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Abstract

The block maxima method in extreme-value analysis proceeds by fitting an
extreme-value distribution to a sample of block maxima extracted from an observed
stretch of a time series. The method is usually validated under two simplifying as-
sumptions: the block maxima should be distributed according to an extreme-value
distribution and the sample of block maxima should be independent. Both assump-
tions are only approximately true.

For general triangular arrays of block maxima attracted to the Fréchet distribu-
tion, consistency and asymptotic normality is established for the maximum likeli-
hood estimator of the parameters of the limiting Fréchet distribution. The results
are specialized to the setting of block maxima extracted from a strictly stationary
time series. The case where the underlying random variables are independent and
identically distributed is further worked out in detail. The results are illustrated by
theoretical examples and Monte Carlo simulations.

Keywords and Phrases: block maxima method, maximum likelihood estimation, asymp-
totic normality, heavy tails, triangular arrays, stationary time series.

1 Introduction

For the analysis of extreme values, two fundamental approaches can be distinguished.
First, the peaks-over-threshold method consists of extracting those values from the ob-
servation period which exceed a high threshold. To model such threshold excesses,
asymptotic theory suggests the use of the Generalized Pareto distribution (Pickands,
1975). Second, the block maxima method consists of dividing the observation period
into a sequence of non-overlapping intervals and restricting attention to the largest ob-
servation in each time interval. Thanks to the extremal types theorem, the probability
distribution of such block maxima is approximately Generalized Extreme-Value (GEV),
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popularized by Gumbel (1958). The block maxima method is particularly common in
environmental applications, since appropriate choices of the block size yield a simple but
effective way to deal with seasonal patterns.

For both methods, honest theoretical justifications must take into account two dis-
tinct features. First, the postulated models for either threshold excesses or block maxima
arise from asymptotic theory and are not necessarily accurate at sub-asymptotic thresh-
olds or at finite block lengths. Second, if the underlying data exhibit serial dependence,
then the same will likely be true for the extreme values extracted from those data.

How to deal with both issues is well-understood for the peaks-over-threshold method.
The model approximation can be justified under a second-order condition (see, e.g.,
de Haan and Ferreira, 2006 for a vast variety of applications), while serial dependence
is taken care of in Drees (2000) or Rootzén (2009), among others. Excesses over large
thresholds often occur in clusters, and such serial dependence usually has an impact on
the asymptotic variances of estimators based on these threshold excesses.

Surprisingly, perhaps, is that for the block maxima method, no comparable analysis
has yet been done. With the exception of some recent articles, which we will discuss in
the next paragraph, the commonly used assumption is that the block maxima constitute
an independent random sample from a GEV distribution. The heuristic justification
for assuming independence over time, even for block maxima extracted from time series
data, is that for large block sizes, the occurrence times of the consecutive block maxima
are likely to be well separated.

A more accurate framework is that of a triangular array of block maxima extracted
from a sequence of random variables, the block size growing with the sample size. While
Dombry (2013) shows consistency of the maximum likelihood estimator (Prescott and
Walden, 1980) for the parameters of the GEV distribution, Ferreira and de Haan (2015)
show both consistency and asymptotic normality of the probability weighted moment
estimators (Hosking et al., 1985). In both papers, however, the random variables from
which the block maxima are extracted are supposed to be independent and identically
distributed. In many situations, this assumption is clearly violated. To the best of our
knowledge, Bücher and Segers (2014) is the only reference treating both the approxima-
tion error and the time series character, providing large-sample theory of nonparametric
estimators of extreme-value copulas based on samples of componentwise block maxima
extracted out of multivariate stationary time series.

The aim of the paper is to show the consistency and asymptotic normality of the
maximum likelihood estimator for more general sampling schemes. For technical reasons
explained below, we restrict attention to the heavy-tailed case. The block maxima
paradigm then suggests to use the two-parametric Fréchet distribution as a model for a
sample of block maxima extracted from that time series.

The first main result, Theorem 2.5, is that for triangular arrays of random variables
whose empirical measures, upon rescaling, converge in an appropriate sense to a Fréchet
distribution, the maximum likelihood estimator for the Fréchet parameters based on
those variables is consistent and asymptotically normal. The theorem can be applied to
the set-up of block maxima extracted from an underlying time series, and the second

2



main result, Theorem 3.6, shows that, in this case, the asymptotic variance matrix is
the inverse of the Fisher information of the Fréchet family: asymptotically, it is as if the
data were an independent random sample from the Fréchet attractor. In this sense, our
theorem confirms the soundness of the common simplifying assumption that the block
maxima can be treated as if they were serially independent. Interestingly enough, the
result also allows for time series of which the strong mixing coefficients are not summable,
allowing for some long range dependence scenarios.

Restricting attention to the heavy-tailed case is done because of the non-standard na-
ture of the three-parameter GEV distribution. The issue is that the support of a GEV
distribution depends on its parameters. Even for the maximum likelihood estimator
based on independent random sample from a GEV distribution, asymptotic normality
has not yet been established. The article usually cited in this context is Smith (1985),
although no formal result is stated therein. Even the differentiability in quadratic mean
of the three-parameter GEV is still to be proven; Marohn (1994) only shows differen-
tiability in quadratic mean for the one-parameter GEV family (shape parameter only)
at the Gumbel distribution. We feel that solving all issues simultaneously (irregularity
of the GEV model, finite block size approximation error and serial dependence) is a far
too ample program for one paper. For that reason, we focus on the analytically simpler
Fréchet family, while thoroughly treating the triangular nature of the array of block
maxima and the issue of serial dependence within the underlying time series.

We will build up the theory in three stages. First, we consider general triangular
arrays of observations that asymptotically follow a Fréchet distribution in Section 2.
Second, we apply the theory to the set-up of block maxima extracted from a strictly
stationary time series in Section 3. Third, we further specialize the results to the spe-
cial case of block maxima formed from independent and identically distributed random
variables in Section 4. This section can hence be regarded as a continuation of Dombry
(2013) by reinforcing consistency to asymptotic normality, albeit for the Fréchet domain
of attraction only. We work out an example and present finite-sample results from a
simulation study in Section 5. The main proofs are deferred to Appendix A, while some
auxiliary results concerning the Fréchet distribution are mentioned in Appendix B. The
proofs of the less central results are postponed to a supplement.

2 Triangular arrays of block maxima

In this section, we summarize several results concerning the maximum likelihood esti-
mator for the parameters of the Fréchet distribution. Given a sample of observations
which are not all tied, the Fréchet likelihood admits a unique maximum (Subsection 2.1).
If the observations are based on a triangular array which is approximately Fréchet dis-
tributed in the sense that certain functionals admit a weak law of large numbers or a
central limit theorem, the maximum likelihood estimator is consistent or asymptotically
normal, respectively (Subsections 2.2 and 2.3). The proofs of the results in this section
are given in Subsection A.1.
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2.1 Existence and uniqueness

Let Pθ denote the two-parameter Fréchet distribution on (0,∞) with parameter θ =
(α, σ) ∈ (0,∞)2 = Θ, defined through its cumulative distribution function

Gθ(x) = exp{−(x/σ)−α}, x > 0.

Its probability density function is equal to

pθ(x) =
α

σ
exp{−(x/σ)−α} (x/σ)−α−1, x > 0,

with log-likelihood function

`θ(x) = log(α/σ)− (x/σ)−α − (α+ 1) log(x/σ), x > 0,

and score functions ˙̀
θ = ( ˙̀

θ,1, ˙̀
θ,2)T , with

˙̀
θ,1(x) = ∂α`θ(x) = α−1 +

(
(x/σ)−α − 1

)
log(x/σ), (2.1)

˙̀
θ,2(x) = ∂σ`θ(x) =

(
1− (x/σ)−α

)
α/σ. (2.2)

Let x = (x1, . . . , xk) ∈ (0,∞)k be a sample vector to which the Fréchet distribution
is to be fitted. Consider the log-likelihood function

L(θ | x) =
k∑
i=1

`θ(xi). (2.3)

Further, define

Ψk(α | x) =
1

α
+

1
k

∑k
i=1 x

−α
i log(xi)

1
k

∑k
i=1 x

−α
i

− 1

k

k∑
i=1

log(xi), (2.4)

σ̂(α | x) =

(
1

k

k∑
i=1

x−αi

)−1/α

. (2.5)

Lemma 2.1. (Existence and uniqueness) If the scalars x1, . . . , xk ∈ (0,∞) are not
all equal (k ≥ 2), then there exists a unique maximizer

θ̂(x) = arg max
θ∈Θ

L(θ | x).

The maximizer is given by

θ̂(x) =
(
α̂(x), σ̂(α̂(x) | x)

)
,

where α̂(x) is the unique zero of the strictly decreasing function α 7→ Ψk(α | x):

Ψ
(
α̂(x) | x

)
= 0. (2.6)

4



It is easily verified that the estimating equation for α is scale invariant: for any
c ∈ (0,∞), we have Ψk(α | cx) = Ψk(α | x). As a consequence, the maximum likelihood
estimator for the shape parameter is scale invariant:

α̂(cx) = α̂(x).

Moreover, the estimator for σ is a scale parameter in the sense that

σ̂(α̂(cx) | cx) = c σ̂(α̂(x) | x).

Until now, the maximum likelihood estimator is defined only in case not all xi values
are identical. For definiteness, if x1 = . . . = xk, we define α̂(x) = ∞ and σ̂(∞ | x) =
min(x1, . . . , xk) = x1.

2.2 Consistency

We derive a general condition under which the maximum likelihood estimator for the
parameters of the Fréchet distribution is consistent. The central result, Theorem 2.3
below, shows that, apart from a not-all-tied condition, the only thing that is required for
consistency is a weak law of large numbers for the functions appearing in the estimating
equation (2.6) for the shape parameter.

Suppose that for each positive integer n, we are given a random vector Xn =
(Xn,1, . . . , Xn,kn) taking values in (0,∞)kn , where kn ≥ 2 is a positive integer sequence
such that kn →∞ as n→∞. One may think of Xn,i as being (approximately) Fréchet
distributed with shape parameter α0 > 0 and scale parameter σn > 0. This statement
is made precise in Condition 2.2 below. On the event that the kn variables Xn,i are not
all equal, Lemma 2.1 allows us to define

α̂n = α̂(Xn), (2.7)

the unique zero of the function 0 < α 7→ Ψkn(α |Xn). Further, as in (2.5), put

σ̂n = σ̂(α̂n |Xn) =

(
1

kn

kn∑
i=1

X−α̂nn,i

)−1/α̂n

. (2.8)

For definiteness, put α̂n = ∞ and σ̂n = Xn,1 on the event {Xn,1 = . . . = Xn,kn}.
Subsequently, we will assume that this event is asymptotically negligible:

lim
n→∞

Pr(Xn,1 = . . . = Xn,kn) = 0. (2.9)

We refer to (α̂n, σ̂n) as the maximum likelihood estimator.
The fundamental condition guaranteeing consistency of the maximum likelihood es-

timator concerns the asymptotic behavior of sample averages of f(Xn,i/σn) for certain
functions f . Consider the function classes

F0 = {x 7→ x−α : α ∈ (0,∞)} (2.10)

F1 = {x 7→ x−α log(x) : α ∈ [0,∞)}, (2.11)
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all functions being from (0,∞) into R. Since α = 0 is allowed in (2.10), the logarithm
belongs to F1 too. Let the arrow ‘ ’ denote weak convergence.

