Pivotal tests for relevant
differences in the second
order dynamics of functional
time series

o
%
O
-
%
L
O
=
=
o)
=
®
)

Anne van Delft, Holger Dette

Nr.10/2020

SFB
823






Pivotal tests for relevant differences in the second order
dynamics of functional time series

Anne van Delft and Holger Dette

Ruhr-Universitat Bochum
Fakultit fiir Mathematik
44780 Bochum, Germany

April 9, 2020

Abstract

Motivated by the need to statistically quantify differences between modern (complex) data-
sets which commonly result as high-resolution measurements of stochastic processes vary-
ing over a continuum, we propose novel testing procedures to detect relevant differences be-
tween the second order dynamics of two functional time series. In order to take the between-
function dynamics into account that characterize this type of functional data, a frequency
domain approach is taken. Test statistics are developed to compare differences in the spectral
density operators and in the primary modes of variation as encoded in the associated eigenele-
ments. Under mild moment conditions, we show convergence of the underlying statistics to
Brownian motions and obtain pivotal test statistics via a self-normalization approach. The lat-
ter is essential because the nuisance parameters can be unwieldly and their robust estimation
infeasible, especially if the two functional time series are dependent. Besides from these novel
features, the properties of the tests are robust to any choice of frequency band enabling also
to compare energy contents at a single frequency. The finite sample performance of the tests
are verified through a simulation study and are illustrated with an application to fMRI data.

keywords: functional data, time series, spectral analysis, relevant tests, self-normalization,
martingale theory
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1 Introduction

Functional time series analysis is concerned with the development of inference methods to model
and analyze data measurements from processes that take values over some continuum like a
curve, a surface or a sphere and which exhibit a natural dependency between the observations,
each considered as a point in the function space #. In the current day and age of technological
advances where measurements of a process can be taken over its entire domain of definition at
a high precision, it is not surprising that functional time series analysis is of increased applica-
bility in numerous research areas. Examples can be found in molecular biophysics (Tavakoli and
Panaretos, 2016), brain imaging (Aston and Kirch, |2012), climatology (Zhang et al., 2011} |Zhang
and Shao)} 2015), environmental data (Hormann et al.}, 2018) or yet economics (Antoniadis et al.,
2006; Kowal et al., 2019). Naturally, this has led to an upsurge in the available literature on statisti-
cal methodology for the analysis of functional time series.



The main purpose of this paper is to develop frequency domain based inference methods
which allow to quantify differences in the second order characteristics of two weakly stationary
(possibly dependent) functional time series, say {X;};cz and {Y;}ez. Comparison of the second
order characteristics of two functional time series is of interest in various applications and con-
trolled experiments. The motivation in most cases is to know whether two series are similar or
that a joint analysis on the pooled data is relevant to consider. Inherent to this type of sequentially
collected functional data is the presence of temporal dependence. The second order structure is
therefore more involved than for independent functional data, yet the development of appropri-
ate inference methods are of the same eminent importance; the second order dynamics play a key
role in providing information on the smoothness properties of the random functions and optimal
dimension reduction techniques.

For independent functional data, statistical inference tools for comparing covariance opera-
tors have been developed by Panaretos et al.| (2010), Fremdt et al.[ (2013), |Guo et al. (2016) and
Paparoditis and Sapatinas| (2016). |Benko et al.| (2009) and |Pomann et al.| (2016) investigated how
far the distribution of two random samples of independent functional data coincide by means of
their Karhunen-Loeve expansion and developed tests to compare the functional principal com-
ponents, i.e., the eigenvalues and eigenfunctions of the autocovariance operator. In the context of
temporally dependent functional data, methods in this direction have also been considered. Mo-
tivated by climate downscaling studies, Zhang and Shaol|(2015) proposed testing for equality of the
0-lag covariance operators of two functional time series and of their associated eigenvalues and
eigenfunctions. More recently|Pilavakis et al. (2019), proposed a test for the equality of the 0-lag
covariance operators of several independent functional time series.

Time domain methods as considered in aforementioned literature suffer however from impor-
tant shortcomings when one wants to infer on the second order dynamics of temporally depen-
dent functional data. The autocovariance operator only captures static features and the long-run
covariance operator, being a sum of the sequence of h-lag covariance operators, only captures
crude features of the dynamics. In addition, functional principal component analysis (FPCA) does
not provide an optimal dimension reduction since it ignores any temporal dynamics present in
the collection of functional observations.

To analyze or compare second order dynamics of functional time series, a frequency domain
approach might in fact be more appropriate. Not only does it allow to characterize the full second
order dynamics, but the Cramér-Karhunen-Loeve decomposition (Panaretos and Tavakoli, 2013) —
which decomposes the process into uncorrelated functional frequency components and separates
the functional and stochastic parts— moreover provides the building block for harmonic FPCA,
yielding an optimal lower dimensional representation of the functional time series (see also|Hor-
mann et al., 2015; van Delft and Eichler, 2019, on this topic). In particular, a starting point for an
optimal lower dimensional representation of a zero-mean #-valued stochastic process {X;};cz
that also captures the temporal dynamics is the functional Cramér representation
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where {dZx ,}we[-n,n 1S @ functional orthogonal increment process of which the second order
properties are completely described by an operator-valued spectral measure Fx(-) on [—7, 7] (van
Delft and Eichler, 2019). As first noted by |Panaretos and Tavakoli (2013), an optimal lower di-
mensional representation can be obtained by expanding each frequency component d Zx ,, in its
optimal basis and truncating this at an appropriate level. Assuming for simplicity no points of
discontinuity in the spectral measure, the spectral density operator & )((‘”) is the covariance opera-
tor of the increment d Zx .. Hence, the optimal basis of each d Zx , is given by the eigenfunctions



{(,bg‘;’,)k} k=1 of the spectral density operator & )((‘”) while the corresponding eigenvalues {Ag‘(‘f)k} k=1 pro-
vide insight on the relative contribution of each frequency component to the total variation in the
process as well as on the dimensionality of each component. The eigenfunctions of the spectral
density operator of a functional time series thus encode the smoothness properties of the random
functions, whereas the eigenvalues of the spectral density operators provide the required variance
decomposition. In order to compare second order characteristics of functional time series, it is
therefore of interest to be able to compare the spectral density operators as well as to compare the
primary modes of variation as given by the respective eigenprojectors and eigenvalues.

To make this more precise, under mild regularity conditions stated in[Section 3} the full second
order dynamics of weakly stationary processes {X;};ez and {Y;}sez can respectively be character-
ized by the spectral density operators
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The information carried by these objects was exploited by|Tavakoli and Panaretos|(2016), who ana-
lyze the molecular dynamic trajectories of DNA minicircles by comparing & }((') and & 1(,'), restricted
to a lower-dimensional subspace, at a set of frequencies. InLeucht et al.[(2018), an L?-distance ap-
proach between estimates of & Q and gl(,') of two linear functional time series was considered to
infer on the geographical differences in temperature variation over time. Since & )((‘”) and & 1(,“’) are
non-negative definite Hermitian compact operators, these admit a real-valued discrete spectrum
for each w, which are respectively given by
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where {Ag‘;’)k} k=1 is the sequence of eigenvalues of # )((’“) arranged in descending order, and where

H(X‘”)k = </>(X‘”)k ® (pg?’)k with {(pg?')k 1 denoting the corresponding sequence of eigenfunctions. The

operator H(}?’)k is a self-adjoint rank-one operator and will be referred to as the k-th eigenprojector
(at frequency w) since it projects onto the eigenspace of & )((‘“) corresponding to the k-th largest
eigenvalue /1(;(")]C The eigenelements of ?l(,“’) are defined in a similar manner. Optimal lower di-
mensional representations with K degrees of freedom can then be shown to be given by
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where {d Zx ()} we[-n,7 and {d Zy ()} we(-n,n) are A -valued orthogonal increment processes with
covariance operators {Z " }ye(—r,x) and {F\}ye(—,x), TESpectively.

In this paper, our goal is to develop pivotal tests statistics to detect differences in the second
order structure between two functional time series based on the spectral density operators and
their associated characteristics as given by the eigensystems (eigenprojectors and eigenvalues).
The novelty of our approach lies in four different aspects.

(i) Firstly, while methods to test for equality of spectral density operators of two functional
time series are available (see e.g. Tavakoli and Panaretos, [2016; |Leucht et al., 2018), tests to
compare the eigenelements of spectral density operators have, to the best of our knowledge,
not yet been considered in existing (functional-valued) time series literature. Due to their
central role in dimension reduction techniques, these tests are extremely relevant but far
from trivial to construct.



(ii) Secondly, our approach is in terms of a relevant testing framework, which means that we are
only interested in deviations that surpass a certain threshold. For example, in the context
of comparing spectral density operators we do not consider the problem of testing for exact
equality of the spectral density operators & ;2 and & 1(,'), but propose to investigate hypothe-
ses of the form

b
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ofno relevant deviation between & }((') and & 1(,') over a given frequency band. Here ||-|| denotes
an appropriate norm and A > 0 is a pre-specified threshold. Note that classical hypotheses
as considered in Tavakoli and Panaretos (2016) and Leucht et al. (2018) are obtained with
the threshold set to zero. Our motivation for considering relevant hypotheses (i.e., A > 0)
stems from the observation that in many applications it is not very likely that the second
order structures of functional time series {X;} ez and {Y;};cz are exactly the same. Moreover,
often one might not be interested in small changes and the two series might be merged in
the statistical analysis if the difference between & }((') and gx(/.) is small. A similar comment
applies to the eigenfunctions and eigenprojectors of a spectral density operator, for which
relevant hypotheses can be defined similarly (see Section [2.2]for more details).

(iii) Thirdly, tests for hypotheses involving quantities derived from the spectral density opera-
tors are of a very complicated nature. The asymptotic distributions of corresponding test
statistics oftentimes depend on the unknown objects of interest or on the higher order dy-
namics of the functional time series. For example, Leucht et al|(2018) consider classical
testing problems and use the bootstrap to avoid estimation of a functional of the spectral
density operator. However, if relevant hypotheses of the form (I) have to be tested then the
construction of a bootstrap procedure is highly non-trivial as one has to mimic the distri-
bution of a test statistic under a null hypothesis, which differs only in a quantitative but not
in a qualitative way from the alternative. The situation becomes even more difficult in the
construction of testing procedures for relevant hypotheses involving the eigenfunctions and
eigenprojectors.

In this paper we solve this problem and develop tests that are pivotal and do neither require
the estimation of such nuisance parameters nor a bootstrap approach.

(iv) Fourthly, we derive our results under extremely mild moment conditions, which are much
weaker than those available in the literature on (functional) time series (see for
details). The derivation of the distributional properties of our tests is quite involved and
relies upon approximating martingale theory and the proofs might be of interest in their
own right.

The structure of this article is as follows. First, we introduce the precise form of our hypotheses,
relate this to existing literature, and highlight the importance of considering pivotal test statistics.
In[Section 2} we introduce our testing frameworks. All proposed test statistics can be expressed as
a functional of a ‘building block’ process, which is introduced in and its weak conver-
gence is established. These results can then be used to develop new tests and to investigate their
statistical properties. In[Section 4} we study the finite sample properties of the proposed tests in
a simulation study and showcase an application to resting state fMRI data. Finally, in
we provide the main argument to establish the weak convergence of the ‘building block’ process,
while most of the technical details are deferred to an online appendix.



2 Relevant hypotheses for characteristics of spectral density operators

2.1 Notation

We start by introducing some required terminology. Let / be a separable Hilbert space with inner
product (-,-) and induced norm | - || . We denote the Hilbert tensor product between two Hilbert
spaces (A}, (-, ‘)]ﬁj.)j:])g by #®2 := A, ® #,, whose elements are linear combinations of the sim-
ple tensors hy ® hy, hj € A}, j = 1,2. This is a Hilbert space formed from the algebraic tensor
product together with a bilinear map v : /6, x 4% — /6 ®alg J6, satisfying (v (hy, hp), w(g1,82)) =
(h1, 81).72,(h2, ) 7, for hi, g1 € 74 and hy, g € Hy and then taking the completion with respect
to the induced norm. We denote the direct sum of two Hilbert spaces by #%2 := 7 & A, of
which elements are of the form h = (h;, h2) T, where (-) T denotes the transpose operation. Observe
that this is again a Hilbert space with inner product (g, h) = Z?Zl(gj, hj)e;, for any g, h € 7.
For more details on these facts we refer to Kadison and Ringrose| (1997). Let {y;};>1 be an or-
thonormal basis of #). For a bounded linear operator A : # — ./, we define, respectively,
the operator norm by [[|A]lle = SUD| g 4, IAg) ., g € 7, the Hilbert-Schmidt norm by [|All2 =
Y= (1A /) I|§£2)1/2, which is induced by the inner product (A1, A2)s, = X j>1(A1Xj, A2 X j) 75, A1,
Ay : F6, — 6, and for A: 76 — 76 the trace class norm by Al = X ;((AANY2(x ), x )4
where A" denotes the adjoint of A. We write A € S, (A, #5) if it has finite Hilbert-Schmidt norm
and abbreviate Sy (A) := So(AC, A). For a bounded linear operator A : /& — A, with [|All; < oo
we write A € §1(A). For f,g,v e #, we denote the tensor product f ® g: Sa(A) — A as the
bounded linear operator (f ® g)v = (v, g) f. We additionally define the Kronecker tensor product
as (A®B)C = ACB' for A,B,C ¢ S»(H) .

Next, for a .#7-valued random element X over a probability space (Q, «/,P), we shall denote
Xe L if | X|u,p = EIXI",)!P < co. Observe that £2, is a Hilbert space consisting of #-valued
random elements with finite second order moment. We note moreover that for any X,Y € 2}
with zero mean, the cross-covariance operator is given by Cov(X,Y) = E(X ® Y) and belongs to
S1(A€). For a zero mean process X = (Xi, X,)" € fj.f o0 WE note that Cov(X, X) = EX®2 consists
of the components E(X; ® X;), i, j = 1,2 which are elements of Sy (#). Furthermore, we denote the
imaginary unit by i and g denotes the complex conjugate (function) of g. We shall also denote R(-)
and () for the real and imaginary part, respectively, of a complex-valued object. We shall write
ar ~ br iflimr_ Z—: = 1. Weak convergence in D[0, 1] with respect to the Skorokhod topology will
be denoted by ~~, while convergence in distribution as T — oo will be denoted by et Finally, we

reserve B to denote standard Brownian motion on the interval [0, 1] and remark that |-| denotes
the floor function.

