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Abstract

In this paper we introduce quantile cross-spectral analysis of multiple time series
which is designed to detect general dependence structures emerging in quantiles of
the joint distribution in the frequency domain. We argue that this type of depen-
dence is natural for economic time series but remains invisible when the traditional
analysis is employed. To illustrate how such dependence structures can arise be-
tween variables in different parts of the joint distribution and across frequencies,
we consider quantile vector autoregression processes. We define new estimators
which capture the general dependence structure, provide a detailed analysis of their
asymptotic properties and discuss how to conduct inference for a general class of
possibly nonlinear processes. In an empirical illustration we examine one of the
most prominent time series in economics and shed new light on the dependence of
bivariate stock market returns.

Keywords: cross-spectral density, quantiles, dependence, time series, ranks, cop-
ula
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1 Dependence structures in quantiles of the joint dis-

tribution across frequencies

One of the fundamental problems faced by a researcher in economics is how to quantify
the dependence between economic variables. Although correlated variables are rather
commonly observed phenomena in economics, it is often the case that strongly correlated
variables under study are truly independent, and what we measure is mere spurious
correlation (Granger and Newbold, 1974). Conversely, but equally deluding, uncorrelated
variables may possess dependence in the different parts of the joint distribution, and/or
at different frequencies. This dependence stays hidden when classical measures based on
linear correlation and traditional cross-spectral analysis are used (Croux et al., 2001; Ning
and Chollete, 2009; Fan and Patton, 2014). Hence, conventional models derived from
averaged quantities as estimated by traditional measures may deliver rather misleading
results.

In this paper, we introduce a new class of cross-spectral densities that characterize
the dependence in quantiles of the joint distribution across frequencies. Subsequently,
related quantities to which we will refer to as quantile coherency and quantile coherence
are similarly defined and motivated as their traditional cross-spectral counterparts. Yet,
instead of quantifying dependence by averaging with respect to the joint distribution,
the new measures detect common behavior of variables in a specified part of their joint
distribution. Hence, they are designed to detect any general type of dependence structure
that may arise between variables under study.

Such complex dynamics may arise naturally in many (possibly multivariate) macroe-
conomic, or financial time series such as growth rates, inflation, housing markets, or
stock market returns. In financial markets, extremely scarce and negative events in
one asset can cause irrational outcomes and panics leading investors to ignore economic
fundamentals and cause similarly extreme negative outcomes in other assets. In such
situations, markets may be connected more strongly than in calm periods of small, or
positive returns (Bae et al., 2003). Hence, the co-occurrences of large negative values
may be more common across stock markets than co-occurrences of large positive values
reflecting asymmetric behavior of economic agents. Moreover, long-term fluctuations in
quantiles of the joint distribution may differ from the ones in the short-term due to differ-
ing risk perception of economic agents over distinct investment horizons. This behavior
produces various degrees of persistence at different parts of the joint distribution, while
on average the stock market returns remain impersistent. In univariate macroeconomic
variables, researchers document asymmetric adjustment paths (Neftci, 1984; Enders and
Granger, 1998) as firms are more liable to increase than to decrease in prices. Asym-
metric business cycle dynamics at different quantiles can be caused by positive shocks
to output being more persistent than negative shocks (Beaudry and Koop, 1993). While
output fluctuations are known to be persistent, Beaudry and Koop (1993) document less
persistence at longer horizons. Such asymmetric dependence at different horizons can be
shared by multiple variables. Because classical, covariance-based approaches only take
averaged information into account, these types of dependence fail to be identified by tra-
ditional means. Revealing such dependence structures, quantile cross-spectral analysis
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Figure 1: Illustration of dependence between processes xt and yt with Cov(xt, ys) = 0; with
(εt) i.i.d. N(0,1) we have in (a) xt = εt and yt = ε2t , in (b) xt = εt and yt = ε2t−1, and
in (c) xt, yt ∼ N(0, 1) independent. All plots show real parts of the quantile coherency for
τ1 = τ2 ∈ {0.05, 0.25, 0.5, 0.75, 0.95} quantiles.

introduced in this paper can fundamentally change the way how we view the dependence
between economic time series, and open new possibilities for the modeling of interactions
between economic and financial variables.

Three toy examples illustrating the potential offered by quantile cross-spectral anal-
ysis are depicted in Figure 1. In each example one distinct type of dependence is con-
sidered: cross-sectional dependence in (a), serial dependence in (b), and independence
in (c). We consider two processes that possess the desired dependence structure, but
are indistinguishable in terms of traditional coherency. In the examples, (εt) is an inde-
pendent sequence of standard normally distributed random variables. In column (a) of
Figure 1 the dependence emerging between εt and ε2t is depicted. It is important to ob-
serve that εt and ε2s are uncorrelated.1 Therefore, traditional coherency for (εt, ε

2
t ) would

read zero across all frequencies, even though it is obvious that εt and ε2t are dependent.
From the newly introduced quantile coherency, this dependence can easily be observed.
More precisely, we can distinguish various degrees of dependence for each “part of the
distribution”. For example, there is no dependence in the center of the distribution
(i. e., 0.5|0.5), but when one of the quantile levels is different from 0.5 the dependence
is visible.2 In this example the quantile coherency is constant across frequencies, which
corresponds to the fact that there is no serial dependence. In column (b) of Figure 1
the process (εt, ε

2
t−1) is studied, where we have introduced a time lag. Intuitively, the

dependence in quantiles of this bivariate process will be the same as in example (a) in
the long run, referring to frequencies close to zero. With increasing frequency, depen-
dence will decline or incline gradually to values with opposite signs, as high frequency
movements are in opposition due to the lag shift. This is clearly captured by quantile
coherency, while the dependence structure would stay hidden away from traditional co-
herency, again, as it averages the dependence across quantiles. We can think about these

1This holds for s = t due to the symmetry of the marginal distribution and for s 6= t due to the
independence of (εt)

2Note that all plots show real parts of the complex-valued quantities for illustratory purposes.
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processes as being spuriously independent. To demonstrate the behavior of the quantile
coherency when the processes under consideration are truly independent, we observe in
column (c) of Figure 1 the quantities for independent bivariate Gaussian white noise,
where quantile coherency displays zero dependence at all quantiles and frequencies, as
expected. These illustrations strongly support our claim that there is need for more
general measures that can provide a better understanding of the dependence between
variables. These very simple, yet illuminating motivating examples focus on uncovering
dependence in uncorrelated variables. Later in the text, we provide a data generating
process based on quantile vector autoregression, which is able to generate even richer
dependence structures (cf. Section 4).

Quantile cross-spectral analysis bridges two literatures focusing separately on the
dependence between variables in quantiles, and across frequencies. It thus provides a
general, unifying framework for estimating dependence between economic time series.
As noted in the early work of Granger (1966), the spectral distribution of an economic
variable has a typical shape which distinguishes long-term fluctuations from short-term
ones. These fluctuations point to economic activity at different frequencies (after removal
of trend in mean, as well as seasonal components). After Granger (1966) studied the be-
havior of single time series, important literature using cross-spectral analysis to identify
the dependence between variables quickly emerged (from Granger (1969) to more recent
Croux et al. (2001)). Instead of considering only cross-sectional correlations, researchers
started to use coherency (frequency dependent correlation) to investigate short-run and
long-run dynamic properties of multiple time series, and identify business cycle synchro-
nization (Croux et al., 2001). In one of his very last papers, Granger (2010) hypothesized
about possible cointegrating relationships in quantiles, leading to the first notion of gen-
eral types of dependence that quantile cross-spectral analysis is addressing. The quantile
cointegration developed by Xiao (2009) partially addresses the problem, but does not
allow to fully explore the frequency dependent structure of correlations in different quan-
tiles of the joint distribution.

Although a powerful tool, classical (cross-)spectral analysis becomes of limited use in
many situations. Relying entirely on means and covariances, it is not robust to heavy
tails, cannot accommodate infinite variances, and cannot account for conditional changes
in skewness or kurtosis, or dependence in extremes – features often present in economic
data. Several authors aimed at a robustification of the classical tools against outliers (see
Kleiner et al. (1979) for an early contribution, or Chapter 8 of Maronna et al. (2006) for
an overview; a weighted “self-normalized” periodogram was introduced by Klüppelberg
and Mikosch (1994); parameter estimates in time series models, based on the traditional
spectra, were obtained from a robustified periodogram by Hill and McCloskey (2014);
Katkovnik (1998) introduced a periodogram based on robust loss functions). Recently,
important contributions that aim for accounting of more general dynamics emerged in
the literature.

Measures as, for example, distance correlation (Székely et al., 2007) and martingale
difference correlation (Shao and Zhang, 2014) go beyond traditional correlation and in-
stead can indicate whether random quantities are independent or martingale differences,
respectively. For time series, in the time domain, Zhou (2012) introduced auto distance
correlations that are zero if and only if the measured time series components are inde-
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pendent. Linton and Whang (2007), and Davis et al. (2009) introduced the (univariate)
concepts of quantilograms and extremograms, respectively. More recently, quantile cor-
relation (Schmitt et al., 2015), and quantile autocorrelation functions (Li et al., 2015)
together with cross-quantilograms (Han et al., 2014) have been proposed as a fundamen-
tal tools for analyzing dependence in quantiles of the distribution.

In the frequency domain, Hong (1999) introduced a generalized spectral density. In
the generalized spectral density covariances are replaced by quantities that are closely
related to empirical characteristic functions. In Hong (2000) the Fourier transform of
empirical copulas at different lags is considered for testing the hypothesis of pairwise
independence. Recently, under the names of Laplace-, quantile and copula spectral den-
sity and spectral density kernels, various quantile-related spectral concepts have been
proposed, for the frequency domain. The approaches by Hagemann (2013) and Li (2008,
2012) are designed to consider cyclical dependence in the distribution at user-specified
quantiles. Mikosch and Zhao (2014, 2015) define and analyze a periodogram (and its
integrated version) of extreme events. As noted by Hagemann (2013) other approaches
aim at discovering “the presence of any type of dependence structure in time series data”,
referring to work of Dette et al. (2015) and Lee and Rao (2012). This comment also ap-
plies to Kley et al. (2015). In the present paper our aim is to extend the most general of
these approaches to multivariate time series, so that it can be employed in the analysis of
not only the serial dependence of one, but also for the joint analysis of multiple economic
time series.

While our main motivation for the development of the quantile cross-spectral anal-
ysis was to provide a tool to measure general dependence structures between economic
variables that previously remained hidden from researchers, our results also constitute
an important step in robustifying the traditional cross-spectral analysis. Quantile-based
spectral quantities are very attractive as they do not require the existence of any mo-
ments, which is in sharp contrast to the classical assumptions, where moments up to the
order of the cumulants have to exist. The rank-based estimators proposed in Section 2.4
of this paper are robust to many common violations of traditional assumptions found in
data, including outliers, heavy tails, and changes in higher moments of the distribution.
As we motivated earlier, it is even possible to reveal the dependence in uncorrelated data.
As an essential ingredient for a successful applications, we provide a rigorous analysis of
asymptotic properties and show that for a very broad class of processes (including the
classical linear ARMA time series models, but also important nonlinear models such e. g.,
ARCH and GARCH), properly centered and smoothed versions of the quantile-based
estimators converge in distribution to centered Gaussian processes. Based on these re-
sults, generalizing univariate quantile spectral analysis of Kley et al. (2015), we construct
asymptotic pointwise confidence bands for the proposed quantities.

In order to support our theoretical discussions empirically, we study the dependence
in one of the most prominent time series in economics – stock market returns. Quantile
cross-spectral analysis of bivariate stock market returns detects commonalities in quan-
tiles of the joint distribution of stock market returns across frequencies. We document
strong dependence of the bivariate returns series in periods of large negative returns,
which varies over frequencies. Positive returns display less dependence over all frequen-
cies. This result is not favorable for an investor relying on traditional pricing theories,

5



as he/she may want exactly the opposite situation: choosing to invest to a stock with
independent negative returns, but dependent positive returns. Our tool can reveal if
such systematic risk exists in quantiles of the joint distribution in the long-, medium-, or
short-run investment horizons.

2 Quantile cross-spectral quantities

2.1 Quantile cross-spectral density kernels

Throughout the paper (Xt)t∈Z denotes a d-variate, strictly stationary process, with com-
ponents Xt,j, j = 1, . . . , d; i. e. Xt = (Xt,1, . . . , Xt,d). The marginal distribution function
of Xt,j will be denoted by Fj, and by qj(τ) := F−1

j (τ) := inf{q ∈ R : τ ≤ Fj(q)}, τ ∈ [0, 1],
we denote the corresponding quantile function. We use the convention inf ∅ = +∞, such
that, if τ = 0 or τ = 1, then −∞ and +∞ are possible values for qj(τ), respectively. We
will write z for the complex conjugate, <z for the real part and =z for the imaginary
part of z ∈ C, respectively. The transpose of a matrix A will be denoted by A′, the
inverse of a regular matrix B will be denoted by B−1.

As a measure for the serial and cross-dependency structure of (Xt)t∈Z, we define the
matrix of quantile cross-covariance kernels, Γk(τ1, τ2) := (γj1,j2k (τ1, τ2))j1,j2=1,...,d, where

γj1,j2k (τ1, τ2) := Cov
(
I{Xt+k,j1 ≤ qj1(τ1)}, I{Xt,j2 ≤ qj2(τ2)}

)
, (1)

j1, j2 ∈ {1, . . . , d}, k ∈ Z, τ1, τ2 ∈ [0, 1], and I{A} denotes the indicator function of the
event A. This quantile-based quantities and the ones to be defined in the sequel are
functions of the two variables τ1 and τ2. They are thus richer in information than the
traditional counterparts. We have added the term kernel to the name for the quantities to
stress this fact, but will frequently omit it in the rest of the paper, for the sake of brevity.
For continuous Fj1 and Fj2 , these quantities coincide with the difference of the copula of
(Xt+k,j1 , Xt,j2) and the independence copula. Thus, they provide important information
about both the serial dependence (by letting k vary) and the cross-section-dependence
(by choosing j1 6= j2). In the frequency domain this yields (under appropriate mixing
conditions) the matrix of quantile cross-spectral density kernels

f(ω; τ1, τ2) := (fj1,j2(ω; τ1, τ2))j1,j2=1,...,d,

where

fj1,j2(ω; τ1, τ2) := (2π)−1

∞∑
k=−∞

γj1,j2k (τ1, τ2)e−ikω, (2)

j1, j2 ∈ {1, . . . , d}, ω ∈ R, τ1, τ2 ∈ [0, 1]. Observe that f takes values in Cd×d (the set
of all complex-valued d × d matrices). Further, note that, as a function of ω, but for
fixed τ1, τ2, it coincides with the traditional cross-spectral density of the bivariate, binary
process (

I{Xt,j1 ≤ qj1(τ1)}, I{Xt,j2 ≤ qj2(τ2)}
)
t∈Z
. (3)
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The time series in (3) has the bivariate time series (Xt,j1 , Xt,j2)t∈Z as a “latent driver”
and indicates whether the values of the components j1 and j2 are below the respective
marginal distribution’s τ1 and τ2 quantile. Note that (Xt,j1 , Xt,j2)t∈Z are the j1th and
j2th component of the time series (Xt)t∈Z under consideration.

In the special case of a univariate time series, i. e. pick one of the d components
(Xt,j)t∈Z of (Xt)t∈Z, quantities as in (2), with j1 = j2 =: j, were previously considered in
different versions. An integrated version of the spectrum defined in (2) was considered
by Hong (2000) in the context of testing for independence. Li (2008) considered the
special case of τ1 = τ2 = 0.5 and later the more general case where τ1 = τ2 ∈ (0, 1) (Li,
2012). Under the name of τ -th quantile spectral densities Hagemann (2013) also studied
the special case where τ1 = τ2 is required. The general case of the spectral density
kernel as defined in (2), still for j1 = j2, but allowing (τ1, τ2) ∈ [0, 1]2, was discussed
in Dette et al. (2015), where consistent estimation based on quantile regression in an
harmonic linear model is proposed. Dette et al. (2015) refer to the univariate version
as the copula spectral density kernel to distinguish it from a weighted version that they
call the Laplace spectral density kernel. An estimator based on the Fourier transform of
indicator functions based on the ranks was recently discussed in Kley et al. (2015). Note
the substantial difference between the two cases τ1 = τ2 ∈ [0, 1] and (τ1, τ2) ∈ [0, 1]2.
The first case corresponds to analyzing the two components of the binary, bivariate time
series (3) separately, while in the second case the analysis is performed jointly.

In this paper, by allowing j1 6= j2 in (3), the quantile cross-spectral density kernel
further generalizes the copula spectral density defined in Dette et al. (2015), allowing for
a detailed analysis of joint dynamics in the multivariate process (Xt)t∈Z. More precisely,
note the relation∫ π

−π
fj1,j2(ω; τ1, τ2)eikωdω + τ1τ2 = P

(
Xt+k,j1 ≤ qj1(τ1), Xt,j2 ≤ qj2(τ2)

)
. (4)

The quantity on the right hand side of (4), as a function of (τ1, τ2), is the copula of the pair
(Xt+k,j1 , Xt,j2). The equality (4) thus shows how any of the pair copulas can be derived
from the quantile cross-spectral density kernel defined in (2). Thus, the quantile cross-
spectral density kernel provides a full description of all copulas of pairs in the process.
Comparing these new quantities with their traditional counterparts, it can be observed
that covariances and means are essentially replaced by copulas and quantiles. Similar to
the regression setting, where this approach provides valuable extra information (Koenker,
2005), the quantile-based approach to spectral analysis supplements the traditional L2-
spectral analysis.

