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ABSTRACT

We present a new backtest for the unconditional coverage property of the ES. The test statistic is available
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1 Introduction

Since the 1996 Market Risk Amendment to the First Basel Accord, the Value at Risk

(VaR) was (and still is) the standard measure for risks of financial investments. Besides,

it has become the industry standard not only for banks but also, e.g., for insurance

companies (due to Solvency II) or asset managers. However, despite its prevalence,

conceptual simplicity and easy interpretation, the VaR has several drawbacks based on

fundamental deficiencies. On the one hand, it lacks the desirable property of a coherent

risk measure (see Artzner et al., 1999) for non-Gaussian Profit & Loss (P/L) distributions.

On the other hand, the VaR does not account for tail risks.

As a consequence, alternative risk measures are of increasing importance and interest with

a particular focus on the Expected Shortfall (ES). This is mainly due to the facts that the

ES is a coherent risk measure, accounts for tail risks and a consultation paper from the

Basel Committee (Basel Committee on Banking Supervision, 2012) opted to replace VaR

with ES. However, while calculating ES is not much more difficult in comparison to the

VaR, backtesting ES models remains a major challenge (see Yamai and Yoshiba, 2002,

2005; Kerkhof and Melenberg, 2004). While there are several formal VaR-backtests (see,

eg. Candelon et al., 2011; Berkowitz et al., 2011; Ziggel et al., 2014, for some recently

proposed tests), there are only a few studies dealing with ES-backtests (Berkowitz, 2001;

Wong, 2008, 2010; Acerbi and Szekely, 2014). Most recently, Du and Escanciano (2015)

proposed some backtests for ES forecasts which are easy to implement. We build upon

these recently proposed backtests and present a new backtest for the unconditional cov-

erage (uc) property of the ES. This property is of particular interest for regulators whose

focus is mainly on uc backtests.

Our test is based on the so called cumulative violation process. Its main advantage is

that the distribution of the test statistic is available for finite out-of-sample size which

leads to better size and power properties compared to existing tests. Moreover, it can be

easily extended to a multivariate setting. To the best of our knowledge, there is currently
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no multivariate backtesting framework for the ES, although this is a highly important

task (see Wied et al. (2016) for a discussion concerning multivariate VaR tests).

2 Methodology

In this section, we introduce the notation used throughout the paper, define the desirable

properties of VaR and ES models and present our new uni- and multivariate backtests.

2.1 Notation and ES-violation Properties

Let {yt}nt=1 be the observable part of a time series {yt}t∈Z, where yt represents the return

of a bank or an asset at day t. Moreover, let {V aRt|t−1(p)}nt=1 be VaR-forecasts at level

p ∈ (0, 1), implicitly defined by P (yt < −VaRt|t−1(p)|Ft−1) = p, where Ft−1 denotes

the information set up to time t − 1. The ex-post indicator variable ht(p) for a given

VaR-forecast V aRt|t−1(p) is defined as

ht(p) = 1(yt < −VaRt|t−1(p)),

where 1 denotes the indicator function. In this notation, ht(p) = 1 denotes a VaR-

violation.

In this paper we focus on backtesting the ES. Following Du and Escanciano (2015) we

define the conditional distribution of yt given the information set Ft−1 as Gt|t−1(·) :=

Gt(·|Ft−1). The ES is defined as

ESt := −E(yt|yt < −VaRt|t−1(p),Ft−1) =
1

p

p∫
0

VaRt|t−1(u)du.

Du and Escanciano (2015) focus on the so called cumulative violations process to test
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the correct specification of the ES. The cumulative violation process

Ht(p) : =
1

p

p∫
0

ht(u)du =
1

p

p∫
0

1(yt < −VaRt|t−1(u))du

=
1

p

p∫
0

1(Gt|t−1(yt) < u)du =
1

p

(
p−Gt|t−1(yt)

)
1(yt < −VaRt|t−1(p))

takes values ranging from zero to one if a VaR violation occurs (ht(p) = 1), otherwise it

is equal to zero. If Gt|t−1 is continuous for all t, then Gt|t−1(yt) is uniformly distributed

on [0, 1]. In consequence the expected value at each time t is given by

E(Ht(p)) =
p

2
, ∀t. (1)

This is called the uc-property for the ES. As stated in Du and Escanciano (2015), {Ht}

is unobservable because the true model is unknown and has to be estimated. Therefore

some assumptions are necessary:

Assumption 1.