2.2 Relevant hypotheses

In this paper, we consider Hilbert-valued processes {X; := (X;, Yt)T: te”Zl e Zi% 7 which are
assumed to be weakly stationary. This implies in particular that the h-lag covariance operator of
{X}tez, satisfies

CoV(X 41, X 1) = (Cov(X 4, Xe), CoV( Xy iy Ye), COV( Yy 1y Xi), COV(Yys ) Y[))T
= Cov(Xp, Xo)

for all ¢, h € Z. In the following, we introduce the three testing frameworks to test for relevant
differences in the second order characteristics of the component processes {X;}sez and {Y¢}ez.
As a first option, this can be framed as the following hypothesis testing problem on the spectral



density operators;
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where [a, b] < [0,7] and A > 0 is a pre-specified constant that represents the maximal value for
which the distance | f (&2 )((‘”) - 551(,‘“) |||§dw is considered as not relevant. Note that by specifying the
choice of a and b, one can compare the spectral density operators within a certain narrow fre-
quency band or singletons, which is in certain applications of interest. For instance, activities of
certain areas of the brain, such as the Nucleas Accumbens, are usually located within a small fre-
quency band around frequency zero (see e.g., Fiecas and Ombao}[2016) and the frequency charac-
teristics of resting-state fMRI data tend to have rather frequency-specific biological interpretations
(seee.g.,[Yuen et al., 2019, and references therein).

Besides from (2.I), the main focus in this paper is on two more refined hypotheses testing
problems that allow to infer relevant differences in the primary modes of variation. More specif-
ically, to consider the relevant differences at component k for some k € N, we are in particularly
interested in providing a meaningful test for the hypotheses of no relevant difference between the
k-th eigenprojectors, that is

2
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where [a, b] € [0, 7] and where Apy ;. > 0 denotes, similarly to A, a pre-specified constant. It is worth
mentioning that the eigenfunctions {(/)(X“j),c} k=1 are complex elements of # (except at w =0, 7). Due
to this, a test statistic based upon the difference of the empirical eigenfunctions is not feasible
because these are only identifiable up to a rotation on the unit circle. The testing framework in
is therefore formulated in terms of the eigenprojectors since their empirical counterparts are
rotationally invariant. We come back to this in[Section 3] Finally, we also consider the hypotheses
of no relevant difference between the k-th eigenvalues, that is

b b
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where [a, b] < [0, 7] and where A) ;. > 0 is again a pre-specified constant that represents the maxi-
mal value for which the difference between the kth eigenvalues is deemed not relevant.

In this article, we develop pivotal tests for the hypotheses in 2.1), and (2.3). To elaborate
on its relevance and to motivate that this is a very challenging problem, observe that a natural
approach to test hypotheses of the form is to construct an empirical distance measure

b
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of the distance M? = f WFy" - Fy (@) lI3dw, where 9 @) and 9 @) are suitable estimators of the
spectral density operators & )((‘”) and 91(,‘”), respectlvely, and to reject the null hypothesis for large
values of (2.4). For classical hypotheses, i.e., where Hy : M? = ffll@)((w) —g;“’)lllgdw =0, one then
requires the (asymptotic) distribution of the statistic at M? = 0 in order to determine the criti-
cal values, which involves the estimation of certain nuisance parameters. The latter was for ex-
ample considered by Tavakoli and Panaretos| (2016), who construct a test for equality of spectral
density operators based upon this distance restricted to a finite-dimensional subspace (see also
Panaretos et al.,[2010, who considered this approach for covariance operators). A drawback is that

2
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the method can be sensitive to the specific choice of several regularization parameters, includ-
ing an appropriate truncation level for the dimension of which the optimal value is frequency-
dependent. Another approach was taken in |[van Delft and Dette | (2018), who introduced a fully
functional similarity measure for (time-varying) spectral density operators of possibly nonstation-
ary functional time series where the distance measure is estimated based upon integrated func-
tionals of (localized) periodogram operators. While this avoids sensitivity to certain regularization
parameters, the expressions of the asymptotic variance can still become quite involved when cer-
tain assumptions, such as independence of the two series, are relaxed. Alternatively, one could
consider a bootstrap method to obtain the critical values of the test statistic, an approach taken by
Leucht et al.| (2018). However, even for classical hypotheses such an approach is computationally
expensive.

For testing relevant hypotheses of the form (2.1), and the problems become substan-
tially more intricate. In particular, the determination of critical values for the relevant hypotheses
in requires the (asymptotic) distribution of the statistic M? at any point M2 = 0 of the alter-
native. As will be demonstrated in this paper, an appropriately normalized version of M? — M?
is in general asymptotically normally distributed but, compared to the classical hypothesesis Hy :
M? =0, the variance of the limiting distribution now depends in a much more complicated way on
the spectral density operators & )((') and & 1(,') and is therefore extremely difficult to estimate. More-
over, for the same reason it is unclear whether a bootstrap method for relevant hypotheses can be
developed since one basically has to mimic the (asymptotic) distribution of the test statistic for
any pair of time series {X;} ez and {Y;} ez such that their spectral density operators satisfy the null
hypotheses in (2.1).

The above approaches become even more problematic, if not infeasible, if either classical or
relevant tests of the form and for the eigenelements have to be constructed. As will
become clear in the subsequent sections, the distributional properties of the corresponding em-
pirical distance measures depend in a highly complicated manner on the dependence structure of
the underlying processes (see, for example,[Theorem 3.4]below). This to the extent that the estima-
tion of nuisance parameters becomes close to impossible and such an approach highly unstable.
To circumvent this problem, we propose tests based on self-normalized or ratio statistics which
are constructed via appropriate standardized estimators of the distance measures in (2.1},
and (2.3), and have a limiting distribution which does not depend on the dependence structure of
the underlying processes. The concept of self-normalization has been used by numerous authors
in the context of testing classical hypotheses, that is A = A = Ay, = 0 (see[Shao and Zhang,
2010;Shao,[2010;Zhang et al.,|2011;/Shao, 2015;/Zhang and Shao, 2015, among others). Recently, a
new concept of self-normalization for testing relevant hypotheses regarding the mean and covari-
ance operator of functional time series has also been developed by Dette et al.| (2020). However,
the development of frequency domain based tests for relevant hypotheses and hence that allow to
infer on the (full) second order dynamics of these processes is far from trivial. As a further matter,
we derive our results under very mild moment conditions which improve upon L}, -approximable
assumptions and do not require summability of functional cumulant-mixing conditions. For the
hypothesis in (2.1I), our current work therefore not only provides a stable alternative to existing
work but also relaxes upon underlying moment assumptions. Because the construction and the
distributional properties of the statistics are highly technical, we start the next section by provid-
ing the framework and assumptions and the main ingredient to our method. We then develop the
test statistics in full detail for all three hypotheses.



3 Methodology

Suppose that we observe a sample of length T} from component process {X;} 7 and of length 7>
from component process {Y;} ;7. Central in the construction of the pivotal test statistics and the
corresponding asymptotic level a tests for the hypotheses (2.1), (2.2) and (2.3) are processes of the
form

o R N e R R

(3.1)

where ry, 72 € R and where the operators % &“’},%;‘“)} € Sy(A), for each w € [—m, 7], are of varying
nature depending on the specific hypotheses under consideration. The operators Z fn'” and Z, }/ ’n'”

are S, (A)-valued partial sum processes defined by

T, b,s,t
TVh V=

InTz]  nT>]
vo_ Vb Y[ Y o (Y5®Yt)—9‘;‘“)), 3.3)

n — ba,s, t
TVL V=

(Xs® X;) — f/r)(;”)), (3.2)

where

w,” = 2o w(bi(r - )t (3.4)
for some window function w(-) and where b; := b(Tj), i = 1,2, are bandwidth parameters which
are functions of the corresponding sample lengths T;. Intuitively, the operators and can
be interpreted as scaled and centered sequential estimators of the spectral density operators & )((‘”)
and 351(,“'). While perhaps not immediately obvious, we shall demonstrate in the following three
sections that the distributional properties of empirical versions of the three distance measures in
2.1, and (2.3), respectively, can —after centering around the population distance measure—
be derived from those of processes of the form (3.1). For example, we will show in the next section
that M? — M?, with M? as in (2Z.4), can be expressed in terms of such a process that is evaluated at
n=1.

In order to make this more precise and to derive the distributional properties of the process
defined in (3.I), we require the following technical assumptions. Firstly, we specify the depen-
dence structure of {X;};c7 € xﬁﬁ and {Y;};ez € fjf jointly in terms of the bivariate functional time
series {X;} ez = {(X¢, Yt)T}[Ez. For this, we consider conditions as given invan Delft | (2019), who
studied limiting distributions of quadratic form statistics of functional time series under mild mo-
ment conditions and provided generalizations of the physical dependence measure (Wu, |2005) to
Hilbert-valued processes. A functional time series {V;} taking values in a separable Hilbert space
A is said to have a physical dependence structure for some p > 0 if:

A.1 The series admits a representation of the form V; = g(es,€;-1,...,) where {e¢; : t € Z} is an
ii.d. sequence of elements in some measurable space S and g : S — # is a measurable
function.

A.2 The series’ dependence structure is of the following nature. Define the measure

Vi,p (V) = 1V —=ElVilY 100l ps



where ¥, (o) is the filtration up to time ¢ but with the element at time 0 replaced with an
independent copy, i.e., ¥;,0; = g(et,et_l,...,66,6_1,...), for some independent copy 66 of ey
and where the conditional expectation is to be understood in the sense of a Bochner integral.
The dependence structure of the process satisfies

Y vip(Vj) <oo (3.5)
j=0

for some p = 0.

As demonstrated in van Delft | (2019), the summability condition in is a weaker assumption
than the L, - approximability condition introduced by Hormann and Kokoszka (2010) and is gen-
erally weaker than summability conditions of the p-th order cumulant tensor for p > 2.

Throughout this paper, we assume the following conditions on the function-valued time se-
ries.

Assumption 3.1. The process{X}ez = {(Xt, Yy) "} ez is a centered weakly stationary bivariate func-
tional time series in £ 5&9 _w Of which the component processes satis@ with p = 4+e, for some
smalle > 0.

Elementary calculations show that|Assumption 3.1|implies the process {X;} 7z satisfies
[A.2|with p = 4 +¢. Observe furthermore that[Assumption 3.1|allows for the scenario of indepen-
dence between the two component processes. It is worth mentioning that the zero-mean assump-
tion simplifies notation but, in practice, the data can be centered without affecting the results of
this paper. Processes which satisfy conditions[A.1A.2|for some p = 2 have a well-defined spectral
density operator. In particular, for processes that satisfy|Assumption 3.1} the second order struc-
ture arises as elements of (#%2)®2 and the full second order dynamics are therefore described via
the vector of spectral density operators given by

-
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where the operators 9;;“} = % Y ez E(Xp® Yo)e " and ?;“; = % Y hez E(Y;, ® Xo)e 19" define the
cross-spectral density operators. We remark that 9«‘)((‘”) can be shown to be isometrically isomor-
phic to an element of S (A2 70252, uniformly in w.

As a starting point for our test statistics, consider the following estimators of & )((w) and 91(,“’)

. 1 &b
FY=— 73 . (X, X,); (3.6)
I s,t=1 ™
o 1 &)
Fy=—7 w (Ys®Y), (3.7)
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where the weights L'i/g*; 5 ; are given by(3.4). For the construction of pivotal test statistics, we re-

quire sequential versions of the lag window estimators in (3.6) and (3.7), which are respectively
given by

5 () Tl  InThl @)

FE0 = L ( > Wy, (X X)), 3.8)
and
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where 1 € [0,1]. We shall denote the eigenvalues and eigenprojectors of and (3.9), respec-
tively, by {)AL(X""),C(TI)} o1 {ig‘,"}c (M} >, and {f[;‘("')k(n)} =1 and {IQI(Y“';C (M} ~;- Empirical versions of the
distance measures in (2.1), and can then be expressed in terms of the sequential estima-
tors evaluated atn =1, i.e.,

JNFL W) -F L Oldo,  [I0E,0 -0, 0I3do, [7 (A0 -1 m) do.
We assume the following mild requirements on the lag window functions w(:).

Assumption 3.2. Let w be an even, bounded function on R with lim,_ow(x) = 1 that is con-
tinuous except at a finite number of points. Suppose that limy,_bY ez w?(bh) = x where k :=
S22 w?(x)dx < oo such that supy-p<; b j=1/p w?(bh) — 0 as L — co. Furthermore, we assume
limy_g|w(x) - 1] = O(x).

Under these conditions, the following consistency result on the lag window estimators can be
obtained.

Proposition 3.1. Suppose {V;} 7 is a centered weakly stationary process in £ 55 that satisfies con-

ditions[A.I{A.2 with p = 2q, q = 1. Furthermore, let{Assumption 3.2 be satisfied and assume

Y kv (Vi) < oo (3.10)
hezZ

forsome ¢ =1. Let F¥ = Fri ng’,s,t(vs ® V). Then, for q =2,

152 -EFL| Zz,q = 0((brT)"9"%) and |EFY -gz‘v;ngm = O(b? +779)

uniformly in w € [-m, 7], where &) is the spectral density operator of process {V;}. In particular
1Fe —9{}’”22 q= O((brT)"9'2) + O(b[}q) uniformly inw € [-n, 7).

Note that the value of ¢ in only affects the order of the bias, which decreases faster for
processes with shorter memory. It is also worth mentioning that the estimator remains consistent
for ¢ = 0. To ensure consistency in g-th mean, Proposition[3.1]gives rise to the following conditions
on the rate of the bandwidth.

Assumption 3.3. Given Y jcz hévH,Z(Vh) < oo for some ¢ = 1, we require that by — 0 such that
brT — oo and such that b1T+ng —0asT — oo.

Observe that the last part of the assumption simply means that larger bandwidths are allowed
for processes with a ‘smoother” spectral distribution (i.e., the higher the order of differentiability
of the map w — F W)y,

Under Assumptions the sequential estimators and provide us with consis-
tent estimators of 3)((‘“) and 91(,‘“). Furthermore, the elements of their respective eigensystems
{i(X“’),C (n),ﬁg’;f)lc M} s1> {ﬁg‘;’}c (17),1:1(1‘,‘)’;C (M}, can then be shown to provide us with consistent es-
timators of their population counterparts for each 1 € [0,1],w € [-7,7] (see[Lemma B.5). Addi-
tionally, under these conditions, we obtain a useful bound on the maximum of partial sum of the

estimators of the spectral density operators (see[Lemma B.1).

The last assumption concerns the ‘balance’ of the convergence rates.

Assumption 3.4. Let b;, i € {1,2} satisfy[Assumption 3.3 for some ¢ = 1. If the component processes
{X:} and {Y;} of {X i} are independent, we assume there exists a constant 0 € (0,1) such that

b Ty

im ———=0¢€(0,1).
Tl,T2—>OO bl T] + bz T2 ( )

If the processes are dependent, we assume Ty = T and by ~ b,.
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We can now state the main technical result of this paper which is crucial for the construction of
pivotal tests for the hypotheses (2.1), (2.2) and (2.3) of no relevant difference in the spectral density
operators, eigenprojectors or eigenvalues, respectively, (see Sections3.1]-[3.3|for details).

