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In this paper the problem of best linear unbiased estimation is
investigated for continuous-time regression models. We prove several
general statements concerning the explicit form of the best linear un-
biased estimator (BLUE), in particular when the error process is a
smooth process with one or several derivatives of the response pro-
cess available for construction of the estimators. We derive the ex-
plicit form of the BLUE for many specific models including the cases
of continuous autoregressive errors of order two and integrated er-
ror processes (such as integrated Brownian motion). The results are
illustrated by several examples.

1. Introduction. Consider a continuous-time linear regression model of
the form

y(t) = θT f(t) + ε(t) , t ∈ [A,B],(1.1)

where θ ∈ Rm is a vector of unknown parameters, f(t) = (f1(t), . . . , fm(t))T

is a vector of linearly independent functions defined on some interval, say
[A,B], and ε = {ε(t)|t ∈ [A,B]} is a random error process with E[ε(t)] = 0
for all t ∈ [A,B] and covariances E[ε(t)ε(s)] = K(t, s). We will assume that ε
has continuous (in the mean-square sense) derivatives ε(i) (i = 0, 1, . . . , q)
up to order q, where q is a non-negative integer.
This paper is devoted to studying the best linear unbiased estimator (BLUE)
of the parameter θ in the general setting and in many specific instances.
Understanding of the explicit form of the BLUE has profound significance
on general estimation theory and on asymptotically optimal design for (at
least) three reasons. Firstly, the efficiency of the ordinary least squares esti-
mator, the discrete BLUE and other unbiased estimators can be computed
exactly. Secondly, as pointed out in a series of papers Sacks and Ylvisaker
(1966, 1968, 1970), the explicit form of the BLUE is the key ingredient for
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constructing the (asymptotically) optimal exact designs in the regression
model

y(ti) = θT f(ti) + ε(ti) , A ≤ t1 < t2 . . . < tN−1 < tN ≤ B ,(1.2)

with E[ε(ti)ε(tj)] = K(ti, tj). Thirdly, simple and very efficient estimators
for the parameter θ in the regression model (6.7) can be derived from the
continuous BLUE, like the extended signed least squares estimator investi-
gated in Dette et al. (2016a) and the estimators based on approximation of
stochastic integrals proposed in Dette et al. (2017).
There are many classical papers dealing with construction of the BLUE,
mainly in the case of a non-differentiable error process; that is, in model
(6.8) with q = 0. In this situation, it is well understood that solving specific
instances of an equation of Wiener-Hopf type∫ B

A
K(t, s)ζ(dt) = f(s),(1.3)

for an m-dimensional vector ζ of signed measures implies an explicit con-
struction of the BLUE in the continuous-time model (6.8). This equation
was first considered in a seminal paper of Grenander (1950) for the case of
the location-scale model y(t) = θ + ε(t), i.e. m = 1, f1(t) = 1. For a general
regression model with m ≥ 1 regression functions (and q = 0), the BLUE
was extensively discussed in Grenander (1954) and Rosenblatt (1956) who
considered stationary processes in discrete time, where the spectral repre-
sentation of the error process was heavily used for the construction of the
estimators. In this and many other papers including Pisarenko and Rozanov
(1963); Kholevo (1969); Hannan (1975) the subject of the study was con-
centrated around the spectral representation of the estimators and hence
the results in these references are only applicable to very specific models.
A more direct investigation of the BLUE in the location scale model (with
q = 0) can be found in Hajek (1956), where equation (1.3) for the BLUE was
solved for a few simple kernels. The most influential paper on properties of
continuous BLUE and its relation to the reproducing kernel Hilbert spaces
(RKHS) is Parzen (1961). A relation between discrete and continuous BLUE
has been further addressed in Anderson (1970). An excellent survey of classi-
cal results on the BLUE is given in the book of Näther (1985), Sect. 2.3 and
Chapter 4 (for the location scale model). Formally, Theorem 2.3 of Näther
(1985) includes the case when the derivatives of the process y(t) are avail-
able (q ≥ 0); this is made possible by the use of generalized functions which
may contain derivatives of the Dirac delta-function. This theorem, however,
provides only a sufficient condition for an estimator to be the BLUE.
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The main reason why results on the BLUE in model (6.8) are so difficult
to obtain consists in the fact that - except in the location-scale model - the
functional to be minimized is not convex, so that the usual arguments are
not applicable. The main examples, where the explicit form of the BLUE
was known before the publication of the monograph by Näther (1985), are
listed in Sect. 2.3 of this book. In most of these examples either a Markovian
structure of the error process is assumed or one-dimensional location scale
model is studied. Section 2.6 of our paper updates this list and gives a short
outline of previously known cases where the explicit form of the BLUE was
known until now.
There was also an extensive study of the relation between solutions of the
Wiener-Hopf equations and the BLUE through the RKHS theory, see Parzen
(1961); Sacks and Ylvisaker (1966, 1968, 1970) for an early or Ritter (2000)
for a more recent reference. If q = 0 then the main RKHS assumption is
usually formulated as the existence of a solution, say ζ0, of equation (1.3),
where the measure ζ0 is continuous and has no atoms, see Berlinet and
Thomas-Agnan (2011) for the theory of the RKHS. As shown in the present
paper, this almost never happens for the commonly used covariance kernels
and regression functions (a single general exception from this observation
is given in Proposition 2.4). Note also that the numerical construction of
the continuous BLUE is difficult even for q = 0 and m = 1, see e.g. Ramm
and Charlot (1980) and a remark on p.80 in Sacks and Ylvisaker (1966).
For q > 0, the problem of numerical construction of the BLUE is severely
ill-posed and hence is extremely hard.
The main purpose of this paper is to provide further insights into the
structure of the BLUE (and its covariance matrix) from the observations
{Y (t)|t ∈ T } (and its q derivatives) in continuous-time regression models of
the form (6.8), where the set T ⊆ [A,B] defines the region where the pro-
cess is observed. By generalizing the celebrated Gauss-Markov theorem, we
derive new characterizations for the BLUE which can be used to determine
its explicit form and the corresponding covariance matrix in numerous mod-
els. In particular, we do not have to restrict ourselves to one-dimensional
regression models and to Markovian error processes. Thus our results re-
quire minimal assumptions regarding the regression function and the error
process. Important new examples, where the BLUE can be determined ex-
plicitly, include the process with triangular covariance function (2.7), general
integrated processes (in particular, integrated Brownian motion) and contin-
uous autoregressive processes including the Matérn kernels with parameters
3/2 and 5/2.
The remaining part of this paper is organized as follows. In Section 2 we
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develop a consistent general theory of best linear unbiased estimation using
signed matrix measures. We are able to circumvent the convexity problem
and derive several important characterizations and properties of the BLUE.
In particular, in Theorem 2.1 we provide necessary and sufficient conditions
for an estimator to be BLUE when q ≥ 0; in Theorem 2.2 such conditions are
derived for q = 0, T ⊂ Rd with d ≥ 1 and very general assumptions about
the vector of regression functions f(·) and the covariance kernel K(·, ·).
Section 3 is devoted to models, where the error process has one derivative.
In particular, we derive an explicit form of the BLUE, see Theorems 3.1 and
3.2, and obtain the BLUE for specific types of smooth kernels. In Section 3.4
we consider regression models with a continuous-time autoregressive (AR)
error process of order 2 (i.e. CAR(2)) in more detail. Moreover, in an online
supplement [see Dette et al. (2016b)] we demonstrate that the covariance
matrix of the BLUE in this model can be obtained as a limit of the covariance
matrices of the BLUE in discrete regression models (6.7) with observations
at equidistant points and a discrete AR(2) error process. In Section 4 we
give some insight into the structure of the BLUE when the error process
is more than once differentiable. Some numerical illustrations are given in
Section 5, while technical proofs can be found in Section 6.

2. General linear estimators and the BLUE.

2.1. Linear estimators and their properties. Consider the regression model
(6.8) with covariance kernel K(t, s) = E[ε(t)ε(s)]. Suppose that we can ob-
serve the process {y(t)|t ∈ T } along with its q ≥ 0 mean square derivatives
{y(i)(t)|t ∈ T } for i = 1, . . . , q, where the design set T is a Borel subset of
some interval [A,B] with −∞ ≤ A < B ≤ ∞. This is possible when the ker-
nel K(t, s) is q times continuously differentiable on the square [A,B]× [A,B]
and the vector-function f(t) = (f1(t), . . . , fm(t))T is q times differentiable
on the interval [A,B] with derivatives f (1), . . . f (q) (f (0) = f). Throughout
this paper we will also assume that the functions f1, . . . , fm are linearly
independent on T .
Let Y (t) = {(y(0)(t), . . . , y(q)(t))T } be the observation vector containing the
process y(t) = y(0)(t) and its q derivatives. Denote by YT = {Y (t) : t ∈ T }
the set of all available observations. The general linear estimator of the
parameter θ in the regression model (6.8) can be defined as

θ̂G =

∫
T
G(dt)Y (t) =

q∑
i=0

∫
T
y(i)(t)Gi(dt),(2.1)

where G(dt) = (G0(dt), . . . , Gq(dt)) is a matrix of size m × (q + 1). The
columns of this matrix are signed vector-measures G0(dt), . . . , Gq(dt) defined
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on Borel subsets of T (all vector-measures in this paper are signed and have
length m).
The following lemma shows a simple way of constructing unbiased estima-
tors; this lemma will also be used for deriving the BLUE in many examples.
The proof is given in Section 6.

Lemma 2.1. Let ζ0, . . . , ζq be some signed vector-measures defined on T
such that the m×m matrix

C =

q∑
i=0

∫
T
ζi(dt)

(
f (i)(t)

)T
(2.2)

is non-degenerate. Define G = (G0, . . . , Gq), where Gi are the signed vector-

measures and Gi(dt) = C−1ζi(dt) for i = 0, . . . , q. Then the estimator θ̂G is
unbiased.

The covariance matrix of any unbiased estimator θ̂G of the form (2.1) is
given by

Var(θ̂G) =

∫
T

∫
T
G(dt)K(t, s)GT (ds)(2.3)

=

q∑
i=0

q∑
j=0

∫
T

∫
T

∂i+jK(t, s)

∂ti∂sj
Gi(dt)G

T
j (ds) ,

where

K(t, s) =

(
∂i+jK(t, s)

∂ti∂sj

)q
i,j=0

=
(
E[ε(i)(t)ε(j)(s)]

)q
i,j=0

is the matrix consisting of the derivatives of K.

2.2. The BLUE. If there exists a set of signed vector-measures, say G =
(G0, . . . , Gq), such that the estimator θ̂G =

∫
T G(dt)Y (t) is unbiased and

Var(θ̂H) ≥ Var(θ̂G), where θ̂H =
∫
T H(dt)Y (t) is any other linear unbiased

estimator which uses the observations YT , then θ̂G is called the best linear
unbiased estimator (BLUE) for the regression model (6.8) using the set of
observations YT . The BLUE depends on the kernel K, the vector-function f ,
the set T where the observations are taken and on the number q of available
derivatives of the process {y(t)|t ∈ T }.
The following theorem is a generalization of the celebrated Gauss-Markov
theorem (which is usually formulated for the case when q = 0 and T is
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finite) and gives a necessary and sufficient condition for an estimator to be
the BLUE. In this theorem and below we denote the partial derivatives of
the kernel K(t, s) with respect to the first component by

K(i)(t, s) =
∂iK(t, s)

∂ti
.

