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Abstract: In the statistical inference for long range dependent time series,
the shape of the limit distribution typically dependents on unknown param-
eters. Therefore, we propose to use subsampling. We show the validity of
subsampling for general statistics and long range dependent subordinated
Gaussian processes, which satisfy mild regularity conditions. We apply our
method to a self-normalized change-point test statistic and investigate the
finite sample properties in a simulation study.
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1. Introduction

1.1. Long Range Dependence

While most statistical research is done for independent data or short memory
time series, in many applications there are also time series with long memory in
the sense of slowly decaying correlations: in hydrology (starting with the work
of Hurst [23]), in finance (e.g. Lo [30]), in the analysis of network traffic (e.g.
Leland, Taqqu, Willinger and Wilson [29]) and many more fields of research.

As model of dependent time series, we will consider subordinated Gaussian
processes: Let (ξn)n∈N be a stationary sequence of centered Gaussian variables
with Var(ξn) = 1 and covariance function γ satisfying

γ(k) := Cov(ξ1, ξk+1) = k−DLγ(k), (1)

for a D > 0 and a slowly varying function Lγ . If D < 1, then the spectral
density f of (ξn)n∈N is not continuous, but has a pole at 0. The spectral density
has the form

f(x) = |x|D−1Lf (x)

for a function Lf , which is slowly varying at the origin (see Proposition 1.1.14
in Pipiras and Taqqu [35]).

∗supported by Collaborative Research Center SFB 823 and by the German Academic
Foundation
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Furthermore, let G : R→ R be a measurable function such that E[G2(ε1)] <
∞. The stochastic process (Xn)n∈N given by

Xn := G(ξn)

is called long range dependent if
∑∞
n=0 |Cov(X1, Xn+1)| = ∞, and short range

dependent if
∑∞
n=0 |Cov(X1, Xn+1)| <∞.

In limit theorems for the partial sum Sn =
∑n
i=1Xi, the normalization re-

quired and the shape of the limit distribution depend not only on the decay
of the covariances γ(k) as k → ∞, but also on the function G. More precisely,
Taqqu [43] and Dobruhsin, Major [18] independently proved that

1

Lγ(n)r/2nH

n∑
i=1

(Xi − E[Xi])
D−→ C(r,H)grZr,H(1),

if the Hurst parameter H := max{1− rD
2 ,

1
2} is greater than 1

2 . r is the Hermite
rank of the function G, gr is the first non-zero coefficient in the expansion of G as
a sum of Hermite polynomials and Zr,H is a Hermite process. For more details on
Hermite polynomials and limit theorems for subordinated Gaussian processes,
we recommend the book of Pipiras and Taqqu [35]. In this case (rD < 1), the
process (Xn)n∈N is long range dependent, as the covariances are not summable.
Note that the limiting random variable C(r,H)Zr,H(1) is Gaussian only if the
Hermite rank r = 1.

If rD = 1, the process (Xn)n∈N might be short or long range dependent
according to the slowly varying function Lγ . If rD > 1, the process is short
range dependent. In this case, the partial sum

∑n
i=1(Xi − E[Xi]) has (with the

proper normalization) always a Gaussian limit.
There are other models for long-memory processes: Fractionally integrated

autoregressive moving average processes can show long range dependence, see
Granger and Joyeux [20]. General linear processes with slowly decaying coeffi-
cients were studied by Surgailis [42].

1.2. Subsampling

In practical applications, the parametersD, r and the slowly varying function Lγ
are unknown and thus the scaling needed in the limit theorems and the shape
of the asymptotic distribution are not known, either. That makes it difficult
to use the asymptotic distribution for statistical inference. The situation gets
even more complicated if one is not interested in partial sums, but in nonlinear
statistical functionals. For example, U -statistics can have a linear combination
of random variables related to different Hermite ranks as a limit, see Beutner
and Zähle [10]. Self-normalized statistics typically converge to quotients of two
random variables (e.g. McElroy and Politis [33]). The change-point test proposed
by Berkes, Horváth, Kokoszka and Shao [8] converges under the alternative
hypothesis to a supremum of a fractional Brownian bridge.
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To overcome the problem of the unkown shape of the limit distribution and
to avoid the estimation of nuisance parameters, one would like to use nonpara-
metric methods. However, Lahiri [28] has shown that the popular moving block
bootstrap might fail under long range dependence. Another nonparametric ap-
proach is subsampling (also called sampling window method), first studied by
Politis and Romano [36], Hall and Jing [21], and Sherman and Carlstein [40].
The idea is the following: Let Tn = Tn(X1, . . . , Xn) be a series of statistics con-
verging in distribution to a random variable T , but as we typically only have
one sample, we observe only one realization of Tn and can not estimate the
distribution of Tn. But if l = ln is a sequence with ln →∞ and ln = o(n), then
Tl also converges in distribution to T and we have multiple (though dependent)
realizations Tl(X1, . . . , Xl), Tl(X2, . . . , Xl+1),..., Tl(Xn−l+1, . . . , Xn), which we
can use to calculate the empirical distribution function.

The validity of subsampling for the sample mean X̄ = 1
n

∑n
i=1Xi under long

range dependence has been investigated in the literature starting with Hall, Jing
and Lahiri [22] for subordinated Gaussian processes. Nordman and Lahiri [34]
and Zhang, Ho, Wendler, Wu [47] studied linear processes with slowly decaying
coefficients. An alternative proof in the case of Gaussian processes can be found
in the book of Beran, Feng, Ghosh, Kulik [7].

It was noted by Fan [19] that the proof of Hall et al. [22] can be easily
generalized to other statistics than the sample mean. However, the assumptions
on the Gaussian process are restrictive (see also McElroy and Politis [33]). Their
conditions imply that the sequence (ξn)n∈N is completely regular, which might
hold for some special cases (see Ibragimov and Rozanov [24]), but excludes many
examples:

Example 1 (Fractional Gaussian Noise). Let (BH(t))t∈[0,∞) be a fractional
Brownian motion, i.e. a centered, self-similar Gaussian process with covariance
function

E [BH(t)BH(s)] =
1

2

(
t2H + s2H − |t− s|2H

)
for some H ∈ ( 1

2 , 1). Then (ξn)n∈N given by ξn = BH(n)−BH(n− 1) is called
fractional Gaussian noise. By self-similarity, we have

corr

( n∑
i=1

ξi,

3n∑
j=2n+1

ξj

)
= corr (BH(n), BH(3n)−BH(2n))

= corr (BH(1), BH(3)−BH(2)) .

