-dimensional grid obtained by

equidistribution in each dimension. The space between the points is represented by ∆xxx, and can have different

values for each dimension, so that for ith covariate xi is ∆xi = (xUP
i − xLO

i )/(qi− 1), and qi is the number of

points used in that particular dimension. The NLP problem to find the maxima of the dispersion function

for a k-point design previously obtained with SDP has k× nx variables, and becomes computationally more

challenging than that resulting from nx = 1. However, nonlinear programs to solve in each iteration are small

compared to those that IPOPT is capable of handling because the number of support points is low. All vari-

ables in the NLP program need to be bounded using constraints (15b-15d). The gradient and the Jacobian

matrix are still constructed by automatic differentiation, which now requires more computational time but is

only performed once for each model.

The collapsing procedure deletes support points that are in the same ε-size ball belonging to X. As in

section 4, the Euclidean distance is used to check whether two support points belong to the ε-size ball. For the

ith iteration, we determine the matrix of distances between the support points using

d(xxx(i)j ,xxx(i)l ) =
∥∥∥xxx(i)j − xxx(i)l

∥∥∥
2
, j, l ∈ [k(i)] (22)

and delete the lth point when d(xxx(i)j ,xxx(i)l )< ε .

Table 8 presents a battery of statistical models, the first five (Models 20-24) have two variables, and the

last (Model 25) has three. These linear models have regression functions with linear, quadratic, exponential

and mixture terms, and they are commonly used to fit experimental data. The design space for Models 20-24

is X = [−1,1]× [−1,1], and 21 equidistributed points in each dimension are used to generate the initial grid

which yields ∆xxx = [0.05,0.05]ᵀ. Consequently, the initial grid is formed by 441 candidate points. The initial

mesh can be coarser or thinner without major impact on the optimal design, as we observed in section 4.
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Table 7: E−optimal designs for Models in Table 6, and the initial grid has 201 uniformly spaced points.

Model Design
CPU

(s)
Iterations

2

−5.0000, −0.0000, 5.0000

0.0192, 0.9616, 0.0192

 5.03 2

3

−5.0000, −0.9783, 0.9783, 5.0000

0.0184, 0.4816, 0.4816 0.0184

 6.53 2

4

−5.0000, −2.6751, 0.0000, 2.6751, 5.0000

0.0173, 0.1131, 0.7392, 0.1130, 0.0173

 6.23 2

5

−5.0000, −3.6451, −0.9257, 0.9257, 3.6451, 5.0000

0.0194, 0.0704, 0.4102, 0.4102, 0.0704, 0.0194

 6.98 2
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Figure 5: Designs for Model 25 in the domain X = [−1,1]× [−1,1]× [−1,1] with ∆xxx = [0.1,0.1,0.1]ᵀ (the

size of the markers is proportional to weights of the design). (a) D−optimal design; (b) A−optimal design.

Thinner initial grids may require a large amount of computational time to solve the initial SDP problem due

to the size, and extremely coarse grids may require additional iterations to reach the convergence condition.

The design space for Model 25 is X = [−1,1]× [−1,1]× [−1,1], and we use 11 points to discretize

each dimension. Consequently, the initial grid is formed by 1331 candidate points, and ∆xxx = [0.1,0.1,0.1]ᵀ.

Figures 5(a) and 5(b) display the D− and A−optimal designs for Model 25. Both are symmetric having 27

points. Tables 9-11 list the designs for all models, and we note the mild computational time required to solve

each one. The results found are also in good agreement with those found with other algorithms, see (Atkinson

et al., 2007; Yu, 2010). All the designs obtained for the E−optimality criterion need the algorithm presented

in §3.3 to handle FIM’s where the multiplicity of the minimum eigenvalue is larger than 1, see column 3 of

Table 11.
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Table 8: Model’s code.
Model Form Design space (X)

20 β0 +β1 x1 +β1 x2 +β3 x2
1 +β4 x2

2 [−1,1]× [−1,1]