2.2 Quantile coherency and coherence

In the situation described in this paper, there exists a right continuous orthogonal incre-
ment process {Zτ

j (ω) : −π ≤ ω ≤ π}, for every j ∈ {1, . . . , d} and τ ∈ [0, 1], such that
the Cramér representation

I{Xt,j ≤ qj(τ)} =

∫ π

−π
eitωdZτ

j (ω)
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holds [cf., e. g., Theorem 1.2.15 in Taniguchi and Kakizawa (2000)]. Note the fact
that (Xt,j)t∈Z is strictly stationary and therefore (I{Xt,j ≤ qj(τ)})t∈Z is second-order
stationary, as the boundedness of the indicator functions implies existence of their second
moments.

The quantile cross-spectral density kernels are closely related to these orthogonal
increment processes [cf. (Brillinger, 1975, p. 101) and (Brockwell and Davis, 1987, p. 436)].
More specifically the following relation holds:

fj1,j2(ω; τ1, τ2)dω = Cov(dZτ1
j1

(ω), dZτ2
j2

(ω)),

which is short for∫ ω2

ω1

fj1,j2(ω; τ1, τ2)dω = Cov
(
Zτ1
j1

(ω2)−Zτ1
j1

(ω1), Zτ2
j2

(ω2)−Zτ2
j2

(ω)
)
, −π ≤ ω1 ≤ ω2 ≤ π.

It is important to observe that fj1,j2(ω; τ1, τ2) is complex-valued. One way to represent
fj1,j2(ω; τ1, τ2) is to decompose it into its real and imaginary part. The real part is known
as the cospectrum (of the processes (I{Xt,j1 ≤ qj1(τ1)})t∈Z and (I{Xt,j2 ≤ qj2(τ2)})t∈Z).
The negative of the imaginary part is commonly referred to as the quadrature spectrum.
We will refer to these quantities as the quantile cospectrum and quantile quadrature
spectrum of (Xt,j1)t∈Z and (Xt,j2)t∈Z. Occasionally, to emphasize that these spectra are
functions of (τ1, τ2), we will refer to them as the quantile cospectrum kernel and quantile
quadrature spectrum kernel, respectively. The quantile quadrature spectrum vanishes if
j1 = j2 and τ1 = τ2. More generally, as described in Kley et al. (2015), for any fixed
j1, j2, the quadrature spectrum will vanish, for all τ1, τ2, if and only if (Xt−k,j1 , Xt,j2) and
(Xt+k,j1 , Xt,j2) possess the same copula, for all k.

An alternative way to look at fj1,j2(ω; τ1, τ2) is by representing it in polar coordi-
nates. The radius |fj1,j2(ω; τ1, τ2)| is then referred to as the amplitude spectrum (of
the two processes (I{Xt,j1 ≤ qj1(τ1)})t∈Z and (I{Xt,j2 ≤ qj2(τ2)})t∈Z), while the angle
arg(fj1,j2(ω; τ1, τ2)) is the so called phase spectrum, respectively. We refer to these quan-
tities as the quantile amplitude spectrum and the quantile phase spectrum of (Xt,j1)t∈Z
and (Xt,j2)t∈Z.

A closely related quantity that can be used as a measure for the dynamic depen-
dence of the two processes (Xt,j1)t∈Z and (Xt,j2)t∈Z is the correlation between dZτ1

j1
(ω)

and dZτ2
j2

(ω). We will call this quantity the quantile coherency kernel of (Xt,j1)t∈Z and
(Xt,j2)t∈Z and denote it by

Rj1,j2(ω; τ1, τ2) := Corr(dZτ1
j1

(ω), dZτ2
j2

(ω)) =
fj1,j2(ω; τ1, τ2)(

fj1,j1(ω; τ1, τ1)fj2,j2(ω; τ2, τ2)
)1/2

, (5)

(τ1, τ2) ∈ (0, 1)2. Its modulus squared |Rj1,j2(ω; τ1, τ2)|2 is referred to as the quantile co-
herence kernel of (Xt,j1)t∈Z and (Xt,j2)t∈Z. Note the important fact that Rj1,j2(ω; τ1, τ2)
is undefined when (τ1, τ2) is on the boundary of [0, 1]2, which is due to the fact that
Var dZτ

j (ω) = 0 if τ ∈ {0, 1}. By Cauchy-Schwarz inequality, we further observe that
the range of possible values is limited to Rj1,j2(ω; τ1, τ2) ∈ {z ∈ C : |z| ≤ 1} and
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Name Symbol

quantile cospectrum of (Xt,j1)t∈Z and (Xt,j2)t∈Z <fj1,j2(ω; τ1, τ2)
quantile quadrature spectrum of (Xt,j1)t∈Z and (Xt,j2)t∈Z -=fj1,j2(ω; τ1, τ2)
quantile amplitude spectrum of (Xt,j1)t∈Z and (Xt,j2)t∈Z |fj1,j2(ω; τ1, τ2)|
quantile phase spectrum of (Xt,j1)t∈Z and (Xt,j2)t∈Z arg(fj1,j2(ω; τ1, τ2))
quantile coherency of of (Xt,j1)t∈Z and (Xt,j2)t∈Z Rj1,j2(ω; τ1, τ2)
quantile coherence of of (Xt,j1)t∈Z and (Xt,j2)t∈Z |Rj1,j2(ω; τ1, τ2)|2

Table 1: Spectral quantities related to the quantile cross-spectral density kernel
fj1,j2(ω; τ1, τ2) of (Xt,j1)t∈Z and (Xt,j2)t∈Z, as defined in Section 2.2.

|Rj1,j2(ω; τ1, τ2)|2 ∈ [0, 1], respectively. A value of |Rj1,j2(ω; τ1, τ2)|2 close to 1 indi-
cates a strong (linear) relationship between dZτ1

j1
(ω) and dZτ2

j2
(ω). Note that, as (τ1, τ2)

approaches the border of the unit square, the quantile cross-spectral density vanishes.
Therefore, the quantile cross-spectral density (without the standardization) is not well
suited to measure dependence of extremes. Implicitly, we take advantage of the fact that
the quantile cross-spectral density and quantile spectral densities vanish at the same rate
and therefore the quotient yields a meaningful quantity when the quantile levels (τ1, τ2)
approaches the border of the unit square.

The quantile coherency kernel and quantile coherence kernel contain very valuable
information about the joint dynamics of the time series (Xt,j1)t∈Z and (Xt,j2)t∈Z. In
contrast to the traditional case, where coherency and coherence will always equal one
if j1 = j2 =: j, the quantile-based versions of these quantities are capable of delivering
valuable information about one single component of (Xt)t∈Z as well. More precisely,
quantile coherency and quantile coherence then quantify the joint dynamics of (I{Xt,j ≤
qj(τ1)})t∈Z and (I{Xt,j ≤ qj(τ2)})t∈Z.

Note that all the quantities defined above are complex-valued, 2π-periodic as a func-
tion of the variable ω, and Hermitian in the sense that we have

fj1,j2(ω; τ1, τ2) = fj1,j2(−ω; τ1, τ2) = fj2,j1(ω; τ2, τ1) = fj2,j1(2π + ω; τ2, τ1).

Similar relations hold for quantile coherency and quantile coherence.
For the readers convenience, a list of the quantities and symbols introduced in this

section is provided in Table 1.

2.3 Relation between quantile and traditional spectral quanti-
ties

When applying the proposed quantities, it is important to proceed with care when relating
them to the traditional correlation and coherency measures. In this section we examine
the case of a weakly stationary, multivariate process, where the proposed, quantile-based
quantities and their traditional counterparts are directly related. The aim of the dis-
cussion is twofold. On one hand it provides assistance in how to interpret the quantile
spectral quantities when the model is known to be Gaussian. On the other hand, and
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more importantly, it provides additional insight in how the traditional quantities break
down when the serial dependency structure is not completely specified by the second
moments.

We start by the discussion of the general case, where the process under consideration is
assumed to be stationary, but needs not to be Gaussian. We will state conditions under
which the traditional spectra (i. e., the matrix of spectral densities and cross-spectral
densities) uniquely determines the quantile spectra (i. e., the matrix of quantile spectral
densities and cross-spectral densities). In the end of this section we will discuss three
examples of bivariate, stationary Gaussian processes and explain how the traditional
coherency and the quantile coherency are related.

Denote by c := {cj1,j2k : j1, j2 ∈ {1, . . . , d}, k ∈ Z}. cj1,j2k := Cov(Xt+k,j1 , Xt,j2),
the family of auto- and cross-covariances. We will also refer to them as the second
moment features of the process. We assume that (|cj1,j2k |)k∈Z is summable, such that
the traditional spectra f j1,j2(ω) := (2π)−1

∑
k∈Z c

j1,j2
k e−ikω exist. Because of the relation

cj1,j2k =
∫ π
−π f

j1,j2(ω)eikωdω we will equivalently refer to f(ω) := (f j1,j2(ω))j1,j2=1,...,d as
the second moment features of the process.

We now state conditions under which the traditional spectra uniquely determine the
quantile spectra. Assume that the marginal distribution of Xt,j (j ∈ {1, . . . , d}), which
we denote by Fj, does not depend on t and is continuous. Further, the joint distribution
of
(
Fj1(Xt+k,j1), Fj2(Xt,j2)

)
, j1, j2 ∈ {1, . . . , d}, i. e. the copula of the pair (Xt+k,j1 , Xt,j2),

shall depend only on k, but not on t, and be uniquely specified by the second moment
features of the process. More precisely, we assume the existence of functions Cj1,j2

k , such
that

Cj1,j2
k

(
τ1, τ2; c

)
= P

(
Fj1(Xt+k,j1) ≤ τ1, Fj2(Xt,j2) ≤ τ2

)
.

Obviously, fj1,j2(ω; τ1, τ2) is then, if it exists, uniquely determined by c [note (2) and the
fact that γj1,j2k (τ1, τ2) = Cj1,j2

k

(
τ1, τ2; c

)
− τ1τ2].

In the case of stationary Gaussian processes the assumptions sufficient for the quantile
spectra to be uniquely identified by the traditional spectra hold with

Cj1,j2
k

(
τ1, τ2; c

)
:= CGauss(τ1, τ2; cj1,j2k (cj1,j10 cj2,j20 )−1/2),

where we have denoted the Gaussian copula by CGauss(τ1, τ2; ρ).
The converse can be stated under less restrictive conditions. If the marginal distri-

butions are both known and both possess second moments, then the quantile spectra
uniquely determine the traditional spectra.

Assume now the previously described situation in which the second moment features
f uniquely determine the quantile spectra, which we denote by fj1,j2f (ω; τ1, τ2) to stress
the fact that it is determined by f . Thus, the relation between the traditional spectra
and the quantile spectra is 1-to-1. Denote the traditional coherency by Rj1,j2(ω) :=
f j1,j2(ω)/(f j1,j1(ω)f j2,j2(ω))1/2 and observe that it is also uniquely determined by the
second moment features f . Because the quantile coherency is determined by the quantile
spectra which is related to the second moment features f , as previously explained, we
have established the relation of the traditional coherency and the quantile coherency.
Obviously, this relation is not necessarily 1-to-1 anymore.
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If the stationary process is from a parametric family of time series models the second
moment features can be determined for each parameter. We now discuss three examples
of Gaussian processes. Each example will have more complex serial dependence than the
previous one. Without loss of generality we consider only bivariate examples. The first
example is the one of non-degenerate Gaussian white noise. More precisely, we consider
a Gaussian process (Xt,1, Xt,2)t∈Z, where Cov(Xt,i, Xs,j) = 0 and Var(Xt,i) > 0, for all
t 6= s and i, j ∈ {1, 2}.

Observe that, due to the independence of (Xt,1, Xt,2) and (Xs,1, Xs,2), t 6= s, we have
γ1,2
k (τ1, τ2) = 0 for all k 6= 0 and τ1, τ2 ∈ [0, 1]. It is easy to see that

R1,2(ω; τ1, τ2) =
CGauss(τ1, τ2;R1,2(ω))− τ1τ2√

τ1(1− τ1)
√
τ2(1− τ2))

(6)

where R1,2(ω) denotes the traditional coherency, which in this case (a bivariate i. i. d.
sequence) equals c1,2

0 (c1,1
0 c2,2

0 )−1/2 (for all ω).
By employing (6), we can thus determine the quantile coherency for any given tra-

ditional coherency and fixed combination of τ1, τ2 ∈ (0, 1). In the top-center part of
Figure 2 this conversion is visualized for four pairs of quantile levels and any possible
traditional coherency. It is important to observe the limited range of the quantile co-
herency. For example, there never is strong positive dependence between the τ1-quantile
in the first component and the τ2-quantile in the second component when both τ1 and
τ2 are close to 0. Similarly, there never is strong negative dependence when one of the
quantile levels is chosen close to 0 while the other one is chosen close to 1. This ob-
servation is not special for the Gaussian case, but holds for any sequence of pairwise
independent bivariate random variables. Bounds that correspond to the case of perfect
positive or perfect negative dependence (at the level of quantiles), can be derived from
the Fréchet/Hoeffding bounds for copulas: in the case of serial independence quantile
coherency is bounded by

max{τ1 + τ2 − 1, 0} − τ1τ2√
τ1(1− τ1)

√
τ2(1− τ2))

≤ R1,2(ω; τ1, τ2) ≤ min{τ1, τ2} − τ1τ2√
τ1(1− τ1)

√
τ2(1− τ2))

.

Note that these bounds hold for any joint distribution of (Xt,i, Xt,j). In particular, the
bound holds independent of the correlation.

In the top-left part of Figure 2 traditional coherencies are shown for this example.
Because no serial dependence is present, all coherencies are flat lines. Their level is equal
to the correlation between the two components. In the top-right part of Figure 2 the
quantile coherency for the example is shown when the correlation is 0.6 (the corresponding
coherency is marked with a bold line in the top-left figure). Note that for fixed τ1 and τ2

the value of the quantile coherency corresponds to the value in the top-center figure where
the vertical gray line and the corresponding graph intersect. The quantile coherency in
the right part does not depend on the frequency, because in this example there is no
serial dependence.

In the top-center part of Figure 2 it is important to observe that for correlation 0
(i. e., when the components are independent, due to (Xt,1, Xt,2) being uncorrelated jointly
Gaussian) quantile coherency is zero at all quantile levels.
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Figure 2: Each row corresponds to one of the three examples in the text. Top: Gaussian
white noise. Middle: VAR(1) with Xt =

(
0 a
a 0

)
Xt−1 + εt, |a| < 1, where (εt) is Gaussian white

noise, with E(εtε
′
t) = I2. Bottom: VAR(1) with Xt =

(
b a
a b

)
Xt−1 + εt, |a + b| < 1, where

(εt) is as before. Left : traditional coherencies. For examples 1 and 2 the coherency that has
the value of 0.6 at 2π51/512 is shown in bold; in example 3 three such coherencies are shown.
Center : Relationship between traditional coherency and quantile coherency; gray grid lines
indicate how the traditional coherency of 0.6 translate to quantile coherency. In examples 2
and 3, where serial dependence is present, the cases where ω = 2π52/512 is shown. Right :
quantile coherency for the example(s) where the traditional coherency is 0.6 (for ω = 2π52/512
in examples 2 and 3).
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In the next two examples we stay in the Gaussian framework, but introduce serial
dependence. Consider a bivariate, stable VAR(1) process Xt = (Xt,1, Xt,2)′, t ∈ Z,
fulfilling the difference equation

Xt = AXt−1 + εt, (7)

with parameter A ∈ R2×2 and i. i. d., centered, bivariate, jointly normally distributed
innovations εt with unit variance E(εtε

′
t) = I2.

In our second example serial dependence is introduced, by relating each component
to the lagged other component in the regression equation. In other words, we consider
model (7) where the matrix A has diagonal elements equal to 0 and some value a on
the off-diagonal. Assuming |a| < 1 yields a stable process. As described earlier, the
traditional spectral density matrix, which in this example is of the form

f(ω) := (2π)−1
(
I2 −

(
0 a
a 0

)
e−iω

)−1(
I2 −

(
0 a
a 0

)
eiω
)−1

, |a| < 1,

uniquely determines the traditional coherency and, because of the Gaussian innovations,
also the quantile coherency.

