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1 Introduction

Over the past two decades, Value at Risk (VaR) has become the prevalent measure for assessing

the risk of financial investments. Its widespread use in banking was recognized under the 1996

Market Risk Amendment to the first Basel Accord which allowed banks to employ internal fore-

casting models to calculate their required regulatory capital. Since then, VaR has become the

industry standard for measuring and managing portfolio risk (not only for banks but also, e.g., for

insurance companies due to Solvency II) even though it lacks the desirable property of a coherent

risk measure (see Artzner et al., 1999) for non-Gaussian Profit & Loss (P/L) distributions. Conse-

quently, not only regulators but also the firms that use VaR themselves have long been interested

in assessing the forecasting accuracy of their VaR-models through formal backtesting. Nowadays,

risk measures such as the Expected Shortfall, which explicitly take the amount of losses into ac-

count, are of increasing importance. Nevertheless, as these measures are still based on the VaR,

appropriate backtesting has not lost its importance. In this paper, we address the highly important

task of backtesting the VaR-forecasts of several business lines (or sub-portfolios) across several

points in time and propose two new multivariate backtests. Such backtesting is the first step in risk

analysis; if backtests indicate problems with a forecast model, appropriate actions by the investor

are required. In this paper, we focus on this first step.

The backtesting of a VaR-model comprises a comparison of the model’s out-of-sample VaR-

forecasts and the investment’s actual returns. If the investment is a single trading position or a

portfolio it yields a univariate time series of VaR-forecasts and VaR-violations. In the last few

years, several formal backtests have been proposed in the literature for the case of a univariate

sequence of VaR-violations with tests concentrating on the correct number of violations (uncondi-

tional coverage, uc in short), the independence of the sample of violations, and both properties at

the same time (tests of conditional coverage, cc in short) (see, e.g., Kupiec, 1995; Christoffersen,

1998; Berkowitz, 2001; Christoffersen and Pelletier, 2004; Engle and Manganelli, 2004; Haas,

2005; Candelon et al., 2011; Berkowitz et al., 2011). Most recently, Ziggel et al. (2014) proposed

a set of tests that additionally test for identically distributed violations. None of these backtests,

1



however, can be easily extended to the multivariate case in which VaR-violations might not only

be correlated across time but also across business lines.

The key motivation for considering multivariate VaR backtesting is that financial institutions are

usually interested in forecasts of their trading desk’s aggregate P/L distribution in contrast to VaR-

forecasts of isolated investments. However, aggregating individual VaR-forecasts often yields bi-

ased results as diversification effects between (sub-)portfolios are not adequately modeled. To

tackle this problem, multivariate backtests need to account for cross-sectional dependence within

the portfolio.1 While it may also be possible to directly consider VaR for aggregate portfolios (i.e.,

for univariate additive combinations of different investments), the results of a (univariate) backtest

for these always depends on the type of aggregation. Moreover, and more importantly, a multivari-

ate backtest avoids the problem of multiple testing. Besides this relevance from a practical point of

view, multivariate backtests process much more data at once thereby allowing further theoretical

applications and improving power properties.

Despite the importance of multivariate backtesting, only few papers in the literature deal with

this topic with most papers leaving the development of such tests for future research (see, e.g.,

Berkowitz et al., 2011; Ziggel et al., 2014). To the best of our knowledge, the only exception

is Daniculescu (2010) who proposes a multivariate uc and independence test. The test is based

on a multivariate Portmanteau statistic of Ljung-Box type that jointly tests for the absence of

autocorrelations and cross-correlations in the vector of hits sequences for different business lines.

However, the tests proposed by Daniculescu (2010) suffer from size distortions. Finally, to the best

of the authors’ knowledge, there currently exists no multivariate backtest that explicitly tests for

the i.i.d. property (in contrast to the mere independence) of VaR-violations.2

In this paper, we suggest new multivariate backtests for clusters in VaR-violations which are easy

to implement and have appealing properties under the null and the alternative. Moreover, these

1 Acknowledging this need to backtest the VaR-forecasts of a bank holistically, the Basel guidelines explicitly
demand that a bank should “[...] perform separate backtests on sub-portfolios using daily data on sub-portfolios
subject to specific risk.” (see Basel Committee on Banking Supervision (BCBS), 2009).