1. There is a parametric model Gt|t−1(y|θ0) which specifies the distribution Gt|t−1(y)

∀t and y ≤ G−1
t|t−1(p).

2. Gt|t−1(x|θ) is continuously differentiable in θ and x ∈ R.

3. The in-sample of size T is used to estimate the parameter θ0 ∈ Rp with the consistent

estimator θ̂T .

These assumptions define our framework and should be fulfilled in most situations.

In the next section we present the uc backtest from Du and Escanciano (2015) and propose

our new uc-backtests. The advantage of our tests is that the distribution in finite samples

is known.
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2.2 New uc-backtest

For testing the hypothesis

H0 : E(Ht(p)) =
p

2
, ∀ t,

vs.

H1 : ¬H0 (2)

Du and Escanciano (2015) suggest to use a t-test with normal approximation. Since

E(Ht(p)
2) = p

3
and Var(Ht(p)) = p

3
− p2

4
, ∀t, the t-test statistic is given by

UES =
√
n

H(p)− p/2√
p(1/3− p/4)

with H(p) := 1
n

∑n
t=1 Ĥt(p) and Ĥt(p) = 1

p
(p−Gt|t−1(yt|θ̂T ))1(yt < G−1

t|t−1(p|θ̂T )).

Note that Ĥt(p) is used instead of Ht(p) because θ0 is unknown and has to be estimated

by θ̂T . If θ̂T is
√
T -consistent and T increases faster than n (and both tend to infinity)

such that n/T → 0, UES has a standard normal limit distribution.

Now, we consider the case that T tends to infinity but n is fixed and relatively small

eg. n = 250 or n = 500. We simulated this situation 500, 000 times and calculated

the statistic UES. With a density kernel estimation we compare the estimated density

function with the standard normal density function. The result is displayed in Figure 1.

We see that the simulated distribution is right skewed. Consequently, quantiles for high

probabilities obtained from the normal approximation are too small.

Our main contribution is to tackle this problem. For this, we have to reformulate the

test hypothesis. We start with the following observation:
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Figure 1: Kernel smoothed density function of UES with out-of-sample-size n = 250 and
n = 500.

Whenever a hit occurs at time t, Gt|t−1(yt) should be uniformly distributed. On the other

hand, a hit should occur with probability p if a perfect ES-model is given. Consequently,

if the risk model is appropriate, the observable series {Ht(p)}nt=1 can be modeled as a

series of products of Bernoulli distributed with uniformly distributed random variables.

This leads to our test hypotheses:

H0 : Ht(p) = ht(p) · ut, ht(p) ∼ B(p) independent from ut ∼ U(0, 1), ∀t

vs.

H1 : ¬H0

If H 0 holds, the uc property (1) is obviously fulfilled. Our reformulated hypothesis

seems to be stronger than the previous one (2). However, as the calculated expected

value and variance in the t-test statistic are based on the reasonable assumption that

E(ht(u)) = u, ∀u ∈ (0, p), it is equivalent to our test hypothesis.

Moreover, no information concerning past values of Ht(p) should be helpful in forecasting

hits and their characteristics if the ES-model is correctly specified. Hence, we add the

following reasonable assumption:
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Assumption 2.

h1(p), . . . , hn(p), u1, . . . , un are independent.

Under this assumption, with the law of total probability, the cumulative distribution

function (cdf in the following) of

Hn :=
n∑
t=1

Ht(p) =
1

p

n∑
t=1

(p−Gt|t−1(yt|θ0))1(yt < G−1
t|t−1(p|θ0)) (3)

is given by

FHn(x) := P (Hn ≤ x) =
n∑
k=0

P

(
n∑
t=1

ht(p) = k,
k∑
j=1

uj ≤ x

)
.