Condition 2.2. There exists α0 ∈ (0,∞) and a positive sequence σn such that, for all
f ∈ F0 ∪ F1,

1

kn

kn∑
i=1

f(Xn,i/σn) 
∫ ∞

0
f(x) pα0,1(x) dx, n→∞ (2.12)

Theorem 2.3. (Consistency)Let Xn = (Xn,1, . . . , Xn,kn) be a sequence of random
vectors in (0,∞)kn, where kn →∞. Assume that equation (2.9) and Condition 2.2 hold.
On the complement of the event {Xn,1 = . . . = Xn,kn}, the random vector (α̂n, σ̂n) is the
unique maximizer of the loglikelihood (α, σ) 7→ L(α, σ | Xn,1, . . . , Xn,kn). Moreover, the
maximum likelihood estimator is consistent in the sense that

(α̂n, σ̂n/σn) (α0, 1), n→∞.

2.3 Asymptotic distribution

We formulate a general condition under which the estimation error of the maximum
likelihood estimator for the Fréchet parameter vector converges weakly. The central
result is Theorem 2.5 below.

Recall the function classes F0 and F1 in (2.10) and (2.11) and define yet another
one,

F2 = {x 7→ x−α(log x)2 : α ∈ [0,∞)}. (2.13)

Furthermore, consider the following triple of real-valued functions on (0,∞)

H = {f1, f2, f3} = {x 7→ x−α0 log(x), x 7→ x−α0 , x 7→ log x}. (2.14)

The following condition strengthens Condition 2.2.

Condition 2.4. There exist α0 ∈ (0,∞) and a positive sequence (σn)n∈N such that the
following two statements hold:

(i) Equation (2.12) holds for all f ∈ F0 ∪ F1 ∪ F2.

(ii) There exists a sequence 0 < vn →∞ and a random vector Y = (Y1, Y2, Y3)T such
that, denoting

Gnf = vn

(
1

kn

kn∑
i=1

f(Xn,i/σn)−
∫ ∞

0
f(x) pα0,1(x) dx

)
, (2.15)

we have, for fj as in (2.14),

(Gnf1,Gnf2, Gnf3)T  Y , n→∞. (2.16)
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Let Γ be the Euler gamma function and let γ = 0.5772 . . . be the Euler–Mascheroni
constant. Recall Γ′′(2) = (1− γ)2 + π2/6− 1. Define the matrix

M(α0) =
6

π2

(
α2

0 α0(1− γ) −α2
0

γ − 1 −(Γ′′(2) + 1)/α0 1− γ

)
, α0 ∈ (0,∞). (2.17)

Theorem 2.5. (Asymptotic distribution)Let Xn = (Xn,1, . . . , Xn,kn) be a sequence
of random vectors in (0,∞)kn, where kn →∞. Assume that equation (2.9) and Condi-
tion 2.4 hold. As n→∞, the maximum likelihood estimator (α̂n, σ̂n) satisfies

(
vn(α̂n − α0)
vn (σ̂n/σn − 1)

)
= M(α0)

Gnx
−α0 log(x)
Gnx

−α0

Gn log(x)

+ op(1) M(α0)Y , (2.18)

where Y = (Y1, Y2, Y3)T is the limit vector in (2.16) and where the matrix M(α0) is
given in (2.17).

For block maxima extracted from a strongly mixing stationary time series, Condi-
tion 2.4 with vn =

√
kn, where kn denotes the number of blocks, will be derived from the

Lindeberg central limit theorem. In that case, the distribution of Y is trivariate Normal
with covariance matrix

ΣY =
1

α2
0

1− 4γ + γ2 + π2/3 α0(γ − 2) π2/6− γ
α0(γ − 2) α2

0 −α0

π2/6− γ −α0 π2/6

 . (2.19)

According to Lemma B.2 below, the right-hand side in (2.19) coincides with the covari-

ance matrix of the random vector
(
X−α0 log(X), X−α0 , log(X)

)T
, where X is Fréchet

distributed with parameter (α0, 1). From Lemma B.3, recall the inverse of the Fisher
information matrix of the Fréchet family at (α, σ) = (α0, 1):

I−1
(α0,1) =

6

π2

(
α2

0 (γ − 1)

(γ − 1) α−2
0 {(1− γ)2 + π2/6}

)
. (2.20)

Addendum 2.6. If Y is Normally distributed with covariance matrix ΣY as in (2.19),
then the limit M(α0)Y in Theorem 2.5 is also Normally distributed and its covariance
matrix is equal to the inverse of the Fisher information matrix of the Fréchet family,
M(α0) ΣY M(α0)T = I−1

(α0,1) in (2.20).

3 Block maxima extracted from a stationary time series

Let (ξt)t∈Z be a strictly stationary time series. For positive integer i and r, consider the
block maximum

Mr,i = max(ξ(i−1)r+1, . . . , ξir).
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Abbreviate Mr,1 = Mr. The classical block maxima method consists of choosing a suffi-
ciently large block size r and fitting an extreme-value distribution to a sample of block
maxima Mr,1, . . . ,Mr,k. The likelihood is constructed under the simplifying assumption
that the block maxima are independent. The present section shows consistency and
asymptotic normality of this method in an appropriate asymptotic framework.

For the block maxima distribution to approach its extreme-value limit, the block
sizes must increase to infinity. Moreover, consistency can only be achieved when the
number of blocks grows to infinity too. Hence, we consider a positive integer sequence
rn, to be thought of as a sequence of block sizes. The number of disjoint blocks of size
rn that fit into a sample of size n is equal to kn = bn/rnc, where bxc denotes the integer
part of a real number x. Assume that both rn →∞ and kn →∞ as n→∞.

The theory will be based on an application of Theorem 2.5 to the sample of left-
truncated block maxima Xn,i = Mrn,i ∨ c (i = 1, . . . , kn), for some positive constant
c specified below. The estimators α̂n and σ̂n are thus the ones in (2.7) and (2.8),
respectively. The reason for the left truncation is that otherwise, some of the block
maxima could be zero or negative. Asymptotically, such left-truncation does not matter,
since all maxima will simultaneously diverge to infinity in probability (Condition 3.2
below).

In Section 4 below, we will specialize things further to the case where the random
variables ξt are independent. In particular, we will simplify the list of conditions given
in this section.

The basic assumption is that the distribution of rescaled block maxima is asymp-
totically Fréchet. The sequence of scaling constants should possess a minimal degree of
regularity. The assumption is satisfied in case the stationary distribution of the series is
in the Fréchet domain of attraction and the series possesses a positive extremal index;
see Remark 3.7 below.

Condition 3.1. (Domain of attraction)The time series (ξt)t∈Z is strictly stationary
and there exist a positive real sequence σn → ∞ and a positive real number α0 such
that

Mn/σn  Fréchet(α0, 1), n→∞. (3.1)

Moreover, σmn/σn → 1 for any positive integer sequence mn such that mn/n → 1 as
n→∞.

The domain-of-attraction condition implies that, for every scalar c, we have Pr[Mn ≤
c] = Pr[Mn/σn ≤ c/σn]→ 0 as n→∞. In words, the block maxima become unbound-
edly large as the sample size grows to infinity. Still, out of a sample of kn block maxima,
the smallest of the maxima might still be small, especially when the number of blocks
is large, or, equivalently, the block sizes are not large enough. The following condition
prevents this from happening.

Condition 3.2. (All block maxima diverge)For every c ∈ (0,∞), we have

lim
n→∞

Pr[min(Mrn,1, . . . ,Mrn,kn) ≤ c] = 0.
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The Fréchet distribution satisfies
∫∞

0 xβ pα0,1(x) dx < ∞ for every real β less than
α0. In order to be able to integrate (3.1) to the limit, we require an asymptotic bound
on the moments of the block maxima.

Condition 3.3. (Moments)For all c ∈ (0,∞) and all β ∈ (−∞, α0), we have

lim sup
n→∞

E
[{

(Mn ∨ c)/σn
}β]

<∞.

To control the serial dependence within the time series, we require that the Rosenblatt
mixing coefficients decay sufficiently fast: for positive integer `, put

α(`) = sup
A∈σ(ξt:t≤0)
B∈σ(ξt:t≥`)

|Pr(A ∩B)− Pr(A) Pr(B)| .

Condition 3.4. (α-Mixing with rate)We have lim`→∞ α(`) = 0. Moreover, there
exists ω > 0 such that

k1+ω
n α(rn)→ 0, n→∞. (3.2)

Condition 3.4 can be interpreted as requiring the block sizes rn to be sufficiently
large. For instance, if α(`) = O(`−a) for some a > 0, then (3.2) is satisfied as soon as rn
is of larger order than n(1+ω)/(1+ω+a). Note that the exponent a is allowed to be smaller
than one, in which case the sequence of mixing coefficients is not summable.

By Condition 3.2 and Lemma A.5, the probability of the event that all block maxima
Mrn,1, . . . ,Mrn,kn are larger than some positive constant c and that they are not all equal
tends to unity. On this event, we can study the maximum likelihood estimators (α̂n, σ̂n)
for the parameters of the Fréchet distribution based on the sample of block maxima.

Fix c ∈ (0,∞) and put
Xn,i = Mrn,i ∨ c.

Let Gn be the empirical process associated to Xn,1/σn, . . . , Xn,kn/σn as in (2.15) with
vn =

√
kn. The empirical process is not necessarily centered, which is why we need a

handle on its expectation.

Condition 3.5. (Bias)There exists c ∈ (0,∞) such that for every function f in H
defined in (2.14), the following limit exists:

lim
n→∞

√
kn

(
E
[
f
(
(Mrn ∨ c)/σrn

)]
−
∫ ∞

0
f(x) pα0,1(x) dx

)
= B(f). (3.3)

Theorem 3.6. Suppose that Conditions 3.1 up to 3.5 are satisfied and fix c as in
Condition 3.5. Then, with probability tending to one, there exists a unique maximizer
(α̂n, σ̂n) of the Fréchet log-likelihood (2.3) based on the block maxima Mrn,1, . . . ,Mrn,kn,
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and we have, as n→∞,

( √
kn (α̂n − α0)√
kn (σ̂n/σn − 1)

)
= M(α0)

Gnx
−α0 log(x)
Gnx

−α0

Gn log(x)

+ op(1)

 N2

(
M(α0)B, I−1

α0,1

)
.

Here, M(α0) and I−1
α0,1

are defined in equations (2.17) and (2.20), respectively, and

B = (B(f1), B(f2), B(f3))T , where B(f) is the limit in (3.3) and where f1, f2, f3 are
defined in (2.14).

The proof of Theorem 3.6 is given in Subsection A.2. The conditions imposed in The-
orem 3.6 are rather high-level. In the setting of a sequence of independent and identically
distributed random variables, they can be brought down to analytical conditions on the
tail of the stationary distribution function (Theorem 4.2). Moreover, all conditions will
be worked out in a particular time series model in Section 5.1.

Interestingly, the asymptotic covariance matrix is unaffected by serial dependence
and the asymptotic standard deviation of

√
kn(α̂n−α0) is always equal to (

√
6/π)×α0 ≈

0.7797×α0. The reason for this invariance is that even for time series, maxima over large
disjoint blocks are asymptotically independent because of the strong mixing condition.

Remark 3.7. (Domain-of-attraction condition for positive extremal index)Let
F be the cumulative distribution function of ξ1. Assume that there exist 0 < an → ∞
and α0 ∈ (0,∞) such that

lim
n→∞

Fn(anx) = exp(−x−α0), x ∈ (0,∞).

Moreover, assume that the sequence (ξt)t∈Z has extremal index ϑ ∈ (0, 1] (Leadbetter,
1983): If un →∞ is such that Fn(un) converges, then

Pr(Mn ≤ un) = Fnϑ(un) + o(1), n→∞.