So the correlations of linear combinations of observations in the past and future
do not vanish if the gap between past and future grows and thus fractional
Gaussian noise is not completely regular.

Jach, McElroy, Politis [25] provided a more general result on the validity of
subsampling. They assume that the function G has Hermite rank 1, that G is
invertible and Lipschitz-continuous and that the process (ξn)n∈N has a causal
representation as a functional of an independent sequence of random variables.
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These assumptions are difficult to check in practice. Moreover, although not ex-
plicitly stated in their Theorem 4, the statistic Tn has to be Lipschitz-continuous
(uniformly in n), which is not satisfied by many robust estimators (see Section
3 for an example).

The main aim of this paper is to establish the validity of the subsampling
method for general statistics Tn without any assumptions on the continuity of
the statistic, on the function G and only mild assumptions on the Gaussian
process (ξn)n∈N. We will give our main theorem in the next section. In Section
3, we will apply our theorem to a self-normalized, robust change-point statistic.
The finite sample properties of this test will be investigated in Section 4. Finally,
the proof of the main result and the lemmas needed can be found in Section 5.

2. Main Results

2.1. Statement of the Theorem

For a statistic Tn = Tn(X1, . . . , Xn), the subsampling estimator F̂l,n of the
distribution function FTn with FTn(t) = P (Tn ≤ t) is defined in the following
way: Let for t ∈ R

F̂l,n(t) =
1

n− l + 1

n−l+1∑
j=1

1{Tl(Xi,...,Xi+l−1)≤t}.

Our first assumption guarantees the convergence of the distribution function of
Tn:

Assumption 1. (Xn)n∈N is a stochastic process and (Tn)n∈N is a sequence
of statistics, such that Tn → T in distribution for a random variable T with
distribution function FT .

This is a standard assumption for subsampling, see for example Politis and
Romano [36]. If the distribution does not converge, we can not expect the dis-
tribution of Tl to be close to the distribution of Tn.

Next, we will formulate our conditions on the sequence (Xn)n∈N of random
variables:

Assumption 2. Xn = G(ξn) for a measurable function G and a stationary,
Gaussian process (ξn)n∈N with covariance function

γ(k) := Cov(ξ1, ξ1+k) = k−DLγ(k)

such that the following conditions hold:

1. D ∈ (0, 1] and Lγ is a slowly varying function with

max
k̃∈{k+1,...,k+2l′−1}

∣∣∣Lγ(k)− Lγ(k̃)
∣∣∣ ≤ K l′

k
min {Lγ(k), 1}

for a constant K <∞ and all l′ ∈ {lk, . . . , k}.
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2. (ξn)n∈N has a spectral density f with f(x) = |x|D−1Lf (x) for a slowly
varying function Lf which is bounded away from 0 on [0, π].

While we have some regularity conditions on the underlying Gaussian process
(ξn)n∈N, note that we do not have any conditions on the function G, no finite
moments or continuity are required, which will make our results applicable for
heavy-tailed random variables and robust test statistics. We will show that As-
sumption 2 holds for some standard examples of long range dependent Gaussian
processes in the next subsection.

Furthermore, we need a restriction on the growth rate of the block length l:

Assumption 3. Let (ln)n∈N be a nondecreasing sequence of integers such that
l = ln →∞ as n→∞ and ln = O

(
n(1+D)/2−ε) for an ε > 0.

If the dependence of the underlying process (ξn)n∈N gets stronger, the range
of possible values for l gets smaller. A popular choice for the block length is
l ≈ C

√
n (see for example Hall et al. [22]), which is allowed for all D ∈ (0, 1].

Now we can state our main result:

Theorem 1. Under the Assumptions 1, 2 and 3 for all points of continuity t
of FT , we have

FTn(t)− F̂l,n(t)
P−→ 0.

If FT is continuous, then

sup
t∈R

∣∣∣FTn(t)− F̂l,n(t)
∣∣∣ P−→ 0.

So we have a consistent estimator for the distribution function of Tn and it
is possible to build tests and confidence intervals based on this estimator.

If D > 1, then the process (ξn)n∈N is strongly mixing by Theorem 9.8 in the
book of Bradley [13] and the statements of our theorem hold by Corollary 3.2
in Politis and Romano [36] for any blocklength l satisfying l→∞ and l = o(n).

2.2. Examples for our Assumptions

We will now give two examples of Gaussian processes satisfying Assumption 2:

Example 2 (Fractional Gaussian Noise). Fractional Gaussian Noise (ξn)n∈N
with Hurst parameter H as introduced in Example 1 has the covariance function

γ(k) =
1

2

(
|k − 1|2H − 2|k|2H + |k + 1|2H

)
= H(2H − 1)

(
k−D + h(k)k−D−1

)
for D = 2− 2H and a function h bounded by a constant M <∞, which can be
easily seen by means of a Taylor expansion. So Lγ(k) = H(2H − 1)(1 +h(k)/k)

and for all k̃ ≥ k∣∣∣Lγ(k)− Lγ(k̃)
∣∣∣ ≤ H(2H − 1)

∣∣∣∣h(k)

k
− h(k̃)

k̃

∣∣∣∣ ≤ H(2H − 1)
M

k
=: K

1

k
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implying Part 1 of Assumption 2. For the second part, note that spectral density
f of fractional Gaussian noise is given by

f(λ) = C(H)(1− cos(λ))

∞∑
k=−∞

|x+ 2kπ|D−3

= λD−1C(H)
1− cos(λ)

λ2

∑∞
k=−∞ |λ+ 2kπ|D−3

λD−3

see Sinai [41]. The slowly varying function

Lf (λ) = C(H)
1− cos(λ)

λ2

∑∞
k=−∞ |λ+ 2kπ|D−3

λD−3

is bounded away from 0 because this obviously holds for the first factor (1 −
cos(λ))/λ2 and ∑∞

k=−∞ |λ+ 2kπ|D−3

λD−3
≥ |λ+ 20π|D−3

λD−3
= 1.