Here,
∑n

t=1 ht(p) is binomial distributed with parameter n and p and the distribution of∑k
j=1 uj is the so called Irwin-Hall distribution (Irwin (1927), Hall (1927)) with parameter

k and cumulative distribution function

Υk(x) :=
1

k!

bxc∑
j=0

(−1)j
(
n

j

)
(x− j)k−1sgn(x− j).

Thus, the cdf is given by

FHn(x) =



0 , if x < 0

(1− p)n , if x = 0

(1− p)n +
n∑
k=1

(
n
k

)
pk(1− p)n−kΥk(x) , if x ∈ (0, n]

1 , if x > n.

With increasing k, Υk is numerically unstable, because
(
n
k

)
takes huge values

and/or pk(1 − p)n−k is close to zero. For implementation, it can be useful to use the

normal approximation beginning from an upper bound (e.g. k ≥ 20 ) Υk(x) ≈ Φ
(
x−k/2√
k/12

)
.

To demonstrate the usefulness of our test, we simulate N = 10, 000 series of {Ht(p)}nt=1
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with length n = 250 and calculate high quantiles of the simulated {Hn,j}Nj=1. The calcu-

lated quantiles, the theoretical quantiles from FHn and the approximation used from Du

and Escanciano (2015) are displayed in table 1. The latter is a normal distribution with

expected value np/2 and variance n(p/3− p2/4).

Table 1: Comparison between simulated quantiles and the theoretical quantiles.

quantile 1− α 0.95 0.96 0.97 0.98 0.99

simulated 1− α- quantile 5.68 5.87 6.11 6.43 6.96

F−1
Hn

(1− α) 5.67 5.86 6.10 6.43 6.95

np/2 +
√

(n(p/3− p2/4))Φ−1(1− α) 5.48 5.63 5.81 6.06 6.45

In the following, we assume that there is at least one hit or rather Ĥn(p) > 0, with Ĥn

defined as in (3) with the estimated parameter θ̂T instead of θ0. We get the continuous

conditional cdf

FHn|Hn>0(x) = (1− (1− p)n)−1

n∑
k=1

(
n

k

)
pk(1− p)n−kΥk(x).

The conditional cdf is used to define our test statistic

SUC := FHn|Hn>0(Ĥn) = (1− (1− p)n)−1

n∑
k=1

(
n

k

)
pk(1− p)n−kΥk(Ĥn)

whose limit distribution is given in the following theorem.

Theorem 3.

Under assumption 1, if n is fixed and T →∞ then

SUC

∣∣∣ {Ĥn > 0
}

d−→ U(0, 1).

The proof of this theorem can be found in the appendix.

Thus one would neglect H0 at level α if SUC > 1−α. We expect that our test has better

size properties, because the t-test suffers from the approximation error.
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Next, we extend the test to the multivariate framework. Instead of the following approach,

one could also simply use the univariate test in combination with a Bonferroni correction.

However, this would lead to a less powerful procedure. The price for more power is that

we need stronger assumptions, in particular, n must tend to infinity.

With m business lines we define Ht := (Ht,1(p1), . . . , Ht,m(pm))′ with Ht,j the cumulative

violation from business line j at day t, j = 1, . . . ,m and t = 1, . . . , n. For simplicity

we assume that p1 = . . . = pm =: p, but all results can be easily extended for different

coverage levels. The test hypothesis is formulated as

Hm
0 : Ht = (ht,1(p) · ut,1, . . . , ht,m(p) · ut,m)′,

ht,i(p) ∼ B(p) independent from ut,i ∼ U(0, 1), ∀t, i

vs.

Hm
1 : ¬H0

Similarly to assumption 2, we assume independence over time and the same cross-sectional

dependence structure at each time point:

Assumption 4.

1. H1, . . . ,Hn are independent.

2. Cov(H1) = . . . = Cov(H1) =: Σ.

Clearly, we need that n tends to infinity to estimate Σ consistently. Therefore, it is

required that T tends to infinity relatively faster than n. Moreover, we need the following

Assumption 5.

1.
√
T (θ̂T − θ0) = Op(1).