21 β0 +β1 x1 +β1 x2 +β3 x2
1 +β4 x2

2 +β5 x1 x2 [−1,1]× [−1,1]

22 β0 +β1 x1 +β1 x2 +β3 exp(−x1)+β4 exp(−x2) [−1,1]× [−1,1]

23 β0 +β1 x1 +β1 x2 +β3 exp(−x1)+β4 exp(−x2)+β5 x1 x2 [−1,1]× [−1,1]

24 β0 +β1 x1 +β1 x2 +β3 exp(−x1)+β4 exp(−x2)+β5 exp(−x1 x2) [−1,1]× [−1,1]

25 β0 +β1 x1 +β1 x2 +β3 x3 +β4 x2
1 +β5 x2

2 +β6 x2
3 +β7 x1 x2 +β8 x1 x3 +β9 x2 x3 [−1,1]× [−1,1]× [−1,1]

5 Summary

Our paper is the first to apply an algorithm that hybrids SDP with adaptive grid strategies to find globally

optimal designs for linear models. Our work is somewhat inspired by exchange methods and at the same time,

take advantage of mathematical programming tools that guarantee optimality of the generated design. The

user first supplies an initial grid and SDP is applied to find an optimal design on the grid. We then apply NLP

to find points that maximize the dispersion function of the SDP-generated design and they form the next grid

set. The process is iterated until an ε-convergence condition is satisfied. We provided examples to show how

our algorithm generates A− and D-optimal designs for polynomial models with one and multiple variables.

Maximin optimal design problems for general regression models are notoriously difficult to find and we

are not aware of algorithms that can systematically generate such designs. Using E−optimality as an illustra-

tive example, we applied our algorithm to find E−optimal designs for polynomial models with one or more

variables. When the minimum eigenvalue of the FIM has multiplicity larger than 1, the design problem is more

difficult because we have to work with subgradients. We showed our algorithm can also tackle such design

problems systematically and does so by solving an additional LP problem that optimizes a convex combina-

tion of weights that validates the Equivalence Theorem. In all cases our results are in good agreement with

those obtained with other algorithms. A main difference is our algorithm is computationally efficient and is

guaranteed to find the optimal design by construction. We are currently extending the method to find optimal

designs for nonlinear models.
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Table 9: D−optimal designs for Models in Table 8.

Model Design
CPU

(s)
Iterations

20


−1.0000, −1.0000, −1.0000, 0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000

−1.0000, 0.0000, 1.0000, −1.0000, 0.0000, 1.0000, −1.0000, 0.0000, 1.0000

0.1111, 0.1111, 0.1111, 0.1111, 0.1111, 0.1111, 0.1111, 0.1111, 0.1111

 5.33 2

21


−1.0000, −1.0000, −1.0000, 0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000

−1.0000, 0.0000, 1.0000, −1.0000, 0.0000, 1.0000, −1.0000, 0.0000, 1.0000

0.1458, 0.0802, 0.1458, 0.0802, 0.0962, 0.0802, 0.1458, 0.0802, 0.1458

 6.08 2

22


−1.0000, −1.0000, −1.0000, −0.1650, −0.1650, −0.1650, 1.0000, 1.0000, 1.0000

−1.0000, −0.1650, 1.0000, −1.0000, −0.1650, 1.0000, −1.0000, −0.1650, 1.0000

0.1111, 0.1111, 0.1111, 0.1111, 0.1111, 0.1111, 0.1111, 0.1111, 0.1111

 6.30 2

23


−1.0000, −1.0000, −1.0000, −0.1966, −0.2027, −0.1537, 1.0000, 1.0000, 1.0000

−1.0000, −0.1966, 1.0000, −1.0000, 1.0000, −0.1537, −1.0000, −0.2027, 1.0000

0.1357, 0.0834, 0.1444, 0.0834, 0.0796, 0.0956, 0.1444, 0.0796, 0.1539

 7.17 2

24


−1.0000, −1.0000, −1.0000, −0.2060, −0.1484, −0.1674, 1.0000, 1.0000, 1.0000

−1.0000, −0.2060, 1.0000, −1.0000, −0.1484, 1.0000, −1.0000, −0.1674, 1.0000

0.1324, 0.0852, 0.1480, 0.0853, 0.0977, 0.0774, 0.1480, 0.0775, 0.1486

 6.95 2

25



−1.0000, −1.0000, −1.0000, −1.0000, −1.0000, −1.0000, −1.0000, −1.0000, −1.0000

−1.0000, −1.0000, −1.0000, 0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000