Example 3 (Gaussian FARIMA processes). Let (εn)n∈Z be Gaussian white
noise with variance σ2 = Var(ε0). Then for a d ∈ (0, 1/2), a FARIMA(0,d,0)
process (ξn)n∈N is given by

ξn =

∞∑
j=0

Γ(j + d)

Γ(j + 1)Γ(d)
εn−j .

According to Pipiras and Taqqu [35], Section 1.3, it has the specral density

f(λ) =
σ2

2π
|1− e−iλ|−2d = |λ|D−1 σ

2

2π

(
|λ|

|1− e−iλ|

)1−D

with D = 1− 2d ∈ (0, 1). As |1− e−iλ| ≤ λ, part 2 of Assumption 2 holds. For
part 1, we have by Corollary 1.3.4 of [35] that

γ(k) = σ2 Γ(1− 2d)

Γ(1− d)Γ(d)

Γ(k + d)

Γ(k − d+ 1)
.

Recall that by the Stirling formula Γ(x) =
(
2π
x

)1/2(x
e

)x(
1 +O(x−1)

)
and con-

sequently

γ(k) = σ2 Γ(1− 2d)

Γ(1− d)Γ(d)
e−2d+1k2d−1

(k + d

k

)k+d( k

k − d+ 1

)k−d+1(
1 +O

(1

k

))
.

Using a Taylor expansion of (k+ d)
(

log(k+ d)− log(k)
)

+ (k− d+ 1)
(

log(k)−
log(k − d+ 1)

)
, it easily follows that

γ(k) = k−DLγ(k)

with Lγ(k) = C +O(1/k) for a constant C. Part 1 of Assumption 2 follows in
the same way as in Example 2.
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It would be interesting to know if the subsampling for general statistics is
consistent for long range dependent linear proceseses without the assumption
of gaussianity, but this seems to be a very hard problem and goes beyond the
scope of this paper.

3. Application

3.1. Robust, Self-Normalized Change-Point Test

In this paper, the main motivation for considering subsampling procedures in
order to approximate the distribution of test statistics consists in avoiding the
choice of unknown parameters. As an example we will consider a self-normalized
test statistic that can be applied to detect changes in the mean of long range
dependent and heavy-tailed time series.

Given observations X1, . . . , Xn with Xi = G(ξi) + µi we are concerned with
a decision on the change-point problem

H : µ1 = . . . = µn

against

A : µ1 = . . . = µk 6= µk+1 = . . . = µn for some k ∈ {1, . . . , n− 1} .

Under the hypothesis H we assume that the data generating process (Xn)n∈N
is stationary, while under the alternative A there is a change in location at
an unknown point in time. This problem has been widely studied: Csörgő and
Horváth [15] give an overview of parametric and non-parametric methods that
can be applied in order to detect change-points in independent data.

Many commonly used testing procedures are based on Cusum (cumulated
sum) test statistics, but when applied to data sets generated by long range
dependent processes, these change-point tests often falsely reject the hypothesis
of no change in the mean (see also Baek and Pipiras [4]). Furthermore, the
performance of Cusum-like change-point tests is sensitive to outliers in the data.

In contrast, testing procedures that are based on rank statistics have the
advantage of not being sensitive to outliers in the data. These were introduced by
Antoch et al. [3] for detecting changes in the distribution function of independent
random variables. Wilcoxon type rank tests have been studied by Wang [45] in
the presence of linear long memory time series and by Dehling, Rooch and Taqqu
[16] for subordinated Gaussian sequences.

Note that the normalization of the Wilcoxon change-point test statistic as
proposed in [16] depends on the slowly varying function Lγ , the LRD parameter
D and the Hermite rank r of the class of functions 1{Xi≤x} − F (x), x ∈ R.
Although r = 1 is assumed in many cases and while there are well-tried methods
to estimate D, estimating Lγ does not seem to be an easy task. For this reason,
the Wilcoxon change-point test does not seem to be suitable for application to
real data.
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So as to avoid these issues Betken [9] proposes an alternative normalization
for the Wilcoxon change-point test. This normalization approach has originally
been established by Lobato [31] for decision on the hypothesis that a short
range dependent stochastic process is uncorrelated up to a lag of a certain
order. In change-point analysis the normalization has recently been applied to
several test statistics: Shao and Zhang [39] define a self-normalized Kolmogorov-
Smirnov test statistic that serves to identify changes in the mean of short range
dependent time series. Shao [38] adopted the normalization so as to define an
alternative normalization for a Cusum test, which detects changes in the mean
of short range dependent as well as long range dependent time series.

For the definition of the self-normalized Wilcoxon test statistic, we introduce
the ranks Ri = rank(Xi) =

∑n
j=1 1{Xj≤Xi} for i = 1, . . . , n. It seems natural

to transfer the normalization that has been used by Shao [38] on the Cusum
test statistic to the ranks in order to establish a self-normalized version of the
Wilcoxon test statistic, which is robust to outliers in the data. Therefore, the
corresponding two-sample test statistic is defined by

Gn(k) =

∑k
i=1Ri −

k
n

∑n
i=1Ri{

1
n

∑k
t=1 S

2
t (1, k) + 1

n

∑n
t=k+1 S

2
t (k + 1, n)

}1/2
,

where

St(j, k) =

t∑
h=j

(
Rh − R̄j,k

)
with R̄j,k =

1

k − j + 1

k∑
t=j

Rt.

The self-normalized Wilcoxon change-point test rejects the hypothesis for large
values of maxk∈{bnτ1c,...,bnτ2c} |Gn(k)|, where 0 < τ1 < τ2 < 1. The proportion
of the data that is included in the calculation of the supremum is restricted by
τ1 and τ2. A common choice for these parameters is τ1 = 1 − τ2 = 0.15; see
Andrews [2].