2. ∃ M ∈ R| ∀t ∈ {1, ..., n} : sup
θ∈Θ

∂E(Ht(p)|Ft−1)
∂θ

< M .
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Assumption 5.1 means that θ̂T is
√
T consistent and the limit distribution of

√
T (θ̂T −θ0)

is bounded in probability. For example, a maximum likelihood estimator with a fixed,

rolling or recursive forecasting scheme fulfills this condition as it is shown by Escanciano

and Olmo (2010). Assumption 5.2 is more technical and should be fulfilled in nearly any

model.

The test statistic is based on the standardized sum of the univariate test statistics. More

precisely, the test statistic is given by:

SmUC :=
1

σ̂

m∑
i=1

Φ−1(SUC,i) =
1

σ̂

m∑
i=1

Φ−1(FHn|Hn>0(Ĥn,i))

with σ̂2 a consistent estimator for Var(
∑m

i=1 Φ−1(SUC,i)).

Theorem 6.

Under assumption 2, if T →∞ and n→∞, n/T → 0, it holds

SmUC |
{
Ĥn,j > 0, ∀j

}
d−→ N (0, 1),

with the variance estimator

σ̂2 =
m∑
i=1

m∑
j=1

∑n
t=1(Ĥt,i −H i)(Ĥt,j −Hj)√∑n

t=1(Ĥt,i −H i)
√∑m

t=1(Ĥt,i −H i)
.

The proof of this theorem can be found in the appendix.

With this theorem, we obtain our multivariate uc-test for backtesting the ES. Condition-

ally that there is at least one hit in each business line, we reject Hm
0 if SmUC > u1−α, with

u1−α the 1− α quantile of the normal distribution.

3 Simulation study

In our simulation study we examine the power of our proposed backtest in a controllable

but realistic scenario. Also we compare the empirical size and power with the t-Test
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proposed by Du and Escanciano (2015). All simulations are computed for a significance

level of 5% and we perform 2,000 repetitions for each simulation.

Our test delivers the exact distribution in finite samples if T tends to infinity, but uses

basically the same information like the t-Test. Thus we enhanced the size properties, but

the size corrected power is the same as the t-Test. So we concentrate on the multivariate

setting in this simulation study. In order to extend the univariate AR(1)-GARCH(1,1)

model from Du and Escanciano we use a AR(1)-CCC-GARCH(1,1) model with normal-

and t-distributed innovations to generate data. The value of the parameters are the same

as in Du and Escanciano (2015), thus these are typical für values in empirical application

(Du and Escanciano, 2015, p.15). The m-dimensional series {Yt}t=1,...,T+n is generated

by:

Yt = 0.05Yt−1 + vt, vt = σtεt, εt ∼ t(ν,Σ)

σ2
t = 0.051m + 0.1Imv

2
t−1 + 0.85Imσ

2
t−1

We use ν = ∞ to generate the in-sample data {Yt}t=1,...,T and fit the model, that leads

to normal innovations. If the out of sample is also driven by normal innovations the

VaR and ES can be consistently estimated and Hm
0 holds. To examine the power of our

test in comparison to the Bonferroni corrected t-Test we simulate a structural break at

time T , after that point the innovations are t-distributed with ν ∈ {30, 15, 10, 7} degrees

of freedom. The chosen covariance matrix Σ will be fixed with Σij = 0.4 if i 6= j and

Σii = 1.

In each of the simulations we estimate θ0 = (α, ω, β, γ)′ = (0.05, 0.05, 0.1, 0.85)′ sepa-

rately for each business line by θ̂T,j with the well known conditional maximum likelihood

estimation with in-sample size T ∈ {500, 2500}. Thus we get for each business line j and
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each day t the estimated cdf

Gt|t−1,j(Yt,j|θ̂T,j) = Φ(ε̂t,j)

with

ε̂t,j =
Yt,j − α̂jYt−1,j

σ̂t,j
,

and

σ̂t,j = ω̂j + β̂j(σ̂t−1ε̂t−1,j)
2 + γ̂σ2

t−1,j.

With this cdf we can calculate the estimated cumulative violation for each day t and each

business line j:

Ĥt,j(p) =
1

p

(
p−Gt|t−1,j(Yt,j|θ̂T,j))

)
1(Gt|t−1,j(Yt,j|θ̂T,j) < p).