The proof of the theorem can be found in Section 6.

Theorem 2.1. Consider the regression model (6.8), where the error process
{ε(t)|t ∈ [A,B]} has a covariance kernel K(·, ·) ∈ Cq([A,B] × [A,B]) and
f(·) ∈ Cq([A,B]) for some q ≥ 0. Suppose that the process {y(t)|t ∈ [A,B]}
along with its q derivatives can be observed at all t ∈ T ⊆ [A,B].
An unbiased estimator θ̂G =

∫
T G(dt)Y (t) is BLUE if and only if the equality

q∑
i=0

∫
T
K(i)(t, s)Gi(dt) = Df(s),(2.4)

is fulfilled for all s ∈ T , where D is some m × m matrix. In this case,
D = Var(θ̂G) with Var(θ̂G) defined in (2.3).

The next proposition is slightly weaker than Theorem 2.1 (here the covari-
ance matrix of the BLUE is assumed to be non-degenerate) but will be very
useful in further considerations.

Proposition 2.1. Let the assumptions of Theorem 2.1 be satisfied and
let ζ0, . . . , ζq be signed vector-measures defined on T such that the matrix
C defined in (2.2) is non-degenerate. Define G = (G0, . . . , Gq), Gi(dt) =

C−1ζi(dt) for i = 0, . . . , q. The estimator θ̂G =
∫
T G(dt)Y (t) is the BLUE

if and only if

q∑
i=0

∫
T
K(i)(t, s)ζi(dt) = f(s)(2.5)

for all s ∈ T . In this case, the covariance matrix of θ̂G is Var(θ̂G) = C−1.

2.3. Grenander’s theorem and its generalizations.
When T = [A,B], q = 0, m = 1 and the regression model (6.8) is the
location-scale model y(t) = α+ ε(t), Theorem 2.1 is known as Grenander’s
theorem [see Grenander (1950) and Section 4.3 in Näther (1985)]. In this
special case Grenander’s theorem has been generalised by Näther (1985) to
the case when T ⊂ Rd [see Theorem 4.3 in this reference]. The reason why
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Grenander’s and Näther’s theorems only deal with the location-scale model
is caused by the fact that for this model the convexity of the functional to be
minimized is easy to establish. For general regression models the convexity
argument is not directly applicable and hence the problem is much harder.
For the case of one-dimensional processes, Theorem 2.1 generalizes Grenan-
der’s theorem to arbitrary m-parameter regression models of the form (6.8)
and the case of arbitrary q ≥ 0. Another generalization of the Grenander’s
theorem is given below; it deals with a general m-parameter regression model
(6.8) with a continuous error process (i.e. q = 0) and a d-dimensional set
T ⊂ Rd; that is, the case where y(t) is a random field. Note that the con-
ditions on the vector of regression functions f(·) in Theorem 2.2 are weaker
(when d = 1) than the conditions on f(·) in Theorem 2.1 applied in the case
q = 0.

Theorem 2.2. Consider the regression model y(t) = θT f(t) + ε(t), where
t ∈ T ⊂ Rd, the error process ε(t) has covariance kernel K(·, ·) and f : T →Rm
is a vector of bounded integrable and linearly independent functions. Suppose
that the process y(t) can be observed at all t ∈ T and let G be a signed vector-
measure on T , such that the estimator θ̂G =

∫
T G(dt)Y (t) is unbiased. θ̂G

is a BLUE if and only if the equality∫
T
K(t, s)G(dt) = Df(s)

holds for all s ∈ T for some m ×m matrix D. In this case, D = Var(θ̂G),
where Var(θ̂G) is the covariance matrix of θ̂G defined by (2.3).

The proof of this theorem is a simple extension of the proof of Theorem 2.1
with q = 0 to general T ⊂ Rd and left to the reader.

2.4. Properties of the BLUE.

(P1) Let θ̂G1 and θ̂G2 be BLUEs for the same regression model (6.8) and the
same q but for two different design sets T1 and T2 such that T1 ⊆ T2.
Then Var(θ̂G1) ≥ Var(θ̂G2).

(P2) Let θ̂G1 and θ̂G2 be BLUEs for the same regression model (6.8) and
the same design set T but for two different values of q, say, q1 and q2,
where 0 ≤ q1 ≤ q2. Then Var(θ̂G1) ≥ Var(θ̂G2).

(P3) Let θ̂G with G = (G0, . . . , Gq) be a BLUE for the regression model
(6.8), design space T and given q ≥ 0. Define g(t) = Lf(t), where
L is a non-degenerate m × m matrix, and a signed vector-measure
H = (H0, . . . ,Hq) with Hi(dt) = L−1Gi(dt) for i = 0, . . . , q. Then θ̂H



8 H. DETTE ET AL.

is a BLUE for the regression model y(t) = βT g(t)+ε(t) with the same

y(t), ε(t), T and q. The covariance matrix of θ̂H is L−1Var(θ̂G)L−1T .
(P4) If T = [A,B] and a BLUE θ̂G is defined by the matrix-measure G

that has smooth enough continuous parts, then we can choose another
representation θ̂H of the same BLUE, which is defined by the matrix-
measure H = (H0, H1, . . . ,Hq) with vector-measures H1, . . . ,Hq hav-
ing no continuous parts.

(P5) Let ζ0, . . . , ζq satisfy the equation (2.5) for all s ∈ T , for some vector-
function f(·), design set T and given q ≥ 0. Define C = Cf by (2.2).
Let g(·) be some other q times differentiable vector-function on the
interval [A,B]. Assume that for all s ∈ T , signed vector-measures
η0, . . . , ηq satisfy the equation

q∑
i=0

∫
T
K(i)(t, s)ηi(dt) = g(s);(2.6)

that is, the equation (2.5) for the vector-function g(·), the same design
set T and the same q. Define Cg =

∑q
i=0

∫
T g

(i)(t)ηTi (dt), which is the
matrix (2.2) with ηi substituted for ζi and g(·) substituted for f(·).
If the matrix C = Cf + Cg is non-degenerate, then we define the set
of signed vector-measures G = (G0, . . . , Gq) by Gi = C−1(ζi + ηi),

i = 0, . . . , q, yielding the estimator θ̂G. This estimator is a BLUE for
the regression model y(t) = θT [f(t) + g(t)] + ε(t), t ∈ T .

Properties (P1)–(P3) are obvious. The property (P4) is a particular case of
the discussion of Section 2.5. To prove (P5) we simply add the equations
(2.5) and (2.6) and then use Proposition 2.1.
We believe that the properties (P4) and (P5) have never been noticed before
and both these properties are very important for understanding best linear
unbiased estimators in the continuous-time regression model (6.8) and espe-
cially for constructing a BLUE for new models from the cases when a BLUE
is known for simpler models. As an example, assume that all functions in
the vector f are not constant and set g(t) = c, where c is a constant vector.
Then, if we know the BLUE for f and another BLUE for the location-scale
model, we can use property (P5) to construct BLUE for θT (f(t) + c). This
is an essential part of the proof of Theorem 3.2, which allows obtaining the
explicit form of the BLUE for the integrated error processes from the ex-
plicit form of the BLUE for the corresponding non-integrated errors (which
is a much easier problem).

2.5. Non-uniqueness. Let us show that if T = [A,B] then, under the ad-
ditional smoothness conditions, for a given set of signed vector-measures
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G = (G0, G1, . . . , Gq) on T we can find another set of measures H =
(H0, H1, . . . ,Hq) such that the signed vector-measures H1, . . . ,Hq have no
continuous parts but the expectations and covariance matrices of the esti-
mators θ̂G and θ̂H coincide.
For this purpose, let q > 0, G0, . . . , Gq be some signed vector-measures and
for some i ∈ {1, . . . ,m}, the signed measure Gi(dt) has the form

Gi(dt) = Qi(dt) + ϕ(t)dt,

where Qi(dt) is a signed vector-measure and ϕ ∈ Ci([A,B]) (that is, ϕ is
an i times differentiable vector-function on the interval [A,B]). Define the
matrix H = (H0, . . . ,Hq), where the columns of H are the following signed
vector-measures:

H0(dt) = G0(dt) + (−1)i
[
ϕ(i)(t)dt− ϕ(i−1)(A)δA(dt) + ϕ(i−1)(B)δB(dt)

]
,

Hi(dt) = Qi(dt), Hj(dt) = Gj(dt), for j = i+ 1, . . . , q and

Hj(dt) = Gj(dt) + (−1)i−j−1
[
ϕ(i−j−1)(A)δA(dt)− ϕ(i−j−1)(B)δB(dt)

]
for j = 1, . . . , i − 1, where δA(dt) and δB(dt) are the Dirac delta-measures
concentrated at the points A and B, respectively. The proof of the following
result is given in Section 6.

Lemma 2.2. In the notation above, the expectations and covariance matri-
ces of the estimators θ̂G =

∫
G(dt)Y (t) and θ̂H =

∫
H(dt)Y (t) coincide.

By Lemma 2.2 we can restrict the search of linear unbiased estimators to
estimators θ̂G of the form (2.1), where the components G1, . . . , Gq of the
signed matrix-measure G = (G0, . . . , Gq) have no continuous parts.

2.6. Several examples of the BLUE for non-differentiable error processes.
For the sake of completeness we first consider the case when the errors in
model (6.8) follow a Markov process; this includes the case of continuous
autoregressive errors of order 1. In presenting these results we follow Näther
(1985) and Dette et al. (2016a).

Proposition 2.2. Consider the regression model (6.8) with covariance
kernel K(t, s) = u(t)v(s) for t ≤ s and K(t, s) = v(t)u(s) for t > s, where
u(·) and v(·) are positive functions such that q(t) = u(t)/v(t) is mono-
tonically increasing. Define the signed vector-measure ζ(dt) = zAδA(dt) +
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zBδB(dt) + z(t)dt with

zA =
1

v2(A)q′(A)

[f(A)u′(A)

u(A)
− f ′(A)

]
,

z(t) = − 1

v(t)

[h′(t)
q′(t)

]′
, zB =

h′(B)

v(B)q′(B)
,

where the vector-function h(·) is defined by h(t) = f(t)/v(t). Assume that
the matrix C =

∫
T f(t)ζT (dt) is non-degenerate. Then the estimate θ̂G with

G(dt) = C−1ζ(dt) is a BLUE with covariance matrix C−1.

In the following statement we provide an explicit expression for the BLUE in
a special case of the covariance kernel K(t, s) such that K(t, s) 6= u(t)v(s).
This statement provides the first example where an explicit form of the
BLUE and its covariance matrix can be obtained for a non-Markovian error
process. The proof is given in Section 6.