Note that we assume that ϑ > 0. Put

σn = ϑ1/α0an.

Then Condition 3.1 is satisfied: for every x ∈ (0,∞), we have

Pr(Mn/σn ≤ x) = Fnϑ(σnx) + o(1)

→ exp
(
−ϑ(ϑ1/α0x)−α0

)
= exp(−x−α0), n→∞.

4 Block maxima extracted from an iid sample

We specialize Theorem 3.6 to the case where the random variables ξ1, ξ2, . . . are indepen-
dent and identically distributed with common distribution function F . In this setting,
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fitting extreme-value distributions to block maxima is also considered in Dombry (2013)
(consistency of the maximum likelihood estimator in the GEV-family with γ > −1) and
Ferreira and de Haan (2015) (asymptotic normality of the probability weighted moment
estimator in the GEV-family with γ < 1/2). Assume that F is in the maximum domain
of attraction of the Fréchet distribution with shape parameter α0 ∈ (0,∞): there exists
a positive scalar sequence (an)n∈N such that, for every x ∈ (0,∞),

Fn(anx)→ e−x
−α0

, n→∞. (4.1)

Because of serial independence, the conditions in Theorem 3.6 can be simplified con-
siderably. In addition, the mean vector of the asymptotic bivariate Normal distribution
of the maximum likelihood estimator can be made explicit. Required is a second-order
reinforcement of (4.1) in conjunction with a growth restriction on the number of blocks.

Equation (4.1) is equivalent to regular variation of − logF at infinity with index −α0

(Gnedenko, 1943): we have F (x) < 1 for all x ∈ R and

lim
u→∞

− logF (ux)

− logF (u)
= x−α0 , x ∈ (0,∞). (4.2)

The scaling constants in (4.1) may be chosen as any sequence an that satisfies

lim
n→∞

n {− logF (an)} = 1. (4.3)

For τ ∈ R, define the function hτ : (0,∞)→ R by

hτ (x) =

∫ x

1
yτ−1 dy =


xτ − 1

τ
, if τ 6= 0,

log(x), if τ = 0.
(4.4)

The following condition reinforces (4.2) and thus (4.1).

Condition 4.1. (Second-Order Condition)There exists α0 ∈ (0,∞), ρ ∈ (−∞, 0],
and a real function A on (0,∞) of constant, non-zero sign such that limu→∞A(u) = 0
and such that, for all x ∈ (0,∞),

lim
u→∞

1

A(u)

(
− logF (ux)

− logF (u)
− x−α0

)
= x−α0 hρ(x). (4.5)

The function A can be regarded as capturing the speed of convergence in (4.2). The
form of the limit function in (4.5) may seem unnecessarily specific, but actually, it is
not, as explained in Remark 4.3 below.

Let ψ = Γ′/Γ denote the digamma function and recall the Euler–Mascheroni constant
γ = −Γ′(1) = 0.5772 . . .. To express the asymptotic bias of the maximum likelihood
estimators, we will employ the functions b1 and b2 defined by

b1(x) =

(1 + x) Γ(x){γ + ψ(1 + x)}, if x > 0,

π2

6
, if x = 0,

(4.6)
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and

b2(x) =

−
π2

6x
+ (1 + x) Γ(x){Γ′′(2) + γ + (γ − 1)ψ(1 + x)}, if x > 0,

0, if x = 0.
(4.7)

See Figure 1 for the graphs of these two functions. For (α0, ρ, λ) ∈ (0,∞)× (−∞, 0]×R,
define the bias function

B(α0, ρ, λ) =
6λ

π2

(
b1(|ρ| /α0)

b2(|ρ| /α0)/α2
0

)
. (4.8)

The proof of the following theorem is given in Section A.3.

Theorem 4.2. Let ξ1, ξ2, . . . be independent random variables with common distribution
function F satisfiying Condition 4.1. Let the block sizes rn be such that rn → ∞ and
kn = bn/rnc → ∞ as n→∞ and assume that

lim
n→∞

kn log(kn)

n
= 0, (4.9)

lim
n→∞

√
knA(arn) = λ ∈ R. (4.10)

Then, with probability tending to one, there exists a unique maximizer (α̂n, σ̂n) of the
Fréchet log-likelihood (2.3) based on the block maxima Mrn,1, . . . ,Mrn,kn, and we have√

kn

(
α̂n − α0

σ̂n/arn − 1

)
 N2

(
B(α0, ρ, λ), I−1

(α0,1)

)
, n→∞, (4.11)

where I−1
(α0,1) denotes the inverse of the Fisher information of the Fréchet family as

in (2.20) and with B(α0, ρ, λ) as in (4.8).

Condition (4.9) is also imposed in Dombry (2013), while a version of (4.10) is used
in Ferreira and de Haan (2015) to prove asymptotic normality of probability weighted
moment estimators.

Remark 4.3. (Second-order regular variation)Let F satisfy (4.2). For x > 0
sufficiently large such that F (x) > 0, define L(x) by

− logF (x) = x−α0 L(x). (4.12)

In view of (4.2), the function L is slowly varying at infinity, that is,

lim
u→∞

L(ux)

L(u)
= 1, x ∈ (0,∞).

A second-order refinement of this would be that there exist A : (0,∞) → (0,∞) and
h : (0,∞)→ R, the latter not identically zero, such that limu→∞A(u) = 0 and

lim
u→∞

1

A(u)

(
L(ux)

L(u)
− 1

)
= h(x), x ∈ (0,∞)

12
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Figure 1: Graphs of the functions b1 and b2 in (4.6) and (4.7).

Writing g(u) = A(u)L(u), Theorem B.2.1 in de Haan and Ferreira (2006) (see also
Bingham et al., 1987, Section 3.6) implies that there exists ρ ∈ R such that g and thus
A = g/L are regularly varying at infinity with index ρ. Since A vanishes at infinity,
necessarily ρ ≤ 0. Furthermore, there exists κ ∈ R \ {0} such that h(x) = κhρ(x) for
x ∈ (0,∞), with hρ as in (4.4). Incorporating the constant κ into the function A, we
can assume without loss of generality that κ = 1 and we arrive at Condition 4.1. The
function A then possibly takes values in (−∞, 0) rather than in (0,∞).

Remark 4.4. (Mean squared error)According to (4.10) and (4.11), the distribution
of the estimation error α̂n − α0 is approximately equal to

N
(
A(arn)

6

π2
b1(|ρ| /α0),

rn
n

6

π2
α2

0

)
.

The asymptotic mean squared error is therefore equal to

AMSE(α̂n) = ABias2(α̂n) + AVar(α̂n) = |A(arn)|2 36

π4
b1(|ρ| /α0)2 +

rn
n

6

π2
α2

0.

The choice of the block size rn (or, equivalently, the number of blocks kn), thus involves a
bias–variance trade-off; see Section 5. Alternatively, if ρ and A(arn) could be estimated,
then one could construct bias-reduced estimators, just as in the case of the Hill estimator
(see, e.g., Peng, 1998, among others) or probability weighted moment estimators (Cai
et al., 2013).

5 Examples and finite-sample results

5.1 Verification of conditions in a moving maximum model

Let (Zt)t∈Z be a sequence of independent and identically distributed random variables
with common distribution function F in the domain of attraction of the Fréchet distri-
bution with shape parameter α0, that is, such that (4.1) is satisfied for some sequence

13



an → ∞. Let p ∈ N, p ≥ 2, be fixed and let b1, . . . , bp be nonnegative constants,
b1 6= 0 6= bp, such that

∑p
i=1 bi = 1. We consider the moving maximum process ξt of

order p, defined by

ξt = max{b1Zt, b2Zt−1, . . . , bpZt−p+1}, t ∈ Z.

A simple calculation (see also the proof of Lemma 5.1 for the stationary distribution of
ξt) shows that the extremal index of (ξt)t∈Z is equal to

θ = {
∑p

i=1 b
α0
i }
−1
bα0

(p),

where b(p) = maxpi=1 bi. Let σn = b(p)an. The proof of the following lemma is given in
Section C in the supplementary material.

Lemma 5.1. The stationary time series (ξt)t∈Z satisfies Conditions 3.1, 3.3 and 3.4.
If additionally (4.9) is met, then Condition 3.2 is satisfied as well. Finally, if F satisfies
the Second-Order Condition 4.1, if (4.10) is met and if kn = o(n2/3) as n → ∞, then
Condition 3.5 is also satisfied, with B(f) denoting the same constant appearing in the
iid case, that is B(f) = β with β as defined in (A.24).

As a consequence, Theorem 3.6 may be applied and the asymptotic bias of the
maximum likelihood estimator is the same as specified in Theorem 4.2 for the case of
independent and identically distributed random variables.

5.2 Simulation results

We report on the results of a simulation study, highlighting some interesting features
regarding the finite-sample sample performance of the maximum likelihood estimator.
Attention is restricted to estimation of the shape parameter, and particular emphasis is
given to a comparison with the common Hill estimator. Note that the latter is based on
the competing peak-over-threshold method. Its variance is of the order O(k−1), where k
is the number of upper order statistics taken into account for its calculation. Note that
the asymptotic variance of the Hill estimator is given by α2

0, which is larger than the
asymptotic variance (6/π2) × α2

0 of the block maxima maximum likelihood estimator.
We also ran numerical experiments (not shown) on the probability weighted moment
estimator, but the general finding was that its asymptotic variance was much higher
than the one of the maximum likelihood estimator.

We consider three time series models for (ξt)t∈Z: independent and identically dis-
tributed random variables, the moving maximum process from Section 5.1, and the
absolute values of a GARCH(1,1) time series. In the first two models, three choices are
considered for the distribution function F of either the variables ξt in the first model and
the innovations Zt in the second model: absolute values of a Cauchy-distribution, the
standard Pareto distribution and the Fréchet(1,1) distribution itself. All three distribu-
tion functions are attracted to the Fréchet distribution with α0 = 1. For the moving
maximum process, we fix p = 4 and bj = j/10 for j ∈ {1, 2, 3, 4}. The GARCH(1,1)
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model is based on standard Normal innovations, that is, ξt = |Zt|, where Zt is the
stationary solution of the equations

Zt = εtσt,
σ2
t = λ0 + λ1Z

2
t−1 + λ2σ

2
t−1,

}
(5.1)

with εt, t ∈ Z, independent standard Normal random variables. The parameter vector
(λ0, λ1, λ2) is set to either (0.5, 0.367, 0.367) or (0.5, 0.08, 0.91). By Mikosch and Stărică
(2000), the stationary distribution associated to any of these two models is attracted to
the Fréchet distribution with shape parameter being (approximately) equal to α0 = 5.

We generate samples from all of the afore-mentioned models for a fixed sample size of
n = 1, 000. Based on N = 3, 000 Monte Carlo repetitions, we obtain empirical estimates
of the finite sample bias, variance and mean squared error (MSE) of the competing
estimators. The results are summarized in Figure 2 for the iid and the moving maxima
model, and in Figure 3 for the GARCH-model.

In general, (most of) the graphs nicely reproduce the bias-variance tradeoff, its char-
acteristic form however varying from model to model. Consider the iid scenario: since
the Hill estimator is essentially the maximum likelihood estimator in the Pareto family,
it is to be expected that it outperforms the block maxima estimator. On the other hand,
by max-stability of the Fréchet family, the block maxima estimator should outperform
the Hill estimator for that family. These expectations are confirmed by the simulation
results in the left column of Figure 2. For the Cauchy distribution it turns out that the
block maxima maximum likelihood estimator shows a better performance.