2 Note that there exist some papers that deal with VaR backtests in miscellaneous multivariate settings. How-
ever, these backtests use multivariate approaches in order to investigate a univariate time series (see, e.g.,
Hurlin and Tokpavi, 2007).
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tests can easily be extended to cc-versions. We essentially propose two different kinds of tests.

First, we consider a CUSUM-test for detecting clusters that are caused by instationarities in the

mean of the VaR-violations. To take the multidimensionality of the VaR-violations into account,

we use the sums of the violations for different business lines and sub-portfolios for a single day.

Second, we consider a χ2-test for detecting clusters that are caused by cross-sectional and/or serial

dependencies within the VaR-violations. Finally, we combine our new backtests with a test of

unconditional coverage to yield two new backtests of multivariate conditional coverage. All tests

are easy to implement and perform well in simulations. Additionally, all tests work without Monte

Carlo simulations or bootstrap approximations. However, there are bootstrap approximations avail-

able: The one for the CUSUM-tests serves for making it more robust (which does not seem to be

necessary, at least in our simulations), while the one for the χ2-tests is potentially interesting with

respect to the test’s software implementation.

The rest of this paper is organized as follows. In Section 2, we introduce the notation and the

new multivariate backtests. The performance of the new backtests in finite samples is analyzed in

simulations in Section 3. Section 4 concludes.

2 Methodology

In this section, we introduce the notation used throughout the paper, define the desirable properties

of VaR-violations, and present our new multivariate backtests.

2.1 Notation and VaR-violation Properties

First, we shortly discuss the univariate case in order to extend it in the following to a multivariate

setting. Let {yt}nt=1 be the observable part of a time series {yt}t∈Z corresponding to daily observations

of the returns on an asset or a portfolio. We are interested in the accuracy of VaR-forecasts. Fol-

lowing Dumitrescu et al. (2012), the ex-ante VaR VaRt|t−1(p) (conditionally on an information set

Ft−1) is implicitly defined by Pr(yt < −VaRt|t−1(p)) = p, where p is the VaR coverage probability.
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Note that we follow the actuarial convention of a positive sign for a loss. In practice, the coverage

probability p is typically chosen to be either 1% or 5% (see Christoffersen, 1998). This notation

implies that information up to time t−1 is used to obtain a forecast for time t. Moreover, we define

the ex-post indicator variable It(p) for a given VaR-forecast VaRt|t−1(p) as

It(p) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, if yt ≥ −VaRt|t−1(p);

1, if yt < −VaRt|t−1(p).

(1)

If this indicator variable is equal to 1, we will call it a VaR-violation.

To backtest a given sequence of VaR-violations, Ziggel et al. (2014) state three desirable properties

that the VaR-violation process should possess. First, the VaR-violations are said to have uncon-

ditional coverage (uc thereafter) if the probability of a VaR-violation is equal to p on average,

i.e.,

E

⎡⎢⎢⎢⎢⎢⎣
1
n

n∑

t=1

It(p)

⎤⎥⎥⎥⎥⎥⎦ = p. (2)

Second, VaR-violations should possess the i.i.d. property. Otherwise, the sequence {It(p)} could

exhibit clusters of violations. In fact, unexpected temporal occurrences of clustered VaR-violations

may have several potential reasons. On the one hand, {It(p)} may not be identically distributed and

E(It(p)) could vary over time. On the other hand, It(p) may not be independent of It−k(p),∀k � 0.

The hypothesis of i.i.d. VaR-violations holds true if

{It(p)} i.i.d.∼ Bern(p̃),∀t, (3)

where p̃ is an arbitrary probability.