Proposition 2.3. Consider the regression model (6.8) on the interval T =
[A,B] with errors having the covariance function K(t, s) = 1 + λ1t − λ2s,
where t ≤ s, λ1 ≥ λ2 and λ2(B − A) ≤ 1. Define the signed vector-measure
ζ(dt) = zAδA(dt) + zBδB(dt) + z(t)dt by

z(t) = − f (2)(t)

λ1 + λ2
, zA =

(
− f (1)(A) +

λ2
1f(A) + λ1λ2f(B)

λ1 + λ2 + λ2
1A− λ2

2B)

)
/(λ1 + λ2),

zB =
(
f (1)(B) +

λ1λ2f(A) + λ2
2f(B)

λ1 + λ2 + λ2
1A− λ2

2B)

)
/(λ1 + λ2)

and suppose that the matrix C=
∫
T f(t)ζT (dt) is non-degenerate. Then the

estimator θ̂G with G(dt) = C−1ζ(dt) is a BLUE with covariance matrix C−1.

If λ1 = λ2 and [A,B] = [0, 1] in Proposition 2.3 then we obtain the following
case when the kernel is

K(t, s) = max(1− λ|t− s|, 0) .(2.7)

Optimal designs for this covariance kernel (with λ = 1) have been considered
in [Sect. 6.5 in Näther (1985)], Müller and Pázman (2003) and Fedorov and
Müller (2007).

Example 2.1. Consider the regression model (6.8) on the interval T =
[0, 1] with errors having the covariance kernel (2.7) with λ ≤ 1. Define the
signed vector-measure

ζ(dt) = [−f (1)(0)/(2λ)+fλ]δ0(dt)+[f (1)(1)/(2λ)+fλ]δ1(dt)−[f (2)(t)/(2λ)]dt ,
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where fλ = (f(0)+f(1))/(4−2λ). Assume that the matrix C =
∫
T f(t)ζT (dt)

is non-degenerate. Then the estimator θ̂G with G(dt) = C−1ζ(dt) is a BLUE;
the covariance matrix of this estimator is given by C−1.

Consider now the case when the regression functions are linear combinations
of eigenfunctions from the Mercer’s theorem. Note that a similar approach
was used in Dette et al. (2013) for the construction of optimal designs for
the signed least squares estimators. Let T = [A,B] and ν be a measure
on the corresponding Borel field with positive density. Consider the integral
operator

TK(h)(·) =

∫ B

A
K(t, ·)h(t)ν(dt)(2.8)

on L2(ν, [A,B]), which defines a symmetric, compact self-adjoint operator.
In this case Mercer’s Theorem [see e.g. Kanwal (1997)] shows that there exist
a countable number of orthonormal (with respect to ν(dt)) eigenfunctions
φ1, φ2, . . . with positive eigenvalues λ1, λ2, . . . of the integral operator TK .
The next statement follows directly from Proposition 2.1.

Proposition 2.4. Let φ1, φ2, . . . be the eigenfunctions of the integral oper-
ator (2.8) and f(t) =

∑∞
`=1 q`φ`(t) with some sequence {q`}`∈N in Rm such

that f1(t), . . . , fm(x) are linearly independent. Then the estimator θ̂G with
G(dt) = C−1

∑∞
`=1 λ

−1
` q`φ`(t)ν(dt) and C =

∑∞
`=1 λ

−1
` q`q

T
` is a BLUE with

covariance matrix C−1.

Proposition 2.4 provides a way of constructing the covariance kernels for
which the measure defining the BLUE does not have any atoms. An example
of such kernels is the following.

Example 2.2. Consider the regression model (6.8) with m = 1, f(t) ≡ 1,
t ∈ T = [−1, 1], and the covariance kernel K(t, s) = 1 + κpα,β(t)pα,β(s),

where κ > 0, α, β > −1 are some constants and pα,β(t) = α−β
2 + (1 + α+β

2 )t

is the Jacobi polynomial of degree 1. Then the estimator θ̂G with G(dt) =
const · (1− t)α(1 + t)βdt is a BLUE.

3. BLUE for processes with trajectories in C1[A,B]. In this sec-
tion, we assume that the error process is exactly once continuously differen-
tiable (in the mean-square sense).
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3.1. A general statement. Consider the regression model (6.8) and a linear
estimator in the form

θ̂G0,G1 =

∫
T
y(t)G0(dt) +

∫
T
y(1)(t)G1(dt),(3.1)

where G0(dt) and G1(dt) are signed vector-measures. The following corollary
is a specialization of Proposition 2.1 when q = 1.

Corollary 3.1. Consider the regression model (6.8) with the covariance
kernel K(t, s) and such that y(1)(t) exists in the mean-square sense for all
t ∈ [A,B]. Suppose that y(t) and y(1)(t) can be observed at all t ∈ T . Assume
that there exist vector-measures ζ0 and ζ1 such that the equality∫

T
K(t, s)ζ0(dt) +

∫
T
K(1)(t, s)ζ1(dt) = f(s),

is fulfilled for all s ∈ T , and such that the matrix

C =

∫
T
f(t)ζT0 (dt) +

∫
T
f (1)(t)ζT1 (dt)

is non-degenerate. Then the estimator θ̂G0,G1 defined in (3.1) with Gi =
C−1ζi (i = 0, 1) is a BLUE with covariance matrix C−1.

The next theorem provides sufficient conditions for vector-measures of some
particular form to define a BLUE by (3.1) for the case T = [A,B]. This
theorem, which is proved in Section 6, will be useful for several choices of
the covariance kernel below. Define the vector-function

z(t) = (τ0f(t)− τ2f
(2)(t) + f (4)(t))/s3,

and vectors

zA =
(
f (3)(A)− γ1,Af

(1)(A) + γ0,Af(A)
)
/s3,

zB =
(
− f (3)(B) + γ1,Bf

(1)(B) + γ0,Bf(B)
)
/s3,

z1,A =
(
− f (2)(A) + β1,Af

(1)(A)− β0,Af(A)
)
/s3,

z1,B =
(
f (2)(B) + β1,Bf

(1)(B) + β0,Bf(B)
)
/s3,

where τ0, τ2, γ0,A, γ1,A, β0,A, β1,A, γ0,B, γ1,B, β0,B, β1,B, s3 are some constants
and s3 = K(3)(s−, s)−K(3)(s+, s). Define the functions

J1(s) =− γ1,AK(A, s) + β1,AK
(1)(A, s) + τ2K(A, s)−K(2)(A, s),

J2(s) = γ0,AK(A, s)− β0,AK
(1)(A, s)− τ2K

(1)(A, s) +K(3)(A, s),

J3(s) =− γ1,BK(B, s) + β1,BK
(1)(B, s)− τ2K(B, s) +K(2)(B, s),

J4(s) = γ0,BK(B, s)− β0,BK
(1)(B, s) + τ2K

(1)(B, s)−K(3)(B, s).

(3.2)
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Theorem 3.1. Consider the regression model (6.8) on the interval T =
[A,B] with errors having the covariance kernel K(t, s). Suppose that the
vector of regression functions f is four times differentiable and K(t, s) is
also four times differentiable for t 6= s such that

K(i)(s−, s) − K(i)(s+, s) = 0, i = 0, 1, 2,

K(3)(s−, s) − K(3)(s+, s) 6= 0.

With the notation of the previous paragraph define the vector-measures

ζ0(dt) = zAδA(dt) + zBδB(dt) + z(t)dt,

ζ1(dt) = z1,AδA(dt) + z1,BδB(dt).

Assume that there exist constants τ0, τ2, γ0,A, γ1,A, β0,A, β1,A, γ0,B, γ1,B, β0,B, β1,B

such that (i) the identity

τ0K(t, s)− τ2K
(2)(t, s) +K(4)(t, s) ≡ 0(3.3)

holds for all t, s ∈ [A,B], (ii) the identity J1(s) + J2(s) + J3(s) + J4(s) ≡ 0
holds for all s ∈ [A,B], and (iii) the matrix C =

∫
T f(t)ζT0 (dt)+

∫
T f

(1)(t)ζT1 (dt)

is non-degenerate. Then the estimator θ̂G0,G1 defined in (3.1) with Gi(dt) =
C−1ζi(dt) (i = 0, 1) is a BLUE with covariance matrix C−1.

3.2. Two examples for integrated error processes. In this section we illus-
trate the application of our results calculating the BLUE when errors follow
an integrated Brownian motion and an integrated process with triangular-
shape kernel. All results of this section can be verified by a direct application
of Theorem 3.1. We first consider the case of Brownian motion, where the
integrated covariance kernel is given by

K(t, s) =

∫ t

a

∫ s

a
min(t′, s′)dt′ds′

=
max(t, s)(min(t, s)2 − a2)

2
− a2(min(t, s)− a)

2
− min(t, s)3 − a3

6
(3.4)

and 0 ≤ a ≤ A.

Proposition 3.1. Consider the regression model (6.8) with integrated co-
variance kernel given by (3.4) and suppose that f is four times differentiable
on the interval [A,B]. Define the signed vector-measures

ζ0(dt) = zAδA(dt) + zBδB(dt) + z(t)dt,

ζ1(dt) = z1,AδA(dt) + z1,BδB(dt),
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where z(t) = f (4)(t),

zA = f (3)(A)− 6(A+ a)

(A+ 3a)(A− a)2
f (1)(A) +

12A

(A+ 3a)(A− a)3
f(A),

z1,A = −f (2)(A) +
4(A+ 2a)

(A+ 3a)(A− a)
f (1)(A)− 6(A+ a)

(A+ 3a)(A− a)2
f(A),

zB = −f (3)(B), z1,B = f (2)(B).

Assume that the matrix C =
∫ B
A f(t)ζT0 (dt)+

∫
T f

(1)(t)ζT1 (dt) is non-degenerate.

Then the estimator θ̂G0,G1 defined in (3.1) with Gi(dt) = C−1ζi(dt) is a
BLUE with covariance matrix C−1.

The next example is a particular case of Proposition 3.1 when a = 0.

Example 3.1. Consider the regression model (6.8) on T = [A,B] with
integrated covariance kernel

K(t, s) = min(t, s)2(3 max(t, s)−min(t, s))/6 .(3.5)

Suppose that f is differentiable four times. Define the vector-measures ζ0(dt) =
zAδA(dt) + zBδB(dt) + z(t)dt and ζ1(dt) = z1,AδA(dt) + z1,BδB(dt), where
z(t) = f (4)(t),

zA = f (3)(A)− 6

A2
f (1)(A) +

12

A3
f(A),

z1,A = −f (2)(A) +
4

A
f (1)(A)− 6

A2
f(A),

zB = −f (3)(B), z1,B = f (2)(B).

Assume that the matrix C =
∫ B
A f(t)ζT0 (dt)+

∫ B
A f (1)(t)ζT1 (dt) is non-degenerate.

Then the estimator θ̂G0,G1 defined in (3.1) with Gi(dt) = C−1ζi(dt) is a
BLUE with covariance matrix C−1.