Theorem 3.1. Suppose Assumptz'ons are satisfied. Then

{77\/ by Ty + szz

ZYw w)

m sz XI;>S dw -~ m YX>sz)dw)}ne[0,1]

BN {Txyn [B(U)}qe[o,ll’

where T xy is a constant, B is a Brownian motion and the processes Z “ and Zr Y’” are defined in
(3.2) and (3.3), respectively.

The proof of this statement is far from trivial and relies on approximating martingale theory.
This is postponed to The scaling factor 7xy depends in a rather complicated way on
the properties of {&# )((“’)}wem, p and {91(,“’)}0,6[% b] (seefor details) and is therefore very dif-
ficult to estimate. In the next sections, we develop tests for the hypotheses of relevant differences
between the spectral density operators {& )((w)}wem, p) and {Eéw)}wemy p) and the associated eigenele-
ments, which do not require estimation of 7 xy and are in this sense pivotal.

3.1 Norelevant difference in the spectral density operators: the hypothesis (2.1)

We start with the construction of a pivotal test for hypothesis of no relevant difference be-
tween the spectral density operators. Proofs of the statements can be found in Section[A.1] of the
Appendix. For fixed n € [0, 1] and fixed w, denote the (pointwise) population distances and empir-
ical distances of the spectral density operators by

Mg ) :=F -F and My 0, 0)=n(F n-Fm),

and observe that under|Assumption 3.1} these are both well-defined elements of S; () for any
n € [0,1]. The next step is to define a process which quantifies the difference between the empirical
and population measures over a given frequency band, i.e.,

) t—f |77 FPm - m ||| -7 |H9“‘” ff(“’)”‘ do. 3.11)

Elementary calculations show that we can write (3.11) as

[a,b] _
Zy 7,1, =

o~ it

- [l 00 - nts @[+ (5 000 - it itz ),

+<M\g%(n,w)—nMg(w),nMg(w)>s }dw. 3.12)
2
Moreover, notice that

M4 m,0)-nMz (@) =n(FL ) -F)-n(F m) - F) . (3.13)

The following result, which requires to control the maximum of partial sums of (3.8) and (3.9),
shows that the first term of (3.12) is of smaller order than the two other terms.

11



Lemma 3.1. Suppose Assumptions[3.1{3.4 are satisfied. Then

sup ’ ”ﬁg}(n,w)—nMg(w)HEdw:OP(;). (3.14)
neio,1)Ja VbiTi +bo T

The next statement in turn then shows that we can approximate the process in (3.12) as a linear
combination of functionals of processes of the form in (3.2) and (3.3).

Theorem 3.2. Suppose Assumptions|3.1{3.4 are satisfied. Then

b2
Vb1 Ti + by T, Z 1P =i Ti+b Tf 2R(ZXY nMg (@) do
1T+ b2 TaZ gy 7 (M) thi+b212 | N < Ty MMz ( )>S2

b2
—\/bT+be R(Z M dw+op(1).
th+balz | VoY < Ty 01 9((1))>S2 w+op(1)

We can now use|Theorem 3.1{with %) = %) = 2Mg () and[Theorem 3.2]to find the limiting
distribution of the process in (3.11), that is

(Vi T+ b To(Z57 - )}~ T7 MBMneo,  as Ty, T — oo, (3.15)

where 74 is a constant. To make the test independent of 74, we consider the following self-
normalizing approach, which is similar in nature to Dette et al.| (2020). To be precise, define the

statistic
~la,bl ! b
= (f,
F, T, T 0 a

where v is a probability measure on the interval (0, 1). Then it is easy to see that

ol -l ofafan).

1 1/2
rla,b) [a,b) 2 4la,b) 2
vl - fo (Zlet -2l ) vian)

and the continuous mapping theorem and the weak convergence (3.15) imply

. . 1 2 1/2
\/blTl+bng(Z;'%,Tz(l),V;'E'Tz) = (‘rg[ﬁi(l),(fo 1;172([53(17)—17[5(1)) v(dn)) ).(3.17)

Tl,T2—>OO

Consequently, a further application of the continuous mapping theorem yields

257 5, B
AU D:= D (3.18)

=
el - nufmeo T (fln2(Bm) - B() vidm)"

whenever 74 # 0. From this, we can obtain a pivotal test statistic for the hypothesis (2.1) of no
relevant difference between the spectral density operators given by

st _ oMz (1L 0)llde - A

T, = plab] , (3.19)
F,1, Ty
and a natural decision rule is then to reject the null hypothesis in (2.1) whenever
fyla,b] b= 2 ‘rla,b]
D7, > q1-a@) < fa IV (1L, w)li3dw > A+ VL - 1o (D) (3.20)
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where g;_,(D) denotes the (1 — a)-th quantile of the distribution of the random variable D de-
fined in (3.18). Consequently, the test no longer depends on the unknown nuisance parameter
but only on the measure v used in the definition of the self-normalizing factor V;’Ylfl]jz, which can
be chosen by the statistician and is therefore known. Observe further that the quantiles q;_, (D)
are straightforward to simulate. The next result now shows that the test in provides a con-
sistent and asymptotic level «a test.

Theorem 3.3. Suppose Assumptions[3.11{3.4 are satisfied. Then the decision rule (3:20) provides an
asymptotic level a test for the hypothesis of no relevant difference between the spectral density
operators ,9)((') and 91(,“’), ie.,

0 ifA> [2IMY I2dw;
. - la,b . b
Tl)l%znlooP(D[T‘flﬁz > ql_a([ﬂ))) ={a ifA= f%lllM;’)lllgdw andtz #0;
1 ifA< [ IMY N2 dw.

Proof. Suppose first that ffIIIM;') l3dw = 0. Then @.11) becomes Z;’%TZ ) = [PIM 4 (1, )2 dw.

By (3.17), we have Zg’% Tz(l) =op(1) and \7;‘;’1} T, = op(1) as Ty, T» — oo. Consequently, we obtain

limTl,Tz_,ooP(ﬂj)[T‘i',bT]z > ql_a(ID)) = 0. Next, suppose f:IIIM;“) lIZdw > 0. In this case, we can write
P(Hﬁ)[ﬁ"% > ql_a([D)) 3.21)

b b b
=p f M5 (1L, w)lizdw ~ f IMz (@)ll3dw > A~ f 1M @I3do+ g1 @) VLY ).
a a a
From (3.17) it follows that
5 la,b] b= 2 b 2
Zgm (D= f M3 (1, ) I3 de ~ f Mz (@)l dw = 0p(1),

rla,bl - _

Vg:)leTz - OP(l))

and consequently the assertion in the cases A > [ IM2[|3dw and A < [ IM2|3dw follows eas-
ily. Finally, if 7 & # 0 we have from (3.18) that

— > a,b]
JUIM (1L w)li3do - [JIMg @)3do 257, 7,1

= > D
oa,b] ola,b] T, To—oco
ngTl;T2 ngTl»TZ e
and we obtain the remaining case A = [, : ”'M;)) lI3dw from @:21). O

3.2 Norelevant changes in the eigenprojectors: hypothesis (2.2)

In this section, we develop the pivotal test for hypothesis of no relevant difference between
the eigenprojectors Hg‘;’)k and H(;"}C of the functional time series {X;};cz and {Y;};ez. The develop-
ment is of a more intricate nature than for the spectral density operators, which we will elaborate
upon. Proofs of the statements provided in this section are relegated to To ease no-
tation, denote the (pointwise) population distances and empirical distances of the k-th eigenpro-
jectors at frequency w by

MH,k(w)::H(X“t),C—H(l‘,‘f}C and M\H'k(n,w):=n(ﬁg’gf)lc(n,w)—ﬁgﬁ‘fgc(n)), neo,1].
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As already briefly mentioned in[Section 2 we construct a test based on the eigenprojectors rather
than on the eigenfunctions because the latter are only defined up to some multiplicative factor ¢
on the unit circle. To understand the problem, suppose for simplicity that we would like to test for
relevant differences in the k-th eigenspace of & ;é”) and & 1(,‘”). From the estimators in and
we can obtain 014’3?',);6 and (:243(;,‘)’;C for some unknown cy, ¢, € C with |¢;]? = |¢2|> = 1. The empirical
eigenfunctions might therefore not be comparable due the unknown rotation in different direc-
tions. Moreover, a consequence of this rotation is that a bound on the differences in norm between
the population and empirical eigenfunctions does not follow from those of the corresponding op-
erators. This is in contrast with eigenfunctions that strictly belong to the real-valued subspace of
/¢, of which only the sign is unknown for the empirical counterparts. We can however construct a

- : . ; ; ; ; @) _ = p) o A)
test using the eigenprojectors because these are rotationally invariant since I1 Xk = CLC1Py @D

As a consequence, ﬂg?)k and ﬂg‘,"}c are directly comparable and a bound on the differences in norm
between the population and empirical eigenprojectors can be derived. The derivation of the the-
oretical properties of a test based upon eigenprojectors is however more involved than one based
upon eigenfunctions (see also |Aue et al., 2019, who developed self-normalized tests for relevant
changes in the eigenfunctions of the covariance operator).

Similar to the previous section, we start by defining the process
>[a,bl,(k) b
a,b), -
Znn,n = fu
and again rewrite this as
> la,bl, (k) b
Znrr, M= fa

b 2
- fa |||M\“’k(n’w) ~ M () |||2 + <M\H,k(77’w) - 771\/1n,k(w),17Mn,k(a))>s2

s, -7 v | e

[, - Mo |

+ <ﬁn,k(n,w) - nMn,k(w),nMn,k(w)>s dw. (3.22)
2
and observe in this case that
M 0, 0) =My () = (01,0 -1 ) = (1,0 - 1152} ).

Unlike (3.13), the properties of the two terms of the left-hand side are not obvious to disentangle.
Using perturbation theory on the Kronecker tensors products, we can obtain the following
expansion for the eigenprojectors.

Proposition 3.2. Let F“ be the spectral density operator of a weakly stationary functional time
series with eigendecomposition }.3 {gw)ﬂjf’and suf)pose the first k eigenvalues of % are all dis-
tinct and positive. Furthermore, let {/15.‘”) M}ias {HE.‘”) (M}, be the sequence of eigenvalues and

eigenprojectors, respectively, of the sequential estimators (1), n € (0,11, of F . Then
() (W) _ [ fw 0 (w)
1 -0 = (i _Hk’Hk>32Hk

o0
+ ) !

& (W) 7 (@) _ g )y2
Jrj :LB A‘] /1]! (Avk )
{j,j'=k}

((#°85° - 3 ms* ), 1)

2
(w) (w) (w)
(B, ) >52]Hjj'
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where {-}* denotes the complement set, HE“}’? = (,bg.“’) ® gbs.‘f’), and where

EY) @)= |(FU87° - F2maF ) |1 o -1 + [ AL m)? - A2 [l an -1 |.

In order to make sure the above expansion is well-defined for the eigenprojectors H()‘(")k and

H(;";C we require the following assumption on the eigenvalues.

Assumption 3.5. The first ko > 1 eigenvalues of F and F satisfy /lg((‘f’l)) S Agg“’,g; > 0 and
() (w)) ;
Ayy >...> AY,kO > 0, respectively.
This assumption guarantees separability of the eigenvalues and ensures that we can test for
relevant differences in the first ky—1 eigenprojectors. Even though the above expansion expression

is quite involved, the next statement shows that the properties are controlled by a functional of a
stochastic process, My (17, w) that we will be able to link again to a process of the form (3.1).

Lemma3.2. SupposeAssumptions are satisfied and let Z 7{("‘” and Z,’ ;]‘" be given by (3.2) and
(B3), respectively. Suppose furthermore that Assumption|3.5 holds true. Then,

b

_ — 1
(@) sup “Mn,k(n,w)—n(n(“” —H(‘“))—Mn,k(n,w)||| dw=0p(—);
nelo,11Ja Xk Y.k 2 iV b1 T+ by T
. b~ 2 1
(ii) sup “Mn,k(n,w)m dw=0p(—),
nelo,1]Ja 2 v bl T + bz T,
where
_ o 1
My (), 0) = Y <9§w)§zf’w+z§‘“§9§(‘“),ng‘;’). .,@ng‘;>k> ne
VBT 7, AP @) n Ik s
{(,j'=k
I ! (F@ez)e+ 2L ve@ 0, B0 1Y .
VT 52, A~ G52 m kR
"=k

(3.23)

The proof of this result is involved and left to Section[A.1]of the Appendix. To give some intu-
ition for the definition of My (1, ), denote the perturbation A,,g ® .= %) — F and observe
that elementary calculations yield

FOMRFC () - FURFY = FU8(MF ) + (A F )T + (8, F )& (A F).

In the proof of we use this identity together with the expansion in Proposition 3.2 to
show that

o (798(8,7°)+(A,7°)8Fe,nWEN) 1Y)

sup b ‘T] [f[(“’) () — H(w)] 1 Z s, XjJ' i
neio,11Ja k k i AEw)A’SOIU) _ (Agcw))Z 2
{j,j' =kt
(w) (w) A )3 (A N7 7w) (w)
B v e [(ED, (")'ij’>52 +((8q7)3(Ay 7)1 ,H].j,>82]njj, ,
“peonda ;5 AL _ Q@2 v
77 ’ ],] :1, ] ]'/ k 2

(,j'=kit
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1
=0p(—————=) (3.24)

\/blTl +b2T2 '

The expression then follows from the definition of Z ;( 7’7“’ and Z }/ *“ together with an ap-
plication of in the Appendix. As a consequence of this, we can establish that
reduces to a process of the form as given in[Theorem 3.1} from which its distributional properties
can be obtained.

Theorem 3.4. Suppose Assumptions[3.1{3.5 are satisfied. Then

. b1 ~ 1 ~ 1
2100 ) =17f ( R(Zy0 Y, )+ ——=R(Z50 Y, ) do+ op(——==),
it a BT, MR s Ty oAk s, by + by Ty
where
(w) (w) (w) (w) (w) (w)
() AX,k%<HX,kj’HY,k>S ( . AY,k§R<HY,kj’HX,k>S
I =4y n@. ., and 0%, =4y 2@
X, Y,k n /1((1)) A(w) _ (A((U) )2 X,jk’ Y, X,k 4 /1((1)) /'L(w) _ (/1(‘”) )2 Y,jk
jzk Mxetxj X,k jzk Ay ty,j Yk
By [Theorem 3.1|with %) = -1}, %@ = —[1” and[Theorem 3.4/ we obtain the weak
: Xy X,y 4yx Y, X,k :
convergence

{VbiT1+ b T, (jﬁaﬁ]g) (77))},76[0'1]WTH{TI[B(U)}ne[o,l], as Ty, T, — oo,

for some constant 717 and an application of the continuous mapping theorem shows that

>[a,b],(k)

'anTlnTZ (1) - D
V[d,b],(k) T, T—oo
LT, T,

where the random variable D is defined in (3.18) and the normalizing factor @bl k) 4o given by

LN, T,
plablio _ (fl(fb
n,1,,T, 0 a

Combining these findings with the arguments given in the proof of| yields a consistent
and asymptotic level a test for the hypothesis of no relevant difference in the k-th eigenpro-
jector.