Finally, the uc and i.i.d. properties are combined via E[It(p) − p|Ωt−1] = 0 to the property of

conditional coverage (cc thereafter). In detail, a sequence of VaR-forecasts is defined to have

correct cc if

{It(p)} i.i.d.∼ Bern(p),∀t. (4)
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Note that in most related studies in the literature, the uc property is defined slightly differently than

it is done in this paper, while the full i.i.d. hypothesis is not discussed at all with almost all papers

concentrating on the independence property of VaR-violations (see, e.g., Christoffersen, 1998).3

At this point, we extend our analysis of VaR-violations to a multivariate setting. To this end, we

assume that an m-dimensional time series {Yt,i}n,mt=1,i=1 of returns exists as well as m sequences of

VaR forecasts, VaRt,i|t−1(pi). We then define the multivariate indicator variable It,i(pi) as

It,i(pi) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, if Yt,i ≥ −VaRt,i|t−1(pi);

1, if Yt,i < −VaRt,i|t−1(pi).

(5)

Here, pi is the VaR coverage probability for sub-portfolio i. Note that pi is explicitly allowed

to vary among different sub-portfolios and we do not need to assume particular values of pi, i =

1, . . . ,m. In each column, the resulting matrix contains information for a single business line or

sub-portfolio (corresponding to the 1-dimensional case), while each row represents a single trading

day. In Figure I, we illustrate a stylized matrix of VaR-violations across time and business lines.

[Place Figure I about here]

As can easily be seen from Figure I, clusters of VaR-violations can occur both across time and

across sub-portfolios/business lines. Cluster across time indicate a misspecified VaR model, while

cluster across sub-portfolios/business lines indicate low potential for diversification.

With this preliminary work, we start to define the desirable properties of VaR-violations in the

multivariate case. For the uc hypothesis and most uc tests, an extension of the univariate to the

multivariate case is straightforward. To this end, one simply needs to study the hit sequences

of several business lines simultaneously and stack the series together. As doing so effectively

increases the sample size, we expect the tests to have more power than in the univariate setting.

However, in this paper, we are interested in the multivariate distribution of VaR-violations and

hence neglect this simple issue. In the present context, the VaR-violations should ideally exhibit

3 See Ziggel et al. (2014) for a critical discussion of previous treatments of the uc and the independence properties
in the literature.
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no clusters, i.e., neither in time (rows) nor across business lines (columns). For this, it is necessary

that the matrix of VaR-violations fulfils the following multivariate independence hypothesis:

It,i(pi) is independent of It−k, j(pj),∀t, i, j and ∀k > 0. (6)

Property (6) implies that no information concerning VaR-violations available to the risk manager

at the time the VaR is estimated is helpful in forecasting a VaR-violation. Thus, as stated in

Berkowitz et al., 2011, past observations from the hit sequence of one business line do not help

to predict violations of this or any other business line if the VaR model is correctly specified. In

particular, property (6) postulates that lagged violations are not correlated. However, correlations

within one row (trading day) are explicitly allowed. In this context, it is also natural to consider

the more restrictive assumption

It,i(pi) is independent of It−k, j(pj),∀t, i, j and ∀k ≥ 0. (7)

Although the VaR model is not necessarily wrongly calibrated if property 7 is not fulfilled, it may

provide important information concerning diversification and aggregation of risks. For properties

(6) and (7), we propose χ2-tests in Section 2.3.

As stated in Ziggel et al. (2014), clusters of VaR-violations could also be caused by other reasons

than simple correlation between violations. To be more precise, the probability of obtaining a VaR-

violation may change over time. For example, the risk model could not be suited to incorporate

changes from calm market phases to highly volatile bear markets or financial crises, and vice versa.

This would in turn lead to clustered VaR-violations regardless of the question whether the data

might show signs of dependence or autocorrelation. In Section (2.2), we consider CUSUM-tests

for such instationarities. To be more precise, we consider the row sums

rt :=
m∑

i=1

It,i(pi) (8)

and test whether E(rt) is constant over time (stationarity hypothesis). More precisely, we test for
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first-order instationarities caused by changes in E(It,i(pi)), resulting in the following assumption

E

⎡⎢⎢⎢⎢⎢⎣
m∑

i=1

It,i(pi)

⎤⎥⎥⎥⎥⎥⎦ = c,∀t, (9)

where c is an arbitrary constant.