Consider now the integrated triangular-shape kernel

K(t, s) =

∫ t

0

∫ s

0
max{0, 1− λ|t′ − s′|}dt′ds′

= ts− λmin(t, s)
(

3 max(t, s)2 − 3ts+ 2 min(t, s)2
)
/6.(3.6)

Proposition 3.2. Consider the regression model (6.8) on T = [A,B] with
integrated covariance kernel (3.6), where λ(B − A) < 1. Suppose that f is
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four times differentiable. Define the signed vector-measures

ζ0(dt) = zAδA(dt) + zBδB(dt) + z(t)dt,

ζ1(dt) = z1,AδA(dt) + z1,BδB(dt),

where z(t) = f (4)(t)/(2λ) and

zA =
[
f (3)(A)− 6κ2

A2κ4
f (1)(A) +

6λ

Aκ4
f (1)(B) +

12κ1

A3κ4
f(A)

]
/(2λ),

z1,A =
[
− f (2)(A) +

4κ3

Aκ4
f (1)(A)− 2λ

κ4
f (1)(B)− 6κ2

A2κ4
f(A)

]
/(2λ),

z1,B =
[
f (2)(B)− 2λ

κ4
f (1)(A) +

4λ

κ4
f (1)(B) +

6λ

Aκ4
f(A)

]
/(2λ),

zB = −f (3)(B)/(2λ), κj = Aλ− jBλ+ 2j.

Assume that the matrix C =
∫ B
A f(t)ζT0 (dt)+

∫ B
A f (1)(t)ζT1 (dt) is non-degenerate.

Then the estimator θ̂G0,G1 defined in (3.1) with Gi(dt) = C−1ζi(dt) is a
BLUE with covariance matrix C−1.

3.3. Explicit form of the BLUE for the integrated processes. We conclude
this section establishing a direct link between the BLUE for models with non-
differentiable error processes and the BLUE for regression models with an
integrated kernel (3.9). Note that this extends the class of kernels considered
in Sacks and Ylvisaker (1970) in a nontrivial way.
Consider the regression model (6.8) with a non-differentiable error process
with covariance kernel K(t, s) and BLUE

θ̂G0 =

∫
T
y(t)G0(dt).

From Proposition 2.1 we have for the vector-measure ζ0(dt) satisfying (2.5)
and defining the BLUE ∫ B

A
K(t, s)ζ0(dt) = f(s)(3.7)

and Var(θ̂G0) = C−1 =
( ∫
T f(t)ζT0 (dt)

)−1
. The unbiasedness condition for

the measure G0(dt) = C−1ζ0(dt) is∫
T
f(t)GT0 (dt) = Im.
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Define the integrated process as follows:

ỹ(t) =

∫ t

a
y(u)du, f̃(t) =

∫ t

a
f(u)du, ε̃(t) =

∫ t

a
ε(u)du

with some a ≤ A (meaning that the regression vector-function and the error
process are defined on [a,B] but observed on [A,B]) so that

f̃ (1)(t) = f(t), ỹ(1)(t) = y(t), ε̃(1)(t) = ε(t) .

Consider the regression model

ỹ(t) = θT f̃(t) + ε̃(t),(3.8)

which has the integrated covariance kernel

R(t, s) =

∫ t

a

∫ s

a
K(u, v)dudv.(3.9)

The proof of the following result is given in Section 6.

Theorem 3.2. Let the vector-measure ζ0 satisfy the equality (3.7) and de-
fine the BLUE θ̂G0 with G0(dt) = C−1ζ0(dt) in the regression model (6.8)
with covariance kernel K(·, ·). Let the measures η0, η1 satisfy the equality∫

T
R(t, s)η0(dt) +

∫
T
R(1)(t, s)η1(dt) = 1(3.10)

for all s ∈ T . Define the vector-measures ζ̃0 = −cη0 and ζ̃1 = −cη1 + ζ0,
where the vector c is given by c =

∫ A
a [
∫ B
A K(t, s)ζ0(dt) − f(s)]ds. Then the

estimator θ̂G̃0,G̃1
defined in (3.1) with G̃i(dt) = C̃−1ζ̃i(dt) (i = 1, 2), where

C̃ =
∫
f̃(t)ζ̃T0 (dt) +

∫
f̃ (1)(t)ζ̃T1 (dt), is a BLUE in the regression model (3.8)

with integrated covariance kernel (3.9).

Repeated application of Theorem 3.2 extends the results to the case of sev-
eral times integrated processes.
If a = A in (3.9) we have c = 0 in Theorem 3.2 and in this case, the
statement of Theorem 3.2 can be proved easily. Moreover, in this case the
class of kernels defined by (3.9) is exactly the class of kernels considered in
equation (1.5) and (1.6) of Sacks and Ylvisaker (1970) for once differentiable
processes (k = 1 in their notation). We emphasize that the class of kernels
considered here is much richer than the class of kernels considered in Sacks
and Ylvisaker (1970).
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3.4. BLUE for AR(2) errors. Consider the continuous-time regression model
(6.8), which can be observed at all t ∈ [A,B], where the error process is a
continuous autoregressive (CAR) process of order 2. Formally, a CAR(2)
process is defined as a solution of the linear stochastic differential equation
of the form

dε(1)(t) = ã1ε
(1)(t) + ã2ε(t) + σ2

0dW (t),(3.11)

where Var(ε(t)) = σ2 and W (t) is a standard Wiener process, [see Brockwell
et al. (2007)]. Note that the process {ε(t)|t ∈ [A,B]} defined by (3.11) has
a continuous derivative and, consequently, the process {y(t) = θT f(t) +
ε(t)| t ∈ [A,B]}, is a continuously differentiable process with drift on the
interval [A,B]. In this section we derive the explicit form for the continuous
BLUE using Theorem 3.1. An alternative approach would be to use the
coefficients of the equation (3.11) as indicated in Parzen (1961).
There are in fact three different forms of the autocorrelation function ρ(t) =
K(0, t) of CAR(2) processes [see e.g. formulas (14)–(16) in He and Wang
(1989)], which are given by

ρ1(t) =
λ2

λ2 − λ1
e−λ1|t| − λ1

λ2 − λ1
e−λ2|t| ,(3.12)

where λ1 6= λ2, λ1 > 0, λ2 > 0, by

ρ2(t) = e−λ|t|
{

cos(ω|t|) +
λ

ω
sin(ω|t|)

}
,(3.13)

where λ > 0, ω > 0, and by

ρ3(t) = e−λ|t|(1 + λ|t|) ,(3.14)

where λ > 0. Note that the kernel (6.13) is widely known as Matérn kernel
with parameter 3/2, which has numerous applications in spatial statistics
[see Rasmussen and Williams (2006)] and computer experiments [see Pron-
zato and Müller (2012)]. In the following results, which are proved in Section
6.7, we specify the BLUE for the CAR(2) model.

Proposition 3.3. Consider the regression model (6.8) with CAR(2) er-
rors, where the covariance kernel K(t, s) = ρ(t − s) has the form (6.11).
Suppose that f is a vector of linearly independent, four times differentiable
functions on the interval [A,B]. Then the conditions of Theorem 3.1 are
satisfied for s3 = 2λ1λ2(λ1 + λ2), τ0 = λ2

1λ
2
2, τ2 = λ2

1 + λ2
2, βj,A = βj,B = βj

and γj,A = γj,B = γj for j = 0, 1, where β1 = λ1 + λ2, γ1 = λ2
1 + λ1λ2 + λ2

2,
β0 = λ1λ2 and γ0 = λ1λ2(λ1 + λ2).
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Proposition 3.4. Consider the regression model (6.8) with CAR(2) er-
rors, where the covariance kernel K(t, s) = ρ(t − s) has the form (6.12).
Suppose that f is a vector of linearly independent, four times differentiable
functions. Then the conditions of Theorem 3.1 hold for s3 = 4λ(λ2 + ω2),
τ0 = (λ2 + ω2)2, τ2 = 2(λ2 − ω2), βj,A = βj,B = βj and γj,A = γj,B = γj
for j = 0, 1, where β1 = 2λ, γ1 = γ1 = 3λ2 − ω2, β0 = λ2 + ω2 and
γ0 = 2λ(λ2 + ω2).

The BLUE for the covariance kernel in the form (6.13) is obtained from
either Proposition 3.3 with λ1 = λ2 = λ or Proposition 3.4 with ω = 0.

Remark 3.1. In the online supplement Dette et al. (2016b) we consider
the regression model (6.7) with a discrete AR(2) error process. Although the
discretised CAR(2) process follows an ARMA(2, 1) model rather than an
AR(2) [see He and Wang (1989)] we will be able to establish the connection
between the BLUE in the discrete and continuous-time models and hence
derive the limiting form of the discrete BLUE and its covariance matrix.

4. Models with more than once differentiable error processes. If
T = [A,B] and q > 1 then solving the Wiener-Hopf type equation (2.5)
numerically is virtually impossible in view of the fact that the problem
is severely ill-posed. Derivation of explicit forms of the BLUE for smooth
kernels with q > 1 is hence extremely important. We did not find any general
results on the form of the BLUE in such cases. In particular, the well-known
paper Sacks and Ylvisaker (1970) dealing with these kernels does not contain
any specific examples. In Theorem 3.2 we have already established a general
result that can be used for deriving explicit forms for the BLUE for q > 1
times integrated kernels, which can be used repeatedly for this purpose. We
can also formulate a result similar to Theorem 3.1. However, already for
q = 2, even a formulation of such theorem would take a couple of pages and
hence its usefulness would be very doubtful.
In this section, we indicate how the general methodologies developed in the
previous sections can be extended to error processes with q > 1 by two
examples: twice integrated Brownian motion and CAR(p) error models with
p ≥ 3, but other cases can be treated very similarly.

4.1. Twice integrated Brownian motion.

Proposition 4.1. Consider the regression model (6.8) where the error
process is the twice integrated Brownian motion with the covariance kernel

K(t, s) = t5/5!− st4/4! + s2t3/12, t < s.
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Suppose that f is 6 times differentiable and define the vector-measures

ζ0(dt) = zAδA(dt) + zBδB(dt) + z(t)dt,

ζ1(dt) = z1,AδA(dt) + z1,BδB(dt),

ζ2(dt) = z2,AδA(dt) + z2,BδB(dt),

where z(t) = f (6)(t),

zA = (A5f (5)(A)− 60A2f (2)(A) + 360Af (1)(A)− 720f(A))/A5,

z1,A = −(A4f (4)(A)− 36A2f (2)(A) + 192Af (1)(A)− 360f(A))/A4,

z2,A = (A3f (3)(A)− 9A2f (2)(A) + 36Af (1)(A)− 60f(A))/A3,

zB = −f (5)(B), z1,B = f (4)(B), z2,B = −f (3)(B).

Then the estimator θ̂G0,G1,G2 defined by (2.1) (for q = 2) with Gi(dt) =
C−1ζi(dt) (i = 0, 1, 2),

C =

∫
T
f(t)ζT0 (dt) +

∫
T
f (1)(t)ζT1 (dt) +

∫
T
f (2)(t)ζT2 (dt),

is the BLUE with covariance matrix C−1.