]2 st o) eam)

Theorem 3.5. Suppose Assumptions[3.1{{3.5 satisfied. Then the test which rejects the null hypothesis
in (2.2) of no relevant difference in the k-th eigenprojector whenever

b —
plablk _ J2 M e (L, )15 dw — Ap i

IL,1,,T, — A
bl e

> ql—a([D)

is consistent and has asymptotic level a, i.e.,

0 ifAn> [ IMYI3dw;
lim P([ﬁ){.ﬁ';’i’% > ql_a([D) ={a ifAne=fLIMOI2dw and Ty #0;

Ty, T,—o0 : b @) 12
U ifAng < [2IM@12do.
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3.3 Norelevant changes in the eigenvalues: hypothesis (2.3)

We finally briefly discuss the test for the hypothesis in of no relevant difference in the k-
th eigenvalue. Denote the (pointwise) population distances and empirical distances of the k-th
largest eigenvalues at frequency w by

M, k(@) = A = Ay and My k(n,0) = (A ) - Ay )

and define

b
2O = Vb Ty + by Ty f | Mk, )12 =2 M) k(@) *dw.
a

Similar to the processes {Z ;’%’Tz (M} ero,1 and {Zl[]“}i ]"}f) (M} e 0,1 We rewrite this as

b
FO ) = [ 18,0 = 7 M gl P
a

b _—
=f {|M/1,k(77,0))—nM/l,k(w”z+77M/1,k(w)(M/l,k(77,w)—nMA,k((U))
a

+ M)k (@) (M, (1, 0) —nMA,k(a)))}dw. (3.25)

In order to express this term into a process of the form (3.I) we make use of the following proposi-
tion and lemma which are proved in Section[A.2]and Section[A.T]of the Appendix, respectively.

Proposition 3.3. Let #“ have eigendecomposition Zz"zl Ag") H‘;C’ and let {/ig”) (17)} i1 {f[g") (17)} i1

be the sequence of eigenvalues and eigenprojectors , respectively, of “ (1)), n € [0,1]. Then,
- = (507, (L, o0,

where
B = [0 -5°) - (1 0 -A2) | (1 o - i),

Lemma 3.3. Suppose Assumptions[3.1{3.4 are satisfied. Then,
b

(i) sup f

nelo,1]1Ja

b
(ii) supf
nelo,1]Ja

My k(,0) =02, =A%) = Mo (0, 0) | deo = op(;);

AV bl T +b2T2

M,Lk(n,w) lzdw = Op(;),

AV b1 T + bng

where

i _ ("1 < X0 @ V0 @
Ak, w) = Lol Z.01 dw
a Sz

—(
\/ﬁ T’ X’k>52 bz Tz n '’ Y,k
with Z. ?n“’ and Z)’ ,;” respectively given by and (3.3).

Using this result, we can express the process in terms of a process of the form (3.1) from which
the distributional properties can be obtained.
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Theorem 3.6. Suppose Assumptions[3.1{3.4 are satisfied. Then

2[a,b],(k) (77) — j:o (M%<z])§hﬂ)’n(a’) >52 _ w%<z{#,n(}?;€>82)da} + OP(;)»

AT Vb Ty ok Vb2 Ty by Ty + by T

In this case, an application of[Theorem 3.1|with % )((‘”; =2Mj, k(w)l‘[g‘(")k and %i,‘”})( =2Mj, k(a))l'[(}‘,"}C
yields therefore

(VD T1+ b To( 2,570 )} 0.0y~ TA B nero,y,  as T1, To — oo,

for some constant 7, (see Section p|for details). Now using the same arguments as in Section 3.1
and 3.2 we obtain that the test, which rejects the null hypothesis of no relevant difference in the
k-th eigenvector in (2.3), whenever

b —
plablk _ JINMy k(L )5 dw — Ap k D
ATLT — ~[a,bl,k > 1-a(D),
AT T

is consistent and has asymptotic levek a. The proof is omitted for the sake of brevity.

Theorem 3.7. Suppose Assumptions[3.1{3.4 are satisfied. Then,
0 ifAnk> f7 M3 dw;
lim PS> qia@) =@ ifAe= [JIMIBdw and Ty #0;
L2 b . b ’
1 ifAy < [ IMRI3dw.

4 Finite sample properties

In this section, we report the results of a simulation study conducted to asses the finite sample
properties of the tests proposed in Section[3.113.3] In all scenarios, the empirical rejection prob-
abilities are calculated over 1000 repetitions and the functional processes are generated on a grid
of 1000 equispaced points in the interval [0,1] and then converted into functional data objects
using a Fourier basis. In order to define the self-normalization sequence we used the measure
v = ﬁ Z,’-l:_ll 8i/n, where 6; denotes the Dirac measure at 7 € [0,1]. Simulations reported below
are conducted with n = 20. Other values were also considered but we found comparable results
for all other choices of n for which the positive mass is sufficiently bounded away from the bound-
aries. In order to provide the relevant tests, it is important to be able to trace back the distances
A,An r and A §, which is not always an obvious task as explicit expressions of the eigenelements
of the spectral density operator can be notoriously hard to find. In all simulations, the estimator
of the spectral density operator is obtained using a Daniell window with bandwidth by = T~1/3.
The result are given for a = 0, b = 7 but tests were also done pointwise, with similar results.

In the first setting, we generate a sequence {X t}thl of independent Brownian bridges with vari-
ance upscaled by a factor 27. It can be shown that the eigenvalues and eigenfunctions of the spec-
tral density operator 275 )((“’) are respectively given by /lg‘g’)k =1/(mk)*and (/)%) (1) = V2sin(nkr),T €
[0,1],k=1,2,3,..., for all w € R. The number of basis functions is chosen to be d = 21, which cap-
tures more than 95 percent of variation.

* Scenario 1: shift in the eigenfunctions. We generate processes {Y,‘}[T:1 from independent
Brownian bridges, with the variance again upscaled with a factor 2. However, here the first
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eigenfunction is shifted to v/2sin(wk(r +1)) with 1 varying between 0 and 0.15. This leads to
a change in various eigenfunctions of the spectral density operator and hence to a change
in the operator itself. The empirical rejection probabilities corresponding to a true shift ¢ =
0.05 are depicted in[Figure 4.1|for the relevant hypotheses on the spectral density operators
and on the first and second eigenprojectors (Theorem 3.5). This particular
shift corresponds to respective relevant hypotheses with A = 0.00047 (left), Ay = 0.0474
(middle) and A » = 0.040 (right). The behavior visible in the three plots clearly corroborates
with the theoretical findings stated in[Theorem 3.3|and[Theorem 3.5} respectively. For shifts
belonging to the interior of the null hypothesis, i.e., t < 0.05, we observe that the empirical
rejection probabilities are below the nominal level and are getting closer to zero as the shift
gets close to zero. For those values that belong to the interior of the alternative, i.e, t > 0.05,
we observe empirical rejection probability strictly larger than the nominal level and which
increase to 1 as the size of the shift increases. At the boundary of the null hypothesis, i.e.,
where ¢ = 0.05, the test is close to the nominal level of @ = 0.05. One moreover finds that this
behavior improves as the sample size T increases.
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Figure 4.1: Empirical rejection probabilities under scenario 1 for the relevant hypotheses in Section
(left panel) and Section|3.2 for the first and second eigenprojectors (middle and right panel) as
a function of 1 at the nominal level 0.05 (horizontal red dotted line). The shift of 1 = 0.05 is marked
in the three panels by the vertical dotted line and corresponds to the respective relevant hypotheses
A = 0.00047 (left) and A = 0.047 (middle) and A » = 0.040 (right).

* Scenario 2: amplitude variation. We generate processes {Yl_,f}tT:1 from independent Brow-
nian bridges multiplied by a factor v/27 but where the standard deviation is multiplied by a
factor 1.2,1 = 0,1,...8. Empirical rejection probabilities for : = 3 are depicted in [Figure 4.2]
for the relevant hypotheses on the spectral density operators ([Theorem 3.3) and the first
and second eigenvalues (Theorem 3.7). We observe that all tests behave as prescribed by the
theory, where the precision is quite accurate, even for the smallest sample size.

In the second setting, we consider processes of the form

2
X = Z )(m,j\/isin(ZnTj) +)([,2,j\/§cos(27r(rj +1)) T€I[0,1], 4.1)
j=1
where the coefficients x; := (Xr,1,1, X1,2.1, X1,1,2) X1,2,2) are generated from a vector autoregressive
process, i.e., X = cx-1 + V1 - c?e; with €; € R*. In the following simulations, we fix €; € R* ~
A (0,diag(4,8,0.5,1.5)) and vary the strength of dependence and shift the eigenfunction belonging
to the largest eigenvalue.
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Figure 4.2: Empirical rejection probabilities under scenario 2 for the relevant hypotheses in Section
(left panel) and Section[3.3|for k = 1,2 (middle and right panel) as a function of | at the nominal
level 0.05 (horizontal red dotted line). The vertical dotted line depicts an increase in amplitude with
a factor 1.78% (1 = 3). The thresholds for the relevant hypotheses corresponding to this amplitude
increase depicted in the three panels are respectively given by A = 0.044 (left), Ay, = 0.040 (middle)
and ) 5 =0.0025 (right).

Scenario 3: shift in the eigenfunctions. We generate {Xt}fT:1 from model with ¢ =.3
and (; =0, j = 1,2 and do the same for processes {Yt}thl. However, for {Y[}thl, 17 is varied
between 0 and 0.25. depicts the empirical rejection probabilities for the test of
relevant deviations between the spectral density operators ([Theorem 3.3) and between the
first eigenprojectors for a true shift of 1; = 0.075. This corresponds to A = 0.81
(@), A1 = A2 = 0.89 (b)-(c) and Ap3 = Am4 = 0 (d)—(e). Observe that (a) shows that the
rejection probabilities closely align with the prescribed theory, which is also the case for
the first and second eigenprojectors (b)—(c), albeit the second appears slightly oversized. To
understand what we observe in (c)—(e), it is important to note that the second eigenfunc-
tions become orthogonal at 0.150, the third at 0.150 and the fourth eigenfunctions become
orthogonal at 0.175, which is where the true distances for the eigenprojectors are equal to
2 and hence the rejection probabilities should jump to 1. This explains the jump from the
prescribed level of (approximately) 0.05 to 1 at t; = 0.150 and ¢; = 0.175, for the third and
fourth eigenprojectors, respectively.

Scenario 4: change in the strength of dependence. In the final setting, we generate {X;} th1
from model with ¢ =0 and (; =0, j = 1,2 and do the same for processes {Yt}thl but
here we vary ¢ from 0 to 0.6. In we depict the empirical rejection probablities
for the proposed tests of no relevant difference between the spectral density operators
and between the largest eigenvalues for a true change in depen-
dence of ¢ = 0.28. Also in this case, the graphs demonstrate good nominal levels and power
for sample sizes T = 128. Note that this is promising since we vary the strength of depen-
dence —which affects the amplitude of the peaks in the frequency distribution for the second
process— while we keep the bandwidth parameter and width of the frequency band fixed.
Hence, we expect for the eigenvalues test a larger error for larger values of ¢ in certain areas
of the integration region (in this model around frequency 0) due to some oversmoothing.
This could explain why the test for the first two eigenvalues are slightly undersized at the
boundary of the null hypothesis.
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Figure 4.3: Empirical rejection probabilities under scenario 3 for the relevant hypotheses in Section
(panel (a)) and Section and for the first four eigenprojectors (panels (b) - (e)) as a function of
t at the nominal level 0.05 (horizontal red dotted line). The vertical line illustrates the true shift 1, =
0.075. The thresholds induced by this shift are A = 0.81 (a), An,1 = An,20.89 (b-c) and A3 =Ana=0
(d-e).
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Figure 4.4: Empirical rejection probabilities under scenario 4 of the tests in (left panel)
and in for k = 1,2 (middle and right panel) as a function of ¢ at the nominal level
0.05 (horizontal red dotted line). The vertical line indicates the true strength of dependence given by
¢ =0.28. The corresponding thresholds are respectively given by A = 0.36 (left), Ay1 = 0.21 (middle)
and ) o = 0.07 (right).
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4.1 Application to resting state fMRI

Next, we demonstrate the methodology developed in this paper by an application to resting state
functional Magneting Resonance Imaging (fMRI) data. fMRI data allows to capture brain activity
and consists of a sequence of three-dimensional images of the brain recorded every few seconds.
Since the brain operates as a single unit of which we record the activity at a large number of spatial
locations, it is natural to model the brain as a function and hence the time record as a functional
time series, thereby taking into account the present temporal dependencies. The data we use are
publicly available as part of the 1000 connectome project (Biswal et al.,[2010). In order to avoid
differences in scanner types and locations, we consider testing for relevant differences for 6 sub-
jects of which the data was measured at a single site (Beijing, China). For each subject, the resting
state scans are comprised of 225 temporal scans, measured 2 seconds apart, where each temporal
scan consists of three dimensional images of size 64 x64x33 voxels. The fMRI data set for one of
the subjects is exemplary depicted in[Figure 4.5 In order to correct for technical effects such as
scanner drift, a polynomial trend of order 3 was removed from each voxel time series which are
voxel-wise normalized (see also|Worsley et al.}|2002).

Figure 4.5: Slices of the fMRI data set for one of the subjects.

The high-dimensionality of fMRI data and hence of the corresponding second order depen-
dence structure requires an efficient method to allow for the functional eigenanalysis. To make
this computationally efficient and to avoid spurious identifiability issues that come with alterna-
tive discretized matrix approaches (see Aston and Kirch, |2012, for a discussion), we shall assume
the functional component has a separable structure. The assumption of separable functions in the
context of brain imaging is commonly applied as a method to deal with the high dimensionality of
this type of data (see e.g.,Worsley et al.} 2002; Ruttimann et al.,|1998;/Aston and Kirch}2012;/Stoehr
etal.,[2019) To make this more precise in our set up, let ]_[l3.:1 % be a product of compact sets. Then
we model each fMRI data set as a functional time series {X;(71,72,73) : T; € %;,i = 1,2,3},e7 with
well-defined spectral density operator in Sg(l—[?:1 #;) that satisfies

5 - FRIB) =

where & )((‘"l) denotes the i-th directional spectral density operator which has a kernel function in

L% (& x &) that replicates across the other two directions. For example, the first directional com-
ponent has kernel given by

(w)(Tl»Ul) =— Z[ f Cov(Xp(1,72,73), Xo(01,72,73))dT2d 136" 71,01 € A,
ezt HJSA

The kernels of & )((‘”% and & )(("g are similarly defined. Let the eigenelements of &% )((wl) be denoted as

{/12“?(/)5.“})} i1 for i =1,2,3. Then the eigendecomposition of the operator in(4.3) at frequency w is
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Figure 4.6: Squared Hilbert-Schmidt norm of the estimator of as a function of frequency for
the 6 subjects (left) and the corresponding largest 216 eigenvalues averaged over [0,7/2) (right).

given by
(0]
F = Y Ay (4.3)
ikl=1
where the eigenvalues A;.“;C)l = /lg“’]) Aé‘f),z/lé‘:’l) are ordered in a descending manner, i.e., {/15.“;6)1} ikt \0
and where H;“,’C)l = gb(le) ® (/)é“’,g ® (,bg”l) is the eigenfunction belonging the jkI-th largest eigenvalue

at frequency w (see also . The sequential eigenelements can now be efficiently
estimated via consistent estimators of the sequential eigenelements of the directional operators
as given in (3.8). For example, the estimator of the first directional sequential spectral density
kernels is defined as

- o) (9Tl /nT] wéws);
Fm(ay,01) = —— ( — (Xs(T1,72,73)(X (01,T2,T3)), T1,01€5, (4.4)
X1 0Tl &\ & =, L, t
T3€S

where |.%#]| is the set of the discrete observations of the function in the i-th direction.