The simulation results are shown in Tables 2 and 3 below.

As shown, our test clearly outperforms the standard t-test which has extremely bad size

properties. Moreover, the size adjusted power of our test is significantly better in all

cases. The in-sample size of length T = 500 seems to be not sufficient for our test. If

we increase the in-sample size, the problems concerning the size vanish at a length of

T = 2500.
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Table 2: Simulation results for m = 10 and m = 50 Business Lines and out of sample
size T = 2500

m = 10 m = 50

n = 250 n = 500 n = 250 n = 500

ν UC10-Test t-Test UC10-Test t-Test UC10-Test t-Test UC10-Test t-Test

∞ 0.05 0.14 0.06 0.12 0.05 0.24 0.06 0.21

30 0.33 0.21 0.53 0.35 0.44 0.28 0.64 0.42

15 0.76 0.51 0.94 0.76 0.85 0.66 0.98 0.87

10 0.93 0.77 1.00 0.96 0.98 0.90 1.00 0.99

7 0.99 0.96 1.00 1.00 1.00 0.98 1.00 1.00

Table 3: Simulation results for m = 10 and m = 50 Business Lines and out of sample
size T = 500

m = 10 m = 50

n = 250 n = 500 n = 250 n = 500

ν UC10-Test t-Test UC10-Test t-Test UC10-Test t-Test UC10-Test t-Test

∞ 0.12 0.30 0.14 0.36 0.13 0.54 0.15 0.62

30 0.26 0.16 0.43 0.22 0.39 0.19 0.43 0.27

15 0.62 0.38 0.86 0.58 0.80 0.46 0.86 0.65

10 0.89 0.66 0.98 0.86 0.97 0.76 0.98 0.92

7 0.99 0.89 1.00 0.98 1.00 0.96 1.00 1.00

4 Conclusion

We present a new backtest for the unconditional coverage property of the ES. The distri-

bution of the test statistic is available for finite out-of-sample size which leads to better

size and power properties compared to existing tests. Moreover, it can be easily extended

to a multivariate test. Our test is easy to implement and should be used whenever the

in-sample size is large compared to the out-of sample size. To the best of our knowledge

this is the first proposed ES backtest for the multivariate setting.
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A Proofs

Proof of Theorem 1

First we prove that for each t = 1, . . . , n it holds that Ĥt(p)
p−→ Ht(p):

From Assumption 1 we get θT
p−→ θ0 and therefore Gt|t−1(·|θ̂T ) converges uniformly to

Gt|t−1(·|θ0) and of course G−1
t|t−1(·|θ̂T ) converges uniformly to G−1

t|t−1(·|θT ) since Gt|t−1(·|θ̂T )

is continuous and strictly increasing.

On the one hand we get ∀x ∈ R

1

p
(p−Gt|t−1(x|θ̂T ))

p−→ 1

p
(p−Gt|t−1(x|θ0)).

Moreover with p ∈ (0, 1) and y continuously distributed and 0 < ε < 1

P
(
|1(y < G−1

t|t−1(p|θ̂T ))− 1(y < G−1
t|t−1(p|θ0))| > ε

)
=P (y ∈ [min{G−1

t|t−1(p|θ̂T ), G−1
t|t−1(p|θ0)},max{G−1

t|t−1(p|θ̂T ), G−1
t|t−1(p|θ0)}])

T→∞−→P (y = G−1
t|t−1(p|θ0)) = 0

so we get 1(y < G−1
t|t−1(p|θ̂T ))

p−→ 1(y < G−1
t|t−1(p|θ0)). Now we use the following Lemma

that extends the well known Slutsky-Theorem.

Lemma 7. If Xn
p−→ X and Yn

p−→ Y then XnYn
p−→ XY .