Now, consider the moving maxima time series scenarios (right column in Figure 2).
Compared to the iid case, we observe an increase in the mean squared error (note that
the scale on the axis of ordinates is row-wise identical). The block maxima method
clearly outperforms the Hill estimator, except for the Pareto model. The big increase
in relative performance is perhaps not too surprising, as the data points from a moving
maximum process are already (weighted) maxima, which principally favors the block
maxima method with small block sizes.

Finally, consider the GARCH models in Figure 3. While, as in line with the theoret-
ical findings, the variance of the block maxima estimator is smaller than the one of the
Hill estimator, the squared bias turns out to be substantially higher for a large range of
values for k. The MSE-optimal point is smaller for the Hill estimator.

A Proofs

A.1 Proofs for Section 2

Proof of Lemma 2.1. The proof extends the development in Section 2 of Balakrishnan
and Kateri (2008). First, fix α > 0 and consider the function 0 < σ 7→ L(α, σ | x). By
equation (2.2), its derivative is equal to

∂σL(α, σ | x) =

k∑
i=1

∂σ`θ(xi) = (α/σ)

(
k − σα

k∑
i=1

x−αi

)
.
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Figure 2: Simulation results (Section 5.2). Effective sample size refers to the number
of blocks (block maxima MLE) or the number of upper order statistics (Hill estimator).
Time series models: iid (left) and moving maximum model (right). Innovations: abso-
lute values of Cauchy (top), unit Fréchet (middle) and unit Pareto (bottom) random
variables. Block sizes r ∈ {2, 3, . . . , 24}, resulting in k ∈ {500, 333, . . . , 41} blocks.
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Figure 3: Simulation results (Section 5.2). Effective sample size refers to the number
of blocks (block maxima MLE) or the number of upper order statistics (Hill estima-
tor). Both panels refer to the GARCH(1,1) model in (5.1), with (λ0, λ1, λ2) equal to
(0.5, 0.367, 0.367) on the left and to (0.5, 0.08, 0.91) on the right.

We find that ∂σL(α, σ | x) is positive, zero, or negative according to whether σ is
smaller than, equal to, or larger than σ̂(α | x), respectively. In particular, for fixed α,
the expression L(α, σ | x) is maximal at σ equal to σ̂(α | x). Hence we need to find the
maximum of the function 0 < α 7→ L(α, σ̂(α | x) | x). By (2.1), its derivative is given
by

d

dα
L(α, σ̂(α | x) | x) =

k∑
i=1

∂α`α,σ(xi)

∣∣∣∣
σ=σ̂(α|x)

+

k∑
i=1

∂σ`α,σ(xi)

∣∣∣∣
σ=σ̂(α|x)

× d

dα
σ̂(α | x).

The second sum is equal to zero, by definition of σ̂(α | x). We obtain

d

dα
L(α, σ̂(α | x) | x) = kΨk(α | x),

with Ψk as in (2.4). This is the same expression as Eq. (2.3) in Balakrishnan and Kateri
(2008), with their xi replaced by our x−1

i . Differentiating once more with respect to α,
we obtain that

d2

dα2
L(α, σ̂(α | x) | x)

= − k

α2
− k

∑k
i=1 x

−α
i (log(xi))

2
∑k

i=1 x
−α
i −

(∑k
i=1 x

−α
i log(xi)

)2

(∑k
i=1 x

−α
i

)2 . (A.1)

17



By the Cauchy–Schwartz inequality, the numerator of the big fraction is nonnegative,
whence

d2

dα2
L(α, σ̂(α | x) | x) ≤ − k

α2
< 0.

Hence, α 7→ Ψk(α | x) is strictly decreasing. For α → 0, this function diverges to ∞,
whereas for α→∞, this function converges to log(min(x1, . . . , xk))− k−1

∑k
i=1 log(xi),

which is less than zero given the assumptions on x1, . . . , xk. Hence, there exists a unique
α̂(x) ∈ (0,∞) such that this function is zero. We conclude that the function θ 7→ L(θ | x)
admits a unique maximum at θ̂(x).

Fix α0 ∈ (0,∞). Let P denote the Fréchet distribution with parameter θ0 = (α0, 1),
with support X = (0,∞). The tentative limit of the functions α 7→ Ψk(α | x) is the
function

Ψ(α) =
1

α
+

∫∞
0 x−α log(x) dP (x)∫∞

0 x−α dP (x)
−
∫ ∞

0
log(x) dP (x),

Let Γ be the gamma function and let ψ = Γ′/Γ be the digamma function.

Lemma A.1. Fix α0 ∈ (0,∞). We have

Ψ(α) =
1

α0

(
ψ(1)− ψ(α/α0)

)
, α ∈ (0,∞). (A.2)

As a consequence, Ψ : (0,∞)→ R is a decreasing bijection with a unique zero at α = α0.

Proof of Lemma A.1. By Lemma B.1,

Ψ(α) =
1

α
+

(−α−1
0 )Γ′(1 + α/α0)

Γ(1 + α/α0)
− (−α−1

0 )Γ′(1)

=
1

α0

(
(α/α0)−1 − ψ(1 + α/α0) + ψ(1).

)
The digamma function satisfies the recurrence relation ψ(x + 1) = ψ(x) + 1

x . Equa-
tion (A.2) follows. The final statement follows from the fact that the digamma function
ψ : (0,∞)→ R is an increasing bijection.

Proof of Theorem 2.3. By Lemma 2.1, we only have to show the claimed convergence.
Define a random function Ψn on (0,∞) by

Ψn(α) = Ψkn(α |Xn) = Ψkn(α |Xn/σn), (A.3)

with Ψk as in (2.4). Recall Ψ in (A.2). The hypotheses imply that, for each α ∈ (0,∞),

Ψn(α) Ψ(α), n→∞.

By Lemma A.1, the limit Ψ(α) is positive, zero, or negative according to whether α is
less than, equal to, or greater than α0. Moreover, the function Ψn is decreasing and
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Ψn(α̂n) = 0; see the proof of Lemma 2.1. Lemma 5.10 in van der Vaart (1998) then
implies

α̂n  α0, n→∞.

Second, Condition 2.2 also implies that, for each α ∈ (0,∞) and as n→∞,

1

σn

(
1

kn

kn∑
i=1

X−αn,i

)−1/α

=

(
1

kn

kn∑
i=1

(Xn,i/σn)−α

)−1/α

 

(∫ ∞
0

x−α pα0,1(x) dx

)−1/α

=
(
Γ(1 + α/α0)

)−1/α
,

where we used Lemma B.1 for the last identity. Both the left-hand and right-hand sides
are continuous, nonincreasing functions of α. Since the right-hand side evaluates to unity
at α = α0, a standard argument then yields

1

σn

(
1

kn

kn∑
i=1

X−α̂nn,i

)−1/α̂n

 1, n→∞.

The proof of Theorem 2.5 is decomposed into a sequence of lemmas. Recall Ψn

and Ψ in (A.3) and (A.2), respectively, and define Ψ̇n(α) = (d/dα)Ψn(α) and Ψ̇(α) =
(d/dα)Ψ(α). By (A.1),

Ψ̇n(α) = − 1

α2
− Pn[x−α(log x)2]Pnx−α − (Pnx−α log x)2

(Pnx−α)2
, (A.4)

where Pn denotes the empirical distribution of the points (Xn,i/σn)kni=1 and where

Pnf =
1

kn

kn∑
i=1

f(Xn,i/σn).

The asymptotic distribution of vn(α̂n−α0) can be derived from the asymptotic behavior
of Ψ̇n and vnΨn, which are investigated in the next two lemmas, respectively.

Lemma A.2. (Slope)Let Xn = (Xn,1, . . . , Xn,kn) be a sequence of random vectors in
(0,∞)kn, where kn →∞. Suppose that equation (2.9) and Condition 2.4(i) are satisfied.
If α̃n is a random sequence in (0,∞) such that α̃n  α0 as n→∞, then

Ψ̇n(α̃n) Ψ̇(α0) = − π2

6α2
0

, n→∞.

Proof. For α ∈ (0,∞) and m ∈ {0, 1, 2}, define

fm,α(x) = x−α(log x)m, x ∈ (0,∞),
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with (log x)0 = 1 for all x ∈ (0,∞). Suppose that we could show that, for m ∈ {0, 1, 2}
and some ε > 0,

sup
α:|α−α0|≤ε

∣∣∣∣Pnfm,α − ∫ ∞
0

fm,α(x) pα0(x) dx

∣∣∣∣ 0, n→∞. (A.5)

Then from weak convergence of α̃n to α0, Slutsky’s lemma and Lemma B.1 below it
would follow that

Ψ̇n(α̃n) − 1

α2
0

− α−2
0 Γ′′(2) Γ(2)− (α−1

0 Γ′(2))2

(Γ(2))2
, n→∞.

Since Γ(2) = 1, Γ′(2) = 1 − γ and Γ′′(2) = (1 − γ)2 + π2/6 − 1, the conclusion would
follow.

It remains to show (A.5). We consider the three cases m ∈ {0, 1, 2} separately. The
value of ε does not matter, as long as α0 − ε > 0.

First, let m = 0. The maps α 7→ (Pnf0,α)1/α and α 7→ (
∫∞

0 f0,α pα0,1)1/α are mono-
tone by Lyapounov’s inequality, and the second one is also continuous by Lemma B.1.
Pointwise weak convergence then implies uniform weak convergence

sup
α:|α−α0|≤ε

∣∣∣∣∣(Pnf0,α)1/α −
(∫ ∞

0
f0,α(x) pα0(x) dx

)1/α
∣∣∣∣∣ 0, n→∞.

Uniform continuity of the map (y, α) 7→ yα on compact subsets of (0,∞)2 then yields
(A.5) for m = 0.

Second, let m = 1. The maps α 7→ Pnf1,α and α 7→
∫∞

0 f1,α pα0,1 are continuous
and nonincreasing (their derivatives are nonpositive). Pointwise weak convergence then
yields (A.5) for m = 1.

Finally, let m = 2. With probability tending to one, not all variables Xn,i are equal
to σn, and thus Pn(log x)2 > 0. On the latter event, we have

Pnx−α(log x)2 = Pn(log x)2

{(
Pnx−α(log x)2

Pn(log x)2

)1/α
}α

.

By Lyapounov’s inequality, the expression in curly braces is nondecreasing in α. For
each α > 0, it converges weakly to {Γ′′(1+α/α0)/Γ′′(1)}1/α, which is nondecreasing and
continuous in α; see Lemma B.1. It follows that

sup
α:|α−α0|≤ε

∣∣∣∣∣
(
Pnx−α(log x)2

Pn(log x)2

)1/α

−
(

Γ′′(1 + α/α0)

Γ′′(1)

)1/α
∣∣∣∣∣ 0, n→∞.

Equation (A.5) for m = 2 follows.

Lemma A.3. Assume Condition 2.4. Then, as n→∞,

vn Ψn(α0) = Gnx
−α0 log(x) +

1− γ
α0

Gnx
−α0 −Gn log(x) + op(1). (A.6)

The expression on the right converges weakly to Y ≡ Y1 + 1−γ
α0
Y2 − Y3.
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Proof. Recall that

Ψn(α0) = Ψkn(α0 |Xn/σn) =
1

α0
+

Pnx−α0 log(x)

Pnx−α0
− Pn log(x).

Define φ : R× (0,∞)× R→ R by

φ(y1, y2, y3) =
1

α0
+
y1

y2
− y3.