The raw data was converted into functional observations by using cubic b-spline functions on
[0,1]3. Estimators of the sequential sequence of directional spectral density kernels were obtained
using the same parameters as in the previous section and evaluated at a 100 equispaced grid of
[0,1]%2. We then investigated whether we could find evidence of relevant differences in the second
order structure of the different subjects by applying the three tests developed in Section
pairwise. Since the sampling rate of the data is 0.5 Hertz per second, we restrict our analysis to the
interval [0,7/2).

In Figure (4.6), the squared Hilbert-Schmidt norm of the estimator of is plotted as a func-
tion of frequency for each of the six subjects. We observe most signal in the low-frequency band
(<0.1 Hertz). The first 216 estimated eigenvalues averaged over frequences are given in the right
graph. For fixed frequency, these were obtained by taking the first T'/3 eigenvalues of each the di-
rectional operators, taking their kronecker product and arranging these in descending order. For
all subjects, a clear gap is present after approximately 2 to 3 largest averaged eigenvalues, which

then taper off slowly. Tables provides the p-values of the test statistics pleb! Iﬁ)l[{”ﬁ]’];z and

T’
Iﬁ)E{T’TIZ ]y'JIfz, respectively, for the specified relevant hypotheses. To clarify that the tests were conducted

over the frequency band [a, b], the hypotheses values are equipped with a superscript [a, b], e.g.,
we write Al%?!, For the testing frameworks of no relevant differences between the spectral density
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Figure 4.7: The first (left), second (middle) and third (right) estimated eigenvalues of as a func-
tion of frequency for the six subjects.

operator and between the eigenvalues, the thresholds Al*?! and A[f;.b] are specified based upon
the overall signal present in the data. ’

For the hypothesis of a relevant difference of at most A(g ;/2) = 1e—06 between the spectral den-
sity operators, we observe only between subjects 3 and 5 approximately a rejection at the 6% level,
but not for Ajg,z/2) = 2e — 06. When we restrict to the frequency band where most signal is present
(<0.1 Hertz), we find p-values less than 0.05 for subjects 3 and 5 and we find some marginal evi-
dence of relevant differences for between subjects 2 and 4 with a p-value of 0.11 for the hypothesis
Ajo,7/5) = 1le—06. For the first two eigenvalues, which are plotted in (4.7), we do not find evidence of
significant differences(Table 3), also not when we restrict to [0,7/5] or when we change the value
of AE{),';T/ 2 This appears to be caused by a relatively large variance.

More interestingly, provides clear evidence of relevant differences between the eigen-
projectors. The null of no relevant differences between the first eigenprojectors with A{%i’ =02
can be rejected for quite a few combinations at the 10% level and in particular for all those com-
binations with subject 1, for which the p-values are less than 0.07. The p-values corresponding to
the hypotheses A[r([)"f 2203 provides for some pairs less clear evidence of relevant differences in
the first eigenprojector. In case of the second eigenprojectors, we do however reject the null of no
relevant differences for both the hypotheses A}?,'g /2~ 0.2 and A[r([),’g /2 = 0.3 in most cases at a 1%
or 5% level. Except for the tests between subject 2 and 6, we in fact reject all cases at 10% level.
This behavior did not change when we restricted to [0, /5].

This preliminary analysis would indicate that differences in brain activity between subjects
might be driven by differences in shapes in their primary modes of variation. However, given
the complexity of the data a more detailed analysis and a longer observation length might be of
interest. This is however beyond the scope of this paper and is left for future research.

5 Proof ofTheorem 3.1

In this section, we prove[Theorem 3.1{and provide exact expressions of the constant 7 xy in terms

of the spectral density operators and the factorizations of %/ )((‘”) and %;‘“})( We remark once more

Y
that the exact expression of % )(;”; depends on the specific hypothesis under consideration. Since
(w)

S is separable, we can write GZ/)((‘”} SUyy ® Vg?)l)/ x and %;“?{ = ug?’l), v ® vg‘(")), y for some functions
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Hy: A0 = 1006 Hy: A072) = 20 06

2 3 4 5 6 2 3 4 5 6
10336 0328 0296 0269 0422 0.341 0.337 0.299 0.272 0.434
2 0.375 0.193 0.175 0.227 0.829 0.496 0.287 0.265
3 0.175 0.053 0.176 0.364 0.141 0.218
4 0.957 0.19 0.998 0.208
5 0.185 0.204

Hy: A5 =1e—06 Hy: A0S =2¢-06

2 3 4 5 6 2 3 4 5 6
10332 0326 0296 0265 0416 0.337 0.328 0.296 027 0.422
2 0.242 0.107 0.127 0.214 0.403 0.182 0.167 0.234
3 0.129 0.031 0.15 0.196 0.046 0.177
4 0.615 0.187 0.946 0.2
5 0.182 0.189

Table 1: p-values corresponding to the test in for the specified null hypotheses and
frequency bands.

Hy: ADTP =02 Ho:AD7'? =02
2 3 4 5 6 2 3 4 5 6
10001 0001 0061 0014 0.064 0.004 0.031 0.057 0.034 0.024
2 0.073 0314 0.289 0.465 0.006 0.001 0.007 0.195
3 0.043 0.122 0.131 0.004 0.007 0.029
4 0.583 0.375 0.019  0.004
5 0.278 0.056
Ho:ADT? =03 Hy:AD7'? =03
2 3 4 5 6 2 3 4 5 6
10002 0001 0132 0036 017  0.007 0.038 0.076 0.043 0.038
2 0.205 0.482 0.414 0.627 0.014 0.001 0.016 0.24
3 0.117 0.282 0.242 0.007 0.016 0.039
4 0.887 0.508 0.039  0.007
5 0.42 0.08

Table 2: p-values corresponding to the eigenprojector test (Theorem 3.5) applied to the first two
eigenprojectors for the stated hypotheses.

Ho: AT = (2 - 06)2 Ho: AV = (26— 06)?

2 3 4 5 6 2 3 4 5 6
10473 0342 0311 0264 0341 0446 032 0302 0.255 0.487
2 0.289 0239 0.234 0.214 0.295 0.204 0.206 0.204
3 0.304 0.184 0.241 0319 02  0.207
4 0.291 0.215 0.255 0.187
5 0.216 0.196

Table 3: p-values corresponding to the eigenvalue test (Theorem 3.7) applied to the first two eigen-
values for the stated hypotheses.
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(w) (w) (w) (w)

Uyy x> Uxy x Uxy,y Uxy y € Z€- In the following we denote

(@) ._ (,, (@) (w) (w) (W) T
Vxy = Wyy x®VUxy o lixy y ® UVxyy) (5.1)

which is an element of the Hilbert space J{ := Sy(A) & S2(A). To simplify notation, set u; :=
ug‘;’; ;and vy = v;"; ; for 1 € {X,Y}. The possible dependence of these functions on w and on
the component processes is then implicit. In order to prove we prove the following
statement in detail.

Theorem 5.1. SupposeAssumptions are satisfied. Let?&“{) € H bedefined by (5.1), w € R and
define
X0 ._ (X0, /51 7Y, 47T
'ZT,r)w'_ ('ZTl,Z)/ bl Tl"ZTg,L;/ bgTz) eXH
where Z. 1)51‘;; and Z. T); 2 are given by and (3.3), respectively.
i). Ifthe component processes of {X} are dependent, then

/ b X,w (w)
{77 b1T1+b2T2(fa §R(<zT,ﬂ Txy >%)dw}n€[0y1]W{Txyn[B(n)} ’

nelo,1]
where 1, = L—iff%[l“%(?;“’;) + Z%(V}g‘”})] dw with
ry(5”)=4n* 3 (<9};’)(u,-), w(F P W), v)) +(F L ), ui F P W), vy
l,je{X,Y}
200, (F 9 W, unF P W), v)),

and

@) . g2 () W F@ (. @) (. () ,
5 (Vyy)=an lje%:( Y}((?ﬁ’ W), uj(F) 7 W), vn) +(F) 7 (), updF 7 (vp), vj)

+2{o,n}(<9l(;f’)(uj), uz><9,(;f’)(vj), vl>)) ;

ii). If the component processes of {X;} are independent, then

[nVbiTi+ b T_z(fab %(<Z§hw’yg>w)d“’}ne[o,u - {n("—\% By () + \/Ti—e [By(n))}

nelo,1]

whereBy andBy are independent Brownian motions andv’ = 1 [T R (%) +29 (% )((’”%,)] dw,
with
FE&)) (%}((ay);) — 47_[2 ((gl(w) (ugw))’ ugw)><gl(w) (Ugw))’ v;w)>
1o (F W), u)F [ @), v™)),
and

zgw) (%}({a,);) — 47.[2 (1{()’7[} ((gl(w) (Uga))), U;w)> (gl(w) (ugw)), ugw)>)

HEFO @), uONF O W), v ).

Proofo The proof is involved and relies on several auxiliary results, which can be
found in [Appendix Bl We will only proof part i). The proof under independence follows simi-
larly by verifying the steps for each component process separately and using the independence
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to conclude it for the linear combination. Following|Assumption 3.4} we can ease notation in the
dependent scenario and write T := T} = T, throughout this section. Since we only assume very
mild moment conditions, it is not obvious how to obtain the distributional properties directly.
The principal idea is therefore to construct an approximating process of which the distributional
properties can be established and then show that the process limiting distribution is the same as
for the approximating process. Before we can introduce this process, we require some necessary
terminology. Let

X(tm) =E[Xlo(er,€-1,-..,€1-m)].

and define the #®2-valued stochastic process

1 o0
(w) T._ (m) (m) —it
o DY) 1= Wor ;)([E[X;fkvgk] ~EIX\") [ Fe_1])e 1, (5.2)
where %y = o (€, ...€k-1,...). Under Conditions|A.1/A.2} this process is an m-dependent stationary
martingale difference sequence w.r.t. the filtration {%k} in¥ %,@2 for each w € [—m, n]. Additionally,
consider the process

D .= (DY

mk

~

T
— (w) (w)
- ; Z br,t,s XY,s,t’ (5.3)

—_

-

(w) (w) (w) (w (w) 2 _ < (w) 2 AL
where 2y, (= (DXm : DXmS,DYmscaDYmt) and denote ¥ =yT fe=1 Wy, I Under
sumption 3.1} the process Wledﬂ}w)ﬂ is a martingale process in 29’;/2 with respect to the filtration

{@r} for p = 2. The above claims on the properties of and can be verified similar to
Proposition 3.2 and 3.3 of van Delft | (2019) noting that for any f = (f1, o) | € H, we have

I Fllae =MAlls, ) +If2lls, ) (5.4)

To construct the required approximating process, consider the arrays
(w) = ( ) (W) (w) (W) (W) (W)
w _ ~ (W w w ~ (W w w
Ny = Z‘i< brot,s 22XV 5,0 VX, Y > + Z <( Wy, 1 s2XY,5.1 ) ’7/X,Y>5H’ 2=1=T, (69
s=

and set N,(;")Tll =0 for all w € [-m,7]. The following statement then provides the distributional
properties of the (scaled) partial sum of the real part of integrated over the frequency band
[a, b]. The proof is tedious and postponed Section[A.3]

Theorem 5.2. Let N

m T , be defined as in and let 7/;"1), be defined as in (6.1). Suppose that
Assumptions([3.1{3.3 hold. Then, for fixed m,

ORI
%{ Z %(f Nm Ttdw)}ne[o,u ~ Tm,XY'{TI[B(ﬂ)}ne[O,H» (T = o0)

T t=1

wheret?, v =3 [, §R[F 7/(‘”))4—2‘” (V;“’%)]dw with
r;m(%?“)):mzl Y (@(‘*’) W), W F P, WD, vy +F ) (), uidF [ ), v)
,JEIX, Y}

+ 2{0,n}((gl(;f),,1(uj), ul><gl(;f)m(vj), Uz))),

27



and

Emy) =an® Y (<9‘j§’1n(uz),uj><9(“” W), i) +AF )9 (W), u(F ), (v, v)
1,jelX,Y}

-+-207[}(<=9~

@ W) unFD W), v)),

and where & )((“’12 m= [E(D(X“f)rn 0 D(‘”m 0)-

We shall use this result in order to derive the distributional properties of the process given in
We define the processes

LnTJ
=X, 2.4 (w)
ZLnTJ —nf Zm‘f]dw and  Mjyp = 7// methd‘”
br t=1
where
- 1 Tl InT] R LT -
Zhe = <Z (Z WY (X8 X, Y0¥ ~E(FL,FP) ),WX‘f’Y>%.