Proof

P (|XnYn −XY | > ε) = P (|XnYn −XnY +XnY −XY | > ε)

≤ P (|Xn(Yn − Y )|+ |Y (Xn −X)| > ε)

≤ P (|Xn(Yn − Y )︸ ︷︷ ︸
p−→0

| > ε/2) + P (|Y (Xn −X)︸ ︷︷ ︸
p−→0

| > ε/2)
n→∞−→ 0

13



Using this lemma we get

Ĥt(p) =
1

p
(p−Gt|t−1(x|θ̂T )) · 1(y < G−1

t|t−1(p|θ̂T ))

p−→ 1

p
(p−Gt|t−1(x|θ0)) · 1(y < G−1

t|t−1(p|θ0)) = Ht(p)

Since n is fixed we immediately obtain

Ĥn
p−→ Hn,

if T tends to infinity. In the second step we show that

FHn

(
n∑
t=1

Ĥt(p)
∣∣∣ Hn > 0

)∣∣∣ { n∑
t=1

Ĥt(p) > 0
}

d−→ U(0, 1)

Therefore we use another lemma:

Lemma 8.

Let X0, X1, X2, . . . be continuous random variables on (R,F, P ) and Xn
d−→ X0 and

g : R→ R absolute continuous and strictly increasing. Then

g(Xn)|{Xn ∈ B}
d−→ g(X)|{X ∈ B}

.

Proof

Since g is absolutely continuous and strictly increasing, g−1 : R → R exists. Because

X is absolutely continuous it follows by definition of the convergence in distribution and

Portmanteau Lemma (see eg. van der Vaart (1998), p.6) for every B ∈ F

P (Xn ∈ B)
n→∞−→ P (X ∈ B).
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Let A ⊂ R and g−1(A) := {x ∈ R|g(x) ∈ A} ∈ F, B ∈ F with P (Xi ∈ B) > 0 ∀i.

P (g(Xn) ∈ A|Xn ∈ B) =
P (g(Xn) ∈ A,Xn ∈ B)

P (Xn ∈ B)

=
P (Xn ∈ g−1(A), Xn ∈ B)

P (Xn ∈ B)

=
P (Xn ∈ {g−1(A) ∩B})

P (Xn ∈ B)

n→∞−→ P (X0 ∈ {g−1(A) ∩B})
P (X0 ∈ B)

=P (g(X0) ∈ A|X0 ∈ B)

So we get g(Xn)|{Xn ∈ B}
d−→ g(X)|{X ∈ B} and Lemma 8 is proved.

With this lemma the proof of Theorem 1 is clear. Per definition it holds

FHn

(
Hn

∣∣∣ Hn > 0
) ∣∣∣ {Hn > 0

}
∼ U(0, 1)

and with Lemma 8 it follows easily

FHn

(
Ĥn

∣∣∣ Hn > 0
) ∣∣∣ {Ĥn > 0

}
d−→ U(0, 1).

�

15



Proof of Theorem 2

To prove this theorem, we use a copula theorem from Lindner and Szimayer (2005):

Theorem 9.

Let (Xn)n∈N and X be m-dimensional random vectors, where Xn = (Xn,1, . . . , Xn,m)′ and

X = (X1, . . . , Xm)′.

Then Xn converges weakly to X as n→∞, if and only if the margins Xn,j converge weakly

to Xj as n → ∞ for j = 1, . . . ,m, and if the copulas Cn of Xn converge pointwisely to

the copula C of X on RanF1× . . .×RanFm as n→∞, where Fj denotes the distribution

function of Xj.

Thus the proof will be done in two steps: First we show that if T → ∞, n → ∞ and

n/T → 0 all margins

Φ−1(FHn|Hn>0(Ĥn,j))
∣∣∣{Ĥn,j > 0, ∀j

}
, j = 1, . . . ,m,

have standard normal limit distribution. In the second step we show that the copula

of (Φ−1(FHn|Hn>0(Ĥn,1)), . . . ,Φ−1(FHn|Hn>0(Ĥn,m)))′ converge pointwisely to a Gaussian

copula.

If n tends to infinity, we observe sup
x∈R

|FHn|Hn>0(x) − FHn(x)| −→ 0 and

P (Ĥn,j > 0,∀j) −→ 1. Thus the conditions {Ĥn,j > 0, ∀j} have no effect on the

asymptotic behavior and we continue the proof without them. But note that in finite

samples this condition is needed to estimate the dependence structure.