The previous two displays allow to write

Ψn(α0) = φ
(
Pnx−α0 log(x), Pnx−α0 , Pn log(x)

)
.

Recall Lemma B.1 and put

y0 =
(
−α−1

0 Γ′(2),Γ(2),−α−1
0 Γ′(1)

)
=
(
α−1

0 (γ − 1), 1, α−1
0 γ

)
.

As already noted in the proof of Lemma A.1, φ(y0) = α−1
0 +α−1

0 (γ − 1)−α−1
0 γ = 0. As

a consequence,

vn Ψn(α0) = vn
(
φ(Pnx−α0 log(x), Pnx−α0 , Pn log(x))− φ(y0)

)
.

In view of Condition 2.4 and the delta method, as n→∞,

vn Ψn(α0) = φ̇1(y0)Gnx
−α0 log(x) + φ̇2(y0)Gnx

−α0 + φ̇3(y0)Gn log(x) + op(1),

where φ̇j denotes the first-order partial derivative of φ with respect to yj for j ∈ {1, 2, 3}.
Elementary calculations yield

φ̇1(y0) = 1, φ̇2(y0) = α−1
0 (1− γ), φ̇3(y0) = −1.

The conclusion follows by Slutsky’s lemma.

Proposition A.4. (Asymptotic expansion for the shape parameter)Assume
that the conditions of Theorem 2.5 hold. Then

vn
(
α̂n − α0

)
=

6α2
0

π2
vn Ψn(α0) + op(1) 

6α2
0

π2
Y, n→∞, (A.7)

where Y is defined in Lemma A.3.

Proof. Recall that, with probability tending to one, α̂n is the unique zero of the random
function α 7→ Ψn(α). Recall that Ψ̇n in (A.4) is the derivative of Ψn. With probability
tending to one, we have, by virtue of the mean-value theorem,

0 = Ψn(α̂n) =
(
Ψn(α̂n)−Ψn(α0)

)
+ Ψn(α0)

= (α̂n − α0) Ψ̇n(α̃n) + Ψn(α0);
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here α̃n is a convex combination of α̂n and α0. Since Ψ̇n(α) ≤ −1/α2 < 0 (argument as
in the proof of Lemma 2.1), we can write

vn
(
α̂n − α0

)
= − 1

Ψ̇n(α̃n)
vn Ψn(α0).

By weak consistency of α̂n, we have α̃n  α0 as n → ∞. Lemma A.2 then gives
Ψ̇n(α̃n) −π2/(6α2

0) as n→∞. Apply Lemma A.3 and Slutsky’s lemma to conclude.

Proof of Theorem 2.5. Combining equations (A.7) and (A.6) yields

vn (α̂n − α0) =
6α2

0

π2

(
Gnx

−α0 log(x) +
1− γ
α0

Gnx
−α0 −Gn log(x)

)
+ op(1)

as n→∞. This yields the first row in (2.18).
By definition of σ̂n, we have (σ̂n/σn)−α̂n = Pnx−α̂n . Consider the decomposition

vn
(
(σ̂n/σn)−α̂n − 1

)
= vn

(
Pnx−α̂n − Pnx−α0

)
+ vn

(
Pnx−α0 − 1

)
. (A.8)

By the mean value theorem, there exists a random convex combination, α̃n, of α̂n and
α0 such that

Pnx−α̂n − Pnx−α0 = −(α̂n − α0)Pnx−α̃n log(x).

By the argument for the case m = 1 in the proof of Lemma A.2, we have

Pnx−α̃n log(x) − 1

α0
Γ′(2) = −1− γ

α0
, n→∞.

By Proposition A.4 and Lemma A.3, it follows that, as n→∞,

vn
(
Pnx−α̂n − Pnx−α0

)
= vn (α̂n − α0)

1− γ
α0

+ op(1)

=
6α0 (1− γ)

π2
vn Ψn(α0) + op(1)

=
6α0 (1− γ)

π2

(
Gnx

−α0 log(x) +
1− γ
α0

Gnx
−α0 −Gn log(x)

)
+ op(1).

This expression in combination with (A.8) yields, as n→∞,

vn
(
(σ̂n/σn)−α̂n − 1

)
=

6α0 (1− γ)

π2

(
Gnx

−α0 log(x) +
1− γ
α0

Gnx
−α0 −Gn log(x)

)
+ Gnx

−α0 + op(1).

(A.9)
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Write Zn = (σ̂n/σn)−α̂n , which converges weakly to unity as n→∞. By the mean value
theorem, we have

vn (σ̂n/σn − 1) = vn (Z−1/α̂n
n − 1) = vn (Zn − 1) (−1/α̂n) Z̃−1/α̂n−1

n ,

where Z̃n is a random convex combination of Zn and 1. But then Z̃n  1 as n → ∞,
whence, by consistency of α̂n and Slutsky’s lemma,

vn (σ̂n/σn − 1) = (−1/α0) vn ((σ̂n/σn)−α̂n − 1) + op(1), n→∞.

Combinining this with (A.9), we find

vn (σ̂n/σn − 1) = −6(1− γ)

π2

(
Gnx

−α0 log(x) +
1− γ
α0

Gnx
−α0 −Gn log(x)

)
− α−1

0 Gnx
−α0 + op(1)

as n→∞. This is the second row in (2.18).

The proof of Addendum 2.6 follows from a tedious but straightforward calculation.

A.2 Proofs for Section 3

Lemma A.5. (Block maxima rarely show ties)Under Conditions 3.1 and 3.4, for
every c ∈ (0,∞), we have Pr[Mrn,1 ∨ c = Mrn,3 ∨ c]→ 0 as n→∞.

Proof of Lemma A.5. By the domain-of-attraction condition combined with the strong
mixing property, the sequence of random vectors ((Mrn,1 ∨ c)/σn, (Mrn,3 ∨ c)/σn) con-
verges weakly to the product of two independent Fréchet(α0, 1) random variables. Apply
the Portmanteau lemma – the set {(x, y) ∈ R2 : x = y} is closed and has zero probability
in the limit.

Lemma A.6. (Moments of block maxima converge)Under Conditions 3.1 and 3.3,
we have, for every c ∈ (0,∞),

lim
n→∞

E[f
(
(Mn ∨ c)/σn

)
] =

∫ ∞
0

f(x) pα0,1(x) dx

for every measurable function f : (0,∞)→ R which is continuous almost everywhere and
for which there exist η+ ∈ [0, α0) and η− ∈ (−∞, 0] such that |f(x)| ≤ max(xη+ , xη−)
whenever x ∈ (0,∞).

Proof of Lemma A.6. Since c/σn → 0 as n → ∞, the sequence (Mn ∨ c)/σn converges
weakly to the Fréchet(α0, 1) distribution in view of Condition 3.1. By Theorem 2.20
in van der Vaart (1998), we need to show that the sequence Yn = f((Mn ∨ c)/σn) is
asymptotically uniformly integrable, i.e.,

lim
K→∞

lim sup
n→∞

E
[
|Yn| 1(K,∞)(|Yn|)

]
= 0. (A.10)
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Split the expectation into two terms, according to whether Zn = (Mn ∨ c)/σn is larger
than unity or not. We obtain

E
[
|Yn| 1(K,∞)(|Yn|)

]
≤ E

[
|Zn|η+ 1(K,∞)(|Zn|η+)1[1,∞)(Zn)

]
+ E

[
|Zn|η− 1(K,∞)(|Zn|η−)1(0,1)(Zn)

]
.

Let ε > 0 be small enough such that (1 + ε)η+ < α0. Let η ∈ {η−, η+}. Since

1(K,∞)(|Zn|η) ≤
|Zn|εη

Kε
,

we find

E
[
|Zn|η 1(K,∞)(|Zn|η)

]
≤ 1

Kε
E
[
|Zn|(1+ε)η

]
.

We obtain

E
[
|Yn| 1(K,∞)(|Yn|)

]
≤ 1

Kε
E
[
|Zn|(1+ε)η+ + |Zn|(1+ε)η−

]
.

By Condition 3.3, the limsup as n → ∞ is bounded by a multiple of K−ε, which tends
to zero as K tends to infinity. Equation (A.10) follows.

In order to separate maxima over consecutive blocks by a time lag of at least `, we
clip off the final `− 1 variables within each block:

M
[`]
r,i = max{ξt : (i− 1)r + 1 ≤ t ≤ ir − `+ 1}. (A.11)

Clearly, Mr,i ≥M [`]
r,i . The probability that the maximum over a block of size r is attained

by any of the final `− 1 variables should be small; see Lemma A.8 below.

Lemma A.7. (Short blocks are small)Assume Condition 3.1. If `n = o(rn) and if
α(`n) = o(`n/rn) as n→∞, then for all ε > 0,

Pr[M`n ≥ εσrn ] = O(`n/rn), n→∞. (A.12)

Proof of Lemma A.7. Let Fr be the cumulative distribution function of Mr. By Bücher
and Segers (2014, Lemma 7.1), for every u > 0,

Pr[Frn(M`n) ≥ u] = O(`n/rn), n→∞. (A.13)

Fix ε > 0. By assumption,

lim
n→∞

Frn(εσrn) = exp(−ε−α0).

For sufficiently large n, we have

Pr[M`n ≥ εσn] ≤ Pr[Frn(M`n) ≥ Frn(εσn)]

≤ Pr[Frn(M`n) ≥ exp(−ε−α0)/2].

Set u = exp(−ε−α0)/2 in (A.13) to arrive at (A.12).
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Lemma A.8. (Clipping doesn’t hurt)Assume Condition 3.1. If `n = o(rn) and if
α(`n) = o(`n/rn) as n→∞, then

Pr[Mrn > Mrn−`n ]→ 0, n→∞. (A.14)

Proof of Lemma A.8. Recall Lemma A.7. For every ε > 0 we have, by stationarity,

Pr[Mrn > Mrn−`n ] ≤ Pr[Mrn−`n ≤ εσrn ] + Pr[M`n > εσrn ].

Since σrn−`n/σrn → 1 as a consequence of Condition 3.1 and the fact that `n = o(rn)
as n → ∞, the first term converges to exp(−ε−α0) as n → ∞, whereas the second one
converges to 0 by Lemma A.7. Since ε > 0 was arbitrary, equation (A.14) follows.

Proof of Theorem 3.6. We apply Theorem 2.5 and Addendum 2.6 to the array Xn,i =
Mrn,i ∨ c and vn =

√
kn, where c ∈ (0,∞) is arbitrary and i ∈ {1, . . . , kn}. By Condi-

tion 3.2, limn→∞ Pr[∀i = 1, . . . , kn : Xn,i = Mrn,i] = 1.
The no-tie property (2.9) has been established in Lemma A.5.
We need to check Condition 2.4, and in particular that the distribution of the random

vector Y in (2.16) is N3(B,ΣY ) with B as in the statement of the theorem and ΣY as
in (2.19). Essentially, the proof employs the Bernstein big-block-small-block method in
combination with the Lindeberg central limit theorem.

Let `n = max{sn, brn
√
α(sn)c}, where sn = b√rnc. Clearly,

`n →∞, `n = o(rn) and α(`n) = o(`n/rn), as n→∞. (A.15)

Consider the truncated and rescaled block maxima

Zr,i = (Mrn,i ∨ c)/σr,

Z
[`n]
r,i = (M

[`n]
rn,i
∨ c)/σr,

with M
[`n]
r,i as in (A.11). To these random variables correspond the following empirical

and population probability measures:

Pnf =
1

kn

kn∑
i=1

f(Zrn,i), Pnf = E[f(Zrn,i)],

P[`n]
n f =

1

kn

kn∑
i=1

f(Z
[`n]
rn,i

), P [`n]
n f = E[f(Z

[`n]
rn,i

)].