In the middle-left plot of Figure 2 the traditional coherencies for this model are
shown when a takes different values. If we now fix a frequency [6= π/4], then the value
of the traditional coherency for this frequency uniquely determines the value of a. In
Figure 2 we have marked the frequency of ω = 2π52/512 and coherency value of 0.6 by
gray lines and printed the corresponding coherency (as a function of ω) in bold. Note
that of the many pictured coherencies [one for each a ∈ (−1, 1)] only one has the value
of 0.6 at this frequency. In the center plot of the middle row we show the relation
between the traditional coherency and quantile coherency for the considered model. For
four combinations of quantile levels and all values of a ∈ (−1, 1) the corresponding
traditional coherencies and quantile coherencies are shown. It is important to observe
that the relation is shown only for one frequency [ω = 2π52/512]. We observe that the
range of values for the quantile coherency is limited and that the range depends on the
combination of quantile levels and on the frequency. While this is quite similar to the
first example where quantile coherency had to be bounded due to the Fréchet/Hoeffding
bounds, we here also observe (for this particular model and frequency) that the range of
values for the traditional coherency is limited. This fact is also apparent in the middle-
left plot. To relate the traditional and quantile coherency at this particular frequency,
one can, using the center-middle plot, proceed as in the first example. For a given
frequency choose a valid traditional coherency (x-axis of the middle-center plot) and
combination of quantile levels (one of the lines in the plot) and then determine the value
for the quantile coherency (depicted in the right plot). Note that (in this example), for
a given frequency and combination of quantile levels the relation is still a function of the
traditional coherency, but fails to be injective.

In our final example we consider the Gaussian VAR(1) model (7) where we now allow
for an additional degree of freedom, by letting the matrix A be of the form where the
diagonal elements both are equal to b and keep the value a on the off-diagonal as before.
Thus, compared to the previous example, where b = 0 was required, each component
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now may also depend on its own lagged value. It is easy to see that |a + b| < 1 yields a
stable process. In this case the tradtional spectral density matrix is of the form

f(ω) := (2π)−1
(
I2 −

(
b a
a b

)
e−iω

)−1(
I2 −

(
b a
a b

)
eiω
)−1

, |a+ b| < 1.

In the bottom-left part of Figure 2 a collection of traditional coherencies (as functions
of ω) is shown. Due to the extra degree of freedom in the model the variety of shapes
increased dramatically. In particular, for a given frequency, the value of the traditional
coherency does not uniquely specify the model parameter any more. We have marked
three coherencies (as functions of ω) that have value 0.6 at ω = 2π52/512 in bold to
stress this fact. The corresponding processes have (for a fixed combination of quantile
levels) different values of quantile coherency at this frequency. This fact can be seen
from the bottom-center part of Figure 2, where the relation between traditional and
quantile coherency is depicted for the frequency fixed and two combinations of quantile
levels are shown in black and gray. Note the important fact that the relation (for fixed
frequency) is not a function of the traditional coherency any more. The bottom-right
part of the figure shows the quantile coherency curves (as a function of ω) for the three
model parameters (shown in bold in the bottom-left part of the figure) and the two
combination of quantile levels. It is clearly visible that even though, for the particular
fixed frequency, the traditional coherency coincide, the value and shape of the quantile
coherency can be very different depending on the underlying process. This third example
illustrated how a frequency-by-frequency comparison of the traditional coherency with
its quantile-based counterpart may fail, even when the process is quite simple.

We have seen, from the theoretical discussion in the beginning of this section, that
for Gaussian processes, when the marginal distributions are fixed, a relation between the
traditional spectra and the quantile spectra exists. This relation is a 1-to-1 relation be-
tween the quantities as functions of frequency (and quantile levels). The three examples
have illustrated that a comparison on a frequency-by-frequency basis may be possible in
special cases but does not hold in general.

In conclusion we therefore advise to see the quantile cross-spectral density as a mea-
sure for dependence on its own, as the quantile-based quantities focus on more general
types of dependence. We further point out that quantile coherency may be used in exam-
ples where the conditions that make a relation possible are fulfilled, but also, for example,
to analyze the dependence in the quantile vector autoregressive (QVAR) processes, de-
scribed in Section 4. The QVAR processes possess more complicated dynamics, which
cannot be described only by the second order moment features.

2.4 Estimation

For the univariate case (j1 = j2), different approaches to consistent estimation were
considered. Li (2008) proposed an estimator, based on least absolute deviation regression,
for the special case where τ1 = τ2 = 0.5. He later (Li, 2012) generalized the estimator,
using quantile regression, to the case where τ1 = τ2 ∈ (0, 1). The general case, in which
the quantities can be related to the copulas of pairs, was first considered by Dette et al.
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(2015). These authors also introduce a rank-based version of the quantile regression-
type estimator for this case. A different approach to estimation was taken by Hagemann
(2013). Again for the special cases where j1 = j2 and τ1 = τ2 ∈ (0, 1), Hagemann (2013)
proposed a version of the traditional L2-periodogram where the observations are replaced
with I{F̂n,j(Xt,j) ≤ τ} = I{Rn;t,j ≤ nτ}, where F̂n,j(x) := n−1

∑n−1
t=0 I{Xt,j ≤ x} denotes

the empirical distribution function of Xt,j and Rn;t,j denotes the (maximum) rank of Xt,j

among X0,j, . . . , Xn−1,j. Kley et al. (2015) generalized this estimator, in the spirit of Dette
et al. (2015), by considering cross-periodograms for arbitrary couples (τ1, τ2) ∈ [0, 1]2, and
proved that it converges, as a stochastic process, to a complex-valued Gaussian limit. An
estimator defined in analogy to the traditional lag-window estimator was analyzed by Birr
et al. (2015) in the context of non-stationary time series.

In this paper we define, in the spirit of Hagemann (2013) and Kley et al. (2015), the
estimator for the quantile cross-spectral density as follows. The collection

Ij1,j2n,R (ω; τ1, τ2) :=
1

2πn
dj1n,R(ω; τ1)dj2n,R(−ω; τ2), (8)

j1, j2 = 1, . . . , d, ω ∈ R, (τ1, τ2) ∈ [0, 1]2, will be called the rank-based copula cross-
periodograms, shortly, the CCR-periodograms, where

djn,R(ω; τ) :=
n−1∑
t=0

I{F̂n,j(Xt,j) ≤ τ}e−iωt =
n−1∑
t=0

I{Rn;t,j ≤ nτ}e−iωt,

j = 1, . . . , d, ω ∈ R, τ ∈ [0, 1]. We will denote the matrix of CCR-periodograms by

In,R(ω; τ1, τ2) := (Ij1,j2n,R (ω; τ1, τ2))j1,j2=1,...,d. (9)

From the univariate case it is already known (cf. Proposition 3.4 in Kley et al. (2015))
that the CCR-periodograms fail to estimate fj1,j2(ω; τ1, τ2) consistently. Consistency can
be achieved by smoothing Ij1,j2n,R (ω; τ1, τ2) across frequencies. More precisely, in this paper,
we will consider

Ĝj1,j2
n,R (ω; τ1, τ2) :=

2π

n

n−1∑
s=1

Wn

(
ω − 2πs/n

)
Ij1,j2n,R (2πs/n, τ1, τ2), (10)

where Wn denotes a sequence of weight functions, precisely to be defined in Section 3.
We will denote the matrix of smoothed CCR-periodograms by

Ĝn,R(ω; τ1, τ2) := (Ĝj1,j2
n,R (ω; τ1, τ2))j1,j2=1,...,d. (11)

Estimators for the quantile cospectrum, quantile quadrature spectrum, quantile am-
plitude spectrum, quantile phase spectrum, quantile coherency and quantile coherence are
then given by <Ĝj1,j2

n,R (ω; τ1, τ2), −=Ĝj1,j2
n,R (ω; τ1, τ2), |Ĝj1,j2

n,R (ω; τ1, τ2)|, arg(Ĝj1,j2
n,R (ω; τ1, τ2)),

R̂j1,j2
n,R (ω; τ1, τ2) :=

Ĝj1,j2
n,R (ω; τ1, τ2)(

Ĝj1,j1
n,R (ω; τ1, τ1)Ĝj2,j2

n,R (ω; τ2, τ2)
)1/2

and |R̂j1,j2
n,R (ω; τ1, τ2)|2, respectively.
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3 Asymptotic properties of the proposed estimators

To derive the asymptotic properties of the estimators defined in Section 2.4 some as-
sumptions on the underlying process (Xt)t∈Z and the weighting functions Wn need to be
made.

Recall (cf. Brillinger (1975), p. 19) that the rth order joint cumulant cum(Z1, . . . , Zr)
of the random vector (Z1, . . . , Zr) is defined as

cum(Z1, . . . , Zr) :=
∑

{ν1,...,νp}

(−1)p−1(p− 1)!(E
∏
j∈ν1

Zj) · · · (E
∏
j∈νp

Zj),

with summation extending over all partitions {ν1, . . . , νp}, p = 1, . . . , r, of {1, . . . , r}.
Regarding the range of dependence of (Xt)t∈Z we make the following assumption,

(C) There exist constants ρ ∈ (0, 1) and K < ∞ such that, for arbitrary intervals
A1, ..., Ap ⊂ R, arbitrary indices j1, . . . , jp ∈ {1, . . . , d} and times t1, ..., tp ∈ Z,

| cum(I{Xt1,j1 ∈ A1}, . . . , I{Xtp,jp ∈ Ap})| ≤ Kρmaxi,j |ti−tj |. (12)

Note that this assumption is a generalization of the assumption made in Kley et al.
(2015) to multivariate processes. It is important to observe that Assumption (C) does
not require the existence of any moments, which is in sharp contrast to the classical
assumptions, where moments up to the order of the respective cumulants have to exist.
Furthermore, note that the sets Aj in (12) are not required to be general Borel sets as in
classical mixing assumptions.

The relation of assumption (C) to the classical α-mixing assumption is summarized
in form of the following proposition.

Proposition 3.1. Assume that the process (Xt)t∈Z is strictly stationary and exponen-
tially α-mixing, i. e.,

α(n) := sup
A∈σ(X0,X−1,...)
B∈σ(Xn,Xn+1,...)

|P(A ∩B)− P(A)P(B)| ≤ Kκn , n ∈ N (13)

for some K <∞ and κ ∈ (0, 1). Then Assumption (C) holds.

Proof of Proposition 3.1. The proof is almost identical to the proof of Proposi-
tion 3.1 in Kley et al. (2015) and is therefore omitted.

Proposition 3.1 implies that Assumption (C) will hold for a wide range of pop-
ular, linear and nonlinear, multivariate and univariate processes that are known to
be α- or β-mixing at an exponential rate. Examples of such processes (possibly, un-
der mild additional assumptions) include the traditional (V)ARMA, general nonlin-
ear scalar ARCH, vector-ARCH(1), threshold ARCH, and exponential ARCH processes
[cf. Liebscher (2005)], GARCH(p,q) processes with moments [cf. Boussama (1998)] and
GARCH(1,1) processes with no assumptions regarding the moments [cf. Francq and
Zaköıan (2006)], generalized polynomial random coefficient vector autoregressive pro-
cesses, and a family of generalized hidden Markov processes [cf. Carrasco and Chen
(2002)] which include stochastic volatility models.
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Denote by  the weak convergence in the sense of Hoffman-Jørgensen (cf. Chap-
ter 1 of van der Vaart and Wellner (1996)). The estimators under consideration take
values in the space of (element-wise) bounded functions [0, 1]2 → Cd×d, which we de-
note by `∞Cd×d([0, 1]2). While results in empirical process theory are typically stated for
spaces of real-valued, bounded functions, these results transfer immediately by identify-
ing `∞Cd×d([0, 1]2) with the product space `∞([0, 1]2)2d2 . Note that the space `∞Cd×d([0, 1]2)
is constructed along the same lines as the space `∞C ([0, 1]2) in Kley et al. (2015).

We are now ready to state the first result on the asymptotic properties of the CCR-
periodogram In,R(ω; τ1, τ2) defined in (8) and (9)

Proposition 3.2. Assume that (Xt)t∈Z is strictly stationary and satisfies Assumption (C).
Further assume that the marginal distributions Fj, j = 1, . . . , d are continuous. Then,
for every fixed ω 6= 0 mod 2π,(

In,R(ω; τ1, τ2)
)

(τ1,τ2)∈[0,1]2
 
(
I(ω; τ1, τ2)

)
(τ1,τ2)∈[0,1]2

in `∞Cd×d([0, 1]2). (14)

The Cd×d-valued limiting processes I, indexed by (τ1, τ2) ∈ [0, 1]2, is of the form

I(ω; τ1, τ2) =
1

2π
D(ω; τ1)D(ω; τ2)′,

where D(ω; τ) = (Dj(ω; τ))j=1,...,d, τ ∈ [0, 1], ω ∈ R is a centered, Cd-valued Gaussian
processes with covariance structure of the following form

Cov(Dj1(ω; τ1),Dj2(ω; τ2)) = 2πfj1,j2(ω; τ1, τ2).

Moreover, D(ω; τ) = D(−ω; τ) = D(ω + 2π; τ), and the family {D(ω; ·) : ω ∈ [0, π]}
is a collection of independent processes. In particular, the weak convergence (14) holds
jointly for any finite fixed collection of frequencies ω.

Proof. Deferred to the Appendix (Section 7.2).

For ω = 0 mod 2π the asymptotic behavior of the CCR-periodogram is as follows:
we have djn,R(0; τ) = nτ + oP (n1/2), where the exact form of the remainder term depends
on the number of ties in Xj,0, . . . , Xj,n−1. Therefore, under the assumptions of Proposi-
tion 3.2, we have In,R(0; τ1, τ2) = n(2π)−1τ1τ21d1

′
d + oP (1), where 1d := (1, . . . , 1)′ ∈ Rd.

In order to establish the convergence of the smoothed CCR-periodogram process,
defined in (10) and (11), an assumption regarding the weights Wn in (10) is in order. For
a sequence of scaling parameters bn > 0, n = 1, 2, . . ., that satisfy bn → 0 and nbn →∞,
as n→∞, we define

Wn(u) :=
∞∑

j=−∞

b−1
n W (b−1

n [u+ 2πj])

and assume that the function W satisfies

(W) The weight function W is real-valued, even, has support [−π, π], bounded variation,
and satisfies

∫ π
−πW (u)du = 1.
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Assumption (W) is quite standard in classical time series analysis [see, for example,
p. 147 of Brillinger (1975)].

We now are ready to state the first main result of this paper, where the uncertainty
in estimating f(ω; τ1, τ2) by Gn,R(ω; τ1, τ2) is asymptotically described.

Theorem 3.3. Let Assumptions (C) and (W) hold. Assume that the distribution func-
tions Fj, j = 1, . . . , d are continuous and that constants κ > 0 and k ∈ N exist, such that
bn = o(n−1/(2k+1)) and bnn

1−κ →∞. Then, for any fixed ω ∈ R, the process

Gn(ω; ·, ·) :=
√
nbn

(
Ĝn,R(ω; τ1, τ2)− f(ω; τ1, τ2)−B(k)

n (ω; τ1, τ2)
)
τ1,τ2∈[0,1]

satisfies
Gn(ω; ·, ·) H(ω; ·, ·) in `∞Cd×d([0, 1]2), (15)

where the elements of the bias matrix B
(k)
n are given by

{
B(k)
n (ω; τ1, τ2)

}
j1,j2

:=
k∑
`=2

b`n
`!

∫ π

−π
v`W (v)dv

d`

dω`
fj1,j2(ω; τ1, τ2) (16)

and fj1,j2(ω; τ1, τ2) is defined in (2). The process H(ω; ·, ·) := (Hj1,j2(ω; ·, ·))j1,j2=1,...,d

in (15) is a centered, Cd×d-valued Gaussian process characterized by

Cov
(
Hj1,j2(ω;u1, v1

)
,Hk1,k2(λ;u2, v2)

)
= 2π

(∫ π

−π
W 2(α)dα

)(
fj1,k1(ω;u1, u2)fj2,k2(−ω; v1, v2)η(ω − λ)

+ fj1,k2(ω;u1, v2)fj2,k1(−ω; v1, u2)η(ω + λ)
)
, (17)

where η(x) := I{x = 0( mod 2π)} [cf. (Brillinger, 1975, p. 148)] is the 2π-periodic
extension of Kronecker’s delta function. The family {H(ω; ·, ·), ω ∈ [0, π]} is a collection
of independent processes and H(ω; τ1, τ2) = H(−ω; τ1, τ2) = H(ω + 2π; τ1, τ2).

Proof. Deferred to the Appendix (Section 7.3).

A few remarks on the result are in order. In sharp contrast to classical spectral
analysis, where higher-order moments are required to obtain smoothness of the spectral
density [cf. Brillinger (1975), p. 27], Assumption (C) guarantees that the quantile cross-
spectral density is an analytical function of ω [cf. Lemma 7.6]. Hence, the kth derivative
of ω 7→ fj1,j2(ω; τ1, τ2) in (16) exists without further assumptions.

Assume that W , for some p, satisfies
∫ π
−π v

jW (v)dv = 0, for j < p, and 0 <∫ π
−π v

pW (v)dv < ∞. Such kernels are typically referred to as kernels of order p; the
Epanechnikov kernel, for example, is of order p = 2. Then, the bias is of order bpn. As
the variance is of order (nbn)−1, the mean squared error is minimal, if bn � n−1/(2p+1).
This optimal bandwidth fulfills the assumptions of Theorem 3.3.