As in the univariate case, one can also define the cc-property in the multivariate setting. Here,

properties (6) and (7) are modified to

E(It,i(pi)) = pi and It,i(pi) is independent of It−k, j(pj),∀t, i, j and ∀k > 0. (10)

and

{It,i(pi)} i.i.d.∼ Bern(pi),∀t, i. (11)

Analogously, property (9) is modified to

E

⎡⎢⎢⎢⎢⎢⎣
m∑

i=1

It,i(pi)

⎤⎥⎥⎥⎥⎥⎦ =
m∑

i=1

pi,∀t. (12)

2.2 CUSUM-tests for the cc-property and first-order instationarities

In this subsection, we propose a backtest for first-order instationarities. The formal test problem

which corresponds to property (9) is given by

Hs
0 : E(r1) = . . . = E(rn) vs. Hs

1 : ¬Hs
0.

with the row sums r1, . . . , rn being defined as in Equation (8). While the specific expectations are

arbitrary in this test problem, this is different in the test problem which corresponds to property

(12):

Hs−cc
0 : E(r1) = . . . = E(rn) =

m∑

i=1

pi vs. Hs
1 : ¬Hs

0.

Before introducing the test statistics, we impose the following assumption:
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Assumption 1 Let ri be defined as before. Then, we assume

1. r1, . . . , rn are independent.

2. Var(r1) = . . . = Var(rn).

If the VaR model is correctly specified, Assumption 1.1 is a reasonable consequence. Assumption

1.2 may be violated if the cross-sectional dependence between It,1, . . . , It,m is not constant over

time. We will discuss this issue in detail below. Under H s
0 as well as under Hs−cc

0 and Assumption

1, respectively, the row sums fulfill a functional central limit theorem, i.e., the process (Vn, n ∈ N)

with

Vn(s) =
1√
n

�sn	∑

t=1

(rt − E(rt)), s ∈ [0, 1],

converges to a Brownian motion. Then, a suitable test statistic for H s−cc
0 is given by RCcc,n :=

D−1Ccc (RC for “row CUSUM”) with

Ccc := max
j=1,...,n

1√
n

∣∣∣∣∣∣∣

j∑

t=1

rt − j
m∑

i=1

pi

∣∣∣∣∣∣∣ .

Here, D2 is the usual variance estimator for independent observations, D2 = 1
n

∑n
t=1(rt − r̄)2 with

r̄ = 1
n

∑n
t=1 rt. Then, by means of the continuous mapping theorem we immediately obtain

Theorem 2 Under Hs−cc
0 and assumption 1, for n → ∞, it holds that RCcc,n →d sups∈[0,1] |W(s)|,

where W is a standard Brownian motion.

With this preliminary work, we get the

Stat-m-cc-test. Reject Hs−cc
0 whenever RCn > q1−α,BM, where q1−α,BM is the 1 − α-quantile of the

distribution of sups∈[0,1] |W(s)|. The 0.95-quantile is given by 2.241.

For testing Hs
0, we do not consider any fixed values of pi, but we use the test statistic RCstat,n :=

D−1Cstat with

Cstat := max
j=1,...,n

1√
n

∣∣∣∣∣∣∣

j∑

t=1

rt − j
n

n∑

t=1

rt

∣∣∣∣∣∣∣ .
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Then, by means of the continuous mapping theorem we immediately obtain

Theorem 3 Under Hs
0 and assumption 1, for n → ∞, it holds that RCstat,n →d sups∈[0,1] |B(s)|,

where B is a standard Brownian bridge.

With this preparatory work, we get the

Stat-m-test. Reject Hs
0 whenever RCn > q1−α,KS , where q1−α,KS is the 1 − α-quantile of the

Kolmogorov-Smirnov-distribution. The 0.95-quantile is given by 1.358.

It can be shown that both tests are consistent, e.g., if, under the alternative,

E(r1) = . . . = E(r�kn	) � E(r�kn	+1) = . . . = E(rn)

holds for a k ∈ (0, 1). In this case, it is possible to estimate the location of a change point by the

argmax estimator

Ccc := argmax j=1,...,n

1√
n

∣∣∣∣∣∣∣

j∑

t=1

rt − j
m∑

i=1

pi

∣∣∣∣∣∣∣

or

Cstat := argmax j=1,...,n
1√
n

∣∣∣∣∣∣∣

j∑

t=1

rt − j
n

n∑

t=1

rt

∣∣∣∣∣∣∣ ,

(see Aue and Horváth, 2013).