Abbreviate the tentative limit distribution by P = Fréchet(α0, 1). We will also need the
following empirical processes:

Gn =
√
kn(Pn − P ) (uncentered),

G̃n =
√
kn(Pn − Pn) (centered),

G̃[`n]
n =

√
kn(P[`n]

n − P [`n]
n ) (centered).
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Finally, the bias arising from the finite block size is quantified by the operator

Bn =
√
kn(Pn − P ).

Proof of Condition 2.4(i). Recall the function classes Fj (j = 0, 1, 2) in (2.10), (2.11)
and (2.13). For f ∈ F1∪F2∪F2 not of the form x−α0 , log(x) or x−α0 log x, we just need
to show that

Pnf = Pf + op(1), n→∞.

The domain-of-attraction property (Condition 3.1) and the asymptotic moment bound
(Condition 3.3) yield

E[Pnf ] = Pnf → Pf, n→∞,

by uniform integrability, see Lemma A.6. Further,

Pnf − Pnf =
1√
kn

G̃nf.

Below, see (A.17), we will show that

G̃nf = G̃[`n]
n f + op(1) = Op(1) + op(1) = Op(1), n→∞. (A.16)

It follows that

Pnf = (Pnf − Pnf) + Pnf = op(1) + Pf + o(1) = Pf + op(1), n→∞,

as required.
Proof of Condition 2.4(ii). We can decompose the empirical process Gn in a stochas-

tic term and a bias term:

Gn =
√
kn(Pn − Pn) +

√
kn(Pn − P )

= G̃n +Bn.

For f ∈ H = {f1, f2, f3}, the bias term Bnf converges to B(f) thanks to Condition 3.5.
It remains to treat the stochastic term G̃nf , for all f ∈ F0∪F1∪F2 [in view of the proof
of item (i); see (A.16) above]. We will show that the finite-dimensional distribuitons of
G̃n converge to the one of a P -Brownian bridge, G, i.e., a zero-mean, Gaussian stochastic
process with covariance function given by

cov(Gf,Gg) = P
(
(f − Pf)(g − Pf)

)
= covP

(
f(X), g(X)

)
,

for f, g ∈ F0 ∪ F1 ∪ F2.
Decompose the stochastic term in two parts:

G̃n = G̃[`n]
n + ∆n. (A.17)

We will show that ∆n converges to zero in probability and that the finite-dimensional
distributions of G̃[`n]

n converge to those of G.
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First, we treat the main term, G̃[`n]
n . By the Cramér–Wold device, it suffices to show

that G̃[`n]
n g  Gg as n → ∞, where g is an arbitrary linear combination of functions

f ∈ F0 ∪ F1 ∪ F2. Define

φni(t) = exp
[
− itk−1/2

n {g(Z
[`n]
rn,i

)− P [`n]
n g}

]
,

with i the imaginary unit. Note that the characteristic function of G̃[`n]
n g can be written

as t 7→ E[
∏kn
i=1 φni(t)]. Successively applying Lemma 3.9 in Dehling and Philipp (2002),

we obtain that∣∣∣∣∣E
[
kn∏
i=1

φni(t)

]
−

kn∏
i=1

E[φni(t)]

∣∣∣∣∣ ≤ 2πkn
kn

max
i=1

α

σ{φni(t)}, σ


kn∏
j=i+1

φnj(t)


 ,

where α(A1,A2) denotes the alpha-mixing coefficient between the sigma-fields A1 and
A2. Since the maxima Z [`n]

r,i over different blocks are based on observations that are at
least `n observations apart, the expression on the right-hand side of the last display is
of the order O(knα(`n)), which converges to 0 as a consequence of Equation (3.2). We
can conclude that the weak limit of G̃[`n]

n g is the same as the one of

H̃[`n]
n g =

√
kn

{
1

kn

kn∑
i=1

g(Z̄
[`n]
rn,i

)− P [`n]
n g

}

where Z̄ [`n]

rn,i
are independent over i ∈ N and have the same distribution as Z [`n]

rn,i
. By

the classical central limit theorem for row wise independent triangular arrays, the weak
limit of H̃[`]

n g is Gg: first, its variance

Var(H̃[`n]
n g) = P [`n]

n g2 − (P [`n]
n g)2

converges to Var(Gg) by Lemma A.6. Note that any linear combination g of functions
f ∈ F0∪F1∪F2 can be bounded by a multiple of max(xη+ , xη−) for some η+ ∈ [0, α0) and
some η− ∈ (−∞, 0]. Second, the Lindeberg Condition follows from the Cauchy–Schwarz
and Markov inequalities: for any ε > 0,

1

kn

kn∑
i=1

E
[
|g(Z̄

[`n]
rn,i

)− P [`n]
n g|21(|g(Z̄

[`n]
rn,i

)− P [`n]
n g| > εk1/2

n )
]

≤ 1

kn

kn∑
i=1

E[|g(Z̄
[`n]
rn,i

)− P [`n]
n g|4]1/2P(|g(Z̄

[`n]
rn,i

)− P [`n]
n g| > εk1/2

n )1/2

≤ 1

kn

kn∑
i=1

E[|g(Z̄
[`n]
rn,i

)− P [`n]
n g|4](εk1/2

n )−2,

which converges to 0 as n → ∞ again as a consequence of Lemma A.6, as arbitrary
powers of g can also be bounded by multiples of max(xη+ , xη−), for some η+ ∈ [0, α0)
and some η− ∈ (−∞, 0].
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Second, consider the remainder term ∆n. Since G̃nf and G̃[`n]
n f are centered, so is

∆nf , and

E[(∆nf)2] = var(∆nf) =
1

kn
var

(
kn∑
i=1

∆
[`n]
rn,i

f

)

where ∆
[`n]
r,i f = f(Zr,i)− f(Z

[`n]
r,i ). By stationarity and the Cauchy–Schwartz inequality,

E[(∆nf)2] = var
(

∆
[`n]
rn,1

f
)

+
2

kn

kn−1∑
h=1

(kn − h) cov
(

∆
[`n]
rn,1

f,∆
[`n]
rn,1+hf

)
≤ 3 var

(
∆

[`n]
rn,1

f
)

+ 2

kn−1∑
h=2

∣∣∣cov
(

∆
[`n]
rn,1

f,∆
[`n]
rn,1+hf

)∣∣∣ . (A.18)

Please note that we left the term h = 1 out of the sum; whence the factor three in front
of the variance term.

Since `n = o(rn) as n→∞ by Condition 3.4, we have σrn−`n+1/σrn → 1 as n→∞
by Condition 3.1. The asymptotic moment bound in Condition 3.3 then ensures that,
for every p > 0 and every f ∈ F0 ∪ F1 ∪ F2, we have, by Lemma A.6,

lim sup
n→∞

E
[∣∣∣∆[`n]

rn,1
f
∣∣∣p] <∞. (A.19)

On the event that Mrn,1 = Mrn−`n+1, we have ∆
[`n]
rn,1

f = 0. The mixing rate in (A.15)
together with Lemma A.8 then imply

∆
[`n]
rn,1

f = op(1), n→∞.

Lyapounov’s inequality and the asymptotic moment bound (A.19) then ensure that

lim
n→∞

E
[∣∣∣∆[`n]

rn,1
f
∣∣∣p] = 0, f ∈ F0 ∪ F1 ∪ F2, p > 0. (A.20)

Recall Lemma 3.11 in Dehling et al. (2002): for random variables ξ and η and for
numbers p, q ∈ [1,∞] such that 1/p+ 1/q < 1,

|cov(ξ, η)| ≤ 10 ‖ξ‖p ‖η‖q {α(σ(ξ), σ(η))}1−1/p−1/q, (A.21)

where σ( · ) denotes the σ-field generated by its argument and where α(A1,A2) denotes
the strong mixing coefficient between two σ-fields A1 and A2. Use inequality (A.21) to
bound the covariance terms in (A.18): for every p > 2,

E[(∆nf)2] ≤ 3 ‖∆[`n]
rn,1

f‖22 + 20 kn ‖∆[`n]
rn,1

f‖2p {α(rn)}1−2/p.

Recall ω > 0 in Condition 3.4. In view of (A.20), a sufficient condition for the right-
hand side to converge to zero is that p is big enough: 1/(1−2/p) should be smaller than
1 + ω.
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A.3 Proof of Theorem 4.2

Proof of Theorem 4.2. We apply Theorem 3.6. To this end, we verify its conditions.
Proof of Condition 3.1. The second-order regular variation condition (4.5) implies

the first-order one in (4.2), which is in turn equivalent to weak convergence of partial
maxima as in (4.1). Condition 3.1 follows with scaling sequence σn = an. The latter
sequence is regularly varying (Resnick, 1987, Proposition 1.11) with index 1/α0, which
implies that limn→∞ amn/an = 1 whenever limn→∞mn/n = 1.

Proof of Condition 3.2. For any real c we have, since logF (c) < 0 and since log(kn) =
o(rn) by (4.9),

Pr[min(Mrn,1, . . . ,Mrn,kn) ≤ c]
≤ kn F rn(c) = exp{log(kn) + rn logF (c)} → 0, n→∞.

Proof of Condition 3.3. This is Lemma A.9 below.
Proof of Condition 3.4. Trivial, since α(`) = 0 for integer ` ≥ 1.
Proof of Condition 3.5. Recall Remark 4.3 and therein the functions L and g(u) =

A(u)L(u). We begin by collecting some non-asymptotic bounds on the function L. Fix
δ ∈ (0, α0). Potter’s theorem (Bingham et al., 1987, Theorem 1.5.6) implies that there
exists some constant x′(δ) > 0 such that, for all u ≥ x′(δ), x ≥ x′(δ)/u,

L(u)

L(ux)
≤ (1 + δ) max(x−δ, xδ). (A.22)

As a consequence of Theorem B.2.18 in de Haan and Ferreira (2006), accredited
to Drees (1998), there exists some further constant x′′(δ) > 0 such that, for all u ≥
x′′(δ), x ≥ x′′(δ)/u, ∣∣∣∣L(ux)− L(u)

g(u)

∣∣∣∣ ≤ c(δ) max(xρ−δ, xρ+δ), (A.23)

for some constant c(δ) > 0. Define x(δ) = max{x′(δ), x′′(δ), 1}.
We are going to show Condition 3.5 for c = x(δ) and σrn = arn . For i = 1, . . . , kn,

define Xn,i = Mrn,i ∨ x(δ). Let Pn denote the common distribution of the rescaled,
truncated block maxima Xn,i/arn and let P denote the Fréchet(α0, 1) distribution. Write
Bn =

√
kn(Pn − P ) and define the three-by-one vector β by

β =
λ

|ρ|α0


Γ(2 + |ρ|

α0
) + Γ′(2 + |ρ|

α0
)− 2 + γ

α0 − α0Γ(2 + |ρ|
α0

)

Γ(1 + |ρ|
α0

)− 1

 (A.24)

if ρ < 0 and by

β =
λ

α2
0

(1− γ)2 + π2/6− γ
α0(γ − 1)
−γ


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if ρ = 0. We will show that

lim
n→∞

(
Bnx

−α0 log x, Bnx
−α0 , Bn log x

)T
= β. (A.25)

Elementary calculations yield that M(α0)β = B(α0, ρ, λ) as required in (4.8).
Equation (A.25) can be shown coordinatewise. We begin by some generalities. For

any f ∈ H as in (2.14), we can write, for arbitrary x, x0 ∈ (0,∞),

f(x) =

f(x0)−
∫ x0
x f ′(y) dy, if 0 < x ≤ x0,

f(x0) +
∫ x
x0
f ′(y) dy, if x0 < x <∞.