For long range dependent subordinated Gaussian processes (Xn)n∈N, the
asymptotic distribution of the test statistic under the hypothesis H can be
derived by the continuous mapping theorem (see Theorem 1 in Betken [9]):

Tn(τ1, τ2) := max
k∈{bnτ1c,...,bnτ2c}

|Gn(k)|

⇒ sup
τ1≤λ≤τ2

|Zr(λ)− λZr(1)|{ ∫ λ
0

(Zr(t)− t
λZr(λ))2dt+

∫ 1−λ
0

(Z?r (t)− t
1−λZ

?
r (1− λ))2dt

}1/2 .
Here, Zr is a r-th order Hermite process with Hurst parameter H := max{1−
rD
2 ,

1
2} and Z?t (r) = Zr(1) − Zr(1 − t). A comparison of Tn(τ1, τ2) with the

critical values of its limit distribution still presupposes determination of these
parameters, but Assumption 1 holds and we can bypass the estimation of D and
r by applying the subsampling procedure.

Note that even under the alternative A (change in location), we have to find
the quantiles of the distribution under the hypothesis (stationarity). But as the
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block length l is much shorter than the sample size n, most blocks will not be
contaminated by the change-point and so the distribution of the test statistic
will not change. Even for blocks which cover the change, the power of the test
is low (because there are only l observations) and thus the distribution will not
change too much. The accuracy and the power of the test will be investigated
by a simulation study in Section 4.

3.2. Data Examples

We will revisit some data sets which have been analyzed before in the litera-
ture. We will use the self-normalized Wilcoxon change-point test combined with
subsampling and compare our findings to the conclusions of other authors.
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Figure 1. The annual discharge from the Nile at Aswan in 108 m3 for 1871-1970. The dotted
line indicates the location of the change-point; the dashed lines designate the sample means
for the pre-break and post-break samples.

The plot in Figure 1 depicts the annual volume of discharge from the Nile
river at Aswan in 108 m3 for the years 1871 to 1970. The data set has been
analyzed for the detection of a change-point by numerous authors under differing
assumptions concerning the data generating random process and by usage of
diverse methods. Amongst others, Cobb [14], MacNeill, Tang and Jandhyala
[32], Wu and Zhao [46] and Shao [38] provided statistical significant evidence
for a decrease of the Nile’s annual discharge towards the end of the 19th century.
The construction of the Aswan Low Dam between 1898 and 1902 serves as a
popular explanation for an abrupt change in the data.
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The value of the self-normalized Wilcoxon test statistic computed with re-
spect to the data is given by Tn(τ1, τ2) = 13.48729. For a level of significance
of 5%, the self-normalized Wilcoxon change-point test rejects the hypothesis
for every possible value of H ∈

(
1
2 , 1
)
. Furthermore, we approximate the dis-

tribution of the self-normalized Wilcoxon test statistic by the sampling window
method with block size l = b

√
nc. The subsampling-based test decision also

indicates the existence of a change-point in the mean of the data.
In particular, previous analysis of the Nile data done by Wu and Zhao [46]

and Balke [5] suggests that the change in the discharge volume occured in 1899.
We applied the self-normalized Wilcoxon test and the sampling window method
to the corresponding prebreak and postbreak samples. Neither of these two
approaches leads to rejection of the hypothesis, so that it seems reasonable to
consider both samples as stationary . At this point, it is interesting to note that,
based on the whole sample, local Whittle estimation with bandwidth parameter
m = bn2/3c suggests the existence of long range dependence characterized by
an Hurst parameter Ĥ = 0.962, whereas the estimates for the prebreak and
postbreak samples given by Ĥ1 = 0.517 and Ĥ2 = 0.5, respectively, should
be considered as indication of short range dependent data. In this regard our
findings support the conjecture of spurious long memory caused by a change-
point and therefore coincide with the results of Shao [38].

The second data set consists of the seasonally adjusted monthly deviations
of the temperature (degrees C) for the northern hemisphere during the years
1854 to 1989 from the monthly averages over the period 1950 to 1979. The data
results from spatial averaging of temperatures measured over land and sea. At
first sight the plot in Figure 2 may suggest an increasing trend as well as an
abrupt change of the temperature deviations. Statistical evidence for a positive
deterministic trend implies affirmation of the conjecture that there has been
global warming during the last decades.

In scientific discourse the question of whether the Northern hemisphere tem-
perature data acts as an indicator for global warming of the atmosphere is a
controversial issue. Deo and Hurvich [17] provided some indication for global
warming by fitting a linear trend to the data. Beran and Feng [6] considered a
more general stochastic model by the assumption of so called semiparametric
fractional autoregressive (SEMIFAR) processes. Their method did not deliver
sufficient statistical evidence for a deterministic trend. Wang [44] applied an-
other method for the detection of gradual change to the global temperature
data and did not detect an increasing trend either. But he offers an alternative
explanation for the occurence of trend-like behavior by pointing out that it may
have been generated by stationary long range dependent processes. In contrast,
it is shown in Shao [38] that the existence of a change-point in the mean yields
yet another explanation for the performance of the data.

The value of the self-normalized Wilcoxon test statistic computed with re-
spect to the data is given by Tn(τ1, τ2) = 18.98636. Consequently, the self-
normalized Wilcoxon change-point test would reject the hypothesis for every
possible value of H ∈

(
1
2 , 1
)

at a level of significance of 1%. In addition, an
application of the sampling window method with respect to the self-normalized
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Figure 2. Monthly temperature for the northern hemisphere for the years 1854-1989, from
the data base held at the Climate Research Unit of the University of East Anglia, Norwich,
England. The numbers consist of the temperature (degrees C) difference from the monthly
average over the period 1950-1979. The dotted line indicates the location of the potential
change-point; the dashed lines designate the sample means for the pre-break and post-break
samples.

Wilcoxon test statistic yields a test decision in favor of the alternative hypothe-
sis for any possible choice of the block length. All in all, both testing procedures
provide strong evidence for the existence of a change in the mean.

According to Shao [38] the change-point is located around October 1924.
Based on the whole sample local Whittle estimation with bandwidth m = bn2/3c
provides an estimator Ĥ = 0.811. The estimated Hurst parameters for the
prebreak and postbreak sample are Ĥ1 = 0.597 and Ĥ2 = 0.88, respectively.
Neither of both testing procedures, i.e. subsampling with respect to the self-
normalized Wilcoxon test statistic and comparison of the value of Tn(τ1, τ2)
with the corresponding critical values of its limit distribution, provides evidence
for another change-point in the prebreak or postbreak sample.