Let ds denote the Skorokhod metric on D[0, 1]) and dy the uniform metric and recall that (D[0, 1], ds)
is a metric space. Let F be a closed set of D[0,1] and denote Fjy, . = {x: ds(x,y) <€,y € F} Since
the Skorokhod metric is weaker than the uniform metric, we have

P({REZE )} e € F)
<P(d8({%(zmn)}ne[o 1)’ {%(ﬂmn m)}ne[o 1) = ) ({%(ﬁgﬂ,m)}ne[o,u€Fds,e)

= P(dU({m(anTJ)}ne[O 1 {m(/%LnTJ mteio,n) 2 6) ({Wﬁgn,m)}ne[o,u € Fds,e)

We will first prove that

,,llli%o h_{n P(dU({ngJ }ne[O,l]'{'/Zl?rgTJ,m}ne[O,l]) = 6) =0. (5.6)
By Markov’s inequality,
~ Y
(dU({ZLnTJ}ne[O 4, mineio,n) —6) s€ Y[E( sup ‘ZL)r(;TJ _/Z[gﬂ,mn ,

nelo,1]

where we take y > 2. We find

1

FX 2.4 Y
E( sup |anTJ —./%mTJ’m” SE( sup n
nelo,1] nel0,1] Ja

b 1 ] y
X0 (w)
s[E(f[Z nzt[z)pun (zmn Vi ; Nm,T,t)|dw)

y b ~Xw 1 nT] @) ¥
<b-a) f E( su Lo = — N dw, 5.7)
£ o (207 -5 2 Vi)

where the last inequality follows from an application of Jensen’s inequality to the integral since
Y > 1, and from Tonelli’s theorem, which allows to interchange the expectation and integral. Con-
tinuity of the Hilbert-schmid inner product with respect to the product topology on # ® /4 and
the Cauchy-Schwarz inequality imply for the integrand of

nT]

1 Y
X, (w)
( sup n (.Z -— N )U
n€lo,1] nT] Wor =1 mit
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[nT] InT] . . Y
=e{supn|( (X (X ), 060 X Yoo ¥ ~E(ER 0, F70) ) ) -1 ) %ﬁf“%%{))

[nT]  InTI

(Z W (X8 X, Yo V) —E(Fem), Fem) ) -.a,

1
SuPIIIV( Il
= (supIP )

T

where 4 L(“’% Im is as defined in (5.3). The statement in (5.6) then follows from in the
Appendix together with (5.4) and (5.7). Next, write the real part of a complex random variable as a
linear combination with its conjugate and apply the triangle inequality to find

X0 X,w (w) Y
[E(nzl[tpu |§R(z“’“) Ry, m)|) - [E(_nil[tpu ’zmn Aty m‘ Enil[tpu |zmTJ = nTym )
1 X0 X,w (w) Y
< —E( sup ‘Z - ‘ sup ‘Z - M ‘ .
(ne[o y ! i ) (ne[o,u In1) ™ inT1m )

Hence, it also follows from together with that

lim  lim P(dU({%(jéTJ)}ne[o,l]’{%(ﬁgﬂ,m)}ne[o,l]) = 5)

m—oo T—oo

I Y — ¥
< lim lim 7 b—aY—f [E( sup n|ZXe - a X ) +[E( sup n|ZXe - a X ) dw=0.
i Aim ( ) 2 ), { ne[OI,)l]n InT] InTl,m nE[OI,)l]n [nT) InTl,m }

Consequently, an application of yields

1im P{R(Z 1)y € F) = Jim lim P({RCA 1) ) e € Fay)

m—oo T—o0

= hngolP({rm,Xy-[B(n)}ne[o)H € Fds’e)

m—

= P({rxy : [B(m}nem,l] € Fd)

where the last equality follows by taking the limit with respect to m of 'y | and £ | to obtain the
limiting covariance structure (see Proposition 3.2[van Delft }[2019)). Taking ¢ | 0 we obtain,

RZ 7)) ~ { TxyB( )}
{ nT] }ne[O,ll Nt xy(n peion)
The result now follows from[Lemma B.4]in the Appendix and from noting that
V| L) T

xT WbT

N 7070 B s by el (1)))_1‘_0(7)_0(1)’

where we used that underlAssumption 3.2|7l/b2T =T Y p<r wbrh)* = b—TT(K2 +o(1)). O
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A Proofs of main statements

A.1 Proofs of statements from[Section 3|

Proof of Proposition|3.1, This follows from an adjustment of the proof of Theorem 4.1(ii) of[van Delft]|(2019)
for the value of ¢. Details are omitted. O

Proofo We have
b

b 2
rscnan- o) <e( [ s [, 00 -t

[E( sup
nelo,1]Ja

= [l s -

where the last line follows from Tonelli’s theorem. Observe that

— 2 A~ N
25 .00 - 1Mz @), < 2I0(F @ - FEWE + 200 F ) - 7L,

and that 5 nT 1= "—T MLTJ =% (% —1)+ . Jensen’s inequality and the Minkowski's inequality imply therefore
for the first term
inThl InTil 20y12)\21y
(w) (w) (w) _gw
g N s L
Tl  InTil 2/
D@ _ g@\[|I"""
cfesp [ 5ot o -
LTIT1J nTi)
n _ = (W) _ g 2
+nzl[f)?1] ‘ InT] 1‘([En€[0 . m T, = ( t; Wy, 5 (Xs ® Xo) = Fy )Mz)
2/(2+€)
_ O(l + Tl—l)(o(bl—l—e/Z TyZeTive?) 4 O(bf(zm)) e
= 0(b 1 T Y + 0(b?Y).
where we used and[Cemma B.1] In complete analogy, we obtain
. 2
E sup [In(#m -] = 0wz T H + 0w,
nel0,1]
The statement now follows from|Assumption 3.3[and|Assumption 3.4} O

Proof of[Theorem 3.2l The follows from[Lemma 3.1Jand[Lemma B.2|and from using that ¢ € C, ¢+t = 2R (c).
O

Proof of[Lemma 3.2 Recall the notation A, F® = ()~ *. We first consider (i). Observe that by Minkowski’s
inequality it suffices to show

b oo <9§(‘“)§Angﬁ§“)+ﬁ FeF 0L, ng‘(")> ne
() @ _ Jji' k Jji’
Sup H (n) HX k Z dw
nel0,1] ’ P 2@ )L(‘”) M(w )2 )
I . X,j"x,j X,k
{j,j'=k}
log?? (Ty)
P ( b T ) (A.1)
and
(g () 05 g @ () ()
b » w 0 <§ ®An§ +A FRF HY]] HY,k> HY]]
yrls My -y 2 @) @) @2
nel0,1] ) - ijfly] (/1 ) ,

{j,j'=kit

32



1 21y
P( Ogbz T(ZTZ) )

As the proof for both processes is the same, we shall focus on (A.T) and drop the subscript X in the following.
From Proposition[3.2} we have

e -n® = <n‘“(n) H;;’,n‘;;>n§§“)

1 0 g ® ® ne qw E@ @) ()
- ,2_1 m[((? BFY - F @I )M, M) >SZ+< e ]njj,,
{j'=ki
where
B9 o) =|FeeFe - Femase m)| [P -1 + (1@ m)° - @[ -1@]. @2

Elementary calculations yield
FOMBF () - FU8TFY = FU8(AgF?) + (8 F?)8FY + (A F )& (g F°).
Therefore, we will show that

A ~ A (W) 17(w) (w) (@) (w)
" . |(3,7°84,7)n ,Hjj,> <Ekbr(n),Hjj,>sz )
<H(;C)(T])—H(;:,Hw> H + Z 1@ 1@ _ 1 @)2
Pi'=1, i M)

U.j'=ki

sup n
nelo,1] a

dw
2

1 2/y
( oglg)T1 1({1))‘

By Minkowski’s inequality;,

b

(s, (s o),

sup 1
nelo,1] a

dw
2

(o]
ﬁw (TI) _ H(JJ’ H(L) H((U) +
< k k k >SZ k j,j,Z:L Asw) A,;L,U) _ (/'Lgcw))z
U=kt

<(g27”’(n) - F0)8(Fm) - F)NY, H;‘*]%2>Szn§f1;3

+
/l;w)/l;tf) _ (Agcw))z

2

<1—"[t]g(n) Hw Hw> H(w)

b
= sup n {
nelo,1] a

2

(w) (w)
(B, 0.00)
4 (W) 9 (@) _ ()2
jin, A -

' =kt

(w)

}dw. (A3)
2

We treat these terms separately. Firstly, observe that for any A, B € S, (#), we can write
ANZ-IBII5 =IlA - Bl + (A, B)s, + (A, B)s,.

Moreover, since [ITT¢ ) lll2 =IITT¢ ()l = 1 and

(fpon-mpmg) =162 -1 =1} 2 -1 = (figen -1y )

Rearranging terms yields <f[§‘c’(n) -1y, H‘,g>s =-3 |||f[‘;€’ (1) —TI]l3. We obtain using|Lemma B.5
2

b
E sup n
nelo,1] Ja

? (w)
(figep -mg,mg)  m

1 b
dw<E; f sup 71y o) - MYl dw (A4)
2 a nel0,1]
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b 4 .
<C f E sup Y nllFY ) - F s dw
a nel0,1]j=2

b N i
E( sup " (FE ) - F)lz) deo
a nelo,1]

4
<C)_
i=2

for some constant C > 0, where we applied Tonelli’s theorem in the second inequality. Consequently, from

Theorem B.1lwe obtain

by, . log?/7 (T) 1 1
E su m-n¢,n¢) 09| de=o0[—=——= (—=)=o .
ne[OI,Dl] N a ‘< k7 k> ="k >82 k 2 ( brT ) P brT ( /le T + ng TZ)

To treat the other two terms of (A.3), we first observe that

()()1 ()2:()()1 @ =C

w) 4 (W) _ w)\2 ) 9 (W) _ )2

(A7 =) IAAG = G

for some bounded constant C > 0. Let Gx ;. = infj.x |/1(;;’)k - )L(;;’)l | And observe that

/15.‘”)/1;.‘7’) S A@Y2 = ‘,1;@ (A=A + AP (A - AEg»))‘

We distinguish three cases. If 1 < 1; and Ay < )L;. are positive this is bounded from below by 2inf; A}‘“) Gx k-
By the reverse triangle inequality

’)L;“’)()L;‘f” — A +/1§:u)(/1;w) _;L;Cw))’ > ‘/15.“')|(/15.“,’) —A@)] —/155’)|(/1;’”) _Agcw))”
if Ay >Ajand A > /1’] then by the reverse triangle inequality

1A% - 2] - AL ] (A% - A)]| = A4[AL - AW + 29 21| | = 25|21 - 21| > infA{? G i

if Ap <Ajand Ag > /1’1. then under
A% 4] = 21287 - 2| = A (A% - A = | (A8 - 2|
> ;Lk(z,lk — A - A;“,’)‘ >0.

The same holds true for the case A > 1; and A < /1’].. By the Cauchy-Schwarz inequality and Holder’s
inequality for operators, we obtain

7 (.9 (@) ) (w)
e R R TOT

b
2
sup 7 dw
nel0,1] Ja )l;.w) /15.‘,0) — (Agu))z 2
<C sup 7 ’9“”(11)—9‘””) dw = O,,(Og—(l) = 0p(—),
neo,1] Ja 2 b, T Vb1, Ty +br, T>

where we used that the eigenprojectors are rank-one operators (and hence elements of S; (#°)) and where
the order follows from For the last term of (A.3), Parseval’s identity and orthogonality of the
eigenprojectors yield

F© ,H‘f‘f’>

X < k,bT(n) iJ' S2 (W)
L (@) 4 @) _ g2 i
J,J’=1,E Aj Aj/ ) 2
(j,j'=k}

b

sup 71 dw

nelo,1] a
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bex & ) @) @ e\ [A)?
<Csupn| (% ’ 2 <Ek:bT(n)’ij'>S <ij“nr:5>s.| ) dw
ne(o,1] a ‘rs=1 ]']":1, 2 2
.=kt
b
a

i o] .

<C sup 7 k.br

nelo,1]

We find using and Holder’s inequality

(w) (w) & () (w) > 2 2 (w) (w) > (W) ()2
e, @], = {217 1 0 - e 15 00 - 50 + S 00 - F S ) - 708
4 .
< C(IFL ) - F 40 ) - F L) = C Y I i) - F
i=2

for some constants C, C. Similar to (A.4), we thus obtain from|Theorem B.1
b (W) ~ 7 S > (W) ()i
[ |, do=<c f E( sup Y nliE m) - F ) do
a a nelo,1] j=2

4 b
SCZf E(
i=2va

log?’Y (T) 1 1
+ = .
bTT ) Op(bTT) 0(\/bT1T1+bT2T2)

This proves (i). The proof of (ii) follows along the same lines and is therefore omitted. O

Proof of[Theorem 3.4, Using it suffices to show that

CE sup n
nel0,1]

RSN i
sup lI"/! (F ) - F )l ) do.
nel0,1]

:o(

b <'Mn,k(n»w)’nMH'k(w)>Szdw + oP(;)

VbhiTi+b Ty
J, (Gt ) () ool )

To ease notation, denote

b —_—
f <MH,k(77,w)y17Mn,k(w)> dw +[
a S2

a

X0 _ gz X0 X0 = o7 (W) Yo _ (W) s Y0 Y0z o (@)
UTJ7 _,0}X ®ZT’n +ZT,17 ®9X and UT,n _gy ®ZT’H +ZT,n ®9Y . (A.5)

Using orthogonality of the eigenfunctions, we can write

b —_—
\/ le T + sz Tz/ <Mn,k(17,w),TIM(k) (w)> dw
a S2

b 1 00 1
bT1T1+bT2T2f (— ¥ (ufeng,ny. ) 0y n(ng,-n)) do
n XK X, X, M Xk Uy k
a \WbryTh iz, )L(;j)j,l(;(“’)j,_(;t(;g)k)z ul Ji') s, Xiji S
hi'=kit
—Jbr i+ b Tsz< 1 i 1 <UY,a)H(w) @ > n® n(H(“”—H(“’)» dw
Vo 2 N YK Y v Tk T vk
a ‘b, To i, A%}A%,—(A?’@Z n Ji'l sy Vi S
1j'=kt

X,017(w) (w)
/iag | BugaN U | ..,>
< Tm X,k "X,jj"/ s, ()

-1 b 0 ’ @
=1n\/br, Ty + br: Tz—f ny .1 dw (A.6)
1 2 /le T) Ja < j,j'Z:L A(w).ﬂ(w) _ (Agi(l)’)k)Z X,jj Y,k>52

X, j7X,j

,j'=kt
Yo )
uren@ >
< Tm Y.k’ Y,jj' /s, ()

-1 b > ; )
n br, T1 + b Tg—f E 1157 ., 11 dw. (A.7)
Vo 2 Vb Tr Ja < i, AYAY —@alyz K,

Y,jvy,

' =k
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To simplify the expression, observe that the properties of the Kronecker product and the Hilbert-Schmidt
inner product together with orthogonality of the eigenfunctions yield

<g(w)(¢(w) ZX“’(¢>(‘”) g?»)jj’>

=’1§f))<¢(§),)1<"/’(w)><‘/’()?,)]~ ;(nw((p(w) > A(w) <¢(§))jn ;(nw((P(w) >

for j = k and zero otherwise. Similarly,

X0 = gr(@)yp(w) (w) (w) X g (@) (w)
(87N ) =202 @50 9))