−1.0000, 0.0000, 1.0000, −1.0000, 0.0000, 1.0000, −1.0000, 0.0000, 1.0000

0.0690, 0.0249, 0.0690, 0.0249, 0.0209, 0.0249, 0.0690, 0.0249, 0.0690

0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000

−1.0000, −1.0000, −1.0000, 0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000

−1.0000, 0.0000, 1.0000, −1.0000, 0.0000, 1.0000, −1.0000, 0.0000, 1.0000

0.0249, 0.0209, 0.0249, 0.0209, 0.0237, 0.0209, 0.0249, 0.0209, 0.0249

1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000

−1.0000, −1.0000, −1.0000, 0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000

−1.0000, 0.0000, 1.0000, −1.0000, 0.0000, 1.0000, −1.0000, 0.0000, 1.0000

0.0690, 0.0249, 0.0690, 0.0249, 0.0210, 0.0249, 0.0690, 0.0249, 0.0690



25.27 2
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Table 10: A−optimal designs for Models in Table 8.

Model Design
CPU

(s)
Iterations

20


−1.0000, −1.0000, −1.0000, 0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000

−1.0000, 0.0000, 1.0000, −1.0000, 0.0000, 1.0000, −1.0000, 0.0000, 1.0000

0.0704, 0.1121, 0.0704, 0.1121, 0.2698, 0.1121, 0.0704, 0.1121, 0.0704

 6.38 2

21


−1.0000, −1.0000, −1.0000, 0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000

−1.0000, 0.0000, 1.0000, −1.0000, 0.0000, 1.0000, −1.0000, 0.0000, 1.0000

0.0939, 0.0978, 0.0939, 0.0978, 0.2332, 0.0978, 0.0939, 0.0978, 0.0939

 5.52 2

22


−1.0000, −1.0000, −1.0000, −0.1566, −0.1566, −0.1566, 1.0000, 1.0000, 1.0000

−1.0000, −0.1566, 1.0000, −1.0000, −0.1566, 1.0000, −1.0000, −0.1566, 1.0000

0.0943, 0.0865, 0.0484, 0.0865, 0.3328, 0.1114, 0.0484, 0.1114, 0.0803

 6.41 2

23


−1.0000, −1.0000, −1.0000, −0.1623, −0.1506, −0.1557, 1.0000, 1.0000, 1.0000

−1.0000, −0.1623, 1.0000, −1.0000, −0.1506, 1.0000, −1.0000, −0.1557, 1.0000

0.0775, 0.0848, 0.0702, 0.0848, 0.3213, 0.1096, 0.0702, 0.1096, 0.0720

 7.06 2

24


−1.0000, −1.0000, −1.0000, −0.1613, −0.1464, −0.1422, 1.0000, 1.0000, 1.0000

−1.0000, −0.1613, 1.0000, −1.0000, −0.1464, 1.0000, −1.0000, −0.1422, 1.0000

0.0886, 0.0842, 0.0571, 0.0842, 0.3196, 0.1097, 0.0571, 0.1097, 0.0899

 6.83 2

25



−1.0000, −1.0000, −1.0000, −1.0000, −1.0000, −1.0000, −1.0000, −1.0000, −1.0000

−1.0000, −1.0000, −1.0000, 0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000

−1.0000, 0.0000, 1.0000, −1.0000, 0.0000, 1.0000, −1.0000, 0.0000, 1.0000

0.0386, 0.0291, 0.0386, 0.0291, 0.0366, 0.0291, 0.0386, 0.0291, 0.0386

0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000

−1.0000, −1.0000, −1.0000, 0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000