However, the empirical size is not close to the nominal size if there is either weak serial dependence

within the (rt, t = 1, . . . , n) (such as α-mixing under appropriate conditions as described in e.g.

Billingsley (1968)) and/or if the Var(rt) are not constant over time. The test is not consistent in

these cases. For the case of weak serial dependence, this is an immediate consequence of Slutzky’s

theorem. However, in this context, we will present a new χ2-test for cross-sectional and serial

dependence in Section 2.3. The issue of non-constant variances is discussed in detail in Zhou

(2013). In particular, Zhou (2013) explicitly derives the limit distribution of a general CUSUM-

statistic under the assumption of piecewise local stationarity. In our context, it is arguably most

relevant in the case of a change in the cross-sectional dependence of the VaR-violations. However,

there is a bootstrap approximation available which potentially makes the CUSUM-test more robust
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to changes in variances and weak serial dependence.

2.2.1 Bootstrap

In order to robustify the tests against changes in Var(rt) as well as against weak serial dependence,

one can use a recently proposed approach by Zhou (2013). Here, we consider the quantity C,

i.e., the test statistic without the variance estimator D−1. Critical values are obtained by using

a bootstrap approximation. This bootstrap is an extension of the wild bootstrap and relies on

directly mimicking the behavior of the partial sum process Vn instead of mimicking the behavior

of C. Despite the theoretical relevance, the bootstrap does not seem to be necessary in our specific

situation as some robustness checks showed that also the common CUSUM-test is robust against

changes in Var(rt) which are caused by changes in the cross-sectional dependence. Moreover,

there is no power gain from the robust CUSUM-test.

2.3 χ2-tests for the cc-property, cross-sectional and serial dependence

In this subsection, we propose a framework that can be used for testing independence as well as the

corresponding cc-hypothesis taking into account arbitrary time lags and business lines. This test

is somewhat similar to the test proposed by Daniculescu (2010) with the main difference that we

explicitly allow for estimated violation probabilities in each business line and that we make use of

explicit expressions for a certain covariance matrix. Note that due to the latter, our test has better

size properties than the one proposed by Daniculescu (2010).

Denote with A the set of all triples (i, j, l), i, j = 1, . . . ,m, l = 0, . . . ,K, where (i, j) describes a pair

of sub-portfolios and l the lag of interest. The convention is that we consider lags up to a fixed

upper bound K, e.g. K = 5, corresponding to one week. We consider an arbitrary subset As ⊆ A

that has to be chosen by the analyst. For verifying Assumption (6), As could for example consist of

all triples with i ≤ j and l = 1, while it could consist of all triples with i < j and l = 0 for verifying

(7). However, also other combinations are possible.

10



The test problem which corresponds to (6) and (7) is given by

Hm−ind
0 : E((It,i(pi) − p̃i)(It+l, j(pj) − p̃ j)) = 0 for (i, j, l) ∈ As and t = 1, . . . , n − l

and some p̃i := E(It,i(pi)), p̃ j := E(It, j(pj)) vs.

Hm−ind
1 : ¬Hm−ind

0 .

In the previous test problem, the expectations of It,i(pi) and It, j(pj) are arbitrary. If one is also

interested in testing for them (i.e., for the correct number of VaR-violations), one can consider a

modified test problem for the cc-hypothesis. With f (i, j, l, t) := (It,i(pi)− pi)(It+l, j(pj)− pj) and the

desired VaR coverage probabilities pi and p j,

Hm−cc
0 : E( f (i, j, l, t)) = 0 for (i, j, l) ∈ As and t = 1, . . . , n − l vs. Hm−cc

1 : ¬Hm−cc
0 .

First, we consider the cc-test which is based on the vector

Bs,n :=

⎛⎜⎜⎜⎜⎜⎝
1√
n

n−l∑

t=1

(It,i(pi) − pi)(It+l, j(pj) − pj)

⎞⎟⎟⎟⎟⎟⎠
(i, j,l)∈As

.

