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Abstract

This paper considers the integrated modified OLS (IM-OLS) estimator for cointegrating
polynomial regressions recently developed in Vogelsang and Wagner (2014a; 2014b).
Cointegrating polynomial regressions include deterministic variables, integrated pro-
cesses and integer powers of integrated processes as explanatory variables. The stochas-
tic regressors are allowed to be endogenous and the stationary errors are allowed to
be serially correlated. The IM-OLS estimator allows for asymptotically standard in-
ference in this framework when using consistent estimators of the long run variance.
Additionally, we also provide fixed-b asymptotic theory for the case of full design to
capture the impact of kernel and bandwidth choice on the sampling distributions of
estimators and test statistics. We investigate the properties of the IM-OLS estimator
and hypothesis tests based upon it by means of a simulation study to compare its
performance with fully modified OLS (FM-OLS) and dynamic OLS (D-OLS). Finally,
we apply the method to estimate the environmental Kuznets curve for CO2 emissions
over the period 1870–2009.

JEL Classification: C12, C13, C32, Q20

Keywords: Bandwidth, Cointegrating Polynomial Regression, Environmental Kuznets
Curve, Fixed-b asymptotics, Integrated Modified OLS Estimation, Kernel

1 Introduction

Cointegration methods are commonly used for modeling empirical financial and macroeco-

nomic relationships. While the largest part of the literature deals with linear cointegrating

relationships, which may be sufficient or serve as an adequate approximation in many appli-

cations, nonlinear cointegrating relationships have become much more prominent in the last

decade. Recent examples are given by empirical analyses in the contexts of purchasing power

parity (Hong and Phillips, 2010), money demand functions (Choi and Saikkonen, 2010) or

the environmental Kuznets curve hypothesis (Wagner, 2015).

The ordinary least squares (OLS) estimator is super-consistent in cointegrating regres-

sion models. In presence of endogeneity and serial correlation its limiting distribution is

contaminated by second order bias terms, which renders inference difficult. To overcome

this limitation, several modifications of the OLS estimator have been proposed in the lin-

ear case, such as the fully modified OLS (FM-OLS) estimator (Phillips and Hansen, 1990),

the dynamic OLS (D-OLS) estimator (Saikkonen, 1991) and the integrated modified OLS

(IM-OLS) estimator (Vogelsang and Wagner, 2014a). FM-OLS and D-OLS both require the
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choice of tuning parameters for estimation. FM-OLS is based on a two-step transformation

to remove the second order bias terms. These transformations necessitate choices of kernel

and bandwidth for long run covariance estimation. In D-OLS estimation the number of

leads and lags included in an augmented regression have to be selected prior to estimation.

This augmented regression asymptotically corrects for endogeneity. In contrast to these two

OLS modifications, the IM-OLS estimator does not require the choice of tuning parameters.

However, for inference a scalar long run variance has to be estimated.

This paper considers the IM-OLS estimator introduced by Vogelsang and Wagner (2014a;

2014b) for cointegrating polynomial regressions (CPRs). Cointegrating polynomial regres-

sions include deterministic variables, integrated processes and integer powers of integrated

processes as explanatory variables and stationary errors. Furthermore, the stochastic regres-

sors are allowed to be endogenous and the errors are allowed to be serially correlated. The

IM-OLS estimator is a tuning parameter free estimator. Also in the CPR framework this

estimator is, exactly as in the linear case, based on a partial sum transformation and an

augmentation by including all integrated regressors. It is shown that the IM-OLS estimator

adjusted to CPRs has a zero mean Gaussian mixture limiting distribution that forms the

basis for asymptotic standard inference using a consistent estimator for a long run variance

parameter. Since asymptotic standard inference does not capture the impact of kernel and

bandwidth choices on the limiting distributions, fixed-b asymptotic theory has been devel-

oped in the stationary framework in Kiefer and Vogelsang (2005), for the linear cointegration

case in Vogelsang and Wagner (2014a) and for a RESET-type test for the null hypothesis

of linearity of a cointegrating relationship in Vogelsang and Wagner (2014b). Given full de-

sign, defined in the following section, it is shown that the fixed-b limiting distribution of the

IM-OLS estimator in the CPR framework is asymptotically nuisance parameter free when

using suitably adjusted IM-OLS residuals for long run variance estimation. These adjusted

IM-OLS residuals are obtained in exactly the same way as in the linear case. This leads to

fixed-b test statistics with pivotal asymptotic distributions. Thus, critical values can be tab-

ulated in the full design case. They depend upon the kernel function, the bandwidth choice,

the specification of the deterministic components, the number of integrated regressors and

the powers included.

Extensions of the other mentioned modified OLS estimators to the CPR framework have
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also been put forward in two recent publications in the literature: Wagner and Hong (2016)

develop the FM-OLS estimator for CPRs. They show that this estimator has a zero mean

Gaussian mixture limiting distribution and derive Wald- and LM-type (specification) tests

with asymptotic chi-square limiting distributions as well as Kwiatkowski et al. (1992)-type

(KPSS-type) cointegration tests. Saikkonen and Choi (2004) consider an extension of the

D-OLS estimator to more general nonlinear cointegrating regressions, including CPRs.

The theoretical analysis is complemented by a small simulation study to assess the finite

sample performance of the estimators in terms of bias and root mean squared error (RMSE);

as well as the test performance in terms of empirical null rejection probabilities and size-

corrected power. For the IM-OLS estimator we consider both, standard asymptotic inference

as well as fixed-b inference. Apart from the above mentioned extensions of the FM-OLS and

D-OLS estimator, we also benchmark the results against the standard OLS estimator with an

in general nuisance parameter dependent limiting distribution. We find that the D-OLS and

IM-OLS estimator show slightly lower bias relative to FM-OLS, but the IM-OLS estimator

shows weaker performance in terms of finite sample RMSE than D-OLS and FM-OLS. For

the hypothesis tests, we observe partly substantially smaller size distortions for tests based

on the IM-OLS estimator especially for a larger extent of serial correlation and endogeneity.

This holds for both versions of IM-OLS based inference, standard asymptotic inference and

fixed-b inference. Comparing both versions directly, the fixed-b version shows overall the

smallest size distortions. However, these smaller size distortions come at the cost of some

minor losses in size-adjusted power.

Finally, we use our theoretical findings to estimate the environmental Kuznets curve

(EKC)1, our prime motivation for developing estimation and inference techniques for CPRs.

The EKC hypothesis postulates an inverted U-shaped relationship between economic devel-

opment (measured here by GDP per capita) and pollution (measured here by CO2 emissions

per capita). In order to estimate an inverted U-shape, in addition to GDP per capita also

the square and maybe higher integer powers have to be included as explanatory variables

in a regression. Starting with the seminal work of Grossman and Krueger (1995), a large

part of the empirical EKC literature does not use unit root and cointegration techniques at

1The term refers by analogy to the inverted U-shaped relationship between the level of economic devel-
opment and the degree of income inequality postulated by Simon Kuznets (1955) in his 1954 presidential
address to the American Economic Association.
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all. The part of the empirical EKC literature that uses such techniques, however, neglects

the fact that powers of integrated regressors are not integrated themselves and applies linear

cointegration estimation techniques for the empirical EKC analysis. Wagner (2015) illus-

trates the different implications of linear versus CPR based cointegration techniques. Thus,

building upon the empirical analysis in Wagner (2015), we use the IM-OLS based methods

from Section 2 to estimate the EKC based on a data set containing CO2 emissions and GDP

for 18 early industrialized countries over the time period 1870–2010 and compare the findings

with those obtained by the CPR based extensions of the D-OLS and FM-OLS estimator.

We find evidence for the existence of a cubic EKC relationship for six countries (thereof four

countries with evidence for a quadratic EKC relationship) with similar coefficient estimates

across the different methods for most of the countries.

The paper is organized as follows. In Section 2 we present the extension of the IM-

OLS estimator to the CPR framework and derive its limiting distribution. With respect to

inference, we discuss both standard and fixed-b asymptotics for hypothesis tests. Section 3

contains a small simulation study to evaluate the finite sample performance of the proposed

methods. In Section 4 we apply these methods to analyze the EKC hypothesis. Section 5

briefly summarizes and concludes. All proofs are given in Appendix A, whereas Appendix B

contains additional results of the empirical analysis and additional simulation results are

given in Appendix C.

We use the following notation: bxc denotes the integer part of x ∈ R and diag(·) denotes

a diagonal matrix with entries specified throughout. Definitional equality is signified by :=

and ⇒ denotes weak convergence. Brownian motions are denoted B(r) or short-hand by

B, with covariance matrices specified in the context. For integrals of the form
∫ 1

0
B(s)ds

or
∫ 1

0
B(s)dB(s), we often use the short-hand notation

∫
B or

∫
BdB and drop function

arguments for notational simplicity. We denote the m-dimensional identity matrix by Im

and E(·) denotes the expected value.
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2 Theory

2.1 Setup and Assumptions

We consider the following cointegrating polynomial regression (CPR) model

yt = D′tδ +
m∑
j=1

X ′jtβXj + ut, (1)

xt = xt−1 + vt, (2)

where yt is a scalar time series, Dt := [1, t, . . . , td]′ a deterministic component, xt :=

[x1t, . . . , xmt]
′ is a non-cointegrating vector of I(1) processes and Xjt := [xjt, x

2
jt, . . . , x

pj
jt ]
′ is

a vector including the j-th integrated regressor together with its powers up to power pj with

corresponding parameter vector βXj := [β1,j, . . . , βpj ,j]
′. Furthermore, Xt := [X ′1t, . . . , X

′
mt]
′

and p :=
∑m

j=1 pj.