We can use Theorem 3.3 to construct asymptotically valid confidence intervals. A
detailed discussion of the construction of confidence intervals is deferred to Section 7.1.1.
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The independence of the limit {H(ω; ·, ·), ω ∈ [0, π]} has two important implications.
On one hand, the weak convergence (15) holds jointly for any finite fixed collection of
frequencies ω. On the other hand, if one were to consider the smoothed CCR-periodogram
as a function of the three arguments (ω, τ1, τ2), weak convergence cannot hold any more.
This limitation of convergence is due to the fact that there exists no tight element in
`∞Cd×d([0, π] × [0, 1]2) that has the right finite-dimensional distributions, which would be
required for process convergence in `∞Cd×d([0, π]× [0, 1]2).

Fixing j1, j2 and τ1, τ2 the CCR-periodogram Ĝj1,j2
n,R (ω; τ1, τ2) and traditional smoothed

cross-periodogram determined from the unobservable, bivariate time series(
I{Fj1(Xt,j1) ≤ τ1}, I{Fj1(Xt,j2) ≤ τ2}

)
, t = 0, . . . , n− 1, (18)

are asymptotically equivalent. Theorem 3.3 thus reveals that in the context of the esti-
mation of the quantile cross-spectral density the estimation of the marginal distribution
has no impact on the limit distribution.

We now turn our attention to the estimation of quantile coherency. A consistent
estimator for the matrix of quantile coherencies

R(ω; τ1, τ2) :=
(
Rj1,j2(ω; τ1, τ2)

)
j1,j2=1,...,d

is given by the Cd×d-valued function

R̂n,R(ω; τ1, τ2) :=
(
R̂j1,j2
n,R (ω; τ1, τ2)

)
j1,j2=1,...,d

.

The second main result of this paper is about the asymptotic behavior of R̂n,R(ω; τ1, τ2)
as an estimator for R(ω; τ1, τ2).

Theorem 3.4. Let the Assumptions for Theorem 3.3 hold. Furthermore, assume that
for some ε ∈ (0, 1/2) we have

inf
τ∈[ε,1−ε]

fj,j(ω; τ, τ) > 0, for all j = 1, . . . , d,

and that bn satisfies

sup
τ1,τ2∈[ε,1−ε]

∣∣∣{B(k)
n (ω; τ1, τ2)

}
j1,j2

∣∣∣ = o
(
(nbn)−1/4

)
, for all j1, j2 = 1, . . . , d. (19)

Then, for any fixed ω ∈ R,√
nbn

(
R̂n,R(ω; τ1, τ2)−R(ω; τ1, τ2)−B(k)

n (ω; τ1, τ2)
)

(τ1,τ2)∈[0,1]2
 L(ω; ·, ·), (20)

in `∞Cd×d([ε, 1− ε]
2), where{

L(ω; τ1, τ2)
}
j1,j2

:=
1√

f1,1f2,2

(
H1,2 −

1

2

f1,2
f1,1

H1,1 −
1

2

f1,2
f2,2

H2,2

)
, (21)
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{
B(k)

n (ω; τ1, τ2)
}
j1,j2

:=
1√

f1,1f2,2

(
B1,2 −

1

2

f1,2
f1,1
B1,1 −

1

2

f1,2
f2,2
B2,2

)
(22)

and we have written fa,b for the quantile cross-spectral density fja,jb(ω; τa, τb), Ha,b for

the limit distribution Hja,jb(ω; τa, τb
)
, and Ba,b for the bias {B(k)

n (ω; τa, τb)}ja,jb defined in
Theorem 3.3 (a, b = 1, 2).

Proof. Deferred to the Appendix (Section 7.4).

Comparing Theorem 3.4 with what is known for the traditional coherency (see,
for example, Theorem 7.6.2 in Brillinger (1975)) we observe that the distribution of
R̂n,R(ω; τ1, τ2) is asymptotically equivalent to that of the traditional estimator [for a def-
inition see (7.6.14) in Brillinger (1975)] computed from the unobserved time series (18).

The convergence to a Gaussian process in (20) can be employed to obtain asymptoti-
cally valid pointwise confidence bands. To this end, the covariance kernel of L can easily
be determined from (21) and (17), yielding an expression similar to (7.6.16) in Brillinger
(1975). A more detailed account on how to conduct inference is given in Section 7.1.2.
Note that the bound to the order of the bias given in (7.6.15) in Brillinger (1975) applies
to the expansion given in (22).

If W is a kernel of order p ≥ 1 we have that the bias is of order bpn. Thus, if we choose
the mean square error minimizing bandwidth bn � n−1/(2p+1) the bias will be of order
n−p/(2p+1). With this particular choice of bn we obtain o

(
(nbn)−1/4

)
= o
(
n−1/(4p+2)

)
and

see that (19) holds.
Regarding the restriction ε > 0, note that the convergence (20) can not hold if (τ1, τ2)

is on the border of the unit square, as the quantile coherency R(ω; τ1, τ2) is not defined
if τj ∈ {0, 1}, as this implies that Var(I{Fj(Xt,j) ≤ τj}) = 0.

4 An example of a process generating quantile de-

pendence across frequencies: QVAR(p)

For a better understanding of the dependence structures that we study in this paper, it
is illustrative to introduce a process capable of generating them. We focus on generating
dependence at different points of the joint distribution, which will vary across frequencies,
but stay hidden from classical measures. In other words, we illustrate the intuition of
spuriously independent variables, a situation when two variables seem to be independent
when traditional cross-spectral analysis is used, while they are indeed clearly dependent
at different parts of their joint distribution.

We base our example on a multivariate generalization of the popular quantile au-
toregression process (QAR) introduced by Koenker and Xiao (2006). Inspired by vec-
tor autoregression processes (VAR), we link multiple QAR processes through their lag
structure and refer to the resulting process as a quantile vector autoregression process
(QVAR). This provides a natural way of generating rich dependence structure between
two random variables in points of their joint distribution and over different frequencies.
The autocovariance function of a stationary QVAR(p) process is that of a fixed param-
eter VAR(p) process. This follows from the argument by Knight (2006), who concludes
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that the exclusive use of autocorrelations may thus “fail to identify structure in the data
that is potentially very informative”. We will show how quantile spectral analysis reveals
what otherwise may remain invisible.

Let Xt = (Xt,1, . . . , Xt,d)
′, t ∈ Z, be a sequence of random vectors that fulfills

Xt =

p∑
j=1

Θ(j)(Ut)Xt−j + θ(0)(Ut), (23)

where Θ(1), . . . ,Θ(p) are d × d matrices of functions, θ(0) is a d × 1 column vector of
functions, and Ut = (Ut,1, . . . , Ut,d)

′, t ∈ Z, is a sequence of independent vectors, with
components Ut,k that are U [0, 1]-distributed. We will assume that the elements of the

`th row θ
(j)
` (u`) =

(
θ

(j)
`,1(u`), . . . , θ

(j)
`,d(u`)

)
of Θ(j)(u1, . . . , ud) =

(
θ

(j)
1 (u1)′, . . . ,θ

(j)
d (ud)

′)′
and that the `th element θ

(0)
` (u`) of θ(0) =

(
θ

(0)
1 (u1), . . . , θ

(0)
d (ud)

)′
only depend on the

`th variable, respectively. Note that in this design the `th component of Ut determines
the coefficients for the autoregression equation of the `th component of Xt. We refer to
the process as a quantile vector autoregression process of order p, hence QVAR(p). In
the bivariate case (d = 2) of order p = 1, i.e. QVAR(1), (23) takes the following form(

Xt,1

Xt,2

)
=

(
θ

(1)
11 (Ut,1) θ

(1)
12 (Ut,1)

θ
(1)
21 (Ut,2) θ

(1)
22 (Ut,2)

)(
Xt−1,1

Xt−1,2

)
+

(
θ

(0)
1 (Ut,1)

θ
(0)
2 (Ut,2)

)
.

For the examples we assume that the components Ut,1 and Ut,2 are independent and set

the components of θ(0) to θ
(0)
1 (u) = θ

(0)
2 (u) = Φ−1(u), u ∈ [0, 1], where Φ−1(u) denotes

the u-quantile of the standard normal distribution. Further, we set the diagonal elements
of of Θ(1) to zero (i. e., θ

(1)
11 (u) = θ

(1)
22 (u) = 0, u ∈ [0, 1]) and the off-diagonal elements to

θ
(1)
12 (u) = θ

(1)
21 (u) = 1.2(u − 0.5), u ∈ [0, 1]. We thus create cross-dependence by linking

the two processes with each other through the other ones lagged contributions. Note that
this particular choice of parameter functions leads to the existence of a unique, strictly
stationary solution (Bougerol and Picard, 1992). (Xt,1)t∈Z and (Xt,2)t∈Z are uncorrelated.

In Figure 3 the dynamics of the described QVAR(1) process are depicted. In terms of
traditional coherency there appears to be no dependence across all frequencies. In terms
of quantile coherency, on the other hand, rich dynamics are revealed in the different
parts of the joint distribution. While, in the center of the distribution (at the 0.5|0.5
level) the dependence is zero across frequencies, we see that the dependence increases if
at least one of the quantile levels (τ1, τ2) is chosen closer to 0 or 1. More precisely, we
see that the quantile coherency of this QVAR process resembles the shape of an VAR(1)
process with coefficient matrix Θ(1)(τ1, τ2). The two processes are, for example when
τ1 = 0.05 and τ2 = 0.95, clearly positively connected at lower frequencies with exactly
the opposite value of quantile coherency at high frequencies, where the processes are in
opposition. This also resembles the dynamics of the simple motivating examples from
the introductory section of this paper, and highlights the importance of the quantile
cross-spectral analysis as the dependence structure stays hidden if only the traditional
measures are used.

In a second and third example, we consider a similar structure of parameters at the
second and third lag. For the QVAR(2) process we let θ

(j)
11 (u) = θ

(j)
22 (u) = 0, for j = 1, 2,
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Figure 3: Example of dependence structures generated by QVAR(1) described by (23) with

θ
(0)
1 (u) = θ

(0)
2 (u) = Φ−1(u), θ

(1)
11 (u) = θ

(1)
22 (u) = 0, and θ

(1)
12 (u) = θ

(1)
21 (u) = 1.2(u−0.5), u ∈ [0, 1].

Left column: traditional coherency. Middle column: quantile-coherency for some combinations
of τ1, τ2 ∈ {0.05, 0.25, 0.5, 0.95}. Right column: quantile cospectrum and quantile quadrature
spectrum. Figure shows real and imaginary parts of the complex valued quantities.

θ
(1)
12 (u) = θ

(1)
21 (u) = 0 and θ

(2)
12 (u) = θ

(2)
21 (u) = 1.2(u − 0.5). In other words, here, the

processes are connected through the second lag of the other one and, again, not directly
through their own lagged contributions. In the QVAR(3) process, all coefficients are

again set to zero, except for θ
(3)
12 (u) = θ

(3)
21 (u) = 1.2(u− 0.5), such that the processes are

connected only through the third lag of the other component and not through their own
contributions.

In Figures 4 and 5 the dynamics of the described QVAR(2) and QVAR(3) processes
are shown. Connecting the quantiles of the two processes through the second and third
lag gives us richer dependence structures across frequencies. They, again, resemble the
shape of the traditional coherencies of VAR(2) and VAR(3) processes. When traditional
coherency is used for the QVAR(2) and QVAR(3) processes, the dependence structure
stays completely hidden.

These examples of the general QVAR(p) specified in (23) served to show how rich
dependence structures can be created across points of the joint distribution and different
frequencies. It is obvious, how more complicated structures for the coefficient functions
would lead to even richer dynamics than in the examples shown.

22



0.0 0.1 0.2 0.3 0.4 0.5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

ω 2π

traditional coherency (Re)

0.0 0.1 0.2 0.3 0.4 0.5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

ω 2π

quantile coherency (Re)

0.05 | 0.05
0.95 | 0.95

0.25 | 0.25
0.5 | 0.5

0.5 | 0.95

0.0 0.1 0.2 0.3 0.4 0.5

−
0.

04
−

0.
02

0.
00

0.
02

0.
04

ω 2π

quantile cospectrum

0.05 | 0.05
0.95 | 0.95

0.25 | 0.25
0.5 | 0.5

0.5 | 0.95

0.0 0.1 0.2 0.3 0.4 0.5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

ω 2π

traditional coherency (Im)

0.0 0.1 0.2 0.3 0.4 0.5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

ω 2π

quantile coherency (Im)

0.05 | 0.05
0.95 | 0.95

0.25 | 0.25
0.5 | 0.5

0.5 | 0.95

0.0 0.1 0.2 0.3 0.4 0.5

−
0.

04
−

0.
02

0.
00

0.
02

0.
04

ω 2π

quantile quadrature spectrum

0.05 | 0.05
0.95 | 0.95

0.25 | 0.25
0.5 | 0.5

0.5 | 0.95

Figure 4: Example of dependence structures generated by QVAR(2) described by (23) with

θ
(0)
1 (u) = θ

(0)
2 (u) = Φ−1(u), θ

(1)
11 (u) = θ

(1)
22 (u) = θ

(2)
11 (u) = θ

(2)
22 (u) = θ

(1)
12 (u) = θ

(1)
21 (u) = 0 and

θ
(2)
12 (u) = θ

(2)
21 (u) = 1.2(u − 0.5), u ∈ [0, 1]. Left column: traditional coherency. Middle col-

umn: quantile-coherency for some combinations of τ1, τ2 ∈ {0.05, 0.25, 0.5, 0.95}. Right column:
quantile cospectrum and quantile quadrature spectrum. Figure shows real and imaginary parts
of the complex valued quantities.

5 Quantile cross-spectral analysis of stock market re-

turns: A route to more accurate risk measures?

Stock market returns belong to the most prominent datasets in economics and finance.
Although many important stylized facts about their behavior have been established in
the past decades, it remains a very active area of research. Despite the efforts, an
important direction, which has not been fully addressed is stylized facts about the joint
distribution of returns. Especially during the last turbulent decade, understanding the
behavior of joint quantiles in return distributions became particularly important, as it
is essential for understanding systemic risk; “the risk that the intermediation capacity of
the entire system can be impaired” (Adrian and Brunnermeier, 2011). Several authors
focus on explaining tails of the bivariate market distributions in different ways. Adrian
and Brunnermeier (2011) proposed to classify institutions according to the sensitivity of
their quantiles to shocks to the market. Han et al. (2014) proposed cross-quantilograms
and used them to measure co-dependence in the tails of equity returns of an individual
institution and of the whole system. Most closely related to the notion of how we view
the dependence structures is the recently proposed multivariate regression quantile model
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Figure 5: Example of dependence structures generated by QVAR(3) described by (23) with

θ
(0)
1 (u) = θ

(0)
2 (u) = Φ−1(u), θ

(j)
11 (u) = θ

(j)
22 (u) = θ

(k)
12 (u) = θ

(k)
21 (u) = 0, for j = 1, 2, 3 and

k = 1, 2, and θ
(3)
12 (u) = θ

(3)
21 (u) = 1.2(u − 0.5), u ∈ [0, 1]. Left column: traditional coherency.

Middle column: quantile-coherency for some combinations of τ1, τ2 ∈ {0.05, 0.25, 0.5, 0.95}.
Right column: quantile cospectrum and quantile quadrature spectrum. Figure shows real and
imaginary parts of the complex valued quantities.

of White et al. (2015), which studies the degree of tail interdependence among different
random variables directly.

Quantile cross-spectral analysis, as designed in this paper, allows to estimate the
fundamental dependence quantities in the tails (but also in any other part) of the joint
distribution and across frequencies. An application to stock market returns may therefore
provide deeper insight about dependence in stock markets, and lead to a more powerful
analysis securing us against financial collapses.

One of the most prominent features of stock market returns is time variation in its
volatility. Time-varying volatility processes can cross almost every quantile of their dis-
tribution (Hagemann, 2013), and create peaks in quantile spectral densities as shown by
Li (2014). These notions have recently been documented by Engle and Manganelli (2004)
and Žikeš and Baruńık (2014) who propose models for the conditional quantiles of the
return distribution based on the past volatility. In the multivariate setting, strong com-
mon factors in volatility are found by Barigozzi et al. (2014) who conclude that common
volatility is an important risk factor. Hence, common volatility should be viewed as a
possible source of dependence. Because we aim to find the common structures in the joint
distribution of returns, we study returns standardized by its volatility that we estimate
by a GARCH(1,1) model (Bollerslev, 1986). This first step is commonly taken in the
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literature of modeling the joint market distribution using copulas (Granger et al., 2006;
Patton, 2012). In these approaches the volatility in the marginal distributions is mod-
eled first, and the common factors are then considered in the second step. Consequently,
this will allow us to discover other possible common factors in the joint distribution of
market returns across frequencies, that result in spurious dependence, but which will not
be overshadowed by the strong volatility process.
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Figure 6: Real (left) and imaginary (right) parts of the quantile coherency estimates for the
portfolio formed from consumer non-durables and excess market returns for 0.05, 0.5, and 0.95
quantiles together with 95% confidence intervals. W, M, and Y denotes weekly, monthly, and
yearly periods. Data span years 1926 – 2015.