4.2. CAR(p) models with p≥ 3. Consider the regression model (6.8), which
can be observed at all t ∈ [A,B] and the error process has the continuous
autoregressive (CAR) structure of order p. Formally, a CAR(p) process is a
solution of the linear stochastic differential equation of the form

dε(p−1)(t) = ã1ε
(p−1)(t) + . . .+ ãpε(t) + σ2

0dW (t),

where Var(ε(t)) = σ2 and W is a standard Wiener process, [see Brockwell
et al. (2007)]. Note that the process ε has continuous derivatives ε(1)(t), . . . ,
ε(p−1)(t) at the point t and, consequently, the process {y(t) = θT f(t) +
ε(t)| t ∈ [A,B]} is continuously differentiable p − 1 times on the interval
[A,B] with drift θT f(t). Define the vector-functions

z(t) = (τ0f(t) + τ2f
(2)(t) + . . .+ f (2p)(t))/s2p−1,

and vectors

zj,A =
∑2p−j−1

l=0
γl,j,Af

(j)(A)/s2p−1,

zj,B =
∑2p−j−1

l=0
γl,j,Bf

(j)(B)/s2p−1

for j = 0, 1, . . . , p− 1, where s2p−1 = K(2p−1)(s−, s)−K(2p−1)(s+, s).
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Proposition 4.2. Consider the regression model (6.8) with CAR(p) er-
rors. Define the vector-measures

ζ0(dt) = z0,AδA(dt) + z0,BδB(dt) + z(t)dt,

ζj(dt) = zj,AδA(dt) + zj,BδB(dt), j = 1, . . . , p− 1,

for j = 1, . . . , p−1. Then there exist constants τ0, τ2 . . . , τ2(p−1) and γl,j,A, γl,j,B,

such that the estimator θ̂G0,G1,...,Gp−1 defined by (2.1) (for q = p − 1) with
Gj(dt) = C−1ζj(dt) (i = 0, 1, . . . , p− 1),

C =

∫
T
f(t)ζT0 (dt) +

p−1∑
j=1

∫
T
f (j)(t)ζTj (dt),

is a BLUE with covariance matrix C−1.

Let us consider the construction of a BLUE for model (6.8) with a CAR(3)
error process in more detail. One of several possible forms for the covariance
function for the CAR(3) process is given by

ρ(t) = c1e
−λ1|t| + c2e

−λ2|t| + c3e
−λ3|t| ,(4.1)

where λ1, λ2, λ3 are the roots of the autoregressive polynomial ã(z) = z3 +
ã1z

2 + ã2z + ã3,

cj =
kj

k1 + k2 + k3
, kj =

1

ã′(λj)ã(−λj)
,

λi 6= λj , λi > 0, i, j = 1, . . . , 3, see Brockwell (2001). Specifically, we have

c1 =
λ2λ3(λ2 + λ3)

(λ1 − λ2)(λ1 − λ3)(λ1 + λ2 + λ3)
,

c2 =
λ1λ3(λ1 + λ3)

(λ2 − λ1)(λ2 − λ3)(λ1 + λ2 + λ3)
,

c3 =
λ1λ2(λ1 + λ2)

(λ3 − λ1)(λ3 − λ2)(λ1 + λ2 + λ3)
.

In this case, a BLUE is given in Proposition 4.2 with the following parame-
ters:

τ0 = −λ2
1λ

2
2λ

2
3, τ2 = λ2

1λ
2
2 + λ2

1λ
2
3 + λ2

2λ
2
3, τ4 = −λ2

1 − λ2
2 − λ2

3,

s5 =
2λ1λ2λ3(λ1 + λ2)(λ1 + λ3)(λ2 + λ3)

λ1 + λ2 + λ3
= 2

∏
i λi
∏
i 6=j(λi + λj)∑
i λi

,
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z0,A = f (5)(A)−
∑

iλ
2
i f

(3)(A)−
∏
iλif

(2)(A)

+[
∑

i 6=jλ
2
iλ

2
j +

∏
iλi
∑

iλi]f
(1)(A)−

∏
iλi
∑

i 6=jλiλjf(A)

z1,A = −f (4)(A) +
∑

i,jλiλjf
(2)(A)−

∏
i 6=j(λi + λj)f

(1)(A) +
∏
iλi
∑

iλif(A)

z2,A = f (3)(A)−
∑

iλif
(2)(A) +

∑
i 6=jλiλjf

(1)(A)−
∏
iλif(A)

−z0,B = f (5)(B)−
∑

iλ
2
i f

(3)(B)−
∏
iλif

(2)(B)

+[
∑

i 6=jλ
2
iλ

2
j +

∏
iλi
∑

iλi]f
(1)(B)−

∏
iλi
∑

i 6=jλiλjf(B)

−z1,B = −f (4)(B) +
∑

i,jλiλjf
(2)(B)−

∏
i 6=j(λi + λj)f

(1)(B) +
∏
iλi
∑

iλif(B)

−z2,B = f (3)(B)−
∑

iλif
(2)(B) +

∑
i 6=jλiλjf

(1)(B)−
∏
iλif(B)

If we set λ1 = λ2 = λ3 = λ then the above formulas give the explicit form
of the BLUE for the Matérn kernel with parameter 5/2; that is, the kernel
defined by ρ(t) =

(
1 +
√

5tλ+ 5t2λ2/3
)

exp
(
−
√

5tλ
)
.

5. Numerical study. In this section, we describe some numerical results
on comparison of the accuracy of various estimators for the parameters in
the regression models (6.8) with [A,B] = [1, 2] and the integrated Brownian
motion as error process. The kernel K(t, s) is given in (3.5) and the explicit
form of the covariance matrix of the continuous BLUE can be found in
Example 3.1. We denote this estimator by θ̂cont.BLUE . We are interested in
the efficiency of various estimators for this differentiable error process. For a
given N (in the tables, we use N = 3, 5, 10), we consider the following four
estimators that use 2N observations:

• θ̂BLUE(N,N): discrete BLUE based on observations y(t1), . . . , y(tN ),
y′(t1), . . . , y′(tN ) with ti = 1 + (i − 1)/(N − 1), i = 1, . . . , N . This
estimator uses N observations of the original process and its derivative
(at equidistant points).
• θ̂BLUE(2N − 2, 2): discrete BLUE based on observations y(t1), . . . ,
y(t2N−2), y′(1), y′(2) with ti = 1 + (i− 1)/(2N − 3), i = 1, . . . , 2N − 3.
This estimator uses 2N − 2 observations of the original process (at
equidistant points) and observations of its derivative at the boundary
points of the design space.
• θ̂BLUE(2N, 0): discrete BLUE based on observations y(t1), . . . , y(t2N )

with ti = 1 + (i − 1)/(2N − 1), i = 1, . . . , 2N . This estimator uses
2N observations of the original process (at equidistant points) and no
observations from its derivative.
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• θ̂OLSE(2N, 0): ordinary least square estimator (OLSE) based on obser-
vations y(t1), . . . , y(t2N ) with ti = 1 + (i− 1)/(2N − 1), i = 1, . . . , 2N .
This estimator uses 2N observations of the original process (at equidis-
tant points) and no observations from its derivative.

In Table 1 – 3 we use the results derived in this paper to calculate the
efficiencies

Eff(θ̃) =
Var(θ̂cont.BLUE)

Var(θ̃)
,(5.1)

where θ̃ is one of the four estimators under consideration. In particular we
consider three different scenarios for the drift in model (6.8) defined by

m = 1, f(t) = 1(5.2)

m = 3, f(t) = (1, sin(3π), cos(3π))T(5.3)

m = 5, f(t) = (1, t, t2, 1/t, 1/t2)T(5.4)

Table 1
The efficiency defined by (5.1) for four different estimators based on 2N observations.

The drift function is given by (5.2)

θ̃ N = 3 N = 5 N = 10

θ̂BLUE(N,N) 1 1 1

θ̂BLUE(2N − 2, 2) 1 1 1

θ̂BLUE(2N, 0) 0.8593 0.9147 0.9570

θ̂OLSE(2N, 0) 0.0732 0.0733 0.0734

Table 2
The efficiency defined by (5.1) for four different estimators based on 2N observations.

The drift function is given by (5.3)

θ̃ N = 3 N = 5 N = 10

θ̂BLUE(N,N) 0.41246 0.92907 0.99680

θ̂BLUE(2N − 2, 2) 0.45573 0.98706 0.99972

θ̂BLUE(2N, 0) 0.47796 0.77195 0.89641

θ̂OLSE(2N, 0) 0.00113 0.00137 0.00218

The results of Table 1 – 3 are very typical for many regression models with
differentiable error processes (i.e. q = 1) and can be summarized as follows.
Any BLUE is far superior to the OLSE and any BLUE becomes very efficient
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Table 3
The efficiency defined by (5.1) for four different estimators based on 2N observations.

The drift function is given by (5.4)

θ̃ N = 3 N = 5 N = 10

θ̂BLUE(N,N) 0.69608 0.95988 0.99791

θ̂BLUE(2N − 2, 2) 0.86903 0.99379 0.99981

θ̂BLUE(2N, 0) 0.10040 0.33338 0.62529

θ̂OLSE(2N, 0) 0.08873 0.14103 0.11890

when N is large. Moreover, the use of information from the derivatives in
constructing BLUEs makes them more efficient than the BLUE which only
uses values of {y(t)|t ∈ T }. We also emphasize that the BLUEs which use
more than two values of the derivative y′ of the process have lower efficiency
than the BLUE that uses exactly two values of derivatives, y′(A) and y′(B).
Therefore the best way of constructing the BLUE for N observations in the
interval [A,B] is to emulate the asymptotic BLUE: that is, to use y′(A)
and y′(B) but for the other N − 2 observations use values of the process
{y(t)|t ∈ T }.

6. Appendix.

6.1. Proof of Lemma 2.1. The mean of θ̂TG is

E[θ̂TG] = θT
∫
T
F (t)GT (dt) = θT

q∑
i=0

∫
T
f (i)(t)GTi (dt) .

This implies that the estimator θ̂G is unbiased if and only if

q∑
i=0

∫
T
f (i)(t)GTi (dt) = Im.(6.1)

Since Gi = C−1ζi, we have

q∑
i=0

∫
T
f (i)(t)GTi (dt) =

q∑
i=0

∫
T
f (i)(t)ζTi (dt)C−1T = CTC−1T = Im ,

which completes the proof.

6.2. Proof of Theorem 2.1 .
I. We will call a signed matrix-measure G unbiased if the associated estima-
tor θ̂G defined in (2.1) is unbiased. The set of all unbiased signed matrix-
measures will be denoted by S. This set is convex.



24 H. DETTE ET AL.

The covariance matrix of any estimator θ̂G is the matrix-valued function
φ(G) = Var(θ̂G) defined in (2.3). The BLUE minimizes this matrix-valued
function on the set S.
Introduce the vector-function d : T × S → Rm by

d(s,G) =

q∑
j=0

∫
T
K(j)(t, s)Gj(dt)− φ(G)f(s) .

The validity of (2.4) for all s ∈ T is equivalent to the validity of d(s,G) =
0m×1 for all s ∈ T . Hence we are going to prove that θ̂G is the BLUE if
and only if d(s,G) = 0m×1 for all s ∈ T . For this purpose we will need the
following auxiliary result.

Lemma 6.1. For any G ∈ S we have∫
T

d(s,G)GT (ds) = 0m×m,

where d(s,G) = (d(s,G), d(1)(s,G), . . . , d(q)(s,G)) is a m× (q + 1) matrix.