We impose the following assumption:

Assumption 4 Let the notation be as before. Then, we assume

1. The vectors f (i, j, l, 1)(i, j,l)∈As, . . . , f (i, j, l, n− l)(i, j,l)∈As are independent.

2. Cov( f (i, j, l, 1)(i, j,l)∈As) = . . . = Cov( f (i, j, l, n− l)(i, j,l)∈As) =: Σs, where Σs is a positive definite

matrix.

Under the assumption that the VaR model is correct, Assumption 4.1 is reasonable. Assumption 4.2

contains a higher-order stationarity assumption, as well as a regularity assumption on the matrix

Σs = (Cov((I1,i1 (pi1 ) − pi1 )(I1+l1 , j1(pj1 ) − pj1 ), (I1,i2 (pi2 ) − pi2 )(I1+l2 , j2(pj2 ) − pj2 )))(i1 , j1,l1),(i2, j2,l2)∈As .
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This matrix can easily be calculated for each given set As. If, e.g., As = {(1, 2, 0)}, it holds that

Σs = p1 p2 − p2
1 p2 − p1 p2

2 + p2
1p2

2. If As = {(1, 1, 1), (2, 2, 1)}, it holds

Σs =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
p2

1 − 2p3
1 + p4

1 ρ2
12

ρ2
12 p2

2 − 2p3
2 + p4

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with ρ12 = Cov(It,1(p1), It,2(p2)). In these situations, Σs is for example positive definite for 0 <

p1 = p2 < 1 and ρ12 = 0.

In general, under Assumption (10) and in the situation in which it holds for all triples (i, j, l) that

i ≤ j and l ≥ 1,

Σs = (Cov(I1,i1 (pi1 ), I1,i2 (pi2 ))Cov(I1+l1 , j1(pj1 ), I1+l2 , j2(pj2 )))(i1 , j1,l1),(i2 , j2,l2)∈As .

Under Assumption (11) and in the situation in which it holds for all triples (i, j, l) that i < j and

l = 0,

Σs = diag(pip j − pi p
2
j − p2

i p j + p2
i p2

j)(i, j,0)∈As .

Assumption 4.2 could be relaxed to the case in which the matrix Σ∗s := limn→∞ Bs,n exists, is

positive definite and can be suitably estimated. An example for this would be the case in which

Cov( f (i, j, l, t)(i, j,l)∈As) is piecewise constant with a finite number of breaks and positive definite in

all parts, which is a special case of the PLS setting discussed in Zhou (2013) and Section 2.2. In

this case, the estimators described below are consistent for Σ∗s.

Under Hm−cc
0 and Assumption (4), it holds that Bs,n →d N(0,Σs), while this quantity diverges if,

e.g., under the alternative, E( f (i, j, l, t)) = c � 0 for (i, j, l) ∈ As. Furthermore, with the continuous

mapping theorem,

Σ−1/2
s Bs,n →d N(0, I|As |)

and

B′s,nΣ
−1
s Bs,n →d χ

2
|As |.
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Therefore, a suitable test statistic for the cc-test is given by T m−cc
s,n := B′s,n(Σ̂cc

s )−1Bs,n. Here,

Σ̂cc
s is an appropriate estimator of Σs. For As = {(1, 1, 1), (2, 2, 1)}, one would replace ρ12 with

1
T

∑T
t=1 It,1(p1)It,2(p2) − p1 p2 in Σs. Then, we get by the strong law of large numbers and Slutzky’s

theorem

Theorem 5 Under Hm−cc
0 and Assumption (4), for n→ ∞, T m−cc

s,n →d χ
2
|As |.

We obtain the

Ind-m-cc-test. Reject Hm−cc
0 if T m−cc

s,n > q1−α,χ2 , where q1−α,χ2 is the 1 − α-quantile of the χ2-

distribution with |As| degress of freedom.

For testing the ind-property, we opt for a test statistic which is based on the quantity

Cs,n :=

⎛⎜⎜⎜⎜⎜⎝
1√
n

n−l∑

t=1

(It,i(pi) − p̂i)(It+l, j(pj) − p̂ j)

⎞⎟⎟⎟⎟⎟⎠
(i, j,l)∈As

.