We choose to study the joint distribution of portfolio returns and excess returns on
the broad market, hence looking at one of the most commonly studied factor structures
in the literature as dictated by asset pricing theories (Sharpe, 1964; Lintner, 1965). As an
excess return on the market, we use value-weighted returns of all firms listed on the NYSE,
AMEX, or NASDAQ from the Center for Research in Security Price (CRSP) database.
For the benchmark portfolio, we use an industry portfolio formed from consumer non-
durables.3 The daily data we have used runs from July 1, 1926 through to June 30, 2015.

Although very attractive due to powerful and intuitive predictions about risk mea-
surement, the capital asset pricing theory (CAPM) is largely invalidated empirically by
researchers (Fama and French, 2004). In the model it is assumed that the variance of the
returns is an adequate risk measure, as implied by the assumption of the returns under
study being normally distributed. Intuitively, departures from normality are better ca-
pable of capturing the investor’s preferences. Risk can be viewed as a probability of loss,

3Note to choice of the data: we use the publicly available data available and maintained by Fama and
French at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. This
data set is popular among researchers, and while many types of portfolios can be chosen, we chose
consumer non-durables randomly for this application. Although very interesting and attractive, it is
far beyond the scope of this work to present and discuss results for wider portfolios formed on distinct
criteria.
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hence is asymmetric, implying that we should move our focus from variability of returns
to their quantiles directly.

In Figure 6, quantile coherency estimates for the 0.05|0.05, 0.5|0.5, and 0.95|0.95 com-
binations of quantile levels of the joint distribution are shown for the industry portfolio
and excess market returns over frequencies. For clarity, we plot the x-axis in daily cycles
and also indicate the frequencies that correspond to yearly, monthly, and weekly periods.
While we use daily data the highest possible frequency of 0.5 indicates 0.5 cycles per day
(i. e., a 2-day period). While precise frequencies do not have an economic meaning, one
needs to understand the interpretation with respect to the time domain. For example, a
sampling frequency of 0.2 corresponds to 0.2 cycles per day translating to a 5 days period
(equivalent to one week), but the frequency of 0.3 translates to a hardly interpretable
3.3 period. Hence, the upper label of the x-axis is of particular interest to an economist,
as one can study how weekly, monthly, or yearly cycles are connected across quantiles of
the joint distribution.

The real parts of the quantile coherency estimates reveal frequency dynamics in quan-
tiles of the joint distribution of the returns under study. Generally, lower quantiles are
more strongly dependent than upper quantiles, which is a well documented stylized fact
about stock market returns. It points us to the fact that returns are more dependent
during business cycle downturns, than upturns (Erb et al., 1994; Longin and Solnik, 2001;
Ang and Chen, 2002; Patton, 2012). More importantly, lower quantiles as well as the
median are strongly related in periods longer than one week in average in comparison to
shorter than weekly periods, and are even more connected at longer than monthly cy-
cles. This suggests that infrequent clusters of large negative portfolio returns are better
explained by excess market returns than small daily fluctuations. The same result holds
also for the median, while returns in upper quantiles of the joint distribution seem to be
connected similarly across all frequencies.

While asymmetry is commonly found by researchers, we document frequency depen-
dent asymmetry in the joint distribution of stock market returns. In case this behavior
would be common across larger classes of assets, our results may have large implications
for one of the cornerstones of asset pricing theory assuming normal distribution of re-
turns. It leads us to the call for more general models, and more importantly to the need
of restating the asset pricing theory in a way that allows to distinguish between short
run and long run behavior of investors.

Our results are also crucial for systemic risk measurement, as an investor wishing to
optimize a portfolio should focus on stocks which will not be connected at lower quantiles,
in a situation of distress, but will be connected at upper quantiles, in a situation of market
upturns in a given investment period. We document behavior which is not favorable to
such an investor using traditional pricing theories, as we show that broad stock market
returns contain a common factor more frequently during downturns than during upturns.
This suggests that the portfolio at hand might be much riskier than it were implied by
common measures. Further, our results suggest that this effect becomes even worse for
long-run investors.

An important feature of our quantile cross-spectral measures is that they enable us
to measure dependence also between τ1 6= τ2 quantiles of the joint distribution. In
Figure 7 we document that the dependence between the 0.05|0.95 quantiles of the return
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Figure 7: Real (left) and imaginary (right) parts of the quantile coherency estimates for the
0.05 quantile of portfolio formed from consumer non-durables and 0.95 quantile of excess market
returns together with 95% confidence intervals. W, M, and Y denotes weekly, monthly, and
yearly periods, respectively. The data spans the years 1926–2015.

distribution is not very strong. Generally speaking, no dependence can be seen between
large negative returns of the stock market, and large positive returns of the portfolio
under study. This analysis may be much more interesting in case of dependence between
individual assets, where negative news may have strong opposite impact on the assets
under study.

Here, we remind the reader about the interpretation of the quantities which we have
estimated. In Section 2.3 we provided a link between quantile coherency and tradi-
tional measures of dependence under the assumption of normally distributed data. The
quantile-based measures are designed to capture general dependence types without re-
strictive assumptions on the underlying distribution of the process. Hence, we do inten-
tionally not relate it to traditional correlation which, ideally, should only be interpreted
when the process is known to be Gaussian. The financial returns under study in this
section are known to depart from normality. Therefore, quantile coherency is not directly
comparable to traditional correlation measures. What we can see is generally very strong
dependence between the portfolio returns and excess market returns at all quantiles con-
firming the fact that excess returns are a strong common factor for the studied portfolio
returns. The details that the quantile-based analysis in this section revealed would have
remained hidden in an analysis based on the traditional coherency.

6 Conclusion

In this paper we introduced quantile cross-spectral analysis of economic time series pro-
viding an entirely model-free, nonparametric theory for the estimation of general cross-
dependence structures emerging from quantiles of the joint distribution in the frequency
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domain. We argue that complex dynamics in time series often arise naturally in many
macroeconomic and financial time series, as infrequent periods of large negative val-
ues (lower quantiles of the joint distribution) may be more dependent than infrequent
periods of large positive values (upper quantiles of the joint distribution). Moreover,
the dependence may differ in the long-, medium, or short-run. Quantile cross-spectral
analysis hence fundamentally changes the way how we view the dependence between
economic time series, and may be viewed as a precursor to the subsequent developments
in economic research underlying many new modeling strategies.

Bridging two literatures which focus on the dependence between variables in quantiles
of their joint distribution and across frequencies separately, the proposed methods may
be viewed as an important step in robustifying the traditional cross-spectral analysis
as well. Quantile-based spectral quantities are very attractive as they do not require
the existence of moments, an important relaxation to the classical assumptions, where
moments up to the order of the cumulants involved are typically assumed to exist. The
proposed quantities are robust to many common violations of traditional assumptions
found in data, including outliers, heavy tails, and changes in higher moments of the
distribution. By considering quantiles instead of moments the proposed methods are
able to reveal the dependence even in uncorrelated data. As an essential ingredient for a
successful applications we have provided a rigorous analysis of the asymptotic properties
of the introduced estimators and showed that for a general class of nonlinear processes,
properly centered and smoothed versions of the quantile-based estimators converge in
distribution to centered Gaussian processes.

In an empirical application, we have shown that asset pricing theories may not suit the
data well, as commonly documented by researchers, because rich dependence structures
exists varying across quantiles and frequencies in the joint distribution of returns. We
document strong dependence of the bivariate returns series in periods of large negative
returns, while positive returns display less dependence over all frequencies. This result
is not favorable for an investor, as exactly the opposite would be desired: choosing to
invest to a stocks with independent negative returns, but dependent positive returns.
Our tool reveals that systematic risk originates more strongly from lower quantiles of the
joint distribution in the long-, and medium-run investment horizons in comparison to the
upper quantiles.

We believe that our work opens many exciting routes for future theoretical as well
as empirical research. From the perspective of applications, exploratory analysis based
on the quantile cross-spectral estimators can reveal new implications for improvement or
even restating of many economic problems. Dependence in many economic time series
is of a non-Gaussian nature, calling for an escape from covariance-based methods and
allowing for a detailed analysis of the dependence in the quantiles of the joint distribution.
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7 Technical Appendix

In the first section of the appendix we collect details on how to construct pointwise
confidence bands. The proofs to the theorems in the paper are given in the remaining
sections of the appendix.

7.1 Interval Estimators

Section 3 contained asymptotic results on the uncertainty of point estimation of the newly
introduced quantile cross-spectral quantities. In this section we describe strategies to
estimate the variances (of the real and imaginary parts) that appear in those limit results
and describe how asymptotically valid pointwise confidence bands can be constructed.

In all three subsections the following comment is relevant. Assuming that we have
determined the weights Wn form a kernel W that is of order d. We will choose a
bandwidth bn = o(n−1/(2d+1)). This choice implies that compared to the variance the
bias (that in some form appears in both limit results) is asymptotically negligible:√
nbnB

(k)
n (ω; τ1, τ2) = o(1).

7.1.1 Pointwise Confidence Bands for f

Utilizing Theorem 3.3 we now construct pointwise asymptotic (1 − α)-level confidence
bands for the real and imaginary parts of fj1,j2(ωkn; τ1, τ2), ωkn := 2πk/n, as follows:

C(1)
r,n (ωkn; τ1, τ2) := <G̃j1,j2

n,R (ωkn; τ1, τ2)±<σj1,j2(1) (ωkn; τ1, τ2)Φ−1(1− α/2),

for the real part, and

C
(1)
i,n (ωkn; τ1, τ2) := =G̃j1,j2

n,R (ωkn; τ1, τ2)±=σj1,j2(1) (ωkn; τ1, τ2)Φ−1(1− α/2),

for the imaginary part of the quantile cross-spectrum. Here,

G̃j1,j2
n,R (ωkn; τ1, τ2) := Ĝj1,j2

n,R (ωkn; τ1, τ2)/W k
n , W k

n :=
2π

n

n−1∑
s=1

Wn(ωkn − ωsn),

and Φ denotes the cumulative distribution function of the standard normal distribution,4

(
<σj1,j2(ωkn; τ1, τ2)

)2
:= 0∨

{
Cov(H1,2,H1,2) if j1 = j2 and τ1 = τ2,
1
2

(
Cov(H1,2,H1,2) + <Cov(H1,2,H2,1)

)
otherwise,

and

(
=σj1,j2(ωkn; τ1, τ2)

)2
:= 0∨

{
0 if j1 = j2 and τ1 = τ2,
1
2

(
Cov(H1,2,H1,2)−<Cov(H1,2,H2,1)

)
otherwise,

4Note that for k = 0, . . . , n − 1 we have W k
n := 2π/n

∑
0=s 6=kWn(2πs/n). For k ∈ Z with k < 0 or

k ≥ n we can define it as the n periodic extension.
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where Cov(Ha,b,Hc,d) denotes an estimator of Cov
(
Hja,jb(ωkn; τa, τb

)
,Hjc,jd(ωkn; τc, τd)

)
.

Here, motivated by Theorem 7.4.3 in Brillinger (1975), we use

( 2π

n ·W k
n

)
×

[
n−1∑
s=1

Wn

(
2π(k−s)/n

)
Wn

(
2π(k−s)/n

)
G̃ja,jc
n,R (τa, τc; 2πs/n)G̃jb,jd

n,R (τb, τd;−2πs/n)

+
n−1∑
s=1

Wn

(
2π(k − s)/n

)
Wn

(
2π(k + s)/n

)
G̃ja,jd
n,R (τa, τd; 2πs/n)G̃jb,jc

n,R (τb, τc;−2πs/n)

]
(24)

The definition of σj1,j2(1) (ωkn; τ1, τ2) is motivated by the fact that =Ĝj1,j2
n,R (ωkn; τ1, τ2) = 0,

if j1 = j2 and τ1 = τ2. Furthermore, note that, for any complex-valued random variable
Z, with complex conjugate Z̄,

Var(<Z) =
1

2

(
Var(Z) + <Cov(Z, Z̄)

)
; Var(=Z) =

1

2

(
Var(Z)−<Cov(Z, Z̄)

)
, (25)

and we have H1,2 = H2,1.

7.1.2 Pointwise Confidence Bands for R

We utilize Theorem 3.4 to construct pointwise asymptotic (1−α)-level confidence bands
for the real and imaginary parts of Rj1,j2(ω; τ1, τ2) as follows:

C(2)
r,n (ωkn; τ1, τ2) := <R̂j1,j2

n,R (ωkn; τ1, τ2)±<σj1,j2(2) (ωkn; τ1, τ2)Φ−1(1− α/2),

for the real part, and

C
(2)
i,n (ωkn; τ1, τ2) := =R̂j1,j2

n,R (ωkn; τ1, τ2)±=σj1,j2(2) (ωkn; τ1, τ2)Φ−1(1− α/2),

for the imaginary part of the quantile coherency. Here, Φ stands for the cdf of the
standard normal distribution,

(
<σj1,j2(2) (ωkn; τ1, τ2)

)2
:= 0∨

{
0 if j1 = j2 and τ1 = τ2,
1
2

(
Cov(L1,2,L1,2) + <Cov(L1,2,L2,1)

)
otherwise,

and

(
=σj1,j2(2) (ωkn; τ1, τ2)

)2
:= 0∨

{
0 if j1 = j2 and τ1 = τ2,
1
2

(
Cov(L1,2,L1,2)−<Cov(L1,2,L2,1)

)
otherwise.

The definition of σj1,j2(2) (ωkn; τ1, τ2) is motivated by (25) and the fact that we have

L1,2 = L2,1. Furthermore, note that R̂j1,j2
n,R (ωkn; τ1, τ2) = 1, if j1 = j2 and τ1 = τ2..

In the definition of σj1,j2(2) (ωkn; τ1, τ2) we have used Cov(La,b,Lc,d) to denote an estimator
for

Cov
(
Lj1,j2(ωkn; τ1, τ2

)
,Lj3,j4(ωkn; τ3, τ4)

)
.

34



Recalling the definition of he limit process in Theorem 3.4 we derive the following ex-
pression:

1√
f1,1f2,2f3,3f4,4

Cov
(
H1,2 −

1

2

f1,2
f1,1

H1,1 −
1

2

f1,2
f2,2

H2,2,H3,4 −
1

2

f3,4
f3,3

H3,3 −
1

2

f3,4
f4,4

H4,4

)
=

Cov(H1,2,H3,4)√
f1,1f2,2f3,3f4,4

− 1

2

f3,4 Cov(H1,2,H3,3)√
f1,1f2,2f33,3f4,4

− 1

2

f3,4 Cov(H1,2,H4,4)√
f1,1f2,2f3,3f34,4

− 1

2

f1,2 Cov(H1,1,H3,4)√
f31,1f2,2f3,3f4,4

+
1

4

f1,2f3,4 Cov(H1,1,H3,3)√
f31,1f2,2f

3
3,3f4,4

+
1

4

f1,2f3,4 Cov(H1,1,H4,4)√
f31,1f2,2f3,3f

3
4,4

− 1

2

f1,2 Cov(H2,2,H3,4)√
f1,1f32,2f3,3f4,4

+
1

4

f1,2f3,4 Cov(H2,2,H3,3)√
f1,1f32,2f

3
3,3f4,4

+
1

4

f1,2f3,4 Cov(H2,2,H4,4)√
f1,1f32,2f3,3f

3
4,4

,

where we have written fa,b for the quantile spectral density fja,jb(ωkn; τa, τb), and Ha,b for
the limit distribution Hja,jb(ωkn; τa, τb

)
for any a, b = 1, 2, 3, 4).

Thus, considering the special case where τ3 = τ1 and τ4 = τ2, we have

Cov(L1,2,L1,2)

=
1

f1,1f2,2

(
Cov(H1,2,H1,2)−< f1,2 Cov(H1,1,H1,2)

f1,1
−< f1,2 Cov(H2,2,H1,2)

f2,2

+
1

4
|f1,2|2

(Cov(H1,1,H1,1)

f21,1
+ 2<Cov(H1,1,H2,2)

f1,1f2,2
+

Cov(H2,2,H2,2)

f22,2

)) (26)

and for the special case where τ3 = τ1 and τ4 = τ2 we have

Cov(L1,2,L2,1)

=
1

f1,1f2,2

(
Cov(H1,2,H2,1)− f1,2 Cov(H1,2,H2,2)

f2,2
− f1,2 Cov(H1,2,H1,1)

f1,1

+
1

4
f21,2

(Cov(H1,1,H1,1)

f21,1
+ 2<Cov(H1,1,H2,2)

f1,1f2,2
+

Cov(H2,2,H2,2)

f22,2

))
.

We substitute consistent estimators for the unknown quantities. To do so we abuse
notation using fa,b to denote G̃ja,jb

n,R (ωkn; τa, τb) and write Cov(Ha,b,Hc,d) for the quantity
defined in (24).