Proof of Lemma 6.1 Using the unbiasedness condition (6.1) for G, we
have∫
T

d(s,G)GT (ds) =

∫
T

∫
T
G(dt)K(t, s)GT (ds)− φ(G)

∫
T
F (s)GT (ds)

= φ(G)− φ(G)Im = 0m×m

where F (s) = (f(s), f (1)(s), . . . , f (q)(s)). �

For any two measures G and H in S, denote

Φ(G,H) =

∫
T

∫
T
G(dt)K(t, s)HT (ds)

which is a matrix of size m×m. Note that φ(G) = Φ(G,G) for any G ∈ S.
For any two matrix-measures G and H in S and any real α, the matrix-
valued function

φ((1−α)G+αH) = (1−α)2φ(G)+α2φ(H)+α(1−α) [Φ(G,H) + Φ(H,G)]

is quadratic in α. Also we have ∂2φ((1− α)G+ αH)/∂α2 = 2φ(G−H) ≥ 0
and hence φ(·) is a matrix-convex function on the space S (see e.g. Hansen
and Tomiyama (2007) for properties of matrix-convex functions).
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Since the matrix-function φ((1 − α)G + αH) is quadratic and convex in
α ∈ R, the assertion that G is the optimal matrix measure minimizing φ(·)
on S, is equivalent to

∂φ((1− α)G+ αH)

∂α

∣∣∣
α=0

= 0, ∀ H ∈ S .(6.2)

The directional derivative of φ((1− α)G+ αH) as α→ 0 is

∂

∂α
φ((1− α)G+ αH)

∣∣∣
α=0

= Φ(G,H) + Φ(H,G)− 2φ(G).(6.3)

To rewrite (6.3), we note that
∫
T d(s,G)HT (ds) can be written as∫

T
d(s,G)HT (ds) = Φ(G,H)− φ(G)

∫
T
F (s)HT (ds)(6.4)

= Φ(G,H)− φ(G),

where in the last equality we have used the unbiasedness condition (6.1) for
H. Using (6.3), (6.4) and the fact that the matrix Φ(H,G) − φ(G) is the
transpose of Φ(G,H)− φ(G) we obtain

∂

∂α
φ((1−α)G+ αH)

∣∣∣
α=0

=

∫
T

d(s,G)HT (ds) +

[∫
T

d(s,G)HT (ds)

]T
.

(6.5)

Consequently, if d(s,G) = 0m×1 for all s ∈ T , then (6.2) holds and hence G
gives the BLUE.
II. Assume now that G gives the BLUE θ̂G. This implies, first, that (6.2)
holds and second, for all c ∈ Rm cTφ(G)c ≤ cTφ(H)c, for any H ∈ S. Let
us deduce that d(s,G) = 0m×1 for all s ∈ T (which is equivalent to validity
of (2.4)). We are going to prove this by contradiction.
Assume that there exists s0 ∈ T such that d(s0, G) 6= 0. Define the signed
matrix-measure ζ = (ζ0, ζ1, . . . , ζq) with ζ0(ds) = G0(ds) +κd(s0, G)δs0(ds),
κ 6= 0, and ζi(ds) = Gi(ds) for i = 1, . . . , q.
Since G is unbiased, CG =

∫
T G(dt)F T (t) = Im. For any small positive or

small negative κ, the matrix Cζ =
∫
T ζ(dt)F T (t) = Im + κd(s0, G)fT (s0) is

non-degenerate and its eigenvalues are close to 1.
In view of Lemma 2.1, H(ds) = C−1

ζ ζ(ds) is an unbiased matrix-measure.
Using the identity (6.5) and Lemma 6.1 we obtain for the measure Gα =
(1− α)G+ αH:

∂φ(Gα)

∂α

∣∣∣
α=0

= κd(s0, G)dT (s0, G)C−1
ζ

T
+ κC−1

ζ d(s0, G)dT (s0, G).
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Write this as ∂φ(Gα)/∂α
∣∣
α=0

= κ(X0A
T + AX0), where A = C−1

ζ and

X0 = d(s0, G)dT (s0, G) is a symmetric matrix.
For any given A, the homogeneous Lyapunov matrix equation XAT+AX=0
has only the trivial solution X = 0 if and only if A and −A have no common
eigenvalues, see [§3, Ch. 8 in Gantmacher (1959)]; this is the case when
A = C−1

ζ and κ is small enough.

This yields that forX = X0, the matrixX0A
T+AX0 is a non-zero symmetric

matrix. Therefore, there exists a vector c ∈ Rm such that the directional
derivative of cTφ(Gα)c is non-zero. For any such c, cTφ(Gα)c < cTφ(G)c for
either small positive or small negative α and hence θ̂G is not the BLUE.
Thus, the assumption of the existence of an s0 ∈ T such that d(s0, G) 6= 0
yields a contradiction to the fact that G gives the BLUE. This completes
the proof that the equality (2.4) is necessary and sufficient for the estimator
θ̂G to be the BLUE .

6.3. Proof of Lemma 2.2. We repeat i times the integration by parts for-
mula ∫

T
ψ(i)(t)ϕ(t)dt = ψ(i−1)(t)ϕ(t)

∣∣∣B
A
−
∫
T
ψ(i−1)(t)ϕ(1)(t)dt

for any differentiable function ψ(t). This gives∫
T
ψ(i)(t)ϕ(t)dt=

i∑
j=1

(−1)j−1ψ(i−j)(t)ϕ(j−1)(t)
∣∣∣B
A

+ (−1)i
∫
T
ψ(t)ϕ(i)(t)dt.

Using the above equality with ψ(t) = y(i)(t) we obtain that the expecta-
tion of two estimators coincide. Also, using the above equality with ψ(t) =
K(i)(t, s) we obtain that the covariance matrices of the two estimators co-
incide.

6.4. Proof of Proposition 2.3. Straightforward calculus shows that∫
T
K(t, s)ζ(dt) = K(A, s)zA +K(B, s)zB −

∫
T
K(t, s)f (2)(t)dt/(λ1 + λ2)

= K(A, s)zA +K(B, s)zB

+
[
−K(t, s)f (1)(t)|sA +K(1)(t, s)f(t)|s−A
−K(t, s)f (1)(t)|Bs +K(1)(t, s)f(t)|Bs+

]
/(λ1 + λ2)

= (1 + λ1A− λ2s)zA + (1 + λ1s− λ2B)zB + f(s)

+
[
K(A, s)f (1)(A)−K(1)(A, s)f(A)

−K(B, s)f (1)(B) +K(1)(B, s)f(B)
]
/(λ1+λ2)=f(s).

Therefore, the conditions of Proposition 2.1 are fulfilled.
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6.5. Proof of Theorem 3.1. It is easy to see that θ̂G0,G1 is unbiased. Further
we are going to use Corollary 3.1 which gives the sufficient condition for an
estimator to be the BLUE. We will show that the identity

LHS =

∫ B

A
K(t, s)ζ0(dt) +

∫ B

A
K(1)(t, s)ζ1(dt) = f(s)(6.6)

holds for all s ∈ [A,B]. By the definition of the measure ζ it follows that

LHS = zAK(A, s) + zBK(B, s) + IA + IB + z1,AK
(1)(A, s) + z1,BK

(1)(B, s),

where IA =
∫ s
AK(t, s)z(t)dt, IB =

∫ B
s K(t, s)z(t)dt. Indeed, for the vector-

function z(t) = τ0f(t)− τ2f
(2)(t) + f (4)(t), we have

s3IA = τ0

∫ s

A
K(t, s)f(t)dt− τ2

∫ s

A
K(t, s)f (2)(t)dt+

∫ s

A
K(t, s)f (4)(t)dt

= τ0

∫ s

A
K(t, s)f(t)dt− τ2K(t, s)f (1)(t)|sA + τ2K

(1)(t, s)f(t)|sA

−τ2

∫ s

A
K(2)(t, s)f(t)dt+K(t, s)f (3)(t)|sA −K(1)(t, s)f (2)(t)|s−A

+K(2)(t, s)f (1)(t)|s−A −K
(3)(t, s)f(t)|s−A +

∫ s

A
K(4)(t, s)f(t)dt.

By construction, the coefficients τ0, τ2, are chosen such that the equality (3.3)
holds for all t ∈ [A,B] and any s, implying that integrals in the expression
for IA are cancelled. Thus, we obtain

s3IA = +τ2K(A, s)f (1)(A)− τ2K
(1)(A, s)f(A)−K(A, s)f (3)(A)

+K(1)(A, s)f (2)(A)−K(2)(A, s)f (1)(A) +K(3)(A, s)f(A)

−τ2K(s−, s)f (1)(s) + τ2K
(1)(s−, s)f(s) +K(s−, s)f (3)(s)

−K(1)(s−, s)f (2)(s) +K(2)(s−, s)f (1)(s)−K(3)(s−, s)f(s).

Similarly we have

s3IB = −τ2K(B, s)f (1)(B) + τ2K
(1)(B, s)f(B) +K(B, s)f (3)(B)

−K(1)(B, s)f (2)(B) +K(2)(B, s)f (1)(B)−K(3)(B, s)f(B)

+τ2K(s+, s)f (1)(s)− τ2K
(1)(s+, s)f(s)−K(s+, s)f (3)(s)

+K(1)(s+, s)f (2)(s)−K(2)(s+, s)f (1)(s) +K(3)(s+, s)f(s).
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Using the assumption on the derivatives of the covariance kernel K(t, s), we
obtain

s3(IA + IB) = τ2K(A, s)f (1)(A)− τ2K
(1)(A, s)f(A)−K(A, s)f (3)(A)

+K(1)(A, s)f (2)(A)−K(2)(A, s)f (1)(A) +K(3)(A, s)f(A)

−τ2K(B, s)f (1)(B) + τ2K
(1)(B, s)f(B) +K(B, s)f (3)(B)

−K(1)(B, s)f (2)(B) +K(2)(B, s)f (1)(B)−K(3)(B, s)f(B) + s3f(s).

Also we have

s3(zAK(A, s) + z1,AK
(1)(A, s)) =

=
(
f (3)(A)− γ1,Af

(1)(A) + γ0,Af(A)
)
K(A, s)

+
(
− f (2)(A) + β1,Af

(1)(A)− β0,Af(A)
)
K(1)(A, s)

= f (3)(A)K(A, s) + (−γ1,AK(A, s) + β1,AK
(1)(A, s))f (1)(A)

−K(1)(A, s)f (2)(A) + (γ0,AK(A, s)− β0,AK
(1)(A, s))f(A),

and a similar result at the point t = B. Putting these expressions into
(6.6) and using the assumption that constants γ1,A, β1,A, γ0,A, β0,A and
γ1,B, β1,B, γ0,B, β0,B are chosen such that the sum of the functions defined
in (3.2) is identically equal to zero, we obtain∫ B

A
K(t, s)ζ0(dt) +

∫ B

A
K(1)(t, s)ζ1(dt) = f(s);

this completes the proof.

6.6. Proof of Theorem 3.2. Observing (3.7) the vector c is can be written
as

c =

∫ A

a

[∫ B

A
K(t, s)ζ0(dt)− f(s)

]
ds

=

∫ A

a

[∫ B

A
K(t, s′)ζ0(dt)− f(s′)

]
ds′ +

∫ s

A

[∫ B

A
K(t, s′)ζ0(dt)− f(s′)

]
ds′

=

∫ B

A

∫ s

a
K(t, s′)ds′ζ0(dt)−

∫ s

a
f(s′)ds′ =

∫ B

A
R(1)(t, s)ζ0(dt)− f̃(s).