By Fubini’s theorem, with Gn and G denoting the cdf-s of Pn and P , respectively,

Pf =

∫
(0,x0]

f(x) dP (x) +

∫
(x0,∞)

f(x) dP (x)

= f(x0)−
∫
x∈(0,x0]

∫ x0

y=x
f ′(y) dy dP (x) +

∫
x∈(x0,∞)

∫ x

y=x0

f ′(y) dy dP (x)

= f(x0)−
∫ x0

y=0

∫
x∈(0,y]

dP (x) f ′(y) dy +

∫ ∞
y=x0

∫
x∈(y,∞)

dP (x) f ′(y) dy

= f(x0)−
∫ x0

0
G(y) f ′(y) dy +

∫ ∞
x0

{1−G(y)} f ′(y) dy,

and the same formula holds with P and G replaced by Pn and Gn, respectively. We find
that

Bnf =
√
kn(Pn − P )f = −

∫ ∞
0

√
kn {Gn(y)−G(y)} f ′(y) dy.

Note that

G(y) = exp(−y−α0)1(0,∞)(y), Gn(y) = F rn(arny)1[x(δ)/arn ,∞)(y),

From the definition of L in (4.12), we can write, for y ≥ x(δ)/arn ,

Gn(y) = exp

(
−y−α0rn{− logF (arn)} L(arny)

L(arn)

)
.

For the sake of brevity, we will only carry out the subsequent parts of the proof in the
case where F is ultimately continuous, so that rn {− logF (arn)} = 1 for all sufficiently
large n. In that case, Bnf = Jn1(f) + Jn2(f) where

Jn1(f) =
√
kn

∫ x(δ)/arn

0
exp(−y−α0)f ′(y) dy,

Jn2(f) = −
√
kn

∫ ∞
x(δ)/arn

[
exp

(
−y−α0

L(arny)

L(arn)

)
− exp(y−α0)

]
f ′(y) dy,
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Let us first show that Jn1(f) converges to 0 for any f ∈ H. For that purpose, note
that any f ∈ H satisfies |f ′(x)| ≤ Kx−α0−ε−1 for any ε < 1 and for some constant
K = K(ε) > 0. As a consequence, by (4.10), for sufficiently large n,

max
f∈H
|Jn1(f)| ≤ {λ+ o(1)} K

A(arn)

∫ x(δ)/arn

0
exp(−y−α0)y−α0−ε−1 dy.

Since A(x) is bounded from below by a multiple of xρ−ε for sufficiently large x (by
Remark 4.3 and Potter’s theorem), the expression on the right-hand side of the last
display can be easily seen to converge to 0 for n→∞.

For the treatment of Jn2, note that

J(f, ρ) ≡
∫ ∞

0
hρ(y) exp

(
−y−α0

)
y−α0f ′(y) dy

=


∫∞

0 hρ(y) exp (−y−α0) y−2α0−1(1− α0 log y) dy , f(y) = y−α0 log y∫∞
0 hρ(y) exp (−y−α0) (−α0y

−2α0−1) dy , f(y) = y−α0∫∞
0 hρ(y) exp (−y−α0) y−α0−1 dy , f(y) = log y

=


E[hρ(Y )Y −α0(α−1

0 − log Y )] , f(y) = y−α0 log y

−E[hρ(Y )Y −α0 ] , f(y) = y−α0

α−1
0 E[hρ(Y )] , f(y) = log y,

where Y denotes a Fréchet(α0, 1) random variable. By Lemma B.1 this implies

J(x−α0 log x, ρ) =
1

ρα0

{
Γ(2 + |ρ|

α0
) + Γ′(2 + |ρ|

α0
)− 1− Γ′(2)

}
=

1

|ρ|α0

{
2− γ − Γ(2 + |ρ|

α0
)− Γ′(2 + |ρ|

α0
)
}
,

J(x−α0 , ρ) =
1

ρ

{
Γ(2)− Γ(2 + |ρ|

α0
)
}

=
1

|ρ|

{
Γ(2 + |ρ|

α0
)− 1

}
,

J(log x, ρ) =
1

ρα0

{
Γ(1 + |ρ|

α0
)− 1

}
=

1

|ρ|α0

{
1− Γ(1 + |ρ|

α0
)
}

for ρ < 0 and

J(x−α0 log x, 0) = − 1

α2
0

{
Γ′(2) + Γ′′(2)

}
=

1

α2
0

{
γ − (1− γ)2 − π2/6

}
,

J(x−α0 , 0) =
1

α0
Γ′(2) =

1− γ
α0

,

J(log x, 0) = − 1

α2
0

Γ′(1) =
γ

α2
0

.

Hence, β = −λ
(
J(x−α0 log x, ρ), J(x−α0 , ρ), J(log x, ρ)

)T
and it is therefore sufficient to

show that, for any f ∈ H,

Jn2(f)→ −λJ(f, ρ) (A.26)
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as n→∞. By the mean value theorem, we can write Jn2(f) as

Jn2(f) = −
√
knA(arn)

∫ ∞
x(δ)/arn

L(arny)− L(arn)

A(arn)L(arn)
exp

(
−y−α0ξn(y)

)
y−α0f ′(y) dy

for some ξn(y) between L(arny)/L(arn) and 1. For n → ∞, the factor in front of
this integral converges to −λ by assumption (4.10), while the integrand in this integral
converges to

hρ(y) exp
(
−y−α0

)
y−α0f ′(y),

pointwise in y ∈ (0,∞), by Condition 4.1. Hence, the convergence in (A.26) follows from
dominated convergence if we show that

fn(y) = 1
(
y > x(δ)

arn

) ∣∣∣∣L(arny)− L(arn)

A(arn)L(arn)

∣∣∣∣ exp
(
−y−α0ξn(y)

)
y−α0f ′(y)

can be bounded by an integrable function on (0,∞). We split the proof into two cases.
First, for any 1 ≥ y ≥ x(δ)/arn ,∣∣∣∣L(arny)− L(arn)

A(arn)L(arn)

∣∣∣∣ ≤ c(δ)yρ−δ
from (A.23) and

ξn(y) ≥ min

(
1,
L(arny)

L(arn)

)
≥ (1 + δ)−1yδ

from (A.22). Moreover, for any f ∈ H, the function f ′(y) is bounded by a multiple of
y−α0−δ−1 for y ≤ 1. Therefore, for any y ∈ (0, 1),

fn(y) ≤ c′(δ) exp{−(1 + δ)−1y−α0+δ}y−2α0−2δ−1+ρ

and the function on the right is integrable on (0, 1) since δ < α0.
Second, for y ∈ [1,∞), we have∣∣∣∣L(arny)− L(arn)

A(arn)L(arn)

∣∣∣∣ ≤ c(δ)yρ+δ

from (A.23) and

ξn(y) ≥ min

(
1,
L(arny)

L(arn)

)
≥ (1 + δ)−1y−δ

from (A.22). Moreover, f ′(y) is bounded by a multiple of y−1 for any y ≥ 1 and any
f ∈ H. Therefore,

fn(y) ≤ c′′(δ) y−α0−1+ρ+δ

which is easily integrable on [1,∞).
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Lemma A.9. Let ξ1, ξ2, . . . be independent random variables with common distribution
function F satisfying (4.2). Let Mn = max(ξ1, . . . , ξn). For every β ∈ (−∞, α0) and
any constant c > 0, we have

lim sup
n→∞

E
[(

(Mn ∨ c)/an
)β]

<∞.

Proof of Lemma A.9. Since the case β = 0 is trivial, there are two cases to be considered:
β ∈ (−∞, 0) and β ∈ (0, α0). Write Zn = (Mn ∨ c)/an and note that

Pr[Zn < y] = Pr[Mn ∨ c < any] = Fn(any)1(c/an,∞)(y).

Case β ∈ (−∞, 0). We have

E[Zβn ] =

∫ ∞
0

Pr[Zβn > x] dx

=

∫ ∞
0

Pr[Zn < x1/β] dx

=

∫ ∞
0

Pr[Zn < y] |β| yβ−1 dy

=

∫ ∞
c/an

Fn(any) |β| yβ−1 dy.

We split the integration domain in two pieces. For y ∈ (1,∞), the integrand is bounded
by |β| yβ−1, which integrates to unity. Hence we only need to consider the integral over
y ∈ (c/an, 1]. We have

Fn(any) = exp{n logF (any)} = exp

(
−n{− logF (an)} − logF (any)

− logF (an)

)
.

Fix δ ∈ (0, α0). By (4.3), we have n{− logF (an)} ≥ 1 − δ for all n larger than some
n(δ). By Potter’s theorem (Bingham et al., 1987, Theorem 1.5.6), there exists x(δ) > 0
such that, for all n such that an ≥ x(δ) and for all y ∈ (x(δ)/an, 1],

− logF (an)

− logF (any)
≤ (1 + δ) yα0−δ.

Without loss of generality, assume x(δ) > c. For all y ∈ (c/an, x(δ)/an], we have

− logF (an)

− logF (any)
≤ − logF (an)

− logF (x(δ))

≤ (1 + δ) (x(δ)/an)α0−δ

≤ (1 + δ)x(δ)α0−δcδ−α0 yα0−δ.

Combining the previous two displays, we see that there exists a constant c(δ) > 0 such
that, for all y ∈ (c/an, 1],

− logF (any)

− logF (an)
≥ c(δ) y−α0+δ.
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We conclude that, for all sufficiently large n and all y ∈ (c/an, 1],

Fn(any) ≤ exp
(
−c(δ) y−α0+δ

)
,

where c(δ) is a positive constant, possibly different from the one in the previous equation.
For such n, we have∫ 1

c/an

Fn(any) |β| yβ−1 dy ≤
∫ 1

0
exp

(
−c(δ) y−α0+δ

)
|β| yβ−1 dy <∞.

Case β ∈ (0, α0). Let δ > 0 be sufficiently small such that β + δ < α. Let x(δ) > 0
be as in Potter’s theorem. Let n(δ) be sufficiently large such that an ≥ x(δ) ∨ c for all
n ≥ n(δ). Put K = supn≥1 n{1 − F (an)}, which is finite by (4.3) and the fact that
− logF (x) ∼ 1− F (x) for x→∞. For n ≥ n(δ), we have

E[Zβn ] =

∫ ∞
0

Pr[Zn > x1/β] dx

=

∫ ∞
0

Pr[Mn ∨ c > anx
1/β] dx

≤ 1 +

∫ ∞
1

Pr[Mn > anx
1/β] dx

≤ 1 +

∫ ∞
1

n{1− F (anx
1/β)} dx

≤ 1 +K

∫ ∞
1

1− F (anx
1/β)

1− F (an)
dx.

By Potter’s theorem, the integral on the last line is bounded by

(1 + δ)

∫ ∞
c

(x1/β)−α0+δ dx.

The latter integral is finite, since (−α0 + δ)/β < −1.

B Auxiliary results

Let Γ(x) =
∫∞

0 tx−1e−t dt be the gamma function and let Γ′ and Γ′′ be its first and
second derivative, respectively. All proofs for this section are given in Section D in the
supplementary material.