7.2 Proof of Proposition 3.2

The proof resembles the proof of Proposition 3.4 in Kley et al. (2015), where the univariate
case was handled. For j = 1, . . . , d we have, from the continuity of Fj that the ranks of
the random variables X0,j, ..., Xn−1,j and Fj(X0,j), ..., Fj(Xn−1,j) coincide almost surely.
Thus, without loss of generality, we can assume that the CCR-periodogram is computed
from the unobservable data (Fj(X0,j))j=1,...,d, ..., (Fj(Xn−1,j))j=1,...,d. In particular, we can
assume the marginals to be uniform.
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Applying the Continuous Mapping Theorem afterward, it suffices to prove(
n−1/2djn,R(ω; τ)

)
τ∈[0,1],j=1,...,d

 
(
Dj(ω; τ)

)
τ∈[0,1],j=1,...,d

in `∞Cd([0, 1]), (27)

where `∞Cd([0, 1]) is the space of bounded functions [0, 1]→ Cd that we identify with the
product space `∞([0, 1])2d. Let

djn,U(ω; τ) :=
n−1∑
t=0

I{Fj(Xt,j) ≤ τ}e−iωt,

j = 1, . . . , d, ω ∈ R, τ ∈ [0, 1], and note that for (27) to hold, it is sufficient that(
n−1/2djn,U(ω; τ)

)
τ∈[0,1],j=1,...,d

satisfies the following two conditions:

(i1) convergence of the finite-dimensional distributions, i. e.,(
n−1/2dj`n,U(ω`; τ`)

)
`=1,...,k

d−→
(
Dj`(ω`; τ`)

)
`=1,...,k

, (28)

for any (j`, τ`) ∈ {1, . . . , d} × [0, 1], ω` 6= 0 mod 2π, ` = 1, . . . , k and k ∈ N;

(i2) stochastic equicontinuity: for any x > 0 and any ω 6= 0 mod 2π,

lim
δ↓0

lim sup
n→∞

P
(

sup
τ1,τ2∈[0,1]
|τ1−τ2|≤δ

|n−1/2(djn,U(ω; τ1)− djn,U(ω; τ2))| > x
)

= 0, ∀j = 1, . . . , d.

(29)

Under (i1) and (i2), an application of Theorems 1.5.4 and 1.5.7 from van der Vaart and
Wellner (1996) then yields(

n−1/2djn,U(ω; τ)
)
τ∈[0,1],j=1,...,d

 
(
Dj(ω; τ)

)
τ∈[0,1],j=1,...,d

in `∞Cd([0, 1]). (30)

In combination with

sup
τ∈[0,1]

|n−1/2(djn,R(ω; τ)− djn,U(ω; τ))| = oP (1), for ω 6= 0 mod 2π, j = 1, . . . , d, (31)

which we will prove below, (30) yields the desired result: (27). For the proof of (31), we
denote by F̂−1

n,j (τ) := inf{x : F̂n,j(x) ≥ τ} the generalized inverse of F̂n,j and let inf ∅ := 0.
Then, we have, as in (7.25) of Kley et al. (2015), that

sup
ω∈R

sup
τ∈[0,1]

∣∣∣djn,R(ω; τ)− djn,U(ω; F̂−1
n,j (τ))

∣∣∣ ≤ n sup
τ∈[0,1]

|F̂n,j(τ)− F̂n,j(τ−)| = OP (n1/2k) (32)

where F̂n,j(τ−) := limξ↑0 F̂n,j(τ − ξ). The OP -bound in (32) follows from Lemma 7.8.
Therefore, it suffices to bound the terms

sup
τ∈[0,1]

n−1/2|djn,U(ω; F̂−1
n,j (τ))− djn,U(ω, τ))|, for all j = 1, . . . , d.
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To do so, note that, for any x > 0 and δn = o(1) satisfying n1/2δn →∞, we have

P
(

sup
τ∈[0,1]

n−1/2|djn,U(ω; F̂−1
n,j (τ))− djn,U(ω; τ))| > x

)
≤ P

(
sup
τ∈[0,1]

sup
|u−τ |≤δn

|djn,U(ω;u)− djn,U(ω; τ)| > xn1/2, sup
τ∈[0,1]

|F̂−1
n,j (τ)− τ | ≤ δn

)
+ P

(
sup
τ∈[0,1]

|F̂−1
n,j (τ)− τ | > δn

)
= o(1) + o(1).

The first o(1) follows from (29). The second one is a consequence of Lemma 7.9.
It thus remains to prove (28) and (29). For any fixed j = 1, . . . , d the process(

djn,U(ω, τ)
)
τ∈[0,1]

is determined by the univariate time series X0,j, . . . , Xn−1,j. Under

the assumptions made here, (29) therefore follows from (8.7) in Kley et al. (2015).
Finally, we establish (28), by employing Lemma 7.7 in combination with Lemma P4.5

and Theorem 4.3.2 from Brillinger (1975). More precisely, to apply Lemma P4.5 (Brillinger,
1975), we have to verify that, for any j1, . . . , j` ∈ {1, . . . , d}, τ1, . . . , τ` ∈ [0, 1], ` ∈ N,
and ω1, . . . , ω` 6= 0 mod 2π, all cumulants of the vector

n−1/2
(
dj1n,U(ω1; τ1), dj1n,U(−ω1; τ1), . . . , dj`n,U(ω`; τ`), d

j`
n,U(−ω`; τ`)

)
converge to the corresponding cumulants of the vector(

Dj1(ω1; τ1),Dj1(−ω1; τ1), . . . ,Dj`(ω`; τ`),Dj`(−ω`; τ`)
)
.

For the cumulants of order one the arguments from the univariate case (cf. the proof
of Proposition 3.4 in Kley et al. (2015)) apply: we have |E(n−1/2djn,U(ω; τ))| = o(1), for
any j = 1, . . . , d, τ ∈ [0, 1] and fixed ω 6= 0 mod 2π. Furthermore, for the cumulants of
order two, applying Theorem 4.3.1 in Brillinger (1975) to the bivariate process (I{Xt,j1 ≤
qj1(µ1)}, I{Xt,j2 ≤ qj2(µ2)}), we obtain

cum(n−1/2di1n,U(λ1;µ1), n−1/2di2n,U(λ2;µ2)) = 2πn−1∆n(λ1 + λ2)fi1,i2(λ1;µ1, µ2) + o(1)

for any (i1, λ1, µ1), (i2, λ2, µ2) ∈
⋃k
`=1{(i`, ω`, τ`), (j`,−ω`, τ`)}, which yields the correct

second moment structure. The function ∆n is defined in Lemma 7.7. Finally, the cumu-
lants of order J , with J ∈ N and J ≥ 3, all tend to zero, as in view of Lemma 7.7

cum(n−1/2di1n,U(λ1;µ1), . . . , n−1/2diJn,U(λJ ;µJ))

≤ Cn−J/2(|∆n(
J∑
j=1

λj)|+ 1)ε(| log ε|+ 1)d = O(n−(J−2)/2) = o(1),

for (i1, λ1, µ1), . . . , (iJ , λJ , µJ) ∈
⋃k
`=1{(i`, ω`, τ`), (i`,−ω`, τ`)}, where ε := minJj=1 µj.

This implies that the limit Dj(τ ;ω) is Gaussian, and completes the proof of (28). Propo-
sition 3.2 follows.
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7.3 Proof of Theorem 3.3

We proceed in a similar fashion as in the proof of the univariate estimator which was
analyzed in Kley et al. (2015). First, we state an asymptotic representation result by
which the estimator Ĝn,R can be approximated, in a suitable uniform sense, by another

process Ĝn,U which is not defined as a function of the standardized ranks F̂n,j(Xt,j), but
as a function of the unobservable quantities Fj(Xt,j), t = 0, . . . , n−1, j = 1, . . . , d. More
precisely, this process is defined as

Ĝn,U(ω; τ1, τ2) := (Ĝj1,j2
n,U (ω; τ1, τ2))j1,j2=1,...,d,

where

Ĝj1,j2
n,U (ω; τ1, τ2) :=

2π

n

n−1∑
s=1

Wn

(
ω − 2πs/n

)
Ij1,j2n,U (2πs/n, τ1, τ2)

Ij1,j2n,U (ω; τ1, τ2) :=
1

2πn
dj1n,U(ω; τ1)dj2n,U(−ω; τ2)

djn,U(ω; τ) :=
n−1∑
t=0

I{Fj(Xt,j) ≤ τ}e−iωt. (33)

Theorem 3.3 then follows from the asymptotic representation of Ĝn,R by Ĝn,U (i. e.,

Theorem 7.1(iii)) and the asymptotic properties of Ĝn,U (i. e., Theorem 7.1(i)–(ii)), which
we now state:

Theorem 7.1. Let Assumptions (C) and (W) hold, and assume that the distribution
functions Fj of X0,j are continuous for all j = 1, . . . , d. Let bn satisfy the assumptions
of Theorem 3.3. Then,

(i) for any fixed ω ∈ R, as n→∞,√
nbn
(
Ĝn,U(ω; τ1, τ2)− EĜn,U(ω; τ1, τ2)

)
τ1,τ2∈[0,1]

 H(ω; ·, ·)

in `∞Cd×d([0, 1]2), where the process H(ω; ·, ·) is defined in Theorem 3.3;

(ii) still as n→∞,

sup
j1,j2∈{1,...,d}
τ1,τ2∈[0,1]

ω∈R

∣∣∣EĜj1,j2
n,U (τ1, τ2;ω)−fj1,j2(ω; τ1, τ2)−

{
B(k)
n (ω; τ1, τ2)

}
j1,j2

∣∣∣ = O((nbn)−1)+o(bkn),

where
{
B

(k)
n (ω; τ1, τ2)

}
j1,j2

is defined in (16);

(iii) for any fixed ω ∈ R,

sup
j1,j2∈{1,...,d}
τ1,τ2∈[0,1]

|Ĝj1,j2
n,R (τ1, τ2;ω)− Ĝj1,j2

n,U (τ1, τ2;ω)| = oP
(
(nbn)−1/2 + bkn

)
;

if moreover the kernel W is uniformly Lipschitz-continuous, this bound is uniform
with respect to ω ∈ R.

38



The proof of Theorem 7.1 is lengthy, technical and in many places similar to the proof
of Theorem 3.6 in Kley et al. (2015). We provide the proof in Sections 7.3.1–7.3.3, with
technical details deferred to Section 7.5. For the reader’s convenience we first give a brief
description of the necessary steps.

Part (ii) of Theorem 7.1 can be proved along the lines of classical results from Brillinger
(1975), but uniformly with respect to the arguments τ1 and τ2. Parts (i) and (iii) re-
quire additional arguments that are different from the classical theory. These additional
arguments are due to the fact that the estimator is a stochastic process and stochastic
equicontinuity of(

Ĥj1,j2
n (a;ω)

)
a∈[0,1]2

:=
√
nbn
(
Ĝj1,j2
n,U (ω; τ1, τ2)− EĜj1,j2

n,U (ω; τ1, τ2)
)
τ1,τ2∈[0,1]

(34)

for all j1, j2 = 1, . . . , d has to be proven to ensure that the convergence holds not only
pointwise, but also uniformly. The key to the proof of (i) and (iii) is a uniform bound
on the increments Ĥj1,j2

n (a;ω)− Ĥj1,j2
n (b;ω) of the process Ĥj1,j2

n . This bound is needed
to show the stochastic equicontinuity of the process. To employ a restricted chaining
technique (cf. Lemma 7.4), we require two different bounds. First, we prove a general
bound, uniform in a and b, on the moments of the increments Ĥj1,j2

n (a;ω)− Ĥj1,j2
n (b;ω)

(cf. Lemma 7.5). Second, we prove a sharper bound on the increments Ĥj1,j2
n (a;ω) −

Ĥj1,j2
n (b;ω) when a and b are “sufficiently close” (cf. Lemma 7.11).

Condition (41) which we will required for Lemma 7.5 to hold is rather general. In
Lemma 7.7 we prove that Assumption (C) implies (41).

7.3.1 Proof of Theorem 7.1(i)

It is sufficient to prove the following two claims:

(i1) convergence of the finite-dimensional distributions of the process (34), that is,(
Ĥj1`,j2`
n

(
(a1`, a2`);ωj

))
j=1,...,k

d−→
(
Hj1`,j2`

(
(a1`, a2`);ωj

))
j=1,...,k

(35)

for any (j1`, j2`, a1`, a2`, ω`) ∈ {1, . . . , d} × [0, 1]2 × R, ` = 1, . . . , k and k ∈ N;

(i2) stochastic equicontinuity: for any x > 0, any ω ∈ R, and any j1, j2 = 1, . . . , d,

lim
δ↓0

lim sup
n→∞

P
(

sup
a,b∈[0,1]2

‖a−b‖1≤δ

|Ĥj1,j2
n (a;ω)− Ĥj1,j2

n (b;ω)| > x
)

= 0. (36)

By (36) we have stochastic equicontinuity of all real parts <Ĥj1,j2
n (·;ω) and imaginary

parts =Ĥj1,j2
n (·;ω). Therefore, in view of Theorems 1.5.4 and 1.5.7 in van der Vaart and

Wellner (1996), we will have proven part (i).
First we prove (i1). For fixed τ1, τ2, Ĝj1,j2

n,U (ω; τ1, τ2) is the traditional smoothed peri-
odogram estimator of the cross-spectrum of the clipped processes (I{Fj1(Xt,j1) ≤ τ1})t∈Z
and (I{Fj2(Xt,j2) ≤ τ2})t∈Z [see Chapter 7.1 in Brillinger (1975)]. Thus, (35) follows from
Theorem 7.4.4 in Brillinger (1975), by which these estimators are asymptotically jointly
Gaussian. The first and second moment structures of the limit are given by Theorem 7.4.1
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and Corollary 7.4.3 in Brillinger (1975). The joint convergence (35) follows. Note that
condition (C) implies the summability condition [i. e., Assumption 2.6.2(`) in Brillinger
(1975), for every `] required for the three theorems in Brillinger (1975) to be applied.

Now to the proof of (i2). The Orlicz norm ‖X‖Ψ = inf{C > 0 : EΨ(|X|/C) ≤ 1}
with Ψ(x) := x6 coincides with the L6 norm ‖X‖6 = (E|X|6)1/6. Therefore, for any κ > 0
and sufficiently small ‖a− b‖1, we have by Lemma 7.5 and Lemma 7.7 that

‖Ĥj1,j2
n (a;ω)− Ĥj1,j2

n (b;ω)‖Ψ ≤ K
(‖a− b‖κ1

(nbn)2
+
‖a− b‖2κ

1

nbn
+ ‖a− b‖3κ

1

)1/6

.

Consequently, for all a, b with ‖a − b‖1 sufficiently small and ‖a − b‖1 ≥ (nbn)−1/γ and
all γ ∈ (0, 1) such that γ < κ,

‖Ĥj1,j2
n (a;ω)− Ĥj1,j2

n (b;ω)‖Ψ ≤ K̄‖a− b‖γ/21 .

Note that ‖a − b‖1 ≥ (nbn)−1/γ if and only if d(a, b) := ‖a − b‖γ/21 ≥ (nbn)−1/2 =: η̄n/2.
The packing number (van der Vaart and Wellner, 1996, p. 98) D(ε, d) of ([0, 1]2, d) satisfies
D(ε, d) � ε−4/γ. By Lemma 7.4, we therefore have, for all x, δ > 0 and η ≥ η̄n,

P
(

sup
‖a−b‖1≤δ2/γ

|Ĥj1,j2
n (a;ω)− Ĥj1,j2

n (b;ω)| > x
)

= P
(

sup
d(a,b)≤δ

|Ĥj1,j2
n (a;ω)− Ĥj1,j2

n (b;ω)| > x
)

≤

[
8K̃

x

(∫ η

η̄n/2

ε−2/(3γ)dε+ (δ + 2η̄n)η−4/(3γ)

)]6

+ P
(

sup
d(a,b)≤η̄n

|Ĥj1,j2
n (a;ω)− Ĥj1,j2

n (b;ω)| > x/4
)
.

Now, choosing 2/3 < γ < 1 and letting n tend to infinity, the second term tends to
zero by Lemma 7.11, because, by construction, 1/γ > 1 and d(a, b) ≤ η̄n if and only if
‖a− b‖1 ≤ 22/γ(nbn)−1/γ. All together, this yields

lim
δ↓0

lim sup
n→∞

P
(

sup
d(a,b)≤δ

|Ĥn(a;ω)− Ĥn(b;ω)| > x
)
≤

[
8K̃

x

∫ η

0

ε−2/(3γ)dε

]6

,

for every x, η > 0. The claim then follows, as the integral on the right-hand side may be
arbitrarily small by choosing η accordingly.

7.3.2 Proof of Theorem 7.1(ii)

Following the arguments which were applied in Section 8.1 of Kley et al. (2015) we can
derive asymptotic expansions for E[Ij1,j2n,U (ω; τ1, τ2)] and E[Ĝj1,j2

n,U (ω; τ1, τ2)]. In fact, it is
easy to see that the proofs can still be applied when the Laplace cumulants

cum
(
I{Xk1 ≤ x1}, I{Xk2 ≤ x2}, . . . , I{X0 ≤ xp}

)
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which were considered in Kley et al. (2015) are replaced by their multivariate counterparts

cum
(
I{Xk1,j1 ≤ x1}, I{Xk2,j2 ≤ x2}, . . . , I{X0,jp ≤ xp}

)
.