Remark 1. We can include more general deterministic components Dt, with the assumption

lim
T→∞

√
TGDD[rT ] = D(r) with 0 <

∫ r

0

D(z)D(z)′ dz <∞, r ∈ [0, 1], (3)

where GD = GD(T ) ∈ Rd+1)×(d+1). For the leading case of polynomial time trends given

in (1), we have

GD := diag
(
T−1/2, T−3/2, . . . , T−(d+1/2)

)
and D(r) := [1, r, . . . , rd]′.

For the simulation study in Section 3 we restrict ourselves to one of the following cases:

(a) no deterministics, (b) intercept only or (c) intercept and linear time trend.

Remark 2. Using consecutive sets of powers for all integrated regressors is merely for ease

of notation and any selection of powers can be included in equation (1).

Next we define ηt := [ut, v
′
t]
′ by stacking the error processes and assume that this is a

vector of I(0) processes, which satisfies a functional central limit theorem (FCLT) of the

form

T−1/2

brT c∑
t=1

ηt ⇒ B(r) = Ω1/2W (r), r ∈ [0, 1], (4)
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where W (r) is a (1 + m)−dimensional vector of independent standard Brownian motions

and

Ω :=
∞∑

j=−∞

E(ηt−jη
′
t) =

(
Ωuu Ωuv

Ωvu Ωvv

)
> 0, (5)

is the long run covariance matrix of the vector error process. Since we want to exclude

cointegration within xt, we assume Ωvv > 0.

We partition the Brownian motion processes according to

B(r) =

(
Bu(r)
Bv(r)

)
, W (r) =

(
wu·v(r)
Wv(r)

)
,

so that we can write the limit process in (4) by means of the Cholesky decomposition of Ω1/2

as

B(r) =

(
Bu(r)
Bv(r)

)
=

(
ω

1/2
u·v Ωuv(Ω

−1/2
vv )′

0 Ω
1/2
vv

)(
wu·v(r)
Wv(r)

)
, (6)

where ωu·v := Ωuu − ΩuvΩ
−1
vv Ωvu.

Unless otherwise stated we denote the OLS residuals from (1) by ût such that a nonparametric

kernel estimator of Ω is given by

Ω̂ := T−1

T∑
i=1

T∑
j=1

k

(
|i− j|
M

)
η̂iη̂
′
j, (7)

where η̂t := [ût, v
′
t]
′, k(·) is the kernel weighting function and M is the bandwidth. Under

standard assumptions on kernel and bandwidth (see e.g. Jansson, 2002, Phillips, 1995) es-

timators of the form (7) provide consistent estimates of the long run variance. For later

purposes we also define the one-sided long run covariance matrix Λ :=
∑∞

j=1 E[ηt−jη
′
t] and

the contemporaneous covariance matrix Σ := E[ηtη
′
t], which are partitioned in the same way

as Ω. This notation allows us to write the long run covariance matrix as Ω = Σ + Λ + Λ′

and to define ∆ := Σ + Λ.

For the asymptotic behavior of the vector process Xjt we define the weighting matrix

GX(T ) := diag(GX1(T ), . . . , GXm(T )) with GXj(T ) := diag(T−1, T−3/2, . . . , T−
pj+1

2 ), for no-

tational brevity we often drop the argument and simply write GX = GX(T ). Under the

assumptions stated, for t such that lim
T→∞

t/T = r the following result holds (compare Chang,

Park, and Phillips, 2001)

lim
T→∞

√
TGXjXjt = lim

T→∞

T
−1/2

. . .

T−pj/2


xjt...
x
pj
jt

 =

Bvj
...
B
pj
vj

 =: Bvj(r), (8)
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with vt := [v1t, . . . , vmt]
′. Next denote the stacked vector Brownian motion process as

Bv(r) := [Bv1(r)
′, . . . ,Bvm(r)′]′.

2.2 IM-OLS Estimation in the CPR Framework

In order to establish the IM-OLS estimator compute the partial sums in model (1) as

Syt = SDt
′δ +

m∑
j=1

S
Xj
t
′βXj + Sut , (9)

Syt = SDt
′δ + SXt

′β + Sut ,

where Syt :=
∑t

i=1 yi and SDt , S
Xj
t , SXt and Sut defined analogously. The parameter vector

βXj belongs to the j-th integrated regressors and its powers, thus β := [β′X1
, . . . , β′Xm ]′. We

stack the vectors in the following form SXt := [SX1
t
′, . . . , SXmt

′]′ and SX̃t := [SDt
′, SXt

′]. Now

we can write equation (9) in matrix form as

Sy = SX̃θ + Su, (10)

with θ := [δ′, β′]′. Concerning endogeneity we also add the vector xt as a regressor (i.e. only

the integrated regressors to the power one) into equation (9)

Syt = SDt
′δ + SXt

′β + x′tγ + Sut (11)

and redefine θ := [δ′, β′, γ′]′.

Estimating equation (11) via OLS leads to residuals which we denote by

S̃ut = Syt − SDt ′δ̃ − SXt ′β̃ − x′tγ̃, (12)

where we label δ̃, β̃, γ̃ the IM-OLS estimators. The following proposition gives the asymptotic

distribution of the IM-OLS estimators δ̃, β̃, γ̃. The IM-OLS estimator is given by the OLS

estimator of the model (11) with Sξt := [SDt
′, SXt

′, x′t] replacing SX̃t . Based on the discussion

at the beginning of this section concerning the asymptotic behavior of the deterministic

components as well as the processes ηt and Xt, we define the scaling matrix

AIM :=

GD 0 0
0 GX 0
0 0 Im

 .
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Proposition 1. Assume that the data generating process is given by (1) and (2), the deter-

ministic components satisfy (3) and the error process satisfies a FCLT of the form (4). With

θ := [δ′, β′, (Ω−1
vv Ωvu)

′]′ it holds for T →∞ that

A−1
IM(θ̃ − θ) =

 GD(δ̃ − δ)
GX

(
β̃ − β

)
(γ̃ − Ω−1

vv Ωvu)

 =
(
T−2AIMS

ξ ′SξAIM
)−1 (

T−2AIMS
ξ ′Su

)
−

 0
0

Ω−1
vv Ωvu


(13)

⇒ ω1/2
u·v

(∫
f(s)f(s)′ds

)−1 ∫
f(s)wu·v(s)ds

= ω1/2
u·v

(∫
f(s)f(s)′ds

)−1 ∫
[F (1)− F (s)]dwu·v(s), (14)

where

f(r) :=

∫ r0 D(s)ds∫ r
0
Bv(s)ds
Bv(r)

 , F (r) :=

∫ r

0

f(s)ds.

The expression (14) is, conditional on Wv(r), normally distributed with zero mean and co-

variance matrix

VIM := ωu·v

(∫
f(s)f(s)′ds

)−1(∫
[F (1)− F (s)][F (1)− F (s)]′ds

)(∫
f(s)f(s)′ds

)−1

.

(15)

Full Design

In this section we briefly introduce full design that allows to perform fixed-b inference in

CPR models based on the IM-OLS estimator. Full design always prevails when only one

of the integrated regressors enters with powers larger than one. In more general cases,

full design can always be achieved by including additional regressors appropriately into the

model. However, this is costly in terms that more parameters have to be estimated.

Consider for simplicity the following data generating process

yt = β1x1t + β2x
2
1t + β3x2t + β4x

2
2t + ut, (16)

where the error process ∆xt = vt satisfies a FCLT similar to (6)

T−1/2

[rT ]∑
t=1

vt ⇒
(
Bv1(r)
Bv2(r)

)
= Ω1/2

vv Wv(r) =

(
λ11 λ12

0 λ22

)(
Wv1(r)
Wv2(r)

)
. (17)
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In order to establish the asymptotic distribution of the IM-OLS estimator in this setup, one

needs to consider the vector Bv(r) := [Bv1(r), B
2
v1

(r), Bv2(r), B
2
v2

(r)]′. It follows from (17)

that

B2
v1

(r) = (λ11Wv1(r) + λ12Wv2(r))
2 = λ2

11W
2
v1

(r) + λ2
12W

2
v2

(r) + 2λ11λ12Wv1(r)Wv2(r)

B2
v2

(r) = λ2
22W

2
v2

(r).

Therefore, we have
Bv1(r)
B2
v1

(r)
Bv2(r)
B2
v2

(r)

 =


λ11 0 λ12 0 0
0 λ2

11 0 λ2
12 2λ11λ12

0 0 λ22 0 0
0 0 0 λ2

22 0


︸ ︷︷ ︸

=:F (Ωvv)


Wv1(r)
W 2
v1

(r)
Wv2(r)
W 2
v2

(r)
Wv1(r)Wv2(r)


︸ ︷︷ ︸

=:Wv(r)

. (18)

If λ12 is not equal to zero, the transformation matrix F (Ωvv) does not define a bijective

mapping and thus there is no bijective relation between Bv(r) and Wv(r).

Including the cross-product x1tx2t as an additional regressor in equation (16) leads to a

transformation matrix F (Ωvv) which is symmetric and of full rank, p∗ say, resulting in a

bijection between Wv(r) and Bv(r), which is now augmented by Bv1(r)Bv2(r).
2 We refer

to situations with such a bijection between Wv(r) and Bv(r) as full design. The benefit

is that in the limiting distribution of the IM-OLS estimator (14) certain terms factor out

and therefore the limiting distribution can be expressed as a function of standard Brownian

motions W (r). This allows for asymptotically pivotal fixed-b inference, which we discuss in

the next subsection in more detail.