Therefore, it seems safe to conclude that the appearance of long memory in
the postbreak sample is not caused by another change-point in the mean. The
pronounced difference between the local Whittle estimators Ĥ1 and Ĥ2 suggests
a change in the dependence structure of the times series. Another explanation
might be a gradual change of the temperature in the postbreak period.

In both data examples, we find that the results obtained by subsampling and
obtained by parameter estimation are in good accordance with each other. The
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methods take into account possible long range dependence or heavy tails, but
they still can detect a change in location.

4. Simulations

We will now investigate the finite sample performance of the subsampling pro-
cedure with respect to the self-normalized Wilcoxon test and with respect to the
classical Wilcoxon change-point test. Moreover, we will compare these results
to the performance of the tests when the test decision is based on critical values
obtained from the asymptotic distribution of the test statistic.

For this purpose, we consider subordinated Gaussian time series (Xn)n∈N,
Xn = G(ξn), where (ξn)n∈N is fractional Gaussian noise (introduced in Example
2) with Hurst parameter H ∈ {0.6, 0.7, 0.8, 0.9} and covariance function

γ(k) ∼ k−D
(

1− D

2

)
(1−D)

where D = 2− 2H, i.e. Lγ(k) ∼
(
1− D

2

)
(1−D).

Initially, we take G(t) = t, so that (Xn)n∈N has normal marginal distribu-
tions. We also consider the transformation

G(t) =

(
βk2

(β − 1)2(β − 2)

)− 1
2
(
k(Φ(t))−

1
β − βk

β − 1

)
with Φ denoting the standard normal distribution function so as to generate
Pareto-distributed data with parameters k, β > 0 (referred to as Pareto(β, k)).
In both cases the Hermite rank r of 1{G(ξi)≤x} − F (x), x ∈ R, equals r = 1 and∣∣∣∣∫

R
J1(x)dF (x)

∣∣∣∣ =
1

2
√
π

;

see Dehling, Rooch and Taqqu [16].
Under the above conditions the critical values of the asymptotic distribution

of the self-normalized Wilcoxon test statistic are reported in Table 2 in Betken
[9]. The limit of the Wilcoxon change-point test statistic can be found in [16],
the corresponding critical values can be taken from Table 1 in [9].

The frequencies of rejections of both testing procedures are reported in Table
1 for the self-normalized Wilcoxon change-point test and in Table 2 for the
classical Wilcoxon test (without self-normalization). The calculations are based
on 5, 000 realizations of time series with sample size n = 300 and n = 500.

For the usual testing procedures the estimation of the Hermite rank r, the
slowly varying function Lγ and the integral

∫
J1(x)dF (x) is neglected. Yet, for

every simulated time series we estimate the Hurst parameter H by the local
Whittle estimator Ĥ proposed in Künsch [27]. This estimator is based on an
approximation of the spectral density by the periodogram at the Fourier fre-
quencies. It depends on the spectral bandwidth parameter m = m(n) which
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denotes the number of Fourier frequencies used for the estimation. If the band-
width m satisfies 1

m + m
n −→ 0 as n −→ ∞, the local Whittle estimator is a

consistent estimator for H; see Robinson [37]. For convenience we always choose
m = bn2/3c in this article. The critical values corresponding to the estimated
values of H are determined by linear interpolation.

Under the alternative A we analyze the power of the testing procedures (the
frequency of rejection) by considering different choices for the height of the level
shift (denoted by h) and the location [nτ ] of the change-point. In the tables the
columns that are superscribed by “h = 0” correspond to the frequency of a type
1 error, i.e. the rejection rate under the hypothesis H.

For the self-normalized Wilcoxon change-point test (based on the asymptotic
distribution), the empirical size almost equals the level of significance of 5% for
normally distributed data (see Table 1). The sampling window method yields a
rejection rate that slightly exceeds this level. For Pareto(3, 1) time series both
testing procedures lead to similar results and tend to reject the hypothesis too
often when there is no change. With regard to the empirical power it is notable
that for fractional Gaussian noise time series the sampling window method yields
considerably better power than the test based on asymptotic critical values.
If Pareto(3, 1) distributed time series are considered, the empirical power of
the subsampling procedure is still better than the empirical power that results
from using asymptotic critical values. However, in this case the deviation of the
rejection rates is rather small. While the empirical size is not much affected by
the Hurst parameter H, the empirical power is lower for H = 0.8, 0.9.

Considering the classical Wilcoxon test (without self-normalization), it is no-
table that for both procedures, the empirical size is in most cases not close to
the nominal level of significance (5%), ranging from 1.1% to 17.5% using sub-
sampling and from 2.6% to 36.0% using asymptotic critical values (see Table 2).
In general, the sampling window method becomes more conservative for higher
values of the Hurst parameter H, while the test based on the asymptotic distri-
bution becomes more liberal. Under the alternative the usual application of the
Wilcoxon test yields better power than the sampling window method, especially
for high values of H. But we emphasize that this comparison is problematic be-
cause the rejection frequencies under the hypothesis differ.