More precisely, we now state Lemma 7.2 and 7.3 (without proof) that are multivariate
counterparts to Lemmas 8.4 and 8.5 in Kley et al. (2015). The lemmas hold under the
following assumption:

(CS) Let p ≥ 2, δ > 0. There exists a non-increasing function ap : N→ R+ such that∑
k∈N

kδap(k) <∞

and

sup
x1,...,xp

| cum
(
I{Xk1,j1 ≤ x1}, I{Xk2,j2 ≤ x2}, . . . , I{X0,jp ≤ xp}

)
| ≤ ap

(
max
j
|kj|
)
,

for all j1, . . . , jp = 1, . . . , d.

Note that condition (CS) follows from Assumption (C) but is in fact somewhat weaker.
We now state the first of the two lemmas. It is a generalization of Theorem 5.2.2 in
Brillinger (1975).

Lemma 7.2. Under (CS) with K = 2, δ > 3,

EIj1,j2n,U (ω; τ1, τ2) =

fj1,j2(ω; τ1, τ2) + 1
2πn

[
sin(nω/2)
sin(ω/2)

]2

τ1τ2 + ετ1,τ2n (ω) ω 6= 0 mod 2π

fj1,j2(ω; τ1, τ2) + n
2π
τ1τ2 + ετ1,τ2n (ω) ω = 0 mod 2π

(37)
with supτ1,τ2∈[0,1],ω∈R |ετ1,τ2n (ω)| = O(1/n).

The second of the two lemmas is a generalization of Theorem 5.6.1 in Brillinger (1975).

Lemma 7.3. Assume that (CS), with p = 2 and δ > k + 1, and (W) hold. Then, with
the notation of Theorem 3.3,

sup
τ1,τ2∈[0,1],ω∈R

∣∣∣EĜj1,j2
n (ω; τ1, τ2)−fj1,j2(ω; τ1, τ2)−

{
B(k)
n (ω; τ1, τ2)

}
j1,j2

∣∣∣ = O((nbn)−1)+o(bkn).

Because (C) implies (CS), Lemma 7.3 implies Theorem 7.1(ii).

7.3.3 Proof of Theorem 7.1(iii)

Using (31) and argument similar to the ones in the proof of Lemma 7.11 it follows that

sup
ω∈R

sup
τ1,τ2∈[0,1]

|Ĝj1,j2
n,R (ω; τ1, τ2)− Ĝj1,j2

n,U (ω; F̂−1
n,j1

(τ1), F̂−1
n,j2

(τ2))| = oP (1).
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It therefore suffices to bound the differences

sup
τ1,τ2∈[0,1]

|Ĝj1,j2
n,U (ω; τ1, τ2)− Ĝj1,j2

n,U (ω; F̂−1
n,j1

(τ1), F̂−1
n,j2

(τ2))|

for j1, j2 = 1, . . . , d, pointwise and uniformly in ω.
We first prove the statement for fixed ω ∈ R in full details and will later sketch the

additional arguments needed for the proof of the uniform result. For any x > 0 and
sequence δn we have,

P n(ω):=P
(

sup
τ1,τ2∈[0,1]

|Ĝj1,j2
n,U (ω; F̂−1

n,j1
(τ1), F̂−1

n,j2
(τ2))− Ĝj1,j2

n,U (ω; τ1, τ2)| > x((nbn)−1/2 + bkn)
)

≤P
(

sup
τ1,τ2∈[0,1]

sup
‖(u,v)−(τ1,τ2)‖∞

≤supi=1,2;τ∈[0,1] |F̂
−1
n,ji

(τ)−τ |

|Ĝj1,j2
n,U (ω;u, v)− Ĝj1,j2

n,U (ω; τ1, τ2)| > x((nbn)−1/2 + bkn)
)

≤P
(

sup
τ1,τ2∈[0,1]

sup
|u−τ1|≤δn
|v−τ2|≤δn

|Ĝj1,j2
n,U (ω;u, v)− Ĝj1,j2

n,U (ω; τ1, τ2)| > x((nbn)−1/2 + bkn),

sup
i=1,2;τ∈[0,1]

|F̂−1
n,ji

(τ)− τ | ≤ δn

)
+

2∑
i=1

P
(

sup
τ∈[0,1]

|F̂−1
n,ji

(τ)− τ | > δn

)
=P n

1 + P n
2 , say.

We choose δn such that n−1/2 � δn = o(n−1/2b
−1/2
n (log n)−D), where D denotes the

constant from Lemma 7.6. It then follows from Lemma 7.9 that P n
2 is o(1). For P n

1 , on
the other hand, we have the following bound:

P
(

sup
τ1,τ2∈[0,1]

sup
|u−τ1|≤δn
|v−τ2|≤δn

|Ĥj1,j2
n,U (ω;u, v)− Ĥj1,j2

n,U (ω; τ1, τ2)| > (1 + (nbn)1/2bkn)x/2
)

+ I
{

sup
τ1,τ2∈[0,1]

sup
|u−τ1|≤δn
|v−τ2|≤δn

|EĜj1,j2
n,U (ω;u, v)− EĜj1,j2

n,U (ω; τ1, τ2)| > ((nbn)−1/2 + bkn)x/2
}
.

The first term tends to zero because of (36). The indicator vanishes for n large enough,
because we have

sup
τ1,τ2∈[0,1]

sup
|u−τ1|≤δn
|v−τ2|≤δn

|EĜj1,j2
n,U (ω;u, v)− EĜj1,j2

n,U (ω; τ1, τ2)|

≤ sup
τ1,τ2∈[0,1]

sup
|u−τ1|≤δn
|v−τ2|≤δn

|EĜj1,j2
n,U (ω;u, v)− fj1,j2(ω;u, v)−

{
B(k)
n (ω;u, v)

}
j1,j2
|

+ sup
τ1,τ2∈[0,1]

sup
|u−τ1|≤δn
|v−τ2|≤δn

|
{
B(k)
n (ω; τ1, τ2)

}
j1,j2

+ fj1,j2(ω; τ1, τ2)− EĜj1,j2
n,U (ω; τ1, τ2)|

+ sup
τ1,τ2∈[0,1]

sup
|u−τ1|≤δn
|v−τ2|≤δn

|fj1,j2(ω;u, v) +
{
B(k)
n (ω;u, v)

}
j1,j2

− fj1,j2(ω; τ1, τ2)−
{
B(k)
n (ω; τ1, τ2)

}
j1,j2
|

=o(n−1/2b−1/2
n + bkn) +O(δn(1 + | log δn|)D),
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where D is still the constant from Lemma 7.6. To bound the first two terms we have
applied part (ii) of Theorem 7.1 and Lemma 7.6 for the third one. Thus, for any fixed ω,
we have shown P n(ω) = o(1), which is the pointwise version of the claim.

Next, we outline the proof of the uniform (with respect to ω) convergence. For
any yn > 0, by similar arguments as above, using the same δn, we have

P
(

sup
ω∈R

sup
τ1,τ2∈[0,1]

|Ĝj1,j2
n,R (ω; τ1, τ2)− Ĝj1,j2

n,U (ω; τ1, τ2)| > yn

)
≤ P

(
sup
ω∈R

sup
τ1,τ2∈[0,1]

sup
|u−τ1|≤δn
|v−τ2|≤δn

|Ĥj1,j2
n,U (ω;u, v)− Ĥj1,j2

n,U (ω; τ1, τ2)| > (nbn)1/2yn/2
)

+ I
{

sup
ω∈R

sup
τ1,τ2∈[0,1]

sup
|u−τ1|≤δn
|v−τ2|≤δn

|EĜj1,j2
n,U (ω;u, v)− EĜj1,j2

n,U (ω; τ1, τ2)| > yn/2
}

+ o(1).

The indicator in the latter expression is o(1) by the same arguments as above [note that
Lemma 7.6 and the statement of part (ii) both hold uniformly with respect to ω ∈ R].
For the bound of the probability, note that by Lemma 7.10,

sup
τ1,τ2

sup
k=1,...,n

|Ij1,j2n,U (2πk/n; τ1, τ2)| = OP (n2/K), for any K > 0.

Moreover, by the uniform Lipschitz continuity of W the function Wn is also uniformly Lip-
schitz continuous with constant of order O(b−2

n ). Combining those facts with Lemma 7.6
and the assumptions on bn, we obtain

sup
ω1,ω2∈R

|ω1−ω2|≤n−3

sup
τ1,τ2∈[0,1]

|Ĥj1,j2
n,U (ω1; τ1, τ2)− Ĥj1,j2

n,U (ω2; τ1, τ2)| = oP (1).

By the periodicity of Ĥj1,j2
n,U (with respect to ω), it suffices to show that

max
ω=0,2πn−3,...,2π

sup
τ1,τ2∈[0,1]

sup
|u−τ1|≤δn
|v−τ2|≤δn

|Ĥj1,j2
n,U (ω;u, v)− Ĥj1,j2

n,U (ω; τ1, τ2)| = oP (1).

By Lemmas 7.4 and 7.11 there exists a random variable S(ω) such that

sup
τ1,τ2∈[0,1]

sup
|u−τ1|≤δn
|v−τ2|≤δn

|Ĥj1,j2
n,U (ω;u, v)− Ĥj1,j2

n,U (ω; τ1, τ2)| ≤ |S(ω)|+Rn(ω),

for any fixed ω ∈ R, with supω∈R |Rn(ω)| = oP (1) and

max
ω=0,2πn−3...,2π

E[|S2L(ω)|] ≤ K2L
L

(∫ η

0

ε−4/(2Lγ)dε+ (δγ/2n + 2(nbn)−1/2)η−8/(2Lγ)

)2L

for any 0 < γ < 1, L ∈ N, 0 < η < δn, and a constant KL depending on L only. For
appropriately chosen L and γ, this latter bound is o(n−3). Note that the maximum is
with respect to a set of cardinality O(n3), which completes the proof of part (iii).
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7.4 Proof of Theorem 3.4

By a Taylor expansion we have, for every x, x0 > 0,

1√
x

=
1
√
x0

− 1

2

1√
x3

0

(x− x0) +
3

8
ξ−5/2
x,x0

(x− x0)2,

where ξx,x0 is between x and x0. Let Rn(x, x0) := 3
8
ξ
−5/2
x,x0 (x− x0)2, then

x
√
yz
− x0√

y0z0

=
1

√
y0z0

(
(x− x0)− 1

2

x0

y0

(y − y0)− 1

2

x0

z0

(z − z0)
)

+ rn, (38)

where

rn = (x− x0)
(
− 1

2

1

y0

(y − y0)− 1

2

1

z0

(z − z0)
)

+ x
(
Rn(y, y0)

√
y0

(
1− 1

2

1

z0

(z − z0)
)

+Rn(z, z0)
√
z0

(
1− 1

2

1

y0

(y − y0)
)

+
1

4

1

y0

(y − y0)
1

z0

(z − z0) +
√
y0z0Rn(y, y0)Rn(z, z0)

)
Write fa,b for fja,jb(ω; τa, τb), Ga,b for Ĝja,jb

n,R (ω; τa, τb), and Ba,b for {B(k)
n (ω; τa, τb)}ja,jb

(a, b = 1, 2, 3, 4). We want to employ (38) and to this end let

x := Ga,b y := Ga,a z := Gb,b

x0 := fa,b +Ba,b y0 := fa,a +Ba,a z0 := fb,b +Bb,b

By Theorem 3.3 the differences x−x0, y− y0, and z− z0 are in OP ((nbn)−1/2), uniformly
with respect to τ1, τ2. Under the assumption that nbn → ∞, as n → ∞, this entails
Ga,a −Ba,a → fa,a, in probability. For ε ≤ τ1, τ2 ≤ 1− ε, we have fa,a > 0, such that, by

the Continuous Mapping Theorem we have (Ga,a −Ba,a)
−5/2 → f

−5/2
a,a , in probability. As

Ba,a = o(1), we have y−5/2 − y−5/2
0 = oP (1). Finally, due to

ξ−5/2
y,y0
≤ y−5/2

n ∨ y−5/2
0 ≤ (y−5/2

n − y−5/2
0 ) ∨ 0 + y

−5/2
0 = oP (1) +O(1) = OP (1),

we have thatRn(y, y0) = OP ((nbn)−1). Analogous arguments yieldsRn(z, z0) = OP ((nbn)−1).
Thus we have shown that

R̂j1,j2
n,R (ω; τ1, τ2)− fa,b +Ba,b√

fa,a +Ba,a

√
fb,b +Bb,b

=
1√

f1,1f2,2

(
[G1,2 − f1,2 −B1,2]− 1

2

f1,2
f1,1

[G1,1 − f1,1 −B1,1]− 1

2

f1,2
f2,2

[G2,2 − f2,2 −B2,2]
)

+OP

(
1/(nbn)

)
,

with the OP holding uniformly with respect to τ1, τ2. Further more, note that

fa,b +Ba,b√
fa,a +Ba,a

√
fb,b +Bb,b

=
fa,b√
fa,afb,b

+
1√
fa,afb,b

(
Ba,b −

1

2

fa,b
fa,a
Ba,a −

1

2

fa,b
fb,b
Bb,b

)
+O(|Ba,b|(Ba,a +Bb,b) +B2

a,a +B2
b,b +Ba,aBb,b),
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where we have used (38) again. Condition (19) implies that the remainder is of order
o
(
(nbn)−1/2

)
. Therefore,√

nbn

(
R̂j1,j2
n,R (ω; τ1, τ2)−Rj1,j2(ω; τ1, τ2)− 1√

fa,afb,b

(
Ba,b−

1

2

fa,b
fa,a
Ba,a−

1

2

fa,b
fb,b
Bb,b

))
τ1,τ2∈[0,1]

and
√
nbn√
f1,1f2,2

(
[G1,2 − f1,2 −B1,2]− 1

2

f1,2
f1,1

[G1,1 − f1,1 −B1,1]− 1

2

f1,2
f2,2

[G2,2 − f2,2 −B2,2]
)

(39)

are asymptotically equivalent in the sense that if one of the two converges weakly in
`∞Cd×d([0, 1]2), then so does the other. The assertion then follows by Theorem 3.3, Slutzky’s
lemma and the Continuous Mapping Theorem.

7.5 Auxiliary Lemmas

In this section we state multivariate versions of the auxiliary lemmas from Section 7.4
in Kley et al. (2015). Note that Lemma 7.4 is unaltered and therefore stated without
proof. The remaining lemmas are adapted to the multivariate quantities and proofs or
directions on how to adapt the proofs in Kley et al. (2015) are collected in the end of
this section.

For the statement of Lemma 7.4, we define the Orlicz norm [see e.g. van der Vaart
and Wellner (1996), Chapter 2.2] of a real-valued random variable Z as

‖Z‖Ψ = inf
{
C > 0 : EΨ

(
|Z|/C

)
≤ 1
}
,

where Ψ : R+ → R+ may be any non-decreasing, convex function with Ψ(0) = 0.
For the statement of Lemmas 7.5, 7.7, and 7.10 we define, for any Borel set A,

djn(ω;A) :=
n−1∑
t=0

I{Xt,j ∈ A}e−itω. (40)

Lemma 7.4. Let {Gt : t ∈ T} be a separable stochastic process with ‖Gs − Gt‖Ψ ≤
Cd(s, t) for all s, t with d(s, t) ≥ η̄/2 ≥ 0. Denote by D(ε, d) the packing number of the
metric space (T, d). Then, for any δ > 0, η ≥ η̄, there exists a random variable S1 and
a constant K <∞ such that

sup
d(s,t)≤δ

|Gs −Gt| ≤ S1 + 2 sup
d(s,t)≤η̄,t∈T̃

|Gs −Gt| and

‖S1‖Ψ ≤ K
[ ∫ η

η̄/2

Ψ−1
(
D(ε, d)

)
dε+ (δ + 2η̄)Ψ−1

(
D2(η, d)

)]
,

where the set T̃ contains at most D(η̄, d) points. In particular, by Markov’s inequality
[cf. van der Vaart and Wellner (1996), p. 96],

P
(
|S1| > x

)
≤
(

Ψ
(
x
[
8K
( ∫ η

η̄/2

Ψ−1
(
D(ε, d)

)
dε + (δ + 2η̄)Ψ−1

(
D2(η, d)

))]−1
))−1

.

for any x > 0.

45



Lemma 7.5. Let X0, ...,Xn−1, where Xt = (Xt,1, . . . , Xt,d), be the finite realization
of a strictly stationary process with X0,j ∼ U [0, 1], j = 1, . . . , d. Let (W) hold. For

x = (x1, x2) let Ĥj1,j2
n (x;ω) :=

√
nbn(Ĝj1,j2

n (x1, x2;ω)− E[Ĝj1,j2
n (x1, x2;ω)]). Let djn(ω;A)

be defined as in (40). Assume that, for p = 1, . . . , P , there exist a constant C and a
function g : R+ → R+, both independent of ω1, ..., ωp ∈ R, n and A1, ..., Ap, such that∣∣∣ cum(dj1n (ω1;A1), . . . , djpn (ωp;Ap))

∣∣∣ ≤ C
(∣∣∣∆n

( p∑
i=1

ωi

)∣∣∣+ 1
)
g(ε) (41)

for any indices j1, . . . , jp ∈ {1, . . . , d} and intervals A1, . . . , Ap with mink P(X0,jk ∈ Ak) ≤
ε. Then, there exists a constant K (depending on C,L, g only) such that

sup
ω∈R

sup
‖a−b‖1≤ε

E|Ĥj1,j2
n (a;ω)− Ĥj1,j2

n (b;ω)|2L ≤ K
L−1∑
`=0

gL−`(ε)

(nbn)`

for all ε with g(ε) < 1 and all L = 1, . . . , P .