Corollary 1. Suppose that full design prevails and the assumptions of Proposition 1 hold,

then for T →∞

A−1
IM(θ̃ − θ) ⇒ ω1/2

u·v

(
Π

∫
g(s)g(s)′dsΠ′

)−1

Π

∫
g(s)wu·v(s)ds

= ω1/2
u·v (Π′)−1 (g(s)g(s)′ds)

−1

∫
[G(1)−G(s)]dwu·v(s), (19)

where

Π :=

Id 0 0
0 F (Ωvv) 0

0 0 Ω
1/2
vv

 , g(r) :=

 ∫ r
0
D(s)ds∫ r

0
Wv(s)ds
Wv(r)

 , G(r) :=

∫ r

0

g(s)ds.

2Clearly, in this case F (Ωvv) is of full rank as long as λ11 and λ22 in (17) are not equal to zero, which is
excluded by the assumption Ωvv > 0.
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Remark 3. (i) It is obvious that full design always prevails when only one of the integrated

regressors enters with powers larger than one.

(ii) If one wants to perform fixed-b inference, it is possible to achieve full design in the

augmented regression by simply including all necessary regressors. Based on the rep-

resentation (6), where we assume that Ω
1/2
vv is an upper-triangular matrix, we sort the

integrated regressors x1t, . . . , xmt such that p1 ≤ . . . ≤ pm. This guarantees the most

parsimonious way to achieve full design.3

2.3 IM-OLS Based Inference in the CPR Framework

Next we want to consider Wald tests for testing q linear hypotheses of the form H0 : Rθ = r,

where we assume that there exists a nonsingular q × q scaling matrix AR such that

lim
T→∞

A−1
R RAIM = R∗, (20)

where R∗ has rank q and AIM is the scaling matrix for the asymptotic distribution of the

IM-OLS estimator in equation (11). The condition on the matrix R given in equation (20)

is sufficient for the Wald statistics to have chi-squared limiting distributions. Recall the

definition Sξt = [SDt
′, SXt

′, x′t] from equation (11) and Sξ as the stacked matrix across time.

The covariance matrix VIM of this asymptotic distribution immediately suggests estimators

of the form

V̌IM := ω̌u·vA
−1
IM

(
Sξ ′Sξ

)−1
(C ′C)

(
Sξ ′Sξ

)−1
A−1
IM ,

= ω̌u·v
(
T−2AIMS

ξ ′SξAIM
)−1 (

T−4AIMC
′CAIM

) (
T−2AIMS

ξ ′SξAIM
)−1

(21)

where C := [c1, . . . , cT ]′ with ct := SS
ξ

T −SS
ξ

t−1 and SS
ξ

t :=
∑t

j=1 S
ξ
j . ω̌u·v denotes an estimator

for ωu·v = Ωuu − ΩuvΩ
−1
vv Ωvu and we have three different candidates for such an estimator.

First, ω̂u·v based on the OLS residuals from model (1), so that we use the estimator for Ω

given in equation (7). Second, we can use the first differences of the OLS residuals of the

3For example, if we consider a model with two integrated regressors, where the first enters together with
its second power and the second regressor enters with powers up to power three, we simply have to include
the cross-product x1tx2t to achieve full design. Otherwise, if we would sort both regressors the other way
round, then we would need to include x1tx2t and also x21tx2t, x1tx

2
2t, x

3
2t to achieve full design, because of the

assumed Cholesky decomposition of Ω
1/2
vv in upper-triangular form in (6).
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regression in equation (11) to estimate ωu·v as

ω̃u·v := T−1

T∑
i=2

T∑
j=2

k

(
|i− j|
M

)
∆S̃ui ∆S̃uj .

Tests using this estimator are shown to be asymptotically conservative under standard

asymptotics, so that we do not consider these tests in the simulation study in Section 3.

Following the discussion in Vogelsang and Wagner (2014a) Section 5, correlation between

these residuals and the OLS estimators of equation (11) causes problems for fixed-b inference

regarding δ, β and γ, so that we have to adjust the residuals in a similar way. Define the

vector zt as

zt := t
T∑
j=1

ξj −
t−1∑
j=1

j∑
s=1

ξs, ξt := [SDt
′, SXt

′, x′t]
′ (22)

and let z⊥t denote the vector of residuals from individually regressing each element of zt on

the regressors SDt , S
X
t , xt. The adjusted residuals obtained as the OLS residuals from the

regression of S̃ut on z⊥t are

S̃u∗t := S̃ut − z⊥t ′π̂, (23)

where π̂ :=
(∑T

t=1 z
⊥
t z
⊥
t
′
)−1∑T

t=1 z
⊥
t S̃

u
t . We obtain asymptotically pivotal test statistics

under fixed-b asymptotics based on the residuals (23), see Lemma 1 below. As a third

option for estimating ωu.v we therefore use the first differences of the adjusted residuals

given in equation (23):

ω̃∗u·v := T−1

T∑
i=2

T∑
j=2

k

(
|i− j|
M

)
∆S̃u∗i ∆S̃u∗j .

This estimator of the long run variance ωu·v has the required properties to deliver a pivotal

fixed-b limit for the Wald statistics.

Lemma 1. (i) Consider the OLS estimator of (35) denoted by θ̃∗ with θ∗ := [δ′, β′, (Ω−1
vv Ωvu)

′, 0]′.

Under full design it holds that

(
AIM 0

0 T−2AIM

)−1 (
θ̃∗ − θ∗

)
⇒ ω

1/2
u·v

(
(Π′)−1 0

0 (Π′)−1

)(∫
h(s)h(s)′ds

)−1 ∫
[H(1)−H(s)] dwu·v(s),

with

h(r) :=

(
g(r)∫ r

0
[G(1)−G(s)]ds

)
, H(r) =:

∫ r

0

h(s)ds.
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(ii) With this result it follows that the asymptotic behavior of the partial sum process of the

adjusted residuals is given by

T−1/2

[rT ]∑
t=2

∆S̃u∗t ⇒ ω1/2
u·v

(∫ r

0

dwu·v(s)− h(r)′
(∫ 1

0

h(s)h(s)′ds

)−1 ∫ 1

0

[H(1)−H(s)]dwu·v(s)

)
=: ω1/2

u·v P̃
∗(r), (24)

where, conditional on Wv(r), P̃ ∗(r) is uncorrelated with the scaled and centered limit

of θ̃ given in equation (14) of Proposition 1.

The Wald statistic is defined as

W̌ :=
(
Rθ̃ − r

)′ (
RAIM V̌IMAIMR

′)−1
(
Rθ̃ − r

)
,

where the superscript of W and VIM indicates which estimator is used for ωu·v.

The asymptotic behavior of the partial sum process of the first differences ∆S̃u∗t given in

Lemma 1 provides the basis for pivotal fixed-b limit for Wald statistics.

Proposition 2. If M := bT with b ∈ [0, 1] is held fixed as T →∞, then

W̃ ∗ ⇒
χ2
q

Qb(P̃ ∗, P̃ ∗)
, (25)

where Qb(P̃ ∗, P̃ ∗) is independent of χ2
q.

The expression Qb(P̃ ∗, P̃ ∗) is the fixed-b limit of the long run covariance estimator of the

form (7) using ∆S̃u∗t instead of η̂t. Therefore critical values can be tabulated depending on

the specification of the deterministic components, the number of integrated regressors and

its powers included, the kernel function and the bandwidth choice.4 Furthermore, t- as well

as Wald-type tests can be performed based on long run covariance estimation with ∆S̃u∗t .

On the other hand standard asymptotic results are given for Ŵ based on conditions on M

and k(·) that lead to consistency of ω̂u·v, as T →∞

Ŵ ⇒ χ2
q. (26)

4Tables with fixed-b critical values for IM-OLS based tests in the CPR case for different specifications of
deterministics (intercept, intercept and linear trend), up to four integrated regressors and the last integrated
regressor entering with integer powers up to power four as well as for different kernel functions are available
upon request.
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3 Simulation Study

In this section we compare the performance of the extensions of the D-OLS estimator by

Saikkonen and Choi (2004), the FM-OLS estimator by Wagner and Hong (2016) and the IM-

OLS estimator introduced in Section 2 by means of a simulation study in a CPR framework.

We label these estimators D-CPR, FM-CPR and IM-CPR, respectively. Furthermore, we

include the OLS estimator as a benchmark. We assess the performance in terms of bias and

root mean squared error (RMSE) as well as in terms of empirical null rejection probabilities

and size-corrected power of tests based on these estimators. We use data generated according

to

yt = δ1 + δ2t+ β1xt + β2x
2
t + ut (27)

xt = xt−1 + vt, x0 = 0, (28)

with

ut = ρ1ut−1 + e1,t + ρ2e2,t, u0 = 0 (29)

vt = e2,t + 0.5e2,t−1, (30)

where e1,t, e2,t are independent identically distributed standard normal random variables

independent of each other. In addition, we also consider a cubic data generation process,

where we include the regressor xt to the power three in equation (27). The parameter values

chosen are δ1 = δ2 = 1, β1 = 5, β2 = −0.3 for the quadratic specification and δ1 = δ2 =

1, β1 = −50, β2 = 10, β3 = −0.4 for the cubic specification, respectively. These values

are based on prior estimation results in conjunction with the environmental Kuznets curve

(EKC) hypothesis with FM-CPR and D-CPR. Please note that the values of δ1, δ2 have no

effect on the β-estimators. The parameter ρ1 controls serial correlation in the regression error

ut and the parameter ρ2 controls the level of endogeneity of the regressor xt. The values

for the correlation parameters are chosen from the set {0.0, 0.3, 0.6, 0.9} where, for the time

being, we focus on the case ρ1 = ρ2. For the FM-CPR estimator we choose the Bartlett and

quadratic spectral kernels with bandwidths being chosen according to the data dependent

rules of Andrews (1991) and Newey and West (1994) as well as the sample size dependent

Newey-West bandwidth b4(T/100)2/9c, labelled NWT . For the D-CPR estimator we use the

Akaike information criterion based lead and lag length choice of Choi and Kurozumi (2012).