() 5 7 X,w\7@) (w)
<(g 873 )HXk,HX“>

for j' = k and zero otherwise. From this and (A.5), we obtain

X 1

X, 0 (w) (w) (w)
fj'zl LAY, (A(””k)2< Ao T3 08 )
= X

"=kt
;L(w) (w) ZXw (w) /1(‘”) ZXw (w) (@)
- <¢ P () +Z ( Tn ¢k (P] ! ()
: (@) 9 () (@) y2 ~X.kj' E (@) 9 (W) (@) y2 X jk
J'#k AXk/lX] -y 5 AX]AXIC Mx,k)
which means that the integrand of (A.6) becomes
/l(w) (w) ZX W (w) /1('”) ZX 0 (1 () (@)
@Y, Z <(w) 1) 4y AN’ >< o ) -
X ki X,jk " Yk/g, T
7k )L(;;”k/l‘}?’, (A(,‘;’,)k)z / g A~ AR’ ! >
/l(w)
(w) Xw (w) (w) (w) Xw (w) (w) (w) (w)
> (6, 25 @ ) + (250 @, el ) (e ) ]
j#kﬂg‘(u)k/lg?)] Mgf(tj)k)z i} J’Yk /s, i J J k/s,
whereas for its conjugate, which arises in <Mn,k(n,w),nM (k) (w)>s , we obtain
2
A
(w) Xw (a)) (w) (w) Xw (w) (w) (w) (w)
)3 (o 25 @) (I ) + (205 @0 () |
JAAY A ~ A ; s A ! ! %

Next, recall that for complex numbers ¢, ¢z € C, ¢ +¢1 = R(c1) +iS(c1) +R(c1) —iS(c1) =2R(cy) and R(c; ¢2) =
R(c1)R(c2) — S(e1)S(c2) and R(cicr) = R(c)R(c) + S(c1)S(c2). Therefore, summing the respective inte-

grands of <Mn,k(n,w),nM ® (w)> 5 and <Mn,k(n,w),nM & (w)> 5 yields

/l(w)
L '“M(w)k G (CRR L P RL N R (C A U D IR |
(a))
3 et AN 1), ) ), )
ﬂ,(w)

p: Agmgzvffmg?;gzl (2o (e, i) )l

The result now follows from doing the same for the integrand in and noting that (Z;(n‘” ((p(‘”)) ([)5.‘”)) =

<ZX w H(;(”)]k> and doing the same for the integrand in (A7). O

Proof of[Lemma 3.3, Similar to the proof of[Lemma 3.2} we can show (in this case using Proposition[3.3]and

Lemma B.5) that
Vb Ty + by T sup |||E;w,1b llzdo
nelo,1

converges to zero in probability using as T, T, — oo. The result then follows from The details
are omitted for the sake of brevity. O
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A.2 Perturbations of eigenelements - proofs of Proposition3.2/and[3.3]
Proof of Proposition[3.2 We write
FUMRFCM) = FUBFY +(F MBI () - FURFY)

=2, T2

and to ease notation we shall moreover denote f}’g ) = FYMSF® 1) and T =F “®F“. Observe that
we have the following decomposition

Fe=Y A}”)A;?’)H;“’)éﬂ;‘f’),
i

and note that
o) _ () 4 (@) (@) 5@ g _ g ) ) () ge)
FYO) = X AP AP (B0 ) = 4 A1 g,

B

Hence {HEC‘”I)} k,1 are the eigenvectors of 2. We would like to obtain expressions for A,]HEC‘”I) and A,,/lgc“’l) by

solving the equation
gw g} (@) W)y — (g ) (W) (@) (w)
(F8 + g ) Wy + Mg = Ay + Mg AL UL +AgI07)
&

o) o) w (@) w (@) _ 9 (@) ) (@) () () () () (w)
T Wy + B Fg Wy + TG Mgl + Mg Fg Byl = Ay Ty + A Ay Ty + A ATy + A Ay Mgl
<>

ol@) w (w) _ (@) 17(@) (@) () (@) w (@)
By Wy + Fg Al = By Ay Ty + A ATy + By Ay = B Fg) Ag Il

since gg Hz"l) = /156“’1) Hz"l) First note that AWHEC“’Z) is a well-defined element of S, (/). we can therefore use a

basis expansion to write

o0

(@) _ 1) o S n ()

A"lnk,l _HX,k,l(n) l_[X,k,l_ Zlan,mnnm
n,m=

where a',’,,m is a set of coefficients. Plugging this into the second term on the left and right hand side of the
above equation we have

o0 o0
Ul — (W) 71(w) (w) Ul (w) (w)
MpFEU + FE Y an T, = M AT + A Y ) TT, + (gAY = Ay FAGITY) . (A8)
n,m=1 n,m=1
Observe that orthogonality of the eigenfunctions yields

(o 0] [e.e] [e.¢] (e ¢}
Ui (@) _ (W) 17(0) 5 7(@) n (w) _ (@) N 7(w)
9§) Z an,mnlfm - Z Ar,s)n(r ®H.(S‘ Z an,mHan - Z /Ir,s ar,er,s .

n,m=1 r,s=1 n,m=1 r,s=1

and therefore becomes

(o8 o0
() () N ) — (@) @) (w) 1 (w) () ()
M FIILE + 3 A a U = Mg A TN + ) 3 a Iy + (g8 = D F ALY
rs=1 n,m=1

Taking the Hilbert-Schmidt inner product with HB.“}'.?, jEkj £

(o] [e.o]
o) () N ) ) _ (W) (@) ) (w) n (@) )
(apzemene) o+ 3 Al T = (A me) (A Py A )

(w) ® (@) )
(o)~ A )

which becomes
o )57 (w) N
<A,,§é ,l‘[j.j.,@l‘[k,l > + Aj,j,aj

' , k1’

_ (w) N (w) _ W (W) 7(w)
5 =0+29a" (gAY - A FE) AT H].j,>s2

S2
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rearranging, we find the coefficients are given by

1
n o _ _ o 1) 57 (w) _ w (@) p(w)
4.5 T J@ _ y@ [ <A’7‘§'ré’Hjj'g’nk,l>s2 * <(A"’1kyl A"‘%)A"Hk,l’njj’>sz]'
gt Mkl
If j=k,1=j', weset “Z,z = <ﬂl;c),l - H‘]‘C’,l, Ht’g,l>sz' The statement now follows. O

Proof of Proposition[3.3 In order to obtain an expression for An/lgc’”), write

FOm =FC+(FOm) -F9).
—_—

=N, F©
Since & “’H;C“’) = /IS;")HEC‘“), we obtain similar to the proof of Proposition|3.2|that

(@) @)y _ (@ (@) @ (@)
(F9+ 0 F )AL + A7) = (A + Mg A ) ALY + AT
<

ApFOTI + ZON Y = Ap AP TT + A AT + (A A = AT ) AT

And using again that Aan") =Y m=1 azy mHS;”% and taking the inner product with Hg")
o0
(apzemme) + (Y Aal, i, me)
2 r,m=1 2

o0
= (8P, (A Y @l ulli )+ (@A 8y F T )

+
S2 n,m=1

S2
which becomes, due to orthogonality
o) 7w (@) 1 _ (w) (@) 1 (w) 1} (w)
(apzeny,ng >sz+’1k a) = A A+ A al (gAY - 8y F ), AT >52
rearranging yields

A = (T ) -~ (g2 = 2y P01, T

2

— o 17w) (w) ® (@) )
= (87,11 >52—<(An/1k — Ay FO) AT, T >SZ.

A.3 Proof of Theorem 5.2
Proof of Theorem 5.21 First, observe that {N'“) |1 < ¢ < T} forms a (square integrable) ergodic complex-

m,T,t’
valued martingale difference sequence for each w € [-m,]. To ease notation, we shall sometimes denote

its integral in frequency direction over [a, b] by

b
Nm,1t =[ Ni(vl;),)T,tdw’ 2<t=<T. (A.9)
a

We derive the result by verifying the conditions of Corollary 3.8 of McLeish|(1974). Firstly, observe that by
Cauchy’s inequality and

dw
H

b b t-1
(w) (w) 7,(@) ()
fa[E|NmyTyt|dwSZSl:)pIIVX’YIIg{L [E”}lwb%m@”t‘s
s=

< 25up (2} llo + 112 )
w
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(w) (w) (w)
f (H)Zwbq-tsDth DXms

szsup(nm(“’ 2+ 1122 3 Ml2)
w

Jdw

(w) (w) (w)
‘ szthsDYmt DYms) ‘2

@) @ p@ 1/2 @) @ P |12
[ HDWMMHZ%T,S @) +HDWHH2[EHZwmey,ma ) o
= 2172 1/2
sCmtax(ZmbT,t,g) = 0(b7"%). (A.10)
s=1

for some constant C. Therefore, since T is fixed, Fubini’s theorem and the tower property imply that, for
any GS Y,

InT)
Z |[E[1Gf N dol| = Z ([E[f 1GNY, do |

E|E[GNY 19,1 ]dw‘

LGEN,,

Tl rb
= f E 9] |do| =0 vnero,1,

t=1"'Ja
where the last equality follows from the fact that {IV ("’T 1 =t < T} forms a martingale difference sequence
with respect to the filtration {¢4,}. We therefore obtain

Tl
Z’[E[ Ny dw]|9,1| =0 ¥TeNvne 1],

showing that condition (3.11) of McLeish| (1974) is satisfied. Next, we verify that the conditional Lindeberg
condition is satisfied. This is implied if we show that the Lindeberg condition is satisfied, which follows
almost along the same lines as in the proof of Theorem 3.2 ofjvan Delft |(2019). Therefore, we only give the
main steps. From Jensen’s inequality, Tonelli’s theorem and Lemma B.1 ofjvan Delft |(2019), we obtain

(8 b (w) ( ) (w)
w w w
> E <Zwb7,t5 XYts’VXY> d‘”)
=2
nT]

=LE
Z

P o) o) = @ o) (@) 2
~ (W w ~ (W . w
fa < 21 Wy s Dxy st > wa,t,ngY,t,s’VX,Y>}de‘

s=t—4m+1vl

b (w) @( ) 7/( ) 21”
~ (W w w
f < Z wa,l,S XY,t,s’ X,Y>j.(“
a s=1

U)TJ —1 o) o o )
w w )

+(b- a)f 2[E§ Y " ts@XY”,y’Y>}C) dw

= s t—4m+1v1
InT] 0 g oy 12 2
— Z Z ) ” »
—2 f < wa,tS XY,l‘,S"]/X,Y>5_f| d(l)+0(7VbT).
t=1+4m a

where we used in the last equation that O(Z—T) = O(szT)' It is therefore sufficient to focus on

Ln7] 2 T = @) @ 4w 2
~ (w w w
PO AP STIVERI =5 i 21 <Z W, DY) T ,Y>:Hdw) 1Ny ol |
t=1+4m t=1+4m s=1
o S©) g @) 2
w w w.
+2 Z { f < wa,s t@XYst) ,7/ny>g{dw| 1|NmyTyt‘>€}.
t=1+4m a

where we verify only the first term as the second is of the same order. Jensen’s inequality and in

turn yield under

1 LIS @ o @) 2
w w w.
7// Z [E{fu <Z br,ts@XYts’V ,y>j{d‘”| lle,r,z|>e}

. t=1+4m s=1
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-1 4
~ (W) (w) (w)
<Z b,,ts@XYts’y,Y>g_C| dw

s=1

C b InT]
Wbr a t=1+4m
b; InT]x>
=O( 2 . 2)0( 2
x=|nT]| b7

)=o0(1)

for some constant C. Using that |x +iy| = /|x+iy|2 = y/x2 + y2 and that (LR 101>} € (LN, 10 1>€) WE
thus obtain

nT] )
lim — Z E{ (RO, 1.0)° e, 1} =0,

T—oo W,

Finally, we verify condition (3.10) of [McLeish| (1974). Observe first that for the conditional variance, we
obtain

nT] LnT
7 L EINn P91 = [E[f N;;;')Ttdwf N, ]
LTITJ n

D[N, i

o AT T

m,T,t m T,t
l],l2 1
where Fubini’s theorem justifies, via an analoguous reasoning to the above, the interchange of integrals.

The conditions for Fubini’s theorem can be verified via a similar derivation as in (A-10), More specifically,
using the Cauchy-Schwarz inequality and exploiting uncorrelatedness of the increments we obtain in this

case
b rb
(w) 1) (w) N
fa fa [E)Nrg’TtNmTt|dwd/1<f \/[EINn‘;’TtIZdwf VEND, 2dA
(Cnmax lebT,ts| )1/2) = 0(b7h).

(w) (w)

To ease notation let u; := Uy and v; := Uy p l € {X,Y}. Using the definition of (-,-)5¢ and of (-, -)5,, we can

write
(w) 5 7 () (W) (w) (w) (W)
w) () () ) g () ()
Nt = Z b,,t§<9XYts’7/ ,Y>g_f+ br,s,t <(9xym) ’7/X,Y>3.C
s=1

= X Zwé";hs D WSVL D, )+ @y un, Dy, MDY, w1y

I,m,s I,m,t ILm,s
l(—:{XY}s
= ) D )y, w)+D (il ()
le{X,Y}
where we abbreviated
(w) - (w) Tw) . ~ () (w)
Dlmt(ul)' (D t,ul)and]m’bv_,[(vl). Z wy,, tlems’Ul> le{X, Y} (A.11)

By[Cemma B.7} we have

InT] 2 n
1 . (b—a) ..o N (b-a) N1 N
— Y lim E[ Ny N |9 B[Ny N |9
WbZT l;n_'m(ilz::l [ m,T,t mTt = 1] n2 waly [ m,T,t mTt = 1])
LT tim (L2905 ¥ (€D @D wpEr ) wols) )
= uj Vi

szr P /I e n At Lm,t Jjrm,t Uj m,br,t m,br,t
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( 1 ( 1 1 1 ( 1 ( 1 1 1
+ED 0 D wpET ) Tt (0p) +EDY D upET ) T ()
(wi) (w z) i ) i )
+ED ) D w)ELY T )
(b-a)? pln) @iy) wiy)
+ 2 g( lmlt( I)D]nft( ])[E]mb n )]mli )
11#1
ED“D (un D) (4 A ETC i) @) (g p@) ) TR wip)
+ED, , (Ul jmt(u]) ]mbr t(vl)]mb LD FED () ]mt(ul) ]mbT t(vl)]mb (U))
[ED(wzl D( 12 E ll) 12) . 1
HED I D wET ) i Tos) )+ 0,(1)

Furthermore, using and

E(D) un) (D) vj) = |Z i ue M =2m(F [ W), up,
klsm

(see proof of proposition 3.2 ofjvan Delft}[2019), we find

InT] )
— E[|N, G, _
" ; (1N, 7,11% 1]
InT] t— 4m 2
D> Y wibr(t—ys)) (b—a) & .
_ Zi=l+4m T . lim Z Z 4n2((9;;’;)1(uj),ul><9]u10n)1(l’l)’l’j>
DIFIND 3 1w(bT(t )= T R leX, v} ’
+(9;?Z(u1),uj><9l(;j§3l(vj)yU1>+2{0,n}((9l(}‘f)m(uj),ul><gl(7)m(”]) Vl))) +op(1)
InT]
= Zrn1+4m - 4m w(br(t - )" (Y(w))dw+0 (1)
I 1w(bT(t 97 Ja mUx e

where

Tym(x”) =4n* l% . (12w, N F ) W0, v+ F ) ), )} FD, ), )
IlE

20 ((F, W, unF 2, w0, w))

lj,m lj,m

For the conditional pseudo-covariance, Fubini’s theorem yields

T T
T tzl [(Non, 1,009,111 = tzl fN,‘;;”Ttdwf N}, 1,047
WE £ =

2
b
1 mTJfbf
S E
W =1Ya a

m,T,t

Ny N 1| 91| dwdr

3 et 222 8 e ]
br =1 i1=1 i1=1

Similarly to the conditional variance, we therefore find

1 Tl , Ztnﬂ-4mzt A (b (- 5))2 o
L N ) = = s f W2 ) dw + 0, (1).
-

where

GmVn)=an® Y (<9ﬁ”m(ul),up@}j’inwj),vl>+<f/7<“” W), N F ), i), vj)
Jle{X,Y}
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+ 20,0 ((F)¢

@, unF, wp,m))

By a change of variables and symmetry of the weight function in zero;

Z ZmTJ w(br(t—s))? _InT1 Xjn<inr) w(brh)?