Lemma B.1. (Moments)Let P denote the Fréchet distribution with parameter vector
(α0, 1), for some α0 ∈ (0,∞). For all α ∈ (−α0,∞),∫ ∞

0
x−α dP (x) = Γ(1 + α/α0),∫ ∞

0
x−α log(x) dP (x) = − 1

α0
Γ′(1 + α/α0),∫ ∞

0
x−α(log(x))2 dP (x) =

1

α2
0

Γ′′(1 + α/α0).
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Lemma B.2. (Covariance matrix)Let X be a random variable whose distribution is
Fréchet with parameter vector (α0, 1). The covariance matrix of the random vector

Y = (Y1, Y2, Y3)T =
(
X−α0 log(X), X−α0 , log(X)

)T
is equal to

cov(Y ) =
1

α2
0

1− 4γ + γ2 + π2/3 α0(γ − 2) π2/6− γ
α0(γ − 2) α2

0 −α0

π2/6− γ −α0 π2/6

 .

Lemma B.3. (Fisher information)Let Pθ denote the Fréchet distribution with pa-
rameter θ = (α, σ) ∈ (0,∞)2. The Fisher information Iθ = Pθ( ˙̀

θ
˙̀T
θ ) is given by

Iθ =

(
ι11 ι12

ι21 ι22

)
=

(
{(1− γ)2 + π2/6}/α2 (1− γ)/σ

(1− γ)/σ α2/σ2

)
.

Its inverse is given by

I−1
θ =

6

π2

(
α2 (γ − 1)σ

(γ − 1)σ (σ/α)2{(1− γ)2 + π2/6}

)
.
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Ann. of Math. (2) 44, 423–453.

Gumbel, E. J. (1958). Statistics of extremes. New York: Columbia University Press.

Hosking, J. R. M., J. R. Wallis, and E. F. Wood (1985). Estimation of the generalized
extreme-value distribution by the method of probability-weighted moments. Techno-
metrics 27 (3), 251–261.

Leadbetter, M. R. (1983). Extremes and local dependence in stationary sequences. Z.
Wahrsch. Verw. Gebiete 65 (2), 291–306.

Marohn, F. (1994). On testing the Exponential and Gumbel distribution. In Extreme
Value Theory and Applications, pp. 159–174. Kluwer Academic Publishers.

Mikosch, T. and C. Stărică (2000). Limit theory for the sample autocorrelations and
extremes of a GARCH (1, 1) process. Ann. Statist. 28 (5), 1427–1451.

Peng, L. (1998). Asymptotically unbiased estimators for the extreme-value index. Statis-
tics & Probability Letters 38 (2), 107 – 115.

Pickands, J. (1975, 01). Statistical inference using extreme order statistics. Ann.
Statist. 3 (1), 119–131.

Prescott, P. and A. T. Walden (1980). Maximum likelihood estimation of the parameters
of the generalized extreme-value distribution. Biometrika 67 (3), 723–724.

Resnick, S. I. (1987). Extreme values, regular variation, and point processes, Volume 4 of
Applied Probability. A Series of the Applied Probability Trust. Springer-Verlag, New
York.

Rootzén, H. (2009). Weak convergence of the tail empirical process for dependent se-
quences. Stochastic Processes and their Applications 119 (2), 468 – 490.

Smith, R. L. (1985). Maximum likelihood estimation in a class of nonregular cases.
Biometrika 72 (1), 67–90.

van der Vaart, A. W. (1998). Asymptotic Statistics, Volume 3 of Cambridge Series in
Statistical and Probabilistic Mathematics. Cambridge: Cambridge University Press.

36



Supplementary Material on

“Maximum likelihood estimation for the Fréchet distribution
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Abstract

This supplementary material contains the proofs of Lemma 5.1 (Section C) and
of the auxiliary lemmas from Section B (Section D) from the main paper.

C Proofs for Section 5

Proof of Lemma 5.1. We only give a sketch proof for the case p = 2, the general case
being similar, but notationally more involved. Set b1 = b, b2 = 1 − b, such that b(2) =
b ∨ (1− b). Clearly,

P(Mn ≤ x) = P{Z0 ≤ x(1− b)−1, Z1 ≤ xb−1
(2), . . . , Zn−1 ≤ xb−1

(2), Zn ≤ xb
−1}

= F{x(1− b)−1} · F{xb−1} · Fn−1(xb−1
(2)).

As a consequence, with b(1) = b ∧ (1− b),

Hn(x) = P(Mn ≤ xb(2)an)

= F (anx
b(2)
1−b) · F (anx

b(2)
b ) · Fn−1(anx)

= F (anx
b(2)
b(1)

) · Fn(anx).

Since, by assumption, Fn(xan)→ exp(−x−α0), Condition 3.1 is satisfied.
The proof of Condition 3.3 can be be carried out along the lines of the proof of

Lemma A.9. For β < 0, simply use that

P{(Mn ∨ c)/σn ≤ x) = Hn(x)1(x ≥ c/σn) ≤ Fn(xan) · 1(x ≥ c/σn),

while, for β > 0

P(Mn > σnx
1/β) ≤ 2n · P(Z1 > σnx

1/βb(2)) = 2n{1− F (anx
1/β)}

for any x > 1.
Condition 3.4 is trivial, since the process is p-dependent.
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Since log kn = o(rn), Condition 3.2 follows from

P[min(Mrn,1, . . . ,Mrn,kn) ≤ c]
≤ knP(Mrn ≤ c)
= exp{log kn + (rn − 1) logF (cb−1

(2))} · F{c(1− b)
−1} · F{cb−1}.

Finally, consider Condition 3.5. As in the proof of Theorem 4.2, write√
kn
(
E
[
f
(
(Mrn ∨ c)/σrn

)]
− Pf

)
= −

∫ ∞
0

√
kn{H̃n(y)−G(y)}f ′(y) dy,

where G(y) = exp(−y−α0) and where

H̃n(y) = P{(Mrn ∨ c)/σrn ≤ y} = An(y)Gn(y)

with
An(y) = F (arny

b(2)
b(1)

), Gn(y) = F rn(yarn)1(y ≥ c/σrn)

Write∫ ∞
0

√
kn{H̃n(y)−G(y)}f ′(y) dy = −

∫ c/σrn

0

√
knG(y)f ′(y) dy

+

∫ ∞
c/σrn

√
knAn(y){Gn(y)−G(y)}f ′(y) dy

+

∫ ∞
c/σrn

√
kn{An(y)− 1}G(y)f ′(y) dy (C.1)

The first integral converges to 0 as shown in the proof of Theorem 4.2, treatment of
Jn1(f). The integrand of the second integral converges pointwise to the same limit as in
the iid case. The integrand can further be bounded by an integrable function as shown in
the treatment of Jn2 in the proof of Theorem 4.2, after splitting the integration domain
at 1. Hence, the limit of that integral is the same as in the iid case by dominated
convergence.

Consider the last integral in the latter display. Decompose√
kn|An(y)− 1| =

√
kn
rn
· 1−An(y)

− logAn(y)
· − logAn(y)

− logF (arn)
,

where we used the fact that rn{− logF (arn)} = 1. The second factor is bounded
by 1, since log(x) ≤ x − 1 for all x > 0. Consider the third factor. With L(x) =
− log{F (x)}xα0 , we have

− logAn(y)

− logF (arn)
= (yb(2)/b(1))

−α0
L(arnyb(2)/b(1))

L(arn)
.

The fraction on the right-hand side is bounded by a multiple of yδ ∨ y−δ by Potter’s
theorem, for some 0 < δ < α0. Further note that, up to a factor, f ′(y) ≤ y−α0−δ−1 for
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y ≤ 1 and f ′(y) ≤ y−1 for y > 1. We obtain that the integrand of the third integral on
the right-hand side of (C.1) is bounded by a multiple of

√
kn/rn · exp(−y−α0)y−2α0−2δ−1

for y ≤ 1 and by a multiple of
√
kn/rn · y−α0−1+δ

for y > 1. Both functions are integrable on its respective domains. Since kn = o(n2/3)
is equivalent to

√
kn = o(rn), the third integral converges to 0. Hence, Condition 3.5 is

satisfied.

D Proofs for Section B

Proof of Lemma B.1. If Y is a unit exponential random variable, then the law of Y −1/α0

is equal to P . The integrals stated in the lemma are equal to E[Y α/α0 ], −α−1
0 E[Y α/α0 log(Y )],

and α−2
0 E[Y α/α0(log Y )2], respectively. First,∫ ∞

0
x−α dP (x) =

∫ ∞
0

yα/α0 exp(−y) dy = Γ(1 + α/α0).

Second,∫ ∞
0

x−α log(x) dP (x) = − 1

α0

∫ ∞
0

log(y) yα/α0 exp(−y) dy = − 1

α0
Γ′(1 + α/α0).

Third,∫ ∞
0

x−α(log x)2 dP (x) =
1

α2
0

∫ ∞
0

(log y)2 yα/α0 exp(−y) dy =
1

α2
0

Γ′′(1 + α/α0).

Proof of Lemma B.2. Recall a few special values of the first two derivatives of the
Gamma function:

Γ′(1) = −γ, Γ′′(1) = γ2 + π2/6,

Γ′(2) = 1− γ, Γ′′(2) = (1− γ)2 + π2/6− 1,

Γ′(3) = 3− 2γ, Γ′′(3) = 2((3/2− γ)2 + π2/6− 5/4).

Applying the formulas in Lemma B.1 with α ∈ {0, α0, 2α0}, we find

var(Y1) = α−2
0

{
Γ′′(3)− (Γ′(2))2

}
= α−2

0 (1− 4γ + γ2 + π2/3),

var(Y2) = Γ(3)− (Γ(2))2 = 1,

var(Y3) = α−2
0

(
Γ′′(1)− (Γ′(1))2

)
= α−2

0 π2/6,

as well as

cov(Y1, Y2) = α−1
0

(
(−Γ′(3))− (−Γ′(2))Γ(2)

)
= α−1

0 (γ − 2),

cov(Y1, Y3) = α−2
0

(
Γ′′(2)− (−Γ′(2))(−Γ′(1))

)
= α−2

0 (π2/6− γ),

cov(Y2, Y3) = α−1
0

(
(−Γ′(2))− Γ(2)(−Γ′(1))

)
= −α−1

0 .
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Proof of Lemma B.3. If X ∼ P(α,σ), then Z = X/σ ∼ P(α,1). Therefore, by (2.1) and
Lemma B.1,

ι11 = E
[
{α−1 + (Z−α − 1) logZ}2

]
=

1

α2

[
1− 2{Γ′(2)− Γ′(1)}+ {Γ′′(3)− 2Γ′′(2) + Γ′′(1)}

]
=

1

α2
{(1− γ)2 + π2/6}

Similarly, by (2.1) and (2.2),

ι12 =
α

σ
E
[
(1− Z−α){α−1 + (Z−α − 1) logZ}

]
=
α

σ

[
α−1{Γ(1)− Γ(2)}+ α−1{Γ′(1)− 2Γ′(2) + Γ′(3)}

}
=

1− γ
σ

.

Finally,

ι22 =
α2

σ2
E[(1− Z−α)2] =

α2

σ2
{Γ(1)− 2Γ(2) + Γ(3)} =

α2

σ2
.

40



 



 


	Introduction
	Triangular arrays of block maxima
	Existence and uniqueness
	Consistency
	Asymptotic distribution

	Block maxima extracted from a stationary time series
	Block maxima extracted from an iid sample
	Examples and finite-sample results
	Verification of conditions in a moving maximum model
	Simulation results

	Proofs
	Proofs for Section 2
	Proofs for Section 3
	Proof of Theorem 4.2

	Auxiliary results
	Proofs for Section 5
	Proofs for Section B