We consider 5000 replications for the sample sizes T = 100, 200, 500, 1000.
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Bias and RMSE

Let us briefly summarize the main findings of the Bias and RMSE simulations. First of all,

only little difference is found between the results for the different kernels and bandwidths used

for FM-CPR estimation. Additionally, the results are qualitatively equal for the quadratic

and the cubic specification. Consequently, we report only the results for the quadratic

specification together with the Bartlett kernel and the bandwidth according to Andrews

(1991).

We start the discussion for the bias of β1, where we find that the estimators are virtually

unbiased in the case of no correlation. With increasing ρ = ρ1 = ρ2 the bias of the OLS

and the FM-CPR estimator increases, whereas D-CPR and IM-CPR estimators appear to

be less sensitive to the increasing correlation parameters. Specially when the value of ρ

switches from 0.6 to 0.9 there is a jump in the bias for all estimators. When the sample

size T increases all of the estimators have reduced biases, as expected. The results for β2

are the same qualitatively: For smaller sample sizes the D-CPR estimator shows the best

performance, whereas for greater sample sizes IM-CPR has the best outcome and FM-CPR

becomes inferior.

In the case of RMSE, inverted patterns emerge for both coefficients β1 and β2. For small

sample sizes, OLS and FM-CPR have the smallest root mean squared errors. This also holds

true for larger sample sizes, but the differences between the estimators become smaller. As

mentioned in Vogelsang and Wagner (2014a) this is not unforeseen because IM-CPR uses

a regression with an I(1) error Sut , whereas OLS and FM-CPR uses an I(0) error ut. The

RMSE of the IM-CPR remains the largest of all estimators even for large sample sizes T and

vast correlation parameters ρ, but the difference compared to the other estimators becomes

negligible.

The simulation study shows that the IM-CPR estimator is more effective in reducing bias

than the FM-CPR estimator. In smaller sample sizes D-CPR is less biased than IM-CPR.

Conversely, IM-CPR and D-CPR generally have larger RMSE than OLS and FM-CPR,

nonetheless the difference decreases for larger sample sizes.
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ρ1 = ρ2 OLS D-CPR FM-CPR IM-CPR
And91 NW NWT

T=100
0.0 -0.001 -0.004 -0.002 -0.002 -0.002 -0.001
0.3 0.017 -0.005 0.004 0.002 0.003 -0.001
0.6 0.074 -0.003 0.038 0.036 0.035 0.013
0.9 0.362 0.164 0.305 0.302 0.308 0.243

T=200
0.0 -0.000 0.000 -0.001 -0.001 -0.001 -0.000
0.3 0.009 0.001 0.001 0.001 0.001 0.000
0.6 0.040 0.001 0.015 0.015 0.016 0.004
0.9 0.227 0.073 0.166 0.168 0.188 0.107

T=500
0.0 -0.000 0.000 -0.000 -0.000 -0.000 -0.000
0.3 0.004 0.000 0.000 0.000 0.000 -0.000
0.6 0.017 0.001 0.004 0.004 0.005 0.001
0.9 0.111 0.022 0.061 0.065 0.085 0.027

T=1000
0.0 0.000 0.000 0.000 0.000 0.000 0.000
0.3 0.002 0.000 0.000 0.000 0.000 0.000
0.6 0.009 0.000 0.002 0.002 0.002 0.000
0.9 0.060 0.007 0.026 0.028 0.044 0.009

Table 1: Finite sample bias of four estimators for coefficient β1, Bartlett kernel.

Empirical Null Rejection Probabilities

Now we investigate the finite sample behavior of the t-type and Wald-type tests introduced

in Section 2, where again we restrict ourselves to the case ρ1 = ρ2 for the present. In this

case we test the hypotheses H0 : β1 = 5 and H0 : β2 = −0.3 separately (t-test) as well as

jointly (Wald-test). First of all, we consider standard asymptotic results based on traditional

bandwidth and kernel assumptions that are in the spirit of the Ŵ test statistic in (26). For

this type of asymptotics we study OLS, OLS-HAC, D-CPR, FM-CPR and IM-CPR test

statistics, where once again we incorporate the Bartlett and quadratic spectral kernels and

the bandwidths according to the rules of Andrews (1991), Newey and West (1994) and the

simplified NWT rule. Rejections for these test statistics are carried out using N(0, 1) critical

values for the t-tests and χ2
2 critical values for the Wald test, respectively.

The fixed-b test statistics for the IM-CPR estimator are implemented in two ways: the first
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ρ1 = ρ2 OLS D-CPR FM-CPR IM-CPR
And91 NW NWT

T=100
0.0 0.067 0.216 0.071 0.071 0.071 0.100
0.3 0.094 0.283 0.097 0.096 0.097 0.142
0.6 0.173 0.423 0.162 0.159 0.159 0.239
0.9 0.521 0.888 0.501 0.494 0.495 0.748

T=200
0.0 0.033 0.060 0.034 0.034 0.033 0.049
0.3 0.047 0.083 0.047 0.047 0.047 0.070
0.6 0.092 0.133 0.081 0.080 0.080 0.121
0.9 0.340 0.370 0.302 0.300 0.311 0.451

T=500
0.0 0.013 0.017 0.013 0.013 0.013 0.021
0.3 0.019 0.024 0.018 0.018 0.018 0.030
0.6 0.038 0.040 0.032 0.032 0.032 0.052
0.9 0.173 0.139 0.137 0.137 0.151 0.204

T=1000
0.0 0.006 0.008 0.007 0.007 0.007 0.010
0.3 0.010 0.011 0.009 0.009 0.009 0.015
0.6 0.020 0.019 0.016 0.016 0.016 0.026
0.9 0.097 0.069 0.070 0.071 0.082 0.101

Table 2: Finite sample RMSE of four estimators for coefficient β1, Bartlett kernel.

one rests upon a grid b = 0.02, 0.04, . . . , 1.00 and uses a specific bandwidth M = bT , whereas

for the second version we compute a bandwidth M∗ according to the above mentioned rules.

Subsequently, we determine b∗ = M∗/T and choose b as the largest multiple of 0.02 smaller

or equal to b∗ for fixed-b inference 5. The simulated critical values for this type of inference

depend on both kernel and bandwidth. Again, the number of replications is 5000 and the

nominal level is 0.05 in all cases.

Table 3 and Table 4 show empirical null rejection probabilities using data dependent

bandwidth choices in conjunction with the Bartlett and the quadratic spectral kernel. They

are ordered as follows: OLS, OLS-HAC, D-CPR, FM-CPR and the test statistic using the

ω̂u·v estimator for standard asymptotic inference based on the IM-CPR estimator, labelled

IM-CPR(O). In the last three columns we add the results for fixed-b inference using one of

5This is labelled “Data-Dep” later in the text.
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the data dependent bandwidth rules, as described in the last paragraph (we refer to this

as IM-CPR(Fb) “Data-Dep”) and we also perform fixed-b inference using the fixed-b values

b = 0.1 and b = 0.2, respectively.

ρ1 = ρ2 OLS OLS-HAC D-CPR FM-CPR IM-CPR(O) IM-CPR(Fb)

Data-Dep b=0.1 b=0.2

T=100

0.0 0.059 0.128 0.164 0.077 0.100 0.049 0.053 0.069

0.3 0.154 0.149 0.206 0.110 0.109 0.068 0.060 0.077

0.6 0.371 0.260 0.270 0.170 0.137 0.127 0.077 0.092

0.9 0.725 0.556 0.425 0.411 0.356 0.452 0.300 0.249

T=200

0.0 0.048 0.097 0.089 0.059 0.071 0.045 0.048 0.055

0.3 0.147 0.108 0.118 0.079 0.077 0.060 0.051 0.055

0.6 0.374 0.196 0.145 0.126 0.089 0.097 0.056 0.064

0.9 0.746 0.486 0.269 0.314 0.242 0.438 0.161 0.136

T=500

0.0 0.054 0.077 0.067 0.057 0.066 0.054 0.050 0.057

0.3 0.156 0.081 0.082 0.070 0.070 0.055 0.050 0.057

0.6 0.375 0.141 0.091 0.086 0.079 0.064 0.050 0.058

0.9 0.762 0.366 0.142 0.223 0.117 0.191 0.067 0.068

T=1000

0.0 0.053 0.068 0.062 0.055 0.061 0.055 0.052 0.054

0.3 0.163 0.078 0.072 0.064 0.066 0.055 0.051 0.055

0.6 0.400 0.131 0.079 0.081 0.070 0.057 0.052 0.055

0.9 0.787 0.314 0.114 0.176 0.087 0.097 0.055 0.063

Table 3: Empirical null rejection probabilities for H0 : β1 = 5, quadratic specification,
Andrews (1991) bandwidth, quadratic spectral kernel, 0.05 level. The last three columns
show results of fixed-b inference based on the IM-CPR estimator: in the column “Data-Dep”
we have applied a data dependent bandwidth rule in order to determine a value b∗, in the
latter two columns we have used fixed values for b.