We conclude that the self-normalized Wilcoxon change-point test is more
reliable than the classical change-point test. The reason might be that in the
scaling of the classical test, the estimator Ĥ of the Hurst parameter enters as
a power of the sample size n and thus a small error in this estimation might
lead to a large error in the value of the test statistic. By using the sampling
window method for the self-normalized version, we avoid the estimation of un-
known parameters so that the performance is similar to the performance of the
classical testing procedure which compares the values of the test statistic with
the corresponding critical values.
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Table 1
Rejection rates of the self-normalized Wilcoxon change-point test obtained by subsampling (left) and by comparison with asymptotic critical values

(right) for fractional Gaussian noise and Pareto(3, 1)-transformed fractional Gaussian noise of length n with Hurst parameter H.

sampling window method asymptotic distribution

τ = 0.25 τ = 0.5 τ = 0.25 τ = 0.5

fGn n h = 0 h = 0.5 h = 1 h = 0.5 h = 1 h = 0 h = 0.5 h = 1 h = 0.5 h = 1
H = 0.6 300 0.064 0.313 0.742 0.570 0.964 0.044 0.209 0.521 0.424 0.861

500 0.060 0.421 0.861 0.720 0.995 0.049 0.303 0.687 0.577 0.958
H = 0.7 300 0.070 0.171 0.423 0.313 0.763 0.053 0.108 0.268 0.228 0.611

500 0.059 0.193 0.508 0.382 0.854 0.048 0.133 0.359 0.302 0.730
H = 0.8 300 0.067 0.117 0.234 0.208 0.494 0.048 0.081 0.144 0.141 0.362

500 0.068 0.114 0.278 0.210 0.567 0.053 0.085 0.198 0.163 0.462
H = 0.9 300 0.074 0.097 0.161 0.169 0.397 0.057 0.065 0.106 0.125 0.308

500 0.067 0.091 0.166 0.162 0.416 0.051 0.068 0.120 0.128 0.350

Pareto(3, 1) n h = 0 h = 0.5 h = 1 h = 0.5 h = 1 h = 0 h = 0.5 h = 1 h = 0.5 h = 1
H = 0.6 300 0.067 0.871 0.946 0.990 1.000 0.056 0.820 0.912 0.984 0.999

500 0.066 0.946 0.994 0.999 1.000 0.061 0.920 0.970 0.996 1.000
H = 0.7 300 0.064 0.527 0.738 0.876 0.990 0.070 0.529 0.702 0.856 0.982

500 0.068 0.684 0.893 0.942 0.998 0.076 0.663 0.820 0.940 0.995
H = 0.8 300 0.068 0.284 0.454 0.666 0.905 0.072 0.297 0.428 0.640 0.875

500 0.063 0.379 0.581 0.714 0.933 0.069 0.369 0.510 0.715 0.920
H = 0.9 300 0.071 0.168 0.254 0.532 0.772 0.073 0.165 0.236 0.499 0.738

500 0.064 0.219 0.340 0.547 0.802 0.068 0.199 0.296 0.529 0.782
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Table 2
Rejection rates of the classical Wilcoxon change-point test obtained by subsampling (left) and by comparison with asymptotic critical values (right)

for fractional Gaussian noise and Pareto(3, 1)-transformed fractional Gaussian noise of length n with Hurst parameter H.

sampling window method asymptotic distribution

τ = 0.25 τ = 0.5 τ = 0.25 τ = 0.5

fGn n h = 0 h = 0.5 h = 1 h = 0.5 h = 1 h = 0 h = 0.5 h = 1 h = 0.5 h = 1
H = 0.6 300 0.054 0.223 0.411 0.439 0.784 0.026 0.096 0.160 0.223 0.727

500 0.058 0.345 0.663 0.627 0.952 0.036 0.148 0.256 0.378 0.897
H = 0.7 300 0.049 0.095 0.158 0.206 0.466 0.035 0.067 0.228 0.167 0.665

500 0.039 0.131 0.267 0.287 0.689 0.030 0.079 0.259 0.225 0.714
H = 0.8 300 0.029 0.038 0.048 0.075 0.179 0.077 0.153 0.421 0.245 0.673

500 0.028 0.044 0.070 0.097 0.273 0.050 0.112 0.439 0.226 0.714
H = 0.9 300 0.009 0.014 0.009 0.021 0.060 0.36 0.484 0.739 0.524 0.830

500 0.011 0.009 0.011 0.029 0.086 0.319 0.439 0.743 0.511 0.845

Pareto(3, 1) n h = 0 h = 0.5 h = 1 h = 0.5 h = 1 h = 0 h = 0.5 h = 1 h = 0.5 h = 1
H = 0.6 300 0.130 0.963 0.861 0.996 0.991 0.108 0.938 0.985 0.998 1.000

500 0.132 0.997 0.976 1.000 0.999 0.128 0.988 0.999 1.000 1.000
H = 0.7 300 0.175 0.802 0.680 0.955 0.949 0.179 0.833 0.969 0.974 0.999

500 0.167 0.931 0.862 0.992 0.996 0.191 0.940 0.994 0.996 1.000
H = 0.8 300 0.160 0.496 0.347 0.776 0.808 0.204 0.729 0.925 0.918 0.993

500 0.160 0.649 0.513 0.886 0.929 0.212 0.805 0.963 0.948 0.999
H = 0.9 300 0.097 0.128 0.071 0.403 0.550 0.309 0.712 0.901 0.848 0.966

500 0.100 0.161 0.101 0.518 0.680 0.27 0.726 0.911 0.851 0.975
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5. Proofs

5.1. Auxilary Results

Lemma 1. Under Assumption 2, there is a constant Kd <∞, such that for all
x1, . . . , xl ∈ R with Var(

∑l
i=1 xiξi) = 1

l∑
i=1

x2i ≤ Kd.

Proof. Recall that we can rewrite the covariances as

γ(k) =

∫ π

−π
eikλ f(λ)dλ

and that the spectral density f can be written as f(λ) = Lf (|λ|)|λ|D−1. As by
our assumptions Lf (x) ≥ Cmin for a constant Cmin > 0, we can conclude that

1 =Var
( l∑
i=1

xiξi

)
=

l∑
j,k=1

xjxkγ(j − k)

=

l∑
j,k=1

xjxk

∫ π

−π
ei(j−k)λ f(λ)dλ =

l∑
j,k=1

xjxk

∫ π

−π
ei(j−k)λ Lf (|λ|)|λ|D−1dλ

= 2

∫ π

0

l∑
j,k=1

xjxk ei(j−k)λ Lf (λ)λD−1dλ = 2

∫ π

0

∣∣∣∣ l∑
j=1

xj e−ijλ
∣∣∣∣2Lf (λ)λD−1dλ

≥ 2Cminπ
D−1

∫ π

0

∣∣∣∣ l∑
j=1

xj e−ijλ
∣∣∣∣2dλ.