We now show that equation (2.5) in Proposition 2.1 holds for K = R, q =
1, f = f̃ and ζi = ζ̃i. Observing (3.10) and the definition of ζ̃i in Theorem 3.2
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we obtain∫
T
R(t, s)ζ̃0(dt) +

∫
T
R(1)(t, s)ζ̃1(dt)

= −c
(∫
T
R(t, s)η0(dt) +

∫
T
R(1)(t, s)η1(dt)

)
+

∫
T
R(1)(t, s)ζ0(dt)

= −c · 1 + f̃(s) + c = f̃(s).

6.7. Proof of Propositions 3.3 and 3.4. For the sake of brevity we only give
a proof of Proposition 3.3, the other result follows by similar arguments. Di-
rect calculus gives s3 = K(3)(s+, s)−K(3)(s−, s) = 2λ1λ2(λ1 +λ2). Then we
obtain that the identity (3.3) holds for τ0 = λ2

1λ
2
2 and τ2 = λ2

1 +λ2
2. Straight-

forward calculations show that identities (3.2) hold with the specified values
of constants γ1, γ0, β1, β0.
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We demonstrate that the covariance matrix of the BLUE in the
continuous-time regression model model with a CAR(2) error process
can be obtained as limit of the covariance matrix of a BLUE in the
discrete regression model with observations at equidistant points and
a discrete AR(2) error process.

Here we investigate the approximation of the BLUE for continuous-time
regression time models with a CAR(2) error process (see Section 4 of the
paper) by the BLUE in the model

y(ti) = θT f(ti) + ε(ti) , A ≤ t1 < t2 . . . < tN−1 < tN ≤ B ,(6.7)

where the errors follow a discrete AR(2) process. This model will be abbrevi-
ated as DAR(2) throughout this section . The main difficulty to establish the
connection between the discrete and continuous AR(2) cased lies in the fact
that the discretised CAR(2) process follows an ARMA(2, 1) model rather
than the AR(2), see He and Wang (1989). To be precise, assume that the
observations in the continuous-time regression model

y(t) = θT f(t) + ε(t) , t ∈ [A,B],(6.8)

are taken at N equidistant points of the form

tj = A+ (j − 1)∆ , (j = 1, . . . , N)(6.9)

on the interval [A,B], where ∆ = (B − A)/(N − 1), and that the errors
ε1, . . . , εN satisfy the discrete AR(2) equation

εj − a1εj−1 − a2εj−2 = ςj ,(6.10)
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where ςj are Gaussian independent identically distributed random variables
with mean 0 and variance σ2

ς = σ2(1 + a2)((1 − a2) − a2
1)/(1 − a2). Here

we make a usual assumption that the equation (6.10) defines the AR(2)
process for j ∈ {. . . ,−2,−1, 0, 1, 2, . . .} but we only take the values such that
j ∈ {1, 2, . . . , N}. Let rk = E[εjεj+k] denote the autocovariance function of
the AR(2) process {ε1, . . . , εN} and assume without loss of generality that
σ2 = 1.
There are in fact three different forms of the autocovariance function (note
that we assume throughout σ2 = 1) of CAR(2) processes [see e.g. formulas
(14)–(16) in He and Wang (1989)], which are given by

ρ1(t) =
λ2

λ2 − λ1
e−λ1|t| − λ1

λ2 − λ1
e−λ2|t| ,(6.11)

where λ1 6= λ2, λ1 > 0, λ2 > 0, by

ρ2(t) = e−λ|t|
{

cos(q|t|) +
λ

q
sin(q|t|)

}
,(6.12)

where λ > 0, q > 0, and by

ρ3(t) = e−λ|t|(1 + λ|t|) ,(6.13)

where λ > 0.
Also, there are three forms of autocovariance functions of the discrete AR(2)
process of the form (6.10) [see formulas (11)–(13) in He and Wang (1989)],
which are given by

r
(1)
k = Cpk1 + (1− C)pk2, C =

(1− p2
2)p1

(1− p2
2)p1 − (1− p2

1)p2
,(6.14)

where j ≥ 0, p1 6= p2, 0 < |p1|, |p2| < 1; by

r
(2)
k = pk

(
cos(bk) + C sin(bk)

)
, C = cot(b)

1− p2

1 + p2
,(6.15)

where 0 < p < 1, 0 < b < 2π and b 6= π, and finally by

r
(3)
k = pk (1 + kC), C =

1− p2

1 + p2
,(6.16)

where 0 < |p| < 1. Each form of the autocovariance function should be
considered individually. However, we can formulate the following general
statement.
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Theorem 6.1. Consider the multi-parameter model (6.8) such that the
errors follow the AR(2) model. Assume that f(·) is four times continuously
differentiable. Define the following constants depending on the form of the
autocovariance function rk. If rk is of the form (6.14), set

λ1 = − ln(p1)

∆
, λ2 = − ln(p2)

∆
,

τ0 = λ2
1λ

2
2, τ2 = λ2

1 + λ2
2, β1 = λ1 + λ2, β0 = λ1λ2,

γ1 = λ2
1 + λ1λ2 + λ2

2 , γ0 = λ1λ2(λ1 + λ2), s3 = 2λ1λ2(λ1 + λ2).

If rk is of the form (6.15), set

λ = − ln(p)

∆
, q = − b

∆
,

τ0 = (λ2 + q2)2, τ2 = 2(λ2 − q2), β1 = 2λ, β0 = λ2 + q2,

γ1 = 3λ2 − q2 , γ0 = 2λ(λ2 + q2), s3 = 4λ(λ2 + q2).

If rk is of the form (6.16), set

λ = − ln(p)

∆
, τ0 = λ4, τ2 = 2λ2, β1 = 2λ, β0 = λ2,

γ1 = 3λ2 , γ0 = 2λ3, s3 = 4λ3.

For large N , the discrete BLUE θ̂BLUE,N based on N observations at the points
(6.9) can be approximated by the continuous estimator

θ̂=D∗
(
z1,By

′(B)+z1,Ay
′(A)+zAy(A)+zBy(B)+

∫
T
z(t)y(t)dt

)
where

D∗=
(
f (1)(B)zT1,B+f (1)(A)zT1,A+f(A)zTA+f(B)zTB+

∫
T
f(t)zT (t)dt

)−1
.

Moreover, for this approximation, we have D∗ = limN→∞Var(θ̂BLUE,N ), i.e.
D∗ is the limit of the variance of the discrete BLUE as N → ∞. Here the
quantities z(t), zA, zB, z1,A and z1,B in the continuous estimator are defined
by

z(t) = −
(
τ2f

(2)(t)− τ0f(t)− f (4)(t)
)
/s3,

zA =
(
f (3)(A)− γ1f

(1)(A) + γ0f(A)
)
/s3,

zB =
(
− f (3)(B) + γ1f

(1)(B) + γ0f(B)
)
/s3,

z1,A =
(
− f (2)(A) + β1f

(1)(A)− β0f(A)
)
/s3,

z1,B =
(
f (2)(B) + β1f

(1)(B) + β0f(B)
)
/s3.
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Proof. It is well known that the inverse of the covariance matrix Σ =
(E[εjεk])j,k of the discrete AR(2) process is a five-diagonal matrix, i.e.

Σ−1 =
1

S



k11 k12 k2 0 0 0 . . .
k21 k22 k1 k2 0 0 . . .
k2 k1 k0 k1 k2 0 . . .
0 k2 k1 k0 k1 k2
...

. . .
. . .

. . .
. . .

. . .
. . .

0 k2 k1 k0 k1 k2

0 0 k2 k1 k22 k12

0 0 0 k2 k21 k11


,(6.17)

where the non-vanishing elements are given by k0 = 1 + a2
1 + a2

2, k1 =
−a1 + a1a2, k2 = −a2, k11 = 1, k12 = k21 = −a1, k22 = 1 + a2

1 and
S = (1+a1−a2)(1−a1−a2)(1+a2)/(1−a2). Using the explicit form (6.17)
for Σ−1 we immediately obtain the following result.

Corollary 6.1. Consider the linear regression model (6.8) with observa-
tions at N equidistant points (6.9) and errors that follow the discrete AR(2)
model (6.10). Let hi be the i-th column of matrix H = XTΣ and fi = f(ti).
Then the vectors h1, . . . , hN can be represented explicitly as follows:

h1 =
1

S
(k11f1 + k12f2 + k2f3) ,

h2 =
1

S
(k21f1 + k22f2 + k1f3 + k2f4) ,

hN =
1

S
(k11fN + k21fN−1 + k2fN−2) ,

hN−1 =
1

S
(k12fN + k22fN−1 + k1fN−2 + k4fN−3) ,

hi =
1

S
(k2fi−2 + k1fi−1 + k0fi + k1fi+1 + k2fi+2)

for i = 3, . . . , N − 2.

For the approximation of hi, we have to study the behavior of the coefficients
which depend on the autocovariance function rk of the AR(2) process (6.10).
In the following subsections we will consider the different types of autocovari-
ance functions separately and prove Theorem 6.1 by deriving approximations
for the vectors hi.
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Autocovariances of the form (6.14). From Corollary 6.1 we obtain that

Shi = −a2fi−2 + (a1a2 − a1)fi−1 + (1 + a2
1 + a2

2)fi + (a1a2 − a1)fi+1 − a2fi+2

= a2(2fi − fi−2 − fi+2)− (a1a2 − a1)(2fi − fi−1 − fi+1)

+(1 + a2
1 + a2

2 − 2a2 + 2a1a2 − 2a1)fi

= a2(2fi − fi−2 − fi+2)− (a1a2 − a1)(2fi − fi−1 − fi+1)

+(a1 + a2 − 1)2fi

for i = 3, 4, . . . , N−2. Now consider the case when the autocovariance struc-
ture of the errors has the form (6.14) for fixed N . Suppose that the param-
eters of the autocovariance function (6.14) satisfy p1 6= p2, 0 < p1, p2 < 1.
We do not discuss the case with negative p1 or negative p2 because discrete
AR(2) processes with such parameters do not have continuous real-valued
analogues. From the Yule-Walker equations we obtain that the coefficients
a1 and a2 in (6.10) are given by

a1 = r1
1− r2

1− r2
1

, a2 =
r2 − r2

1

1− r2
1

,(6.18)

where r1 = r
(1)
1 and r2 = r

(1)
2 are defined by (6.14). With the notation

λ1 = − log(p1)/∆ and λ2 = − log(p2)/∆ with ∆ = (B −A)/N we obtain

p1 = e−λ1∆, p2 = e−λ2∆.(6.19)

We will assume that λ1 and λ2 are fixed but ∆ is small and consider the
properties of different quantities as ∆ → 0. By a straightforward Taylor
expansion we obtain the approximations

a1 = a1(∆) = 2− (λ1 + λ2)∆ + (λ2
1 + λ2

2)∆2/2 +O(∆3),

a2 = a2(∆) = −1 + (λ1 + λ2)∆− (λ1 + λ2)2∆2/2 +O(∆3),

S = S(∆) = 2λ1λ2(λ1 + λ2)∆3 +O(∆4),

C = C(∆) =
λ2

λ2 − λ1
+

1

6
λ1λ2

λ1 + λ2

λ1 − λ2
∆2 +O(∆4).(6.20)