Below is a summary of the main findings of this simulation starting with the coefficient

β1. As expected OLS textbook tests show the best performance in case of no correlation,

but have severe size distortions at least for ρ > 0.3. The OLS-HAC version has slight size

distortions for ρ = 0.0, but outperforms the OLS textbook test for increasing values of ρ1

and ρ2. For small sample sizes of T = 100 the D-CPR tests are very size distorted even

in the non-correlated case, but improve for T ≥ 200. The FM-CPR and IM-CPR(O) tests

show a similar performance, where the latter has some slight advantages in case of increased

sample size especially for the Wald-type test with multiple hypotheses, see Table 4. The IM-
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ρ1 = ρ2 OLS OLS-HAC D-CPR FM-CPR IM-CPR(O) IM-CPR(Fb)

Data-Dep b=0.1 b=0.2

T=100

0.0 0.057 0.184 0.212 0.086 0.117 0.047 0.058 0.069

0.3 0.200 0.211 0.282 0.143 0.133 0.071 0.061 0.082

0.6 0.526 0.379 0.382 0.242 0.180 0.164 0.082 0.099

0.9 0.922 0.831 0.612 0.601 0.554 0.626 0.419 0.311

T=200

0.0 0.053 0.125 0.099 0.066 0.079 0.047 0.053 0.053

0.3 0.192 0.146 0.145 0.105 0.087 0.063 0.056 0.056

0.6 0.529 0.267 0.187 0.166 0.119 0.124 0.060 0.064

0.9 0.932 0.716 0.391 0.471 0.351 0.623 0.204 0.156

T=500

0.0 0.046 0.088 0.065 0.054 0.060 0.047 0.052 0.059

0.3 0.195 0.100 0.089 0.075 0.069 0.051 0.051 0.056

0.6 0.558 0.193 0.108 0.104 0.082 0.063 0.054 0.059

0.9 0.940 0.556 0.208 0.338 0.167 0.283 0.075 0.076

T=1000

0.0 0.053 0.075 0.065 0.057 0.063 0.058 0.052 0.053

0.3 0.214 0.082 0.076 0.073 0.067 0.059 0.053 0.057

0.6 0.563 0.151 0.090 0.091 0.076 0.063 0.054 0.056

0.9 0.949 0.447 0.149 0.250 0.107 0.120 0.059 0.066

Table 4: Empirical null rejection probabilities for H0 : β1 = 5, β2 = −0.3, quadratic
specification, Andrews (1991) bandwidth, quadratic spectral kernel, 0.05 level. The last
three columns show results of fixed-b inference based on the IM-CPR estimator: in the
column “Data-Dep” we have applied a data dependent bandwidth rule in order to determine
a value b∗, in the latter two columns we have used fixed values for b.

CPR based fixed-b tests behave decently compared to the standard asymptotic tests. The

empirical null rejection probabilities of these tests exceed the 10% threshold rarely and only

in high-correlation cases in conjunction with small sample sizes. The fixed-b tests outperform

the standard asymptotic tests throughout and are barely size distorted also for the Wald-

type tests with multiple hypotheses, where the standard asymptotic tests behave very poorly.

Please note that the data dependent bandwidth rules for the fixed-b tests typically lead to

a b value of 0.02 or 0.04, for which the fixed-b tests show the worst performance. In order

to illustrate the impact of the choice of b on the test performance, we plot empirical size

rejections for different sample sizes and different correlation parameters as a function of b.

The results are given in Figure 1 and Figure 2. The figures show that the tests for b ≤ 0.04

have the highest rejection probabilities and the best results are given for b around 0.1 and/or
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Figure 1: Empirical null rejections, IM-CPR(Fb) inference: t-test for β1, ρ1 = ρ2 = 0.3,
Bartlett kernel, Andrews (1991) bandwidth

around b = 1.

Regarding bandwidth and kernel choice, it should be noted that overall the Andrews (1991)

bandwidth choice is better than Newey and West (1994) and that the quadratic spectral

kernel dominates the Bartlett kernel with respect to statistical inference. The results for β2

and the Wald tests are qualitatively very similar. We observe that the sizes for the Wald-

type test statistics are slightly larger than the ones of the t-tests due increased degrees of

freedom.
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Figure 2: Empirical null rejections, IM-CPR(Fb) inference: t-test for β1, ρ1 = ρ2 = 0.9,
Bartlett kernel, Andrews (1991) bandwidth

Size-Corrected Power Analysis

We complete this section by considering size-corrected power properties of the tests. Al-

though size-corrections are not feasible in practice, they are a useful tool for theoretical

comparisons since they overcome potential over-rejection problems under the null hypoth-

esis. Therefore, we use empirical critical values, which were computed simultaneously in

the above empirical null rejection simulation study, in order to hold them constant at 0.05

under the null. Starting from the null values of β1 and β2 we consider under the alternative

β1 ∈ (5, 6] and β2 ∈ (−0.3, 0.2] with a total of 21 values generated on a grid with mesh 0.05

for β1 and 0.005 for β2. The figures are qualitatively similar for the t-test and the Wald-test.

For the t-test the curves are very close together, making it difficult to identify any differences.
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Figure 3: Size Corrected Power, Wald-test, T=100, ρ1 = ρ2 = 0.6, quadratic spectral kernel

As a result, it appears to be more suitable to look at the power curves of the Wald-test.

We consider two types of size-corrected power comparisons: In the first step we compare

the IM-CPR(Fb) tests for different values of b. Figure 3 shows that increasing the value of

b leads to some power losses. However, these power losses are very small in most cases. In

Figures 1 and 2 we have seen that, especially in high-correlated cases, empirical null-rejection

tend to be lower with increasing b. The minimal power losses in the size-corrected power

study seem to be the price to be paid for less finite sample size distortions.

Comparing both kernels investigated for this simulation study, we see that the quadratic

spectral kernel is much more sensitive to the bandwidth choice than the Bartlett kernel. For

increasing values of b power, using the quadratic spectral kernel becomes much lower than for

the Bartlett kernel. Whereas, as described above, tests using the quadratic spectral kernel

exhibit much fewer over-rejection problems under the null especially for larger bandwidths.

This size-power trade-off for kernel and bandwidth choice has already been observed by

Kiefer and Vogelsang (2005) as well as by Vogelsang and Wagner (2014a).

Finally, Figure 4 shows power comparisons for different tests, namely OLS, OLS-HAC,
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Figure 4: Size Corrected Power, Wald-test, T=100, ρ1 = ρ2 = 0.6, quadratic spectral kernel,
Andrews (1991) bandwidth

D-CPR, FM-CPR, IM(O) and IM(Fb) using a data dependent bandwidth rule. We see that

the D-CPR based test has by far the smallest power for T = 100, but has slightly higher

power than the IM-CPR tests for T = 200. Throughout OLS and FM-CPR have had the

highest-size corrected power, whereas both IM-CPR based tests have shown a small but non-

trivial reduction in power. Once again, we see that the use of ω̃∗u·v to obtain asymptotically

fixed-b inference and less finite sample size distortions comes at the cost of some power loss.

4 Application: EKC Analysis

For the empirical analysis of the environmental Kuznets curve (EKC) hypothesis we consider

data for 18 early industrialized countries over the time period 1870-2009 for carbon dioxide

(CO2) emissions and real GDP. All of these quantities are used in per capita terms and

transformed to logarithms for the empirical analysis.

The CO2 emissions data is from the homepage of the Carbon Dioxide Information Analysis
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List of Countries

Australia Austria Belgium Canada Denmark

Finland France Germany Italy Japan

New Zealand Norway Portugal Spain Sweden

Switzerland United Kingdom United States

Table 5: The sample range is 1870-2009 for GDP and CO2 with the exception of New Zealand
which has 1878 as its starting point.

Center of the US Department of Energy (http://cdiac.ornl.gov), the GPD data was down-

loaded from the homepage of the Maddison Project (http://www.ggdc.net/maddison/maddison-

project/home.htm). CO2 emissions data for New Zealand starts in 1878. The required long

run covariance estimates for the EKC estimation are based on the quadratic spectral kernel

and the data dependent bandwidth rule of Andrews (1991).

We consider the quadratic formulation

et = c+ δt+ β1yt + β2y
2
t + ut, (31)

yt = yt−1 + vt,

as well as the cubic formulation

et = c+ δt+ β1yt + β2y
2
t + β3y

3
t + ut, (32)

yt = yt−1 + vt,

where et denotes log per capita CO2 emissions and yt denotes log per capita GDP. In terms

of model (1) we have d = 2,m = 1, p1 = 2 for the quadratic specification and d = 2,m =

1, p1 = 3 for the cubic specification, respectively.

Prior to estimation of models (31) and (32), two steps need to be performed: the first

step is to test the unit root hypothesis for the variable on the right-hand side (i.e. for log

per capita GDP).6 To be more specific, we make use of the Phillips and Perron (1988) t-test

and the fixed-b Phillips-Perron unit root test introduced by Vogelsang and Wagner (2013)

with the null hypothesis of an unit root for the specification with an intercept and a linear

trend. The results are reported in Table 6. The unit root null hypothesis based on the

6Following the arguments in Section 2 we, of course, do not have to test the unit root hypothesis for the
second and third power of log per capita GDP.
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standard Phillips-Perron test is rejected for none of the countries, which forms the basis for

our analysis. The PP(fb) unit root test rejects the null hypothesis for log GDP per capita

only for the USA.

The second step is to carry out CPR based (non-)cointegration tests for the specifications

(31) and (32). Therefore, we employ the extension of the FM-OLS residual based Shin

(1994) cointegration test (CTFM) and the FM-OLS residual based extension of the Phillips

and Ouliaris (1990) non-cointegration test (PU). Both tests are introduced in Wagner (2013)

and have already been investigated for a similar data set with different kernel and bandwidth

choices in Grabarczyk and Wagner (2016).We briefly summarize the results given in Table 7:

The EKC cointegration hypothesis for the quadratic specification is supported for Austria,

Belgium, Denmark, Finland and Switzerland. For Denmark mixed evidence prevails, i.e.

the null of cointegration is not rejected for the CT tests, but rejection of the PU non-

cointegration test only occurs at the 10% level. When we take the cubic specification into

account, we additionally have evidence for Germany. Given the results of the cointegration

tests, we consider the following countries for the CPR based estimation of the EKC: Austria,

Belgium, Denmark, Finland, Germany and Switzerland.