This is essentially the quantity Bs,n, whereas the summands −pi and −p j are replaced with −p̂i

and −p̂ j, respectively. Here, p̂i and p̂ j are the actual measured percentages of VaR-violations,

p̂i := 1
n

∑n
t=1 It,i(pi) and p̂ j := 1

n

∑n
t=1 It, j(pj). The test statistic is defined as T m−ind

s,n := C′s,n(Σ̂ind
s )−1Cs,n.

Here, Σ̂ind
s is an appropriate estimator of Σs. In contrast to Σ̂cc

s , within Σ̂ind
s , also the pi would have

to be estimated. Interestingly, the asymptotic behavior of T m−cc
s,n and T m−ind

s,n are the same, as the

following theorem shows. Its proof is deferred to the Appendix.

Theorem 6 Let Hm−ind
0 and Assumption (4) be true. Then, as n→ ∞, T m−ind

s,n →d χ
2
|As |.

We obtain the

Ind-m-Test. Reject Hm−ind
0 if T m−ind

s,n > q1−α,χ2 , where q1−α,χ2 is the 1 − α-quantile of the χ2-

distribution with |As| degress of freedom.

Both the Ind-m-cc-Test and the Ind-m-Test are consistent if, e.g., under the alternative

E( f (i, j, l, t)) = c � 0 for (i, j, l) ∈ As and if (for the Ind-m-Test) p̃i := E(It,i(pi)), p̃ j := E(It, j(pj)) as

well as Assumption 4 are fulfilled.

13



2.3.1 Bootstrap

To reduce the computational cost and to facilitate the tests’ implementation in software, one can

estimate the matrix Σs with a bootstrap approximation. The bootstrap is the same for testing Hm−ind
0

and Hm−cc
0 , respectively. We distinguish two cases, i.e., Assumptions (6)/(10) and (7)/(11). In the

first one, cross-sectional dependence is allowed for, which is not true in the second one. Let B be

a sufficiently large number.

Then, under Assumption (6) and given the observed matrix of VaR-violations, we generate, for

b = 1, . . . , B, a bootstrap sample Ib
t,i, t = 1, . . . , n, i = 1, . . . ,m, by drawing n rows with replacement

from the observed matrix. Thus, the generated bootstrap samples always fulfill Assumption (6).

When testing for cross-sectional dependence (that means, if Assumption (7) holds true under the

null hypothesis), the bootstrap procedure from the previous paragraph has the drawback that there

is no variation within each row in the bootstrap samples. Thus, in this case a bootstrap sample

Ib
t,i, t = 1, . . . , n, i = 1, . . . ,m, is obtained in a different way. In order to keep the information

concerning pi, i = 1, . . . ,m, for fixed i, Ib
t,i, t = 1, . . . , n, is obtained by drawing n values with

replacement of the respective business line from the observed matrix, whereas the draws are also

independent with respect to i. Then, the generated bootstrap samples always fulfill Assumption

(7).

Having obtained a bootstrap sample, we calculate the vector Cb
s,n and consider the estimator

ΣB
s :=

1
B

B∑

b=1

(Cb
s,n − C̄B

s,n)(Cb
s,n − C̄B

s,n)′

with C̄B
s,n := 1

B

∑B
b=1 Cb

s,n. The test statistic for Hm−cc
0 is then given by T m−cc

b,n := B′s,n(ΣB
s )−1Bs,n, the one

for Hm−iid
0 is given by T m−iid

b,n := C′s,n(ΣB
s )−1Cs,n. Both need to be compared with the 1−α-quantile of

the χ2
|As |-distribution. The validity of this approach under the null hypothesis follows from standard

bootstrap theory (bootstrap central limit theorem, uniform integrability), the validity under the

alternative follows from the fact that the generated vectors Cb
s,n remain stochastically bounded due

to the arguments given in the previous paragraph.
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Simulations show that the bootstrap tests for (6) and (7) have virtually the same size and power

properties as the tests based on an explicit derivation of the matrix Σ s. While in case of (10)

and (11), the bootstrap does work in the sense of accuracy under the null hypothesis and con-

sistency under the alternative, there is some power loss compared to the case in which the ma-

trix Σs is calculated directly. Under Assumption (11), a better alternative is given by drawing

the Ib
t,i, t = 1, . . . , n, i = 1, . . . ,m, independently from Bernoulli distributions with the respective

pi, i = 1, . . . ,m.