Consequently (observing (6.19) and (6.20)), for large N the continuous
AR(2) process with autocovariances (6.11) can be considered as an approx-
imation to the discrete AR(2) process with autocovariances (6.14).
Since S = O(∆3), a1 = 2 +O(∆) and a2 = −1 +O(∆), it follows

S
hi
∆4

= f (4)(ti)− 4a2
1

∆2
f (2)(ti) + (a1a2 − a1)

1

∆2
f (2)(ti) +

1

∆4
(a1 + a2 − 1)2fi +O(∆)

= f (4)(ti) +
1

∆2
(a1a2 − a1 − 4a2)f (2)(ti) +

1

∆4
(a1 + a2 − 1)2fi +O(∆)

= f (4)(ti)− (λ2
1 + λ2

2)f (2)(ti) + λ2
1λ

2
2fi +O(∆).
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Thus, the vectors hi, i = 3, . . . , N − 2, are approximated by the vector-
function

z(t) = − 1

s3

(
(λ2

1 + λ2
2)f (2)(t)− λ2

1λ
2
2f(t)− f (4)(t)

)
,

where s3 = 2λ1λ2(λ1 + λ2). For the boundary points we obtain

Sh1 = f1 − a1f2 − a2f3

= (−2f2 + f3 + f1) + (λ1 + λ2)(f2 − f3)∆

+((−1/2f2 + 1/2f3)λ2
1 + f3λ1λ2 + (−1/2f2 + 1/2f3)λ2

2)∆2

+((1/6f2 − 1/6f3)λ3
1 − 1/2f3λ

2
1λ2 − 1/2f3λ1λ

2
2 + (1/6f2 − 1/6f3)λ3

2)∆3 +O(∆4)

=
(
f (2)(t2)− (λ1 + λ2)f (1)(t2) + f3λ1λ2

)
∆2 +O(∆3)

and

Sh2 = −a1f1 + (1 + a2
1)f2 + (a1a2 − a1)f3 − a2f4

= (−2f1 + f4 + 5f2 − 4f3) + (λ1 + λ2)(f1 − 4f2 + 4f3 − f4)∆

+((−1/2f1 + 1/2f4 − 3f3 + 3f2)λ2
1 + (2f2 − 4f3 + f4)λ2λ1

+ (−1/2f1 + 1/2f4 − 3f3 + 3f2)λ2
2)∆2

+((1/6f1 − 5/3f2 + 5/3f3 − 1/6f4)λ3
1 + (−f2 + 3f3 − 1/2f4)λ2λ

2
1

+ (−f2 + 3f3 − 1/2f4)λ2
2λ1 + (1/6f1 − 5/3f2 + 5/3f3 − 1/6f4)λ3

2)∆3 +O(∆4)

=
(
f (2)(t3)− 2f (2)(t2) + (λ1 + λ2)(3f (1)(t2)− f (1)(t1)− f (1)(t3))− f3λ1λ2

)
∆2 +O(∆3)

=
(
− f (2)(t2) + (λ1 + λ2)f (1)(t2)− f3λ1λ2

)
∆2 +O(∆3)

Thus, we can see that

h1 = −h2 +O(1) = z1,A
1

∆
+O(1),

where

z1,A =
1

s3

(
− f (2)(A) + (λ1 + λ2)f (1)(A)− λ1λ2f(A)

)
.

This means that the vectors h1 and h2 at t1 and t2 are large in absolute
value and have different signs. Similarly, we have

hN = −hN−1 +O(1) = z1,B
1

∆
+O(1)

where

z1,B =
1

s3

(
f (2)(B) + (λ1 + λ2)f (1)(B) + λ1λ2f(B)

)
.
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To do a finer approximation, it is necessary to investigate the quantity

g := Sh1 + Sh2,

which is of order O(1). Indeed, we have

g = (3f2 − 3f3 − f1 + f4) + (λ2 + λ1)(f1 − 3f2 + 3f3 − f4)∆

+((−f1 + f4 − 5f3 + 5f2)/2(λ2
1 + λ2

2) + (2f2 − 3f3 + f4)λ2λ1)∆2

+((f1 − 9f2 + 9f3 − f4)/6(λ3
1 + λ3

2)

+(−2f2 + 5f3 − f4)/2(λ2
1λ2 + λ1λ

2
2))∆3 +O(∆4)

= f (3)(t1)∆3 +O(∆4) + (−f (1)(t1)(λ2
1 + λ2

2)− f (1)(t1)λ2λ1)∆3

+f(t1)(λ2
1λ2 + λ1λ

2
2)∆3 +O(∆4)

=
(
f (3)(t1)− (λ2

1 + λ1λ2 + λ2
2)f (1)(t1) + λ1λ2(λ1 + λ2)f(t1)

)
∆3 +O(∆4)

and, consequently,

h1 + h2 =
1

s3

(
f (3)(t1)− (λ2

1 + λ1λ2 + λ2
2)f (1)(t1) + λ1λ2(λ1 + λ2)f(t1)

)
+O(∆),

where s3 = 2λ1λ2(λ1 +λ2). Therefore, if ∆→ 0, it follows that h1 +h2 ≈ zA,
where

zA =
1

s3

(
f (3)(A)− (λ2

1 + λ1λ2 + λ2
2)f (1)(A) + λ1λ2(λ1 + λ2)f(A)

)
.

Similarly, we obtain hN + hN−1 ≈ zB if ∆→ 0, where

zB =
1

s3

(
− f (3)(B) + (λ2

1 + λ1λ2 + λ2
2)f (1)(B) + λ1λ2(λ1 + λ2)f(B)

)
.

Autocovariances of the form (6.15). Consider the autocovariance func-
tion of the form (6.15), then the coefficients a1 and a2 are given by (6.18)

where r1 = r
(2)
1 and r2 = r

(2)
2 are defined by (6.15). With the notations

λ = − log p/∆ and q = b/∆ (or equivalently p = e−λ∆ and b = q∆) we
obtain by a Taylor expansion

a1 = 2− 2λ∆ + (λ2 − q2)∆2 +O(∆3),

a2 = −1 + 2λ∆− 2λ2∆2 +O(∆3),

S = 4λ(λ2 + q2)∆3 +O(∆4)

and

C =
λ

q
− λ(λ2 + q2)

3q
∆2 +O(∆4)
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as ∆→ 0. Similarly, we have

S
hi
∆4

= f (4)(ti) +
1

∆2
(a1a2 − a1 − 4a2)f (2)(ti) +

1

∆4
(a1 + a2 − 1)2fi +O(∆)

= −2(λ2 − q2)f (2)(ti) + (λ2 + q2)2fi +O(∆).

Thus, the optimal weights hi, i = 3, . . . , N − 2, are approximated by the
signed density

z(t) = − 1

s3

(
2(λ2 − q2)f (2)(t)− (λ2 + q2)2f(t)− f (4)(t)

)
,

where s3 = 4λ(λ2 + q2). Similarly, we obtain that

h1 = −h2 +O(1) = z1,A
1

∆
+O(1),

hN = −hN−1 +O(1) = z1,B
1

∆
+O(1),

where

z1,A =
1

s3

(
− f (2)(A) + 2λf (1)(A)− (λ2 + q2)f(A)

)
,

z1,B =
1

s3

(
f (2)(B) + 2λf (1)(B) + (λ2 + q2)f(B)

)
.

Calculating g := Sh1 + Sh2 we have

g = (3f2 − f1 − 3f3 + f4) + 2λ(f1 − 3f2 + 3f3 − f4)∆

+((−f1 + 7f2 − 8f3 + 2f4)λ2 + q2(f1 − 3f2 + 2f3))∆2

+((−f1 + 7f2 − 4f3)λq2 + (f1 − 15f2 + 24f3 − 4f4)/3λ3)∆3 +O(∆4)

= f (3)(t1)∆3 − (3λ2 − q2)f (1)(t1)∆3 + 2λ(λ2 + q2)f(t1)∆3 +O(∆4).

Therefore, it follows that h1 + h2 ≈ PA if ∆→ 0, where

zA =
1

s3

(
f (3)(A)− (3λ2 − q2)f (1)(A) + 2λ(λ2 + q2)f(A)

)
,

and s3 = 4λ(λ2 + q2). Similarly, we obtain the approximation hN + hN−1 ≈
PB if ∆→ 0, where

zB =
1

s3

(
− f (3)(B) + (3λ2 − q2)f (1)(B) + 2λ(λ2 + q2)f(B)

)
.

Autocovariances of the form (6.16). For the autocovariance function
(6.16) the coefficients a1 and a2 in the AR(2) process are given by (6.18)
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where r1 = r
(3)
1 and r2 = r

(3)
2 are defined by (6.16). With the notation

λ = − log p/∆ (or equivalently p = e−λ∆) we obtain the Taylor expansions

a1 = 2− 2λ∆ + λ2∆2 +O(∆3),

a2 = −1 + 2λ∆− 2λ2∆2 +O(∆3),

S = 4λ3∆3 +O(∆4),

C = λ∆− λ3

3
∆3 +O(∆5)

as ∆→ 0. Similar calculations as given in the previous paragraphs give

S
hi
∆4

= f (4)(ti) +
1

∆2
(a1a2 − a1 − 4a2)f (2)(ti) +

1

∆4
(a1 + a2 − 1)2fi +O(∆)

= f (4)(ti)− 2λ2f (2)(ti) + λ4fi +O(∆).

Thus, the vectors hi, i = 3, . . . , N − 2, are approximated by the signed
density

z(t) = − 1

s3

(
2λ2f (2)(t)− λ4f(t)− f (4)(t)

)
,

where s3 = 4λ3. For the remaining vectors h1, h2, hN−1 and hN we obtain

h1 = −h2 +O(1) = z1,A
1

∆
+O(1),

hN = −hN−1 +O(1) = z1,B
1

∆
+O(1),

with

z1,A =
1

s3

(
− f (2)(A) + 2λf (1)(A)− λ2f(A)

)
,

z1,B =
1

s3f

(
f (2)(B) + 2λf (1)(B) + λ2f(B)

)
.

Calculating g := Sh1 + Sh2 we have

g = (3f2 − 3f3 − f1 + f4) + 2λ(f1 − 3f2 + 3f3 − f4)∆

−λ2(f1 − 7f2 + 8f3 − 2f4)∆2

+1/3λ3(f1 − 15f2 + 24f3 − 4f4)∆3 +O(∆4)

= f (3)(t1)∆3 − 3λ2f (1)(t1)∆3 + 2λ3f(t1)∆3 +O(∆4).

Therefore, if ∆→ 0, it follows that h1 + h2 ≈ zA, where

zA =
1

s3

(
f (3)(A)− 3λ2f (1)(A) + 2λ3f(A)

)
,
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and s3 = 4λ3. Similarly, we obtain the approximation hN + hN−1 ≈ zB if
∆→ 0, where

zB =
1

s3

(
− f (3)(B) + 3λ2f (1)(B) + 2λ3f(B)

)
.
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