Hn,j is under Assumption 3 a sum of independent random variables, therefore the central

limit theorem holds:

lim
n→∞

sup
x∈R

∣∣∣FHn(x)− Φ

(
x− np/2√
n(p/3− p2/4)

)∣∣∣ = 0.
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Moreover for c ∈ R fixed and ε ∈ (0, 0.5) it holds:

lim
n→∞

sup
x∈R

∣∣∣FHn(x+ c · nε)− Φ
(x+ c · nε − np/2√

n(p/3− p2/4)

)∣∣∣ = 0

⇔ lim
n→∞

sup
x∈R

∣∣∣FHn(x+ c · nε)− Φ
( x− np/2√

n(p/3− p2/4)
+

c√
n1−2ε(p/3− p2/4)︸ ︷︷ ︸

→0

)∣∣∣ = 0

⇔ lim
n→∞

sup
x∈R

∣∣∣FHn(x+ c · nε)− Φ
( x− np/2√

n(p/3− p2/4)

)∣∣∣ = 0.

So if cn = oP (
√
n) we observe

lim
n→∞

sup
x∈R

∣∣∣FHn(x)− FHn(x+ cn)
∣∣∣ = 0 (a.s.)

We now consider dn := Ĥn −Hn. Du and Escanciano (2015) mentioned that

1√
n
dn =

1√
n

n∑
t=1

E(Ĥt(p)−Ht(p)|Ft−1) + oP (1),

which follows directly from previous results from Escanciano and Olmo (2010). With

similar arguments and the mean value theorem we get:

dn =
n∑
t=1

(Ĥt(p)−Ht(p))

=
√
n
[ 1√

n

n∑
t=1

E(Ĥt(p)−Ht(p)|Ft−1) + oP (1)
]

=
n∑
t=1

(θ̂T − θ0) · ∂E(Ht(p)|Ft−1)

∂θ

∣∣∣
θ=θ̃

+ oP (
√
n)

=
[√

T (θ̂T − θ0)︸ ︷︷ ︸
OP (1)

· n√
T
· 1

n

n∑
t=1

∂E(Ht(p)|Ft−1)

∂θ

∣∣∣
θ=θ̃︸ ︷︷ ︸

Bn

+oP (
√
n),
]

with θ̃ a fixed value between θ̂T and θ0.

If n/
√
T = o(

√
n)⇔ n/T → 0, we get dn = oP (

√
n) and
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FHn(Ĥnj
)

d−→ FHn(Hnj
) ∼ U(0, 1), j = 1 . . . ,m,

and the first step of the proof is completed with the continuous mapping theorem:

Φ−1(FHn(Ĥnj
))→ Φ−1(FHn(Hnj

)) ∼ N (0, 1), j = 1 . . . ,m.

To complete the proof we determine the dependence structure. Under Hm
0 and Assump-

tion 3 we get with the central limit theorem for H := (H1, . . . , Hm)′:

H̃n :=
√
n
(
H− µ

) d−→ N (0,Σ),

with µ = p
2
· 1m and a positive definite matrix Σ ∈ Rm×m.

With Theorem 9 the copula Cn of H̃n converges pointwisely to a Gaussian copula with

a correlation matrix R that corresponds to Σ.

We define gn : Rm → Rm, gn((x1, . . . , xm)′)→ (g1,n(x1), . . . , gm,n(xn))′, with

gi,n(xi) = Φ−1(FHn|Hn>0(
√
nxi + np/2)), i = 1, . . . ,m.

It is easy to see that gi,n is strictly increasing for all i = 1, . . . ,m and n > 0 and therefore

the distribution of gn(H̃n) is also determined by the marginal distributions and the same

Copula Cn as before (see eg. Schweizer and Wolff, 1981). Thus we get directly that

the copula of (Φ−1(FHn|Hn>0(Ĥn,1)), . . . ,Φ−1(FHn|Hn>0(Ĥn,m)))′ is also given by Cn and

converges to the Gaussian Copula C. Applying Theorem 9 one more time it holds

gn(H̃n)
d−→ N (0m, R)
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and

1′m gn(H̃n) =
m∑
j=1

Φ−1(FHn(Ĥn,j))
d−→ N (0, 1′mR1m).