Now we rewrite the integrand as∣∣∣∣ l∑
j=1

xj e−ijλ
∣∣∣∣2 =

l∑
j,k=1

xjxk e−ijλ eikλ =

l∑
j=1

x2j +
∑
j 6=k

xjxk e−i(j−k)λ

=

l∑
j=1

x2j +
∑
j<k

xjxk

(
e−i(j−k)λ + e−i(k−j)λ

)

=

l∑
j=1

x2j + 2
∑
j<k

xjxk cos((k − j)λ) =

l∑
j,k=1

xjxk cos((k − j)λ).

We use this to calculate the integral:∫ π

0

∣∣∣∣ l∑
j=1

xj e−ijλ
∣∣∣∣2dλ =

∫ π

0

l∑
j,k=1

xjxk cos((k − j)λ)dλ
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=

l∑
j,k=1

xjxk

∫ π

0

cos((k − j)λ)dλ

=

l∑
j=1

x2j

∫ π

0

cos(0)dλ+
∑
j 6=k

xjxk

∫ π

0

cos((k − j)λ)dλ︸ ︷︷ ︸
=0

= π

l∑
j=1

x2j .

All in all this yields

1 = Var(

l∑
i=1

xiξi) ≥ 2Cminπ
D−1

∫ π

0

∣∣∣∣ l∑
j=1

xj e−ijλ
∣∣∣∣2dλ = 2Cminπ

D
l∑

j=1

x2j ,

so the statement of the lemma holds with Kd = 1/(2Cminπ
D).

Lemma 2. Under Assumption 2, there are constants K ′d < ∞, l0 ∈ N, such

that for all l ≥ l0 and x1, . . . , xl ∈ R with Var(
∑l
i=1 xiξi) = 1∣∣∣∣ l∑

i=1

xi

∣∣∣∣ ≤ K ′dlD/2.
Proof. The statement of the proof is equivalent to existence of a constant C > 0,
such that for all x1, . . . , xl ∈ R with

∑l
i=1 xi = 1, we have that

Var
( l∑
i=1

xiξi

)
≥ Cl−D.

Let x?1, . . . , x
?
l ∈ R with

∑l
i=1 x

?
i = 1 be the values that minimize Var(

∑l
i=1 x

?
i ξi).

Then µ̂ξ(ξ1, . . . , ξn) :=
∑l
i=1 x

?
i ξi is the best linear unbiased estimator for

µ := E[ξ1]. For a process (ζn)n∈N with spectral density

fζ(x) =
1

2π

∣∣1− eix∣∣(D−1)/2
we have by Corollary 5.2 of Adenstedt [1] that

Var (µ̂ζ(ζ1, . . . , ζn)) ≥ C1l
−D

for a constant C1 > 0. Now we rewrite the spectral density fζ of (ζn)n∈N with
the help of the spectral density f of (ξn)n∈N as

fζ(x) = f(x)

∣∣1− eix∣∣(D−1)/2
2π|x|D−1Lf (x)
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and observe that the function g with g(x) =
|1−eix|(D−1)/2

2π|x|D−1Lf (x)
is bounded, as we

assumed that Lf is bounded away from 0. So by Lemma 4.4 of [1], we have for
all l ≥ l0 that

Var (µ̂ξ(ξ1, . . . , ξn)) ≥ 1

2g(0)
Var (µ̂ζ(ζ1, . . . , ζn)) ≥ Cl−D.

Our next Lemma deals with the ρ-mixing coefficient, which is defined the
following way: Let A,B be two σ-field, then

ρ(A,B) := sup corr(X,Y ),

where the supremum is taken over all A-measurable random variables X and
all B-measurable random variables Y . For details, we recomend the book of
Bradley [13].

Lemma 3. Under Assumption 2, there are constants C1, C2 <∞, such that

ρ(k, l) := ρ
(
σ(ξi, 1 ≤ i ≤ l), σ(ξj , k + l + 1 ≤ j ≤ k + 2l)

)
≤ C1 (k/l)

−D
Lγ(k) + C2l

2k−D−1 max{Lγ(k), 1}

for all k ∈ N and all l ∈ {lk, . . . , k}.

Proof. Kolmogorov and Rozanov [26] have proved that there exist real numbers
a1, a2, . . . , al, b1, b2, . . . , bl, such that

ρ
(
σ(ξi, 1 ≤ i ≤ l), σ(ξj , k + l + 1 ≤ j ≤ k + 2l)

)
= Cov

( l∑
i=1

aiξi,

l∑
j=1

bjξk+l+j

)
.

and Var
(∑l

i=1 aiξi
)

= Var
(∑l

j=1 bjξk+l+j
)

= 1. The triangular inequality
yields

∣∣∣∣Cov
( l∑
i=1

aiξi,

l∑
j=1

bjξk+l+j

)∣∣∣∣
≤
∣∣∣ l∑
i=1

ai

l∑
j=1

bj

∣∣∣ |γ(k)|+
l∑
i=1

l∑
j=1

|ai||bj | |γ(k)− γ(k + l + j − i)| .

We will treat these two summand seperatly. For the first part, we use Lemma 2
to obtain∣∣∣ l∑

i=1

ai

l∑
j=1

bj

∣∣∣ |γ(k)| =
∣∣∣ l∑
i=1

ai

∣∣∣∣∣∣ l∑
j=1

bj

∣∣∣ |γ(k)| ≤ K ′2d lDLγ(k)k−D.
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Before we deal with the second summand, we first observe that by Hölder’s
inequality and Lemma 1

l∑
i=1

|ai| ≤

√√√√l

l∑
i=1

a2i ≤
√
Kd

√
l and

l∑
j=1

|bj | ≤

√√√√l

l∑
j=1

b2j ≤
√
Kd

√
l.