−1.0000, 0.0000, 1.0000, −1.0000, 0.0000, 1.0000, −1.0000, 0.0000, 1.0000

0.0291, 0.0366, 0.0291, 0.0366, 0.1223, 0.0366, 0.0291, 0.0366, 0.0291

1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000

−1.0000, −1.0000, −1.0000, 0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000

−1.0000, 0.0000, 1.0000, −1.0000, 0.0000, 1.0000, −1.0000, 0.0000, 1.0000

0.0386, 0.0291, 0.0386, 0.0291, 0.0366, 0.0291, 0.0386, 0.0291, 0.0386


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Table 11: E−optimal designs for Models in Table 8.

Model Design mλ

CPU

(s)
Iterations

20


−1.0000, −1.0000, −1.0000, 0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000

−1.0000, 0.0000, 1.0000, −1.0000, 0.0000, 1.0000, −1.0000, 0.0000, 1.0000

0.0500, 0.1000, 0.0500, 0.1000, 0.4000, 0.1000, 0.0500, 0.1000, 0.0500

 2 6.05 2

21


−1.0000, −1.0000, −1.0000, 0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000

−1.0000, 0.0000, 1.0000, −1.0000, 0.0000, 1.0000, −1.0000, 0.0000, 1.0000

0.0500, 0.1000, 0.0500, 0.1000, 0.4000, 0.1000, 0.0500, 0.1000, 0.0500

 3 6.67 2

22


−1.0000, −1.0000, −1.0000, −0.1614, −0.1614, −0.1614, 1.0000, 1.0000, 1.0000

−1.0000, −0.1614, 1.0000, −1.0000, −0.1614, 1.0000, −1.0000, −0.1614, 1.0000

0.0954, 0.0662, 0.0693, 0.0662, 0.3943, 0.08333, 0.0693, 0.0833, 0.0724

 2 7.70 3

23


−1.0000, −1.0000, −1.0000, −0.1615, −0.1614, −0.1615, 1.0000, 1.0000, 1.0000

−1.0000, −0.1615, 1.0000, −1.0000, −0.1614, 1.0000, −1.0000, −0.1615, 1.0000

0.0908, 0.0661, 0.0740, 0.0662, 0.3941, 0.0834, 0.0740, 0.0834, 0.0679

 2 7.98 3

24


−1.0000, −1.0000, −1.0000, −0.1613, −0.1617, −0.1617, 1.0000, 1.0000, 1.0000

−1.0000, −0.1613, 1.0000, −1.0000, −0.1617, 1.0000, −1.0000, −0.1613, 1.0000

0.1067, 0.0662, 0.0579, 0.0662, 0.3945, 0.0834, 0.0579, 0.0834, 0.0838

 2 8.22 3

25



−1.0000, −1.0000, −1.0000, −1.0000, −1.0000, −1.0000, −1.0000, −1.0000, −1.0000

−1.0000, −1.0000, −1.0000, 0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000

−1.0000, 0.0000, 1.0000, −1.0000, 0.0000, 1.0000, −1.0000, 0.0000, 1.0000

0.0135, 0.0232, 0.0135, 0.0232, 0.0537, 0.0232, 0.0135, 0.0232, 0.0135

0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000

−1.0000, −1.0000, −1.0000, 0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000

−1.0000, 0.0000, 1.0000, −1.0000, 0.0000, 1.0000, −1.0000, 0.0000, 1.0000

0.0232, 0.0537, 0.0232, 0.0537, 0.2924, 0.0537, 0.0232, 0.0537, 0.0232

1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000

−1.0000, −1.0000, −1.0000, 0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000

−1.0000, 0.0000, 1.0000, −1.0000, 0.0000, 1.0000, −1.0000, 0.0000, 1.0000

0.0135, 0.0232, 0.0135, 0.0232, 0.0537, 0.0232, 0.0135, 0.0232, 0.0135



6 20.38 3
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