As mentioned before, using the conditional cdf and the condition {Ĥn,j > 0, ∀j} does

not change the asymptotic behavior. Returning to the conditional case and using the

consistent estimator

σ̂2 =
m∑
i=1

m∑
j=1

∑n
t=1(Ĥt,i −H i)(Ĥt,j −Hj)√∑n

t=1(Ĥt,i −H i)
√∑m

t=1(Ĥt,i −H i)
,

for 1′mR1m, we derive the limit distribution of the test statistic:

1

σ̂

m∑
i=1

Φ−1(FHn|Hn>0(Ĥn,i))|
{
Ĥn,j > 0, ∀j

}
d−→ N (0, 1),

�

References

Acerbi, C. and B. Szekely (2014): “Backtesting expected shortfall,” Risk Magazine,

32 (7), 1404–1415.

Artzner, P., F. Delbaen, and D. Heath (1999): “Coherent Measures of Risk,”

Mathematical Finance, 9(3), 203–228.

Berkowitz, J. (2001): “Testing Density Forecasts With Applications to Risk Manage-

ment,” Journal of Business and Economic Statistics, 19, 465–474.

Berkowitz, J., P. Christoffersen, and D. Pelletier (2011): “Evaluating Value-

at-Risk Models with Desk-Level Data,” Management Science, 57 (12), 2213–2227.

19



Candelon, B., G. Colletaz, and S. Tokpavi (2011): Backtesting Value-at-Risk: A

GMM Duration-Based Test, vol. 9, Wiley, New York.

Du, Z. and J. C. Escanciano (2015): “Backtesting Expected Shortfall: Accounting

for Tail Risk,” SSRN working paper, online: http://ssrn.com/abstract=2548544.

Escanciano, J. C. and J. Olmo (2010): “Backtesting Parametric Value-at-Risk With

Estimation Risk,” Journal of Business & Economic Statistics, 28(1), 36–51.

Hall, P. (1927): “The Distribution of Means for Samples of Size N Drawn from a

Population in which the Variate Takes Values Between 0 and 1,” Biometrika, 9(3/4),

240–245.

Irwin, J. O. (1927): “On the Frequency Distribution of the Means of Samples from a

Population Having any Law of Frequency with Finite Moments, with Special Reference

to Pearson’s Type II,” Biometrika, 9(3/4), 225–239.

Kerkhof, J. and B. Melenberg (2004): “Journal of Banking & Finance 28 (2004),”

Econometric Theory, 28, 1845–1865.

Lindner, A. and A. Szimayer (2005): “A Limit Theorem for Copulas,” Discussion

Paper 433, SFB 823.

Schweizer, B. and E. F. Wolff (1981): “On Nonparametric Measures of Dependence

for Random Variables,” The Annals of Statistics, 9 (4), 879–885.

Basel Committee on Banking Supervision (2012): Fundamental review of the

trading book: A revised market risk framework, Consultative document, Bank for In-

ternational Settlements, Basel.

van der Vaart, A. W. (1998): Asymptotic Statistics, Cambridge, New York.

Wied, D., G. Weiss, and D. Ziggel (2016): “Evaluating Value-at-Risk Forecasts: A

New Set of Multivariate Backtests,” Journal of Banking & Finance, 72, 121–132.

20



Wong, W. K. (2008): “Backtesting trading risk of commercial banks using expected

shortfall,” Journal of Banking & Finance, 32 (7), 1404–1415.

——— (2010): “Backtesting value-at-risk based on tail losses,” Journal of Banking &

Finance, 17, 526–538.

Yamai, Y. and T. Yoshiba (2002): “On the Validity of Value-at-Risk: Comparative

Analyses with Expected Shortfall,” Monetary and Economic Studies, 20, 57–85.

——— (2005): “Value at Risk versus expected shortfall: a practical perspective,” Journal

of Banking and Finance, 29, 997–1015.

Ziggel, D., T. Berens, G. N. Weiß, and D. Wied (2014): “A new set of improved

Value-at-Risk backtests,” Journal of Banking & Finance, 48, 29–41.

21



 



 