I IZTIW(bT(t N T Ty wbrh)?

_InT] Yini<inr) Wby h)?
T Yin<| 0T w(bTh) + Y=L nT] w(brh)?

-1,

where we used that )

(= lnT0br w(brh)? = o(1/br), which follows from |Assumption 3.2| together with
=
or

where the latter implies |nT|br — oo as T — oo for any 7 € [0,1]. Therefore, we obtain
fixed m that -
Y X wbr (1= $)*  x(nT)/br

= +0(1).
DI 3 1w(bT(r )2 2T /by
Observe then that
Tl 1 nT , | T ,
2 [E[(gR(Nm’Tt) G¢-1] D) Z ([E[|Nm,T,t| |(gr—1) P Z ([E[(Nm,T,t) |‘§t—1])

t=1

which, together with the above, yields

1 InT] b
7 X LRV )11 =1 m( f I% W ) + 25, () do)
in probability as T — oo. The result now follows. O

B Some technical results and auxiliary statements

Lemma B.1 (Maximum of partlal sums). Let {X;}iez satlsjj/ Conditions[A.T{A.2 with p = 4+ ¢ and let the
complex-valued array {wb S z} s.ren be defined through 3.4). Furthermore, supposeAssumptzon and As-

sumption . for some ¢ = 1 are satisfied. Denote the spectml density operators of {X;} by F“) and consider
the partial sum process

oo st
Then
bl 0,0og" (1)) ifi=1/2.
max LIS} - kIl = plog T i
1<k< 0p(1) ifi>1/2,
wherey =2+¢/2.
Proof. Proposition[3.1]implies
vk

1
%IIIS‘,‘C’ —-ES¢ll2=0 ) = lISg-ESRll2=0p(—=), 1<ks=T

1
p( NG r ~ESk NG
and also E[ISY —ESPIIZ* = IS¢ —ESPI%S . = Oy €2k /), e,
IS —ESYI2* = 0, (b7' ~e/2l+el2y
Note moreover that, under the conditions of Proposition NESY — kF 2 = O(b’} k) and thus

|||[ESw k9w|”2+e O(b[(2+€)k2+e)
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Lety=2+eand a =1+¢/2. Since, forany 1< k< k+[=<T,
B+ =1+,
Condition (1.1) of Theorem 1 of|Moricz|(1976) is satisfied, from which we obtain
E( max ISy ~ES¢ll2)" = O(by' 2 T1+e2),

By standard arguments, we have for 1/2<i<1

1-i

max —IIIS‘“ kF°lla < by max max —IIIS“’ kF 2
1<k<T 1<j=<clog(T) pi-1<k=pi k!
<by" max B UV max ISV - kF I,
1<j=<clog(T) Bi-1<k=pi
since x~!/2 is a decreasing function of x. Hence, we obtain

1-i
P( max ——[IS? - kF®|l, > ¢
(lsksT i lI1S% l2 >€)

a ,)clog(T)
= IV
Sb? Z ﬁ (J l)plE p[E[( maX|||SL,§—k9w|||2)p]
j=1 1<k<p/
1o 18D /2 ¢
<P Z fU=Dpig=pop- l[c BIP2p P 1+ CypIPD 7"]
j=
1™ i i) p/2—i i i) . p(L—i+l
< pPi Z £_p2p_1C3[ﬁ]p(1/2_l)b¥( _U+ﬁ]p(1_”b§7.( -i+0)]
j=1

Plugging in b = T~¥ and noting that 8/ < T for all 1 < j < clog(T), this is bounded by

clog(T) clog(T)
Z e P2r-lc, Tp/20-K)-i(1~ K))+ﬁpl Z e Pop- 1C3T’”(1 i-x(1- l+€)) (B.1)
j=1 j=1

Observe that if i = 1/2, we can bound the first term by choosing € = c,log™ /P (T) for some sufficiently large
constant c;. The second term can in this case be bounded by a constant if blT’r” T=0Q1),ie.,ifx=1/1+2¢)
and is of lower order if x > 1/(1 + 2£). It follows therefore that under the conditions of

\/_
12keT NI

Consider then the case i > 1/2. Let us first look at the second term of (B.I). Observe that bl‘”[ Tl_i =0(1),
ie,ifx =0-19)/(1-i+¢) and is of lower order if x > (1 -1i)/(1—i+¢). Since (1/2+[) > a H[ for any
1/2 < i <1, we obtain (1-1i) < k(1 - l +£) for any 1/2 < i < 1 under the conditions of since
the latter assumption requires x = g /2 + Tz - Observe also that the exponent of T in the first term of (B-Ibis
negative for 1/2 < i < 1. Recall then that an application of Hopital’s rule yields

. log(m) .. 1T 1
lim = lim im —0 p>0.
T—oo TP  T—infpTP~ T~ oo oT

—kZ°llz = 0,(log"Y (T)).

It follows thus that, for any €, both terms converge to zero under the conditions of Hence,
by .
maxj<p<T %IIIS‘,@ —kF°l2 = 0,(1), for i >1/2.

O
Theorem B.1. Suppose Assumptions[3.1}{3.3 are satisfied. Then,

“w Op(log'"(T)) ifr=2.
ne[()l,)l] a

Ur @ _ gonll 4, -
(Fx ) -Fy )mzdw op(1) ifr>2,

for somey > 2.
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Proof. We have

1/r(§)((w)(17)—gf“)((w))m;dws[EL nil[tpl]|‘|n1/r(g(w)(n) g:(w))m dw

E sup
nelfo,1]Ja

<([[e p 5 - o]

where we applied Tonelli’s theorem and Jensen’s inequality in the second inequality. We remark that the
integrand on the right-hand side is measurable. Observe then that

,r’l/l’ 5 1 (T]T)l/r b%‘/r
nT] blT/rT”’ (InTHYT (InTH-Yr

where, similar to the proof of| we can set —=— L T 7=0 forn < 1/T as otherwise the term is zero. Then
using (B.5) and a change of variables i =1 —1/r, therefore yields forn=1/T,

nl*i ~ 1 (T]T)lii b%‘_i

__ ' L o(r,
nTI b T= (InTHY (InT))!
The result then follows from[Lemma B.Tand Minkowski’s inequality. O
LemmaB.2. Let ,’Z%T’;” and ,Z%/T;” be defined as in and let U%\") € Sp(F€), then
b, Zw 1
Sup |, <n(?§(‘”) m-FE), n%““)dw f < U >dw) = OP(\/ﬁ); (B.2)
nil[%)l,)l] ab <n(9Al(,‘”) m —91(,‘”)),17021(“')>dw / <\/_,17021(‘”)>dw) = OP(\/ﬁ). (B.3)

Proof. We prove only as (B.3) follows similarly. Note from the definition of Z 7{(110) and the triangle
inequality, it suffices to show that

nT

z5e, 021(‘”)>(dw oP(;). (B.4)

vV b1 Ti + by T

_1H<\/ﬁ

The Cauchy-Schwarz inequality implies

nelo,1]Ja

E ] (w) X;® X eg,z(w) %(w) d
nil[g)l] a LTIT H<Tl szl(; by st K5 ® ) ) >‘ @

Tl InTh]

77
< oo [ e[ e g 3 (3 ot oo a2 s e

Observe that for n < 1/T, the summation is identically zero, while the approximation to the floor function
is identically zero for n = 1/T. Hence, we only we only have to consider the case where n > 1/T. The
approximation error of the floor function is in this case given by

1
su = su — | =0Q0/T). (B.5)
ne(l/rT),l]‘ InT] ‘ ne(l/rT),l]‘ InT] ‘

Then, using additionally that sup,, |||7)°21 G |||2 < C for some constant C, we find

77T1J (nT1)

<) [ ® s [l 3 (% ot o600 2) | o
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77T1J InThl

= E s ll7; 3, (5 atonoxo-s)) "

1 _
= o()olr b1 + 1)
T

where we used Jensen’s inequality in the last inequality and where the last line follows from and

IAssumption 3.4 O

Lemma B.3. Suppose Assumptions ﬂ- are satisfied. Denote 97(‘“) =k~ lzkt 1 0 (X ® X;) and let
)

br,s,t
M}((w])cm =k7! Zs —1 g")s , Dg‘(")ms where{Dg‘(”)m J isgivenby G.2). Then, foranyl<k<T

m—oo r_ o I<k<T

lim hmsupW—[E( max “)k(j}iw)_[Eﬁl(cw))—M]if") Jﬁ(m)m )
br

fory>2.

Proof of[Lemma B3 From the proof of Lemma 3.3 of van Delft | (2019), applied to the sequential spectral
density estimators, we have

(st -estr-aa-azl)

vk
< \/—b_TKKz,,YZp m Z Vizp(X) +lw©0)VE tZOvH 2p(Xy)

+ 1 X0l 5y m*V(max | w(br 1) +mZ|w(bTh) w(br(h-1)P)"?,
h=1

where Yo, = 2Y.52 min (vig2p (X0, X2 vE 2]g(Xi)). Observe that the conditions on the weight function
(See also Theorem 4.2 of(van Delft, 2019)imply thatwe obtain

e 2 -t =[] = €0 B Y 2 R 00 0 ) Y,

for some positive constant Cy. Since m and by are fixed, it is straightforward to see that the condition (1.1)
of Méricz, (1976) is satisfied for any y > 2. Therefore, Theorem 1 of Méricz, (1976) implies for y > 2,

@ _ g (@) Hw) Y12 =Y I2+Y yi2 o oyayi2g L y/2
[E(quHk(? EF) ot -t} ) = 0 b YL 4 TR P T (o, )+ m)"™).

Consequently, since by — 0as T — oo,

Jim_limsup bLT™ Y[E( max

|‘k(ﬁ,ﬁw)—mﬁ,§w))—ﬂ,§‘” -, )

-0 T_.co 1<k<T
= lim llmsupbsz YIZO(TV/Zb Y2y m¥ TV + m* 77" (o( )(1+m))7//2
M= T .00
/2 e
= lim limsup O(T 2772y}, + b’} T Y’ZTY’Z)

T—o0

/2
+ lim limsup O(m® b} * 1~ Y’ZTV’z)O(b )Y =0,
T

X Toxo
where we used in the first line of the last equality that lim,;,—.o ng' m=0. O

Lemma B.4. Suppose Assumptions[3.1}{3.3 hold. Then, foranyl1<k<T;,

) Vb, T1 + by, T /b ko
1 MSU T1 Z(Z () (X5®Xt)_g;())’%)((ag/>5:0'

im p max <
T1,T,—o00 vbr,Th w 1sksTy s=1'r=1 Wr,s o
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Proof of[Lemma B4 For any 1 < k < T;, we obtain using the Cauchy-Schwarz inequality and Proposition
B.I

sup max
w 1=<k<sT

et (i onen- syl i, - s oot

_ O(b“”zT”Z),

which goes to zero for bandwidths satisfying satisfying [Assumption 3.3| The result now follows from
O

Lemma B.5. Let & ©) pe the spectral density operator of a weakly stationary functional time series {X;} ez

Xk Xk
eigenprojectors, respectively, of the sequential estimators 9)((‘”) (n), ne0,1] ofg)(("’) as defined in (3.8). Then,

under Assumption|3.11{3.3,

(l) H‘H(w) (7]) HE’?),)ICMz < ZGX,IC“lg(w) (n) _ g}({ﬂ))mz + |||g(w) (n) g(w)le
X k

(i) | A m)? — AL?| < CIFL ) - F & o +IL ) - F 11,

with eigendecomposition 332, A9 e Let{ A (n)} { ne (n)} o1 be the sequence of eigenvalues and

where Gy i = infjz |/1(;’) /1("’1| and were C = 0 is a bounded constant.

Proof. fl(;;’)k (m) and /1('”) (1) are, respectively, perturbed eigenprojectors and eigenvalues of H(’”) and /1(‘”)
For (ii), we note that

| AL = A2 =22 A =25 + |4 =A% || - A |

where we used that the eigenvalues are real. Since F )((‘”) (n) is a sequential consistent estimator of & )((‘”) under
Assumption the results now follow similarly to the proof of Propsosition 4.1 ofjvan Delft |(2019). O

Lemma B.6. [(van Delft,|2019, Lemma A.1)] Let /€ be a Hilbert space and let M=, € :5;; be a martingale
with respect to ¢ with {Dy} denoting its difference sequence and let {Ai}k=1,.,n € Soo(F). Then, for q =
min(2, p),

n q
Y Ax(Dy)
k=1 H,p

whereKq (p* = 1)29P=VIP with p* = max(p,

n
<K ICZI|||Ak|||Zo||Dk||;jL,,

p
1)
LemmaB.7. Let {@5?’1), 51} bedefined as in (5.3). Then, under
T -1
=o(v T/br).

(D SR

t=2s=t-4m+1vl

Proof. By definition of H, we can write

2
|| > ¥ Wy PX,5. 3¢

t=2s=t—-4m+1vl

2
— = (W) (w)
[EH Z Z W5, 2XY 5,1

=2 s=t—4m+1v1 3

2
23]y 5l 0,008,

i=1 t=2s=t—-4m+1vl

By orthogonality of the increments, and Jensen’s inequality, we obtain for fixed m,

2 2 T t—1 2
= () (w) (w) (w) 7, () ()

Z “ Z wa,s, (DXl,m s DXi,m,s) 76 = Z Z [E”DX ,m, t”Jf’i[E Z wa,s,tDXi,m,s 2

i=1 "t=2s=t- 4m+1v1 Loj=1t=2 s=t—4m+1v1 i

4mt-1 T t—1
—2K42||D<w>m0||H 4(22 o P Y Y @ P)=o(T/by),

i= t=4m+1s=t—-4m+1
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Lemma B.8. Letfm . be defined as in (AT1) and suppose is satisfied. Furthermore, assume

A £A #0 mod2n Thenforanyu,veif
T - "
Z IEJ mllg t( )]mzb) t(V)|=0(T/bT).
t=1+4m

Proof. This follows from a slight adjustment of the proof of Lemma B.3 ofvan Delft|(2019). O
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