We turn to the estimation results for the specifications (31) and (32), where we include the

estimators considered in Section 3, i.e. OLS, D-CPR, FM-CPR and IM-CPR (for significance

tests we include standard t-values as well as fixed-b t-values). The results for the quadratic

specification are given in Table 8 and for the cubic specification in Table 9, respectively.

Given that the estimated coefficient β̂3 in the cubic specification is not significant for Austria,

Denmark and Switzerland, it is sufficient to consider the quadratic specification, whereas we

consider the cubic specification for the remaining countries. For Finland the estimated

coefficient for β3 is significant, but the quadratic specification shows a better fit (see below).

The results for the quadratic specification for Austria, Denmark, Finland and Switzerland

show that the coefficient to squared GDP is negative for all countries indicating an inversed

U-shape. For Austria this coefficient is significantly different from zero only for the IM-

CPR estimator. The CO2 emissions data for Austria shows a flat course over the past few

decades, which makes this coefficient difficult to estimate. All estimators show similar results

for Denmark and Switzerland. The results for the cubic specification are very similar to each

other for Belgium and Germany with the exception of the D-CPR estimator, which shows a
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poor performance in terms of Bias and RMSE for sample sizes about T = 100, as shown in

the simulation study.

Figures 5-8 show the actual and fitted values as well as the estimated EKCs for the

considered countries using the estimated coefficients via IM-CPR from models (31) and

(32). The fits are very good for all considered countries especially for the time period after

the Second World War. With the exception of some time periods for Austria and Belgium,

the fits perform well for the time before and between the two world wars.

In order to estimate the EKCs we use for the explanatory variable T = 140 equidistant

values ranging from the minimal value of log per capita GDP up to the maximal value. For

the linear time trend t we use values 1, . . . , 140 and insert these values together with our

coefficient estimates. For the cubic specification it is shown that the estimated EKC for

Belgium has an inverted U-shape. For Germany we find a N-shape rather than an inverted

U-shape.

5 Summary and Conclusions

This paper considers the extension of the integrated modified OLS estimator from linear

cointegrating regressions to cointegrating polynomial regressions. The zero mean Gaussian

mixture distribution of the obtained estimator forms the basis for standard asymptotic in-

ference. For the case of full design, we additionally perform fixed-b asymptotic inference.

Full design prevails, e.g., when only one integrated regressor enters the regression equation

with powers larger than one. This is the case in, e.g., the EKC analysis.

The theoretical results are complemented by a small simulation study to compare the IM-

CPR estimator with OLS, FM-CPR and D-CPR. We find that the IM-CPR estimator has a

slightly lower bias relative to FM-CPR and D-CPR, but marginally higher RMSE. In terms

of empirical null rejection probabilities, hypothesis tests based on the IM-CPR estimator

outperform FM-CPR and D-CPR based tests, especially the fixed-b version for small sample

sizes and a high level of correlation. This comes at the cost of minor power losses. Overall,

the simulation results support the findings of Vogelsang and Wagner (2014a) in the linear

cointegration case.

We apply the developed methods for the estimation of the EKC using a data set of GDP
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and CO2 emissions for 18 early industrialized countries over the period 1870–2009. We find

evidence for the existence of a cubic EKC for six countries. Four out of these six countries

show evidence for a quadratic EKC. The coefficient estimates are similar across the considered

methods for most of the countries.

Future research will move in the following directions: First, the choice of an optimal b value

is an interesting but non-trivial problem. Until now we choose the fixed-b values according

to one of the data dependent bandwidth rules designed for long run covariance estimation or

choose b = 0.1 or b = 0.2. Second, in respect of the EKC analysis also integrated modified

OLS estimators for multi-equation systems of CPRs are worth considering. This includes

CPR extensions of seemingly unrelated regression (SUR) models (Zellner, 1962) or panel data

models. Third, the developed methods can also be applied to other economic questions such

as the intensity-of-use debate, which postulates an inverted U-shaped relationship between

GDP and intensity of metal use (Labson and Crompton, 1993).
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A Proofs

Proof of Proposition 1. We examine the asymptotic behavior of the elements of the last term

in (13). We begin with the term T−1/2AIMS
ξ
[rT ] for T →∞,T−1

∑[rT ]
t=1

√
TGDDt

T−1
∑[rT ]

t=1

√
TGXXt

T−1/2x[rT ]

⇒

∫ r

0
D(s)ds∫ r

0
Bvm(s)ds

Bv(r)

 = f(r),

here the convergence in the second row holds because of (8). This result leads to

(
T−2AIMS

ξ ′SξAIM
)−1

=

(
1

T

(
T−1/2AIMS

ξ ′) (T−1/2AIMS
ξ
))−1

⇒
(∫

f(s)f(s)′ds

)−1

.

(33)

For the second factor in (13) we use

T−1/2AIMS
ξ′

[rT ]T
−1/2Su[rT ] ⇒ f(r)Bu(r)

such that

T−2AIMS
ξ ′Su ⇒

∫
f(s)Bu(s)ds = ω1/2

u·v

∫
f(s)wu·vds+

∫
f(s)Wv(s)

′Ω−1/2
vv Ωvuds, (34)

using Bu(r) = ω
1/2
u·vwu·v + Ωuv(Ω

−1/2
vv )′Wv(r). Multiplying (33) and the second term of (34)

leads to (∫
f(s)f(s)′ds

)−1 ∫
f(s)Wv(s)

′dsΩ−1/2
vv Ωvu

=

(∫
f(s)f(s)′ds

)−1 ∫
f(s)Bv(s)

′dsΩ−1
vv Ωvu

=

 0

0

Ω−1
vv Ωvu

 ,

note that
(∫

f(s)f(s)′ds
)−1 ∫

f(s)Bv(s)
′ds = [0, 0, Im]′, sinceBv(r) is the last block-component

in f(r). Similarly equation (14) follows using integration by parts. The expression for the

(conditional) covariance matrix (15) holds, because the quadratic variation process of a

standard Brownian motion wu·v is given by [wu·v, wu·v]s = s.
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Proof of Corollary 1. In case of full design simply rewrite f(r) as

f(r) =


∫ r

0
D(s)ds∫ r

0
Bv(s)ds

Bv(r)

 =


∫ r

0
D(s)ds

F (Ωvv)
∫ r

0
Wv(s)ds

Ω
1/2
vv Wv(r)

 = Πg(r).

Proof of Lemma 1. For part (i) we can use the results already established in Proposition 1

and Corollary 1, so that we only have to focus on the additional regressors zt = [zDt
′, zS

X

t
′, zxt

′]′.

For the limit of zDt , z
x
t and the regressors of zS

X

t
′, which do not contain powers, we can one-

to-one follow the arguments of Vogelsang and Wagner (2014a) given in the proof of Lemma

1. For the limit of the non-linear parts we define S
xkj
t :=

∑t
i=1 x

k
ji for k = 1, . . . , p and zS

xkj

t

as the corresponding part in zt, then scaled by T−1/2AIM we get

T−5/2T−(k+1)/2zS
xkj

[rT ] = T−5/2T−(k+1)/2[rT ]
T∑
t=1

S
xkj
t − T−5/2T−(k+1)/2

[rT ]∑
t=1

t∑
l=1

S
xkj
l

=
[rT ]

T

1

T

T∑
t=1

T−(k+2)/2S
xkj
t −

1

T

[rT ]∑
t=1

1

T

t∑
l=1

S
xkj
l

⇒ r

∫ 1

0

(∫ m

0

Bk
vj

(s)ds

)
dm−

∫ r

0

(∫ m

0

(∫ n

0

Bk
vj

(s)ds

)
dn

)
dm.

Combining the single parts leads to the asymptotic behavior in (ii).

Note that the adjusted residuals S̃u∗t defined in (23) coincide with the OLS residuals from

the regression

Syt = SDt
′δ∗ + SXt

′β∗ + x′tγ
∗ + z′tκ

∗ + Sut , (35)

which follows immediately using standard projection arguments. For part (ii) we consider

the OLS residuals from (35),

S̃u∗t = Syt − S
ξ∗
t
′θ̃∗ = Sut − x′tΩ−1

vv Ωvu − Sξ∗t ′
(
θ̃∗ − θ∗

)
,

with Sξ∗t := [Sξt
′, z′t]

′. Defining ξ∗t := [ξ′t, z
′
t]
′ we get for the scaled partial sum of the first
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differences

T−1/2

[rT ]∑
t=2

∆S̃u∗t

= T−1/2

[rT ]∑
t=2

ut −∆x′[rT ]Ω
−1
vv Ωvu − T−1/2

[rT ]∑
t=2

ξ∗t
′
(
AIM 0

0 T−2AIM

)(
AIM 0

0 T−2AIM

)−1 (
θ̃∗ − θ∗

)
⇒ ω1/2

u·v

(∫ r

0

dwu·v(s)− h(r)′
(∫ 1

0

h(s)h(s)′ds

)−1 ∫ 1

0

[H(1)−H(s)]dwu·v(s)

)
= ω1/2

u·v P̃
∗(r)

Finally, we have to show independence of P̃ ∗(r) and the limiting distribution in (14) condi-

tional on Wv(r) and since both processes are Gaussian, it suffices to show conditional uncor-

relation between P̃ ∗(r) and the relevant quantity in (14), namely
∫

[G(1)−G(s)]dwu·v(s).