Lemma 7.6. Under the assumptions of Theorem 3.3, the derivative

(τ1, τ2) 7→ dk

dωk
fj1,j2(ω; τ1, τ2)

exists and satisfies, for any k ∈ N0 and some constants C, d that are independent of
a = (a1, a2), b = (b1, b2), but may depend on k,

sup
ω∈R

∣∣∣ dk

dωk
fj1,j2(ω; a1, a2)− dk

dωk
fj1,j2(ω; b1, b2)

∣∣∣ ≤ C‖a− b‖1(1 + | log ‖a− b‖1|)D.

Lemma 7.7. Let the strictly stationary process (Xt)t∈Z satisfy Assumption (C). Let
djn(ω;A) be defined as in (40). Let A1, . . . , Ap ⊂ [0, 1] be intervals, and let

ε := min
k=1,...,p

P(X0,jk ∈ Ak).

Then, for any p-tuple ω1, ..., ωp ∈ R and j1, . . . , jp ∈ {1, . . . , d},∣∣∣ cum(dj1n (ω1;A1), . . . , djpn (ωp;Ap))
∣∣∣ ≤ C

(∣∣∣∆n

( p∑
i=1

ωi

)∣∣∣+ 1
)
ε(| log ε|+ 1)D,

where ∆n(λ) :=
∑n−1

t=0 e
itλ and the constants C,D depend only on K, p, and ρ [with ρ

from condition (C)].

Lemma 7.8. Assume that (Xt)t∈Z is a strictly stationary process satisfying Assump-
tion (C) and X0,j ∼ U [0, 1]. Denote by F̂n,j the empirical distribution function of
X0,j, ..., Xn−1,j. Then, for any k ∈ N, there exists a constant dk depending only on k,
such that

sup
x,y∈[0,1],|x−y|≤δn

√
n|F̂n,j(x)− F̂n,j(y)− (x− y)|

= OP

(
(n2δn + n)1/2k(δn| log δn|dk + n−1)1/2

)
,

as δn → 0.
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Lemma 7.9. Let X0, ...,Xn−1, where Xt = (Xt,1, . . . , Xt,d), be the finite realization of a
strictly stationary process satisfying (C) and X0,j ∼ U [0, 1], j = 1, . . . , d. Then,

sup
j=1,...,d

sup
τ∈[0,1]

|F̂−1
n,j (τ)− τ | = OP (n−1/2).

Lemma 7.10. Let the strictly stationary process (Xt)t∈Z satisfy (C) and X0,j ∼ U [0, 1].
Let djn(ω;A) be defined as in (40). Then, for any k ∈ N,

sup
j=1,...,d

sup
ω∈Fn

sup
y∈[0,1]

|djn(ω; [0, y])| = OP (n1/2+1/k).

Lemma 7.11. Under the assumptions of Theorem 7.1, let δn be a sequence of non-
negative real numbers. Assume that there exists γ ∈ (0, 1), such that δn = O((nbn)−1/γ).
Then,

sup
j1,j2,∈{1,...,d}

sup
ω∈R

sup
u,v∈[0,1]2

‖u−v‖1≤δn

|Ĥj1,j2
n (u;ω)− Ĥj1,j2

n (v;ω)| = oP (1).

Proof of Lemma 7.4. The lemma is stated unaltered as in Kley et al. (2015). The
proof can be found in Section 8.3.1 of the Online Appendix of Kley et al. (2015).

Proof of Lemma 7.5. Along the same lines of the proof of the univariate version
(Section 8.3.2 in Kley et al. (2015)) we can proof

E|Ĥj1,j2
n (a;ω)− Ĥj1,j2

n (b;ω)|2L =
∑

{ν1,...,νR}
|νj |≥2, j=1,...,R

R∏
r=1

Da,b(νr) (42)

with the summation running over all partitions {ν1, . . . , νR} of {1, . . . , 2L} such that each
set νj contains at least two elements, and

Da,b(ξ) :=
∑

`ξ1 ,...,`ξq∈{1,2}

n−3q/2bq/2n

(∏
m∈ξ

σ`m

)

×
n−1∑

sξ1 ,...,sξq=1

(∏
m∈ξ

Wn(ω − 2πsm/n)
)

cum(D`m,(−1)m−1sm : m ∈ ξ),

for any set ξ := {ξ1, . . . , ξq} ⊂ {1, . . . , 2L}, q := |ξ|, and

D`,s := dj1n (2πs/n;M1(`))dj2n (−2πs/n;M2(`)), ` = 1, 2, s = 1, . . . , n− 1,

with the sets M1(1), M2(2), M2(1), M1(2) and the signs σ` ∈ {−1, 1} defined as

σ1 := 2I{a1 > b1} − 1, σ2 := 2I{a2 > b2} − 1,

M1(1) := (a1 ∧ b1, a1 ∨ b1], M2(2) := (a2 ∧ b2, a2 ∨ b2], (43)

M2(1) :=

{
[0, a2] b2 ≥ a2

[0, b2] a2 > b2,
M1(2) :=

{
[0, b1] b2 ≥ a2

[0, a1] a2 > b2.
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Employing assumption (41), we can further prove, by following the arguments of the
univariate version, that

sup
ξ⊂{1,...,2L}
|ξ|=q

sup
‖a−b‖1≤ε

|Da,b(ξ)| ≤ C(nbn)1−q/2g(ε), 2 ≤ q ≤ 2L.

The lemma then follows, by observing that∣∣∣ R∏
r=1

Da,b(νr)
∣∣∣ ≤ CgR(ε)(nbn)R−L

for any partition in (42) [note that
∑R

r=1 |νr| = 2L].

Proof of Lemma 7.6. Note that

cum(I{X0,j1 ≤ qj1(a1)}, I{Xk,j2 ≤ qj2(a2)})− cum(I{X0,j1 ≤ qj1(b1)}, I{Xk,j2 ≤ qj2(b2)})
= σ1 cum(I{Fj1(X0,j1) ∈M1(1)}, I{Fj2(Xk,j2) ∈M2(1)})

+ σ2 cum(I{Fj1(X0,j1) ∈M1(2)}, I{Fj2(Xk,j2) ∈M2(2)}),

with the sets M1(1), M2(2), M2(1), M1(2) and the signs σ` ∈ {−1, 1} defined in (43).
From the fact that λ(Mj(j)) ≤ ‖a− b‖1 for j = 1, 2, we conclude that∣∣∣ d`

dω`
fj1,j2(ω; a1, a2)− d`

dω`
fj1,j2(ω; b1, b2)

∣∣∣
≤
∑
k∈Z

|k|`| cum(I{Fj1(X0,j1) ∈M1(1)}, I{Fj2(Xk,j2) ∈M2(1)})|

+
∑
k∈Z

|k|`| cum(I{Fj1(X0,j1) ∈M1(2)}, I{Fj2(Xk,j2) ∈M2(2)})|

≤ 4
∞∑
k=0

k`
(

(Kρ`) ∧ ‖a− b‖1

)
.

The assertion then follows by after some algebraic manipulations.

Proof of Lemma 7.7. Similar to (8.27) in Kley et al. (2015) we have, by the definition
of cumulants and strict stationarity,

cum(dj1n (ω1;A1), . . . , djpn (ωp;Ap))

=
n∑

u2,...,up=−n

cum(I{X0,j1 ∈ A1}, I{Xu2,j2 ∈ A2} . . . , I{Xup,jp ∈ Ap}) exp
(
− i

p∑
j=2

ωjuj

)
×

n−1∑
t1=0

exp
(
− it1

p∑
j=1

ωj

)
I{0≤t1+u2<n} · · · I{0≤t1+up<n}. (44)

By Lemma 8.1 in Kley et al. (2015),∣∣∣∆n(

p∑
j=1

ωj)−
n−1∑
t1=0

exp
(
−it1

p∑
j=1

ωj

)
I{0 ≤ t1 + u2 < n} · · · I{0 ≤ t1 + up < n}

∣∣∣ ≤ 2

p∑
j=2

|uj|.

(45)
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Following the arguments for the proof of (8.29) in Kley et al. (2015), we further have, for
any p + 1 intervals A0, . . . , Ap ⊂ R, any indices j0, . . . , jp ∈ {1, . . . , d}, and any p-tuple
κ := (κ1, ..., κp) ∈ Rp

+, p ≥ 2, that

∞∑
k1,...,kp=−∞

(
1 +

p∑
`=1

|k`|κ`
)∣∣ cum

(
I{Xk1,j1 ∈ A1}, . . . , I{Xkp,jp ∈ Ap}, I{X0,j0 ∈ A0}

)∣∣
≤ Cε(| log ε|+ 1)d. (46)

To this end, define k0 = 0, consider the set

Tm :=
{

(k1, ..., kp) ∈ Zp| max
i,j=0,...,p

|ki − kj| = m
}
,

and note that |Tm| ≤ cpm
p−1 for some constant cp. From the definition of cumulants and

some simple algebra we get the bound

| cum(I{Xt1,j1 ∈ A1}, ..., I{Xtp,jp ∈ Ap})| ≤ C min
i=1,...,p

P (X0,ji ∈ Ai).

With this bound and condition (C) we obtain, employing the above notation, that

∞∑
k1,...,kp=−∞

(
1 +

p∑
j=1

|k`|κ`
)∣∣ cum

(
I{Xk1,j1 ∈ A1}, . . . , I{Xkp,jp ∈ Ap}, I{X0,j0

∈A0}
)∣∣

=
∞∑
m=0

∑
(k1,...,kp)∈Tm

(
1+

p∑
`=1

|k`|κ`
)∣∣ cum

(
I{Xk1,j1 ∈ A1}, . . . , I{Xkp,jp ∈ Ap}, I{X0,j0 ∈ A0}

)∣∣
≤

∞∑
m=0

∑
(k1,...,kp)∈Tm

(
1 + pmmaxj κj

)(
ρm ∧ ε

)
Kp ≤ Cp

∞∑
m=0

(
ρm ∧ ε

)
|Tm|mmaxj κj .

For ε ≥ ρ, (46) then follows trivially. For ε < ρ, set mε := log ε/ log ρ and note that
ρm ≤ ε if and only if m ≥ mε. Thus,

∞∑
m=0

(
ρm ∧ ε

)
mu ≤

∑
m≤mε

muε+
∑
m>mε

muρm ≤ C
(
εmu+1

ε + ρmε
∞∑
m=0

(m+mε)
uρm

)
.

The fact that ρmε = ε completes the proof of the desired inequality (46). The assertion
follows from (44), (45), (46) and the triangle inequality.

Proofs of Lemmas 7.8, 7.9 and 7.10. Note that the component processes (Xt,j) are
stationary and fulfill assumption (C) in Kley et al. (2015), for every j = 1, . . . , d. The
assertion then follow from the univariate versions (i. e., Lemma 8.6, 7.5 and 7.6 in Kley
et al. (2015), respectively), as the dimension d does not depend on n.

Proof of Lemma 7.11. Assume, without loss of generality, that n−1 = o(δn) [otherwise,
enlarge the supremum by considering δ̃n := max(n−1, δn)]. With the notation a = (a1, a2)
and b = (b1, b2), we have

Ĥj1,j2
n (a;ω)− Ĥj1,j2

n (b;ω) = b1/2
n n−1/2

n−1∑
s=1

Wn(ω − 2πs/n)(Ks,n(u, v)− EKs,n(u, v))
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where, with djn,U defined in (33),

Ks,n(a, b) := n−1
(
dj1n,U(2πs/n;u1)dj2n,U(−2πs/n;u2)− dj1n,U(2πs/n; v1)dj2n,U(−2πs/n; v2)

)
= dj1n,U(2πs/n;u1)n−1

[
dj2n,U(−2πs/n;u2)− dj2n,U(−2πs/n; v2)

]
+ dj2n,U(−2πs/n; v2)n−1

[
dj1n,U(2πs/n;u1)− dj1n,U(2πs/n; v1)

]
.

By Lemma 7.10, we have, for any k ∈ N,

sup
y∈[0,1]

sup
ω∈Fn

|djn,U(ω; y)| = OP

(
n1/2+1/k

)
. (47)

Employing Lemma 7.8, we have, for any ` ∈ N and j = 1, . . . , d,

sup
ω∈R

sup
y∈[0,1]

sup
x:|x−y|≤δn

n−1|djn,U(ω;x)− djn,U(ω; y)|

≤ sup
y∈[0,1]

sup
x:|x−y|≤δn

n−1

n−1∑
t=0

|I{Fj(Xt,j) ≤ x} − I{Fj(Xt,j) ≤ y}|

≤ sup
y∈[0,1]

sup
x:|x−y|≤δn

|F̂n,j(x ∨ y)− F̂n,j(x ∧ y)− x ∨ y + x ∧ y|+ Cδn

= OP

(
ρn(δn, `) + δn

)
,

with ρn(δn, `) := n−1/2(n2δn + n)1/2`(δn| log δn|D` + n−1)1/2, F̂n,j denoting the empirical
distribution function of Fj(X0,j), . . . , Fj(Xn−1,j), and d` being a constant depending only
on `. Combining these arguments and observing that

sup
ω∈R

n−1∑
s=1

∣∣∣Wn(ω − 2πs/n)
∣∣∣ = O(n) (48)

yields

sup
ω∈R

sup
u,v∈[0,1]2

‖u−v‖1≤δn

∣∣∣ n−1∑
s=1

Wn(ω − 2πs/n)Ks,n(u, v)
∣∣∣ = OP

(
n3/2+1/k(ρ(δn, `) + δn)

)
. (49)

With Mi(j), i, j = 1, 2, as defined in (43), we have

sup
‖a−b‖1≤δn

sup
s=1,...,n−1

|EKs,n(a, b)|

≤ n−1 sup
‖a−b‖1≤δn

sup
s=1,...,n−1

∣∣ cum(dj1n,U(2πs/n;M1(1)), dj2n,U(−2πs/n;M2(1)))
∣∣

+ n−1 sup
‖a−b‖1≤δn

sup
s=1,...,n−1

∣∣ cum(dj1n,U(2πs/n;M1(2)), dj2n,U(−2πs/n;M2(2)))
∣∣ (50)

where we have used Edjn,U(2πs/n;M) = 0. Lemma 7.7 and λ(Mj(j)) ≤ δn, for j = 1, 2
(with λ denoting the Lebesgue measure over R) yield

sup
‖a−b‖1≤δn

sup
s=1,...,n−1

| cum(dj1n (2πs/n;M1(j)), dj2n (−2πs/n;M2(j)))| ≤ C(n+1)δn(1+| log δn|)D,
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It follows that the right-hand side in (50) is O(δn| log δn|D). Therefore, by (48), we obtain

sup
ω∈R

sup
‖a−b‖1≤δn

∣∣∣b1/2
n n−1/2

n−1∑
s=1

Wn(ω − 2πs/n)EKs,n(a, b)
∣∣∣ = O

(
(nbn)1/2δn| log n|D

)
.

In view of the assumption that n−1 = o(δn), we have δn = O(n1/2ρn(δn, `)), which, in
combination with (49), yields

sup
ω∈R

sup
‖a−b‖1≤δn

|Ĥj1,j2
n (a;ω)− Ĥj1,j2

n (b;ω)|

= OP

(
(nbn)1/2[n1/2+1/k(ρn(δn, `) + δn) + δn| log δn|D]

)
= OP

(
(nbn)1/2n1/2+1/kρn(δn, `)

)
= OP

(
(nbn)1/2n1/k+1/`(n−1 ∨ δn(log n)D`)1/2

)
= oP (1).

The oP (1) holds, as we have, for arbitrary k and `,

O((nbn)1/2n1/k+1/`δ1/2
n (log n)D`/2) = O((nbn)1/2−1/2γn1/k+1/`(log n)D`/2).

The assumptions on bn imply (nbn)1/2−1/2γ = o(n−κ) for some κ > 0, such that this latter
quantity is o(1) for k, ` sufficiently large. The term (nbn)1/2n1/k+1/`n−1/2 is handled in a
similar fashion. This concludes the proof.

51



 



 



 


	Dependence structures in quantiles of the joint distribution across frequencies
	Quantile cross-spectral quantities
	Quantile cross-spectral density kernels
	Quantile coherency and coherence
	Relation between quantile and traditional spectral quantities
	Estimation

	Asymptotic properties of the proposed estimators
	An example of a process generating quantile dependence across frequencies: QVAR(p)
	Quantile cross-spectral analysis of stock market returns: A route to more accurate risk measures?
	Conclusion
	Technical Appendix
	Interval Estimators
	Pointwise Confidence Bands for f
	Pointwise Confidence Bands for R

	Proof of Proposition 3.2
	Proof of Theorem 3.3
	Proof of Theorem 7.1(i)
	Proof of Theorem 7.1(ii)
	Proof of Theorem 7.1(iii)

	Proof of Theorem 3.4
	Auxiliary Lemmas