Furthermore, we have by our assumption

sup
|k−k̃|≤2l−1

∣∣∣Lγ(k)− Lγ(k̃)
∣∣∣ ≤ K l

k

for a constant K and consequently for all k̃ ∈ {k + 1, . . . , k + 2l − 1}∣∣∣γ(k)− γ(k̃)
∣∣∣ ≤ Lγ(k)

∣∣∣k−D − k̃−D∣∣∣+ |Lγ(k)− Lγ(k̃)|k̃−D

≤ Lγ(k)
(
k−D − (k + 2l − 1)−D

)
+ |Lγ(k)− Lγ(k̃)|k−D

≤ Cdk−D−1lLγ(k) +K
l

k
k−D max{Lγ(k), 1}

≤ C3k
−D−1lmax{Lγ(k), 1}

for some constants Cd, C3. Combining this with the bounds for
∑l
i=1 |ai|,

l∑
j=1

|bj |, we finally arrive at

l∑
i=1

|ai|
l∑

j=1

|bj | |γ(k)− γ(k + l + j − i)| ≤ Kdl max
k̃∈{k+1,...,k+2l−1}

∣∣∣γ(k)− γ(k̃)
∣∣∣

= KdC3k
−D−1l2 max{Lγ(k), 1}.

5.2. Proof of the Main Result

Let t be a point of continuity of FT . In order to simplify notation, we write
N = n− l + 1 and Tl,i = Tl(Xi, . . . , Xi+l−1). The triangular inequality yields

|F̂l,n(t)− FTn(t)| ≤ |F̂l,n(t)− FT (t)|+ |FT (t)− FTn(t)|.

The second term on the right-hand side of the above inequality converges to zero
because of Assumption 1. As L2-convergence implies stochastic convergence, it
suffices to show that

E
(
|F̂l,n(t)− FT (t)|2

)
−→ 0
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in order to prove that the first term converges to zero, as well. We have

E
(
|F̂l,n(t)− FT (t)|2

)
= E

(
F̂ 2
l,n(t)

)
−
(

E F̂l,n(t)
)2

+ (FT (t))
2 − 2FT (t) E F̂l,n(t) +

(
E F̂l,n(t)

)2
= Var(F̂l,n(t)) +

∣∣∣E F̂l,n(t)− FT (t)
∣∣∣2 .

Furthermore, the stationarity of the process (Xn)n∈N and Assumption 1 imply

E F̂l,n(t) =
1

N

N∑
i=1

E
(
1{Tl,i≤t}

)
= P (Tl,1 ≤ t) = FTl(t)

l→∞−−−→ FT (t).

It remains to show that Var
(
F̂l,n(t)

)
−→ 0. Again, it follows by stationarity of

(Xn)n∈N that

Var
(
F̂l,n(t)

)
=

1

N
Var

(
1{Tl,1≤t}

)
+

2

N2

N∑
i=2

(N − i+ 1)Cov
(
1{Tl,1≤t}, 1{Tl,i≤t}

)
≤ 2

N

N∑
i=1

∣∣Cov
(
1{Tl,1≤t}, 1{Tl,i≤t}

)∣∣ .
Recall that by Assumption 3, we have l ≤ Cln

(1+D)/2−ε for some constants
Cl, ε > 0. For n large enough such that l < 1

2bn
1−ε/2c, we split the sum of

covariances into two parts:

1

N

N∑
i=1

∣∣Cov
(
1{Tl,1≤t}, 1{Tl,i≤t}

)∣∣
=

1

N

bn1−ε/2c∑
i=1

∣∣Cov
(
1{Tl,1≤t}, 1{Tl,i≤t}

)∣∣+
1

N

N∑
i=bn1−ε/2c+1

∣∣Cov
(
1{Tl,1≤t}, 1{Tl,i≤t}

)∣∣
≤ bn

1−ε/2c
N

+
1

N

N∑
k=bn1−ε/2c+1

ρ(σ(Xi, 1 ≤ i ≤ l), σ(Xj , k ≤ j ≤ k + l − 1))

≤ bn
1−ε/2c
N

+
1

N

N−l−1∑
k=bn1−ε/2c−l

ρ(k, l),

where

ρ(k, l) := ρ
(
σ(Xi, 1 ≤ i ≤ l), σ(Xj , k + l + 1 ≤ j ≤ k + 2l)

)
.

Obviously, the first summand bn1−ε/2c/N converges to zero by Assumption 3.
For the second summand, first note that as a consequence of Potter’s Theorem
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(Theorem 1.5.6 in Bingham et al. [12]), there is a constant CL such that Lγ(k) ≤
CLk

Dε/2 for all k ∈ N. This together with Lemma 3 yields

1

N

N−l−1∑
k=bn1−ε/2c−l

ρ(k, l)

≤ CLC1
lD

N

N−l−1∑
k=bn1−ε/2c/2

k−DkDε/2 + CLC2
l2

N

N−l−1∑
k=bn1−ε/2c/2

k−D−1kDε/2

≤ CLC1C
D
l 2D(1−ε/2)nD(((1+D)/2−ε)−(1−ε/2)+ε/2(1−ε/2))

+ CLC2C
2
l 21+D(1−ε/2)n((1+D−2ε)−(D+1)(1−ε/2)+(1−ε/2)Dε/2)

≤ C
(
n−D((1−D)/2+ε2/4) + n−ε(

3
2−D+Dε/4)

)
n→∞−−−−→ 0

for some constant C < ∞. Thus, we have proved that Var
(
F̂l,n(t)

)
→ 0 as

n→∞ and that the first conjecture of Theorem 1 holds.
The second assertion of Theorem 1 follows from

FTn(t)− F̂l,n(t)
P−→ 0

by the usual Glivenko-Cantelli argument for the uniform convergence of empir-
ical distribution functions, see for example section 20 in the book of Billingsley
[11].
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[3] Antoch, J., Hušková, M., Janic, A. and Ledwina, T. (2008). Data
driven rank test for the change point problem. Metrika 68 1-15.

[4] Baek, C., Pipiras, V. et al. (2014). On distinguishing multiple changes in
mean and long-range dependence using local Whittle estimation. Electronic
Journal of Statistics 8 931–964.

[5] Balke, N. S. (1993). Detecting level shifts in time series. Journal of Busi-
ness & Economic Statistics 11 81-92.

[6] Beran, J. and Feng, Y. (2002). SEMIFAR models - a semiparametric
framework for modelling trends, long-range dependence and nonstationar-
ity. Computational Statistics & Data Analysis 40 393-419.

[7] Beran, J., Feng, Y., Ghosh, S. and Kulik, R. (2013). Long-memory
processes. Springer-Verlag Berlin Heidelberg.
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