First note that integration by parts leads to∫ 1

0

[H(1)−H(s)][G(1)−G(s)]′ds = [H(1)−H(s)]h2(s)′|1
0︸ ︷︷ ︸

=0

+

∫ 1

0

h(s)h2(s)′ds,

where h2(·) is the second block of h(·). Now it follows that(∫ 1

0

h(s)h(s)′ds

)−1 ∫ 1

0

[H(1)−H(s)][G(1)−G(s)]′ds =

(
0

I

)
.

Using the last two results and once again the fact that [wu·v, wu·v]s = s, now gives us

Cov

(
P̃ ∗(r),

∫
[G(1)−G(s)]dwu·v(s)

)
=

∫ r

0

[G(1)−G(s)]′ds− h(r)′
(∫ 1

0

h(s)h(s)′ds

)−1 ∫ 1

0

[H(1)−H(s)][G(1)−G(s)]′ds

=

∫ r

0

[G(1)−G(s)]′ds−
∫ r

0

[G(1)−G(s)]′ds

= 0.

Proof of Proposition 2. First, we have to make sure using standard calculations that the

expression given in (21) (up to ω̌u·v) converges to (15) (up to ωu·v).

Now the assumption given in (20) and the result from Proposition 1 imply that under the

null hypothesis

W̃ ∗ ⇒ (R∗Φ(VIM)′
(
Qb(P̃ ∗, P̃ ∗)R

∗VIMR
∗′
)−1

(R∗Φ(VIM)) ∼
χ2
q

Qb(P̃ ∗, P̃ ∗)
,
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where it follows from Vogelsang and Wagner (2014a) Proposition 1 that the fixed-b limit

of ω̃∗u·v is given by Qb(P̃ ∗, P̃ ∗) and therefore Ṽ ∗ ⇒ Qb(P̃ ∗, P̃ ∗)VIM . (Unconditional) Inde-

pendence of χ2
q and Qb(P̃ ∗, P̃ ∗) follows using the same arguments as Vogelsang and Wagner

(2014a) in the proof of Theorem 3.
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B EKC Analysis: Estimation Results and Figures

PP PP(fb)–One Step PP(fb)–Two Step

Australia -1.208 -1.212 -1.255

Austria -1.826 -1.909 -1.923

Belgium -1.257 -1.406 -1.443

Canada -2.482 -3.124 -3.125

Denmark -2.366 -2.426 -2.433

Finland -2.291 -2.415 -2.421

France -1.931 -2.145 -2.153

Germany -2.316 -2.692 -2.696

Italy -1.676 -1.844 -1.860

Japan -1.701 -1.785 -1.786

New Zealand -2.588 -2.674 -2.678

Norway -2.083 -2.119 -2.098

Portugal -1.728 -1.752 -1.718

Spain -0.774 -0.944 -0.990

Sweden -2.462 -2.539 -2.540

Switzerland -2.758 -2.848 -2.850

United Kingdom -1.283 -1.553 -1.631

United States -2.961 -3.642 -3.642

Table 6: Standard Phillips-Perron unit-root test (PP) and fixed-b Phillips-Perron unit-root
test (PP(fb)) of Vogelsang and Wagner (2013) results with one-step and two-step detrending.
Intercept and linear trend for per capita GDP, quadratic spectral kernel, Andrews (1991)
bandwidth. Per capita GDP is measured in (international) GK-$. All variables are trans-
formed to logarithms. Italic entries denote rejection of the null hypothesis at the 10% level
and bold entries indicate rejection at the 5% level.
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Quadratic Cubic

CTFM PU CTFM PU

Australia 0.061 15.372 0.071 16.076

Austria 0.060 71.894 0.051 72.945

Belgium 0.044 91.126 0.031 100.652

Canada 0.081 10.016 0.043 23.476

Denmark 0.050 49.615 0.038 50.256

Finland 0.037 92.147 0.032 101.698

France 0.049 42.268 0.044 42.291

Germany 0.098 68.369 0.049 74.618

Italy 0.089 26.148 0.075 39.708

Japan 0.083 8.659 0.051 13.015

New Zealand 0.077 11.226 0.069 12.307

Norway 0.051 21.897 0.045 22.385

Portugal 0.121 15.815 0.125 16.063

Spain 0.063 38.798 0.054 39.527

Sweden 0.061 34.590 0.064 35.799

Switzerland 0.067 87.659 0.055 101.107

UK 0.107 124.480 1.618 133.025

US 0.069 9.665 0.054 19.64

Critical Values (α = 10%) 0.086 45.237 0.081 47.925

Critical Values (α = 5%) 0.106 52.952 0.101 55.926

Table 7: Results for the CT cointegration test using the FM-OLS residuals as well as the
FM-OLS residual based Pû non-cointegration test for the quadratic and cubic specification
in conjunction with the Andrews (1991) data dependent bandwidth rule and the quadratic
spectral kernel. Numbers in italics denote rejection of the null hypothesis at the 10% level
and bold numbers indicate rejection at the 5% level.
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δ β1 β2 Turning Point

Austria

OLS -0.014 6.124 -0.277 62618.781

(t-values) -2.194 1.619 -1.370

D-CPR -0.015 6.265 -0.284 62698.940

(t-values) -3.177 2.212 -1.822

FM-CPR -0.016 6.457 -0.290 67805.827

(t-values) -3.675 2.538 -2.063

IM-CPR -0.023 10.197 -0.488 34151.260

(t-values) -4.111 2.883 -2.530

(fixed-b t-values) -13.389 9.387 -8.240

Denmark

OLS -0.007 11.827 -0.590 22415.852

(t-values) -1.096 9.811 -10.260

D-CPR -0.022 13.168 -0.623 38848.957

(t-values) -2.642 6.677 -6.950

FM-CPR -0.011 12.500 -0.616 25393.955

(t-values) -1.965 9.918 -10.302

IM-CPR -0.017 12.776 -0.616 31982.617

(t-values) -2.316 8.154 -8.512

(fixed-b t-values) -4.356 15.336 -16.009

Finland

OLS -0.034 16.745 -0.792 38762.325

(t-values) -2.546 8.457 -8.691

D-CPR -0.001 8.437 -0.385 57166.366

(t-values) -0.067 2.672 -2.431

FM-CPR -0.025 15.246 -0.724 37323.312

(t-values) -2.495 7.571 -7.125

IM-CPR -0.021 13.982 -0.661 39338.330

(t-values) -1.522 5.159 -4.930

(fixed-b t-values) -3.414 11.569 -11.056

Switzerland

OLS -0.020 6.910 -0.241 1.7×106

(t-values) -2.871 5.110 -2.894

D-CPR -0.021 6.888 -0.234 2.5×106

(t-values) -5.432 5.260 -3.260

FM-CPR -0.024 6.997 -0.231 3.9×106

(t-values) -6.203 5.266 -3.152

IM-CPR -0.025 9.507 -0.363 4.9×105

(t-values) -5.375 5.831 -4.157

(fixed-b t-values) -6.767 7.341 -5.234

Table 8: Estimation results for equation (31) with quadratic spectral kernel and Andrews
(1991) data dependent bandwidth for long run variance estimation. Bold t-values indicate
significance at the 5% level and italic t-values significance at the 10% level (only considered
for the coefficient β2 here). We consider those countries for which at least a mixed evidence
for cointegration is present. The turning points are computed as exp(−β̂1/(2β̂2)).
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δ β1 β2 β3 Turning Point(s)

Belgium

OLS -0.007 60.762 -6.062 0.201 17729.300 29013.122

(t-values) -4.237 2.586 -2.351 2.137

D-CPR -0.001 24.454 -2.195 0.063 11705.299 932135.570

(t-values) -0.348 0.851 -0.693 0.543

FM-CPR -0.006 55.151 -5.463 0.180 15953.742 38163.199

(t-values) -3.652 2.735 -2.450 2.191

IM-CPR -0.007 79.763 -8.189 0.280 –

(t-values) -2.435 2.530 -2.362 2.204

(fixed-b t-values) -4.864 5.053 -4.718 4.403

Germany

OLS -0.029 136.576 -14.647 0.528 –

(t-values) -2.793 2.988 -2.840 2.710

D-CPR -0.024 134.076 -14.588 0.533 –

(t-values) -3.187 2.361 -2.252 2.165

FM-CPR -0.032 180.844 -19.801 0.728 –

(t-values) -5.862 3.683 -3.521 3.395

IM-CPR -0.036 173.097 -18.714 0.680 –

(t-values) -4.355 2.749 -2.610 2.499

(fixed-b t-values) -5.790 3.655 -3.470 3.322

Table 9: Estimation results for equation (32) with quadratic spectral kernel and Andrews
(1991) data dependent bandwidth for long run variance estimation. Bold t-values indi-
cate significance at the 5% level and italic t-values significance at the 10% level (only
considered for the coefficients β2 and β3 here). We consider those countries for which at
least a mixed evidence for cointegration is present. The turning points are computed as

exp

(
− β̂2

3β̂3
±
√

β̂2
2−3β̂1β̂3

9β̂2
3

)
provided

β̂2
2−3β̂1β̂3

9β̂2
3

≥ 0.
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Figure 5: Actual and Fitted Values of log per capita CO2 emissions estimating the quadratic
EKC regression equation via IM-CPR.

Austria Denmark Finland Switzerland

Figure 6: EKC estimation for CO2 using coefficient estimates obtained by IM-CPR in the
quadratic EKC regression equation.

Figure 7: Actual and Fitted Values of log per capita CO2 emissions estimating the cubic
EKC regression equation via IM-CPR.

Belgium Germany

Figure 8: EKC estimation for CO2 using coefficient estimates obtained by IM-CPR in the
cubic EKC regression equation.
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C Additional Simulation Results

ρ1 = ρ2 OLS D-CPR FM-CPR IM-CPR
And91 NW NWT

Bias (×1000)

T=100
0.0 0.084 0.845 0.098 0.096 0.097 0.022
0.3 0.087 0.983 0.129 0.113 0.128 0.044
0.6 0.097 1.294 0.207 0.188 0.180 0.110
0.9 0.269 1.894 0.474 0.424 0.368 0.346

T=200
0.0 -0.002 -0.008 0.000 -0.000 -0.000 0.072
0.3 0.004 -0.010 0.004 0.003 0.003 0.102
0.6 0.035 0.000 0.027 0.028 0.032 0.178
0.9 0.272 0.222 0.269 0.282 0.281 0.626

T=500
0.0 0.004 0.001 0.005 0.005 0.005 0.001
0.3 0.004 -0.001 0.006 0.006 0.006 0.001
0.6 0.006 -0.002 0.010 0.010 0.010 0.001
0.9 0.016 0.008 0.031 0.030 0.024 -0.001

T=1000
0.0 -0.004 -0.004 -0.004 -0.004 -0.004 -0.002
0.3 -0.006 -0.005 -0.005 -0.005 -0.005 -0.002
0.6 -0.011 -0.009 -0.009 -0.009 -0.009 -0.004
0.9 -0.039 -0.030 -0.030 -0.031 -0.034 -0.010

RMSE

T=100
0.0 0.006 0.012 0.006 0.006 0.006 0.010
0.3 0.007 0.015 0.008 0.008 0.008 0.014
0.6 0.012 0.021 0.012 0.012 0.012 0.023
0.9 0.027 0.037 0.027 0.026 0.026 0.069

T=200
0.0 0.002 0.003 0.002 0.002 0.002 0.003
0.3 0.003 0.004 0.003 0.003 0.003 0.005
0.6 0.004 0.006 0.004 0.004 0.004 0.008
0.9 0.013 0.014 0.012 0.012 0.012 0.028

T=500
0.0 0.000 0.001 0.000 0.000 0.000 0.001
0.3 0.001 0.001 0.001 0.001 0.001 0.001
0.6 0.001 0.001 0.001 0.001 0.001 0.002
0.9 0.005 0.004 0.004 0.004 0.004 0.009

T=1000
0.0 0.000 0.000 0.000 0.000 0.000 0.000
0.3 0.000 0.000 0.000 0.000 0.000 0.000
0.6 0.000 0.000 0.000 0.000 0.000 0.001
0.9 0.002 0.002 0.002 0.002 0.002 0.003

Table 10: Finite sample bias (×1000) and RMSE of four estimators for coefficient β2, Bartlett
kernel.
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ρ1 = ρ2 OLS OLS-HAC D-CPR FM-CPR IM-CPR(O) IM-CPR(Fb)

Data-Dep b=0.1 b=0.2

T=100

0.0 0.057 0.094 0.282 0.119 0.078 0.055 0.055 0.060

0.3 0.142 0.142 0.264 0.123 0.121 0.100 0.080 0.093

0.6 0.278 0.199 0.270 0.151 0.175 0.204 0.134 0.166

0.9 0.505 0.324 0.333 0.230 0.347 0.602 0.413 0.461

T=200

0.0 0.053 0.079 0.131 0.086 0.062 0.051 0.046 0.049

0.3 0.137 0.106 0.141 0.098 0.091 0.094 0.060 0.065

0.6 0.268 0.139 0.152 0.110 0.121 0.188 0.087 0.099

0.9 0.547 0.254 0.224 0.191 0.244 0.516 0.267 0.318

T=500

0.0 0.048 0.063 0.074 0.062 0.058 0.055 0.054 0.054

0.3 0.139 0.086 0.090 0.076 0.083 0.065 0.058 0.062

0.6 0.303 0.100 0.098 0.086 0.096 0.086 0.069 0.076

0.9 0.602 0.214 0.166 0.161 0.158 0.229 0.129 0.151

T=1000

0.0 0.054 0.064 0.069 0.064 0.060 0.055 0.054 0.054

0.3 0.143 0.078 0.083 0.076 0.078 0.059 0.056 0.058

0.6 0.314 0.086 0.090 0.083 0.082 0.069 0.060 0.062

0.9 0.632 0.161 0.142 0.136 0.117 0.129 0.084 0.095

Table 11: Empirical null rejection probabilities for H0 : β2 = −0.3, quadratic specification,
Newey-West bandwidth, Bartlett kernel, 0.05 level. The last three columns show results
of fixed-b inference based on the IM-CPR estimator: in the column “Data-Dep” we have
applied a data dependent bandwidth rule in order to determine a value b∗, in the latter two
columns we have used fixed values for b.
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ρ1 = ρ2 OLS OLS-HAC D-CPR FM-CPR IM-CPR(O) IM-CPR(Fb)

Data-Dep b=0.1 b=0.2

T=100

0.0 0.062 0.135 0.181 0.079 0.102 0.051 0.045 0.043

0.3 0.134 0.146 0.193 0.101 0.116 0.069 0.058 0.054

0.6 0.246 0.186 0.217 0.119 0.142 0.131 0.084 0.086

0.9 0.412 0.258 0.240 0.139 0.275 0.447 0.244 0.251

T=200

0.0 0.052 0.108 0.085 0.060 0.072 0.057 0.050 0.039

0.3 0.134 0.115 0.103 0.079 0.081 0.067 0.054 0.055

0.6 0.283 0.160 0.114 0.095 0.103 0.112 0.068 0.082

0.9 0.503 0.234 0.130 0.111 0.198 0.419 0.152 0.195

T=500

0.0 0.052 0.084 0.066 0.057 0.068 0.053 0.053 0.048

0.3 0.146 0.091 0.075 0.071 0.073 0.054 0.056 0.056

0.6 0.306 0.121 0.087 0.082 0.080 0.067 0.060 0.072

0.9 0.613 0.213 0.096 0.110 0.116 0.202 0.076 0.100

T=1000

0.0 0.053 0.076 0.061 0.055 0.053 0.047 0.050 0.052

0.3 0.145 0.077 0.070 0.065 0.056 0.048 0.052 0.064

0.6 0.328 0.104 0.075 0.073 0.064 0.050 0.053 0.070

0.9 0.662 0.195 0.081 0.111 0.080 0.094 0.054 0.075

Table 12: Empirical null rejection probabilities for H0 : β3 = −0.4, cubic specification,
Andrews (1991) bandwidth, quadratic spectral kernel, 0.05 level. The last three columns
show results of fixed-b inference based on the IM-CPR estimator: in the column “Data-Dep”
we have applied a data dependent bandwidth rule in order to determine a value b∗, in the
latter two columns we have used fixed values for b.
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Figure 9: Empirical null rejections, IM-CPR(Fb) inference: t-test for β2, ρ1 = ρ2 = 0.3,
quadratic spectral kernel, Andrews (1991) bandwidth

Figure 10: Empirical null rejections, IM-CPR(Fb) inference: t-test for β2, ρ1 = ρ2 = 0.9,
quadratic spectral kernel, Andrews (1991) bandwidth
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Figure 11: Empirical null rejections, IM-CPR(Fb) inference: Wald-test for β1 and β2, ρ1 =
ρ2 = 0.3, quadratic spectral kernel, Andrews (1991) bandwidth

Figure 12: Empirical null rejections, IM-CPR(Fb) inference: Wald-test for β1 and β2, ρ1 =
ρ2 = 0.9, quadratic spectral kernel, Andrews (1991) bandwidth
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Figure 13: Size Corrected Power, t-test for β1, T=100, ρ1 = ρ2 = 0.6, Bartlett kernel

Figure 14: Size Corrected Power, t-test for β1, T=100, ρ1 = ρ2 = 0.9, Bartlett kernel
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Figure 15: Size Corrected Power, t-test for β1, T=200, ρ1 = ρ2 = 0.6, Bartlett kernel

Figure 16: Size Corrected Power, t-test for β1, T=500, ρ1 = ρ2 = 0.6, Bartlett kernel
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Figure 17: Size Corrected Power, t-test for β2, T=100, ρ1 = ρ2 = 0.6, Bartlett kernel

Figure 18: Size Corrected Power, t-test for β2, T=200, ρ1 = ρ2 = 0.6, Bartlett kernel
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Figure 19: Size Corrected Power, Wald-test, T=100, ρ1 = ρ2 = 0.6, Bartlett kernel

Figure 20: Size Corrected Power, Wald-test, T=200, ρ1 = ρ2 = 0.6, Bartlett kernel
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Figure 21: Size Corrected Power, Wald-test, T=200, ρ1 = ρ2 = 0.6, quadratic spectral kernel

Figure 22: Size Corrected Power, t-test for β2, T=100, ρ1 = ρ2 = 0.6, Bartlett kernel
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Figure 23: Size Corrected Power, t-test for β2, T=200, ρ1 = ρ2 = 0.6, Bartlett kernel

Figure 24: Size Corrected Power, Wald-test, T=100, ρ1 = ρ2 = 0.6, Bartlett kernel, An-
drews (1991) bandwidth
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Figure 25: Size Corrected Power, Wald-test, T=200, ρ1 = ρ2 = 0.6, Bartlett kernel, An-
drews (1991) bandwidth

Figure 26: Size Corrected Power, Wald-test, T=200, ρ1 = ρ2 = 0.6, quadratic spectral
kernel, Andrews (1991) bandwidth
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