3 Simulation study

To examine the performance of our newly proposed backtests in finite samples, we perform a sim-

ulation study. Within the study, we distinguish between different kinds of controllable violations

concerning Assumptions (6), (7), (9), (10), (11), and (12). We compute all rejection rates for a

significance level of 5%.

3.1 First-order instationarities

As a first step in our simulation study, we want to test if the new tests are able to detect first-order

instationarities. We use the Stat-m-test as well as the Ind-m-test. With the latter, the subset As

consists of the vectors (1, 1, 1) and (2, 2, 1) which corresponds to a time lag of 1. We expect the

CUSUM-test to clearly outperform the χ2-test in this setting. Basically, the data generating process

used throughout the whole simulation study is given by:

It,i = I(Xt,i ≤ qp),∀i, t. (13)

In the first case we consider, qα is the α-quantile of a standard normal distribution. Moreover,

(Xt,1, . . . , Xt,m) follows a multivariate normal distribution with mean zero, marginal variances one

and cross-correlation ρ = 0. Next, we set m = 2, p = 0.05, 0.01, n = 250, 500, 1, 000, 2, 000 and

use 5, 000 Monte Carlo repetitions. For p = 0.01 and small n, Σ̂ind
s is sometimes not invertible
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because there is not a single VaR-violation in at least one business line. In this and similar cases in

the following, we repeat the respective simulation run. Finally, we modify equation (13) such that

It,i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I(Xt,i ≤ qp−2δ), 1 ≤ t ≤ n
4 ,∀i;

I(Xt,i ≤ qp+δ), n
4 < t ≤ n

2 ,∀i;

I(Xt,i ≤ qp−δ), n
2 < t ≤ 3n

4 ,∀i;

I(Xt,i ≤ qp+2δ), 3n
4 < t ≤ n,∀i.

In this setting, VaR-violations are independent over time. Hence, clustering is solely based on

changes of the probability of obtaining a VaR-violation. We choose δ = 0p to analyze the size of

a test and δ = 0.1p, 0.2p, 0.3p, 0.4p and 0.5p for the power study.

This setting leads to variations in the probability of obtaining a VaR-violation between the four

equal-sized subsamples. Consequently, the violations will occur unequally distributed. Note that

the probability variations are determined in a way which ensures E
(∑n

t=1

∑m
i=1 It,i

)
= n · m · p.

The setup of this part of the simulation study covers a realistic scenario in which VaR-models do

not, or not fully, incorporate changes from calm market phases to highly volatile bear markets or

financial crises, and vice versa. This in turn leads to clustered VaR-violations regardless of the

question whether the data might show signs of dependence or autocorrelation. The results of the

simulations are given in Table I.

[Place Table I about here]

The results show that the Stat-m-test clearly outperforms the Ind-m-test with rejection probabilities

being regularly higher for the Stat-m-test than for the Ind-m-test. In fact, for the larger sample sizes

of n = 1, 000 and n = 2, 000 and higher values of δ, the probability of the Stat-m-test to reject the

matrix of VaR-violations with first-order instationarities is close to one. In contrast, the Ind-m-test

rejects H0 only in 4% to 46% of the simulations.
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3.2 Cross-sectional dependence

In the second part of our simulation study, we want to investigate if the new tests are able to

detect cross-sectional dependence within VaR-violations. Here, we expect the χ2-test to clearly

outperform the CUSUM-test. Again, we simulate random variables by

It,i = I(Xt,i ≤ qp),∀i, t,

where, qα is the α-quantile of a standard normal distribution. Moreover, (Xt,1, . . . , Xt,m) follows a

multivariate normal distribution with mean zero, marginal variances one and cross-correlation ρ.

In addition, we choose m = 2, p = 0.05, 0.01, n = 250, 500, 1, 000, 2, 000, and again use 5, 000

Monte Carlo repetitions. The cross-correlation ρ of the normally distributed random variables is

set to be in {0, 0.2, 0.4, 0.6, 0.8}. Based on this setting, we analyze the Stat-m-test and the Ind-m-

test with time lag 0, that means that we test for cross-sectional dependence. The subset As consists

of the vector (1, 2, 0).

The results are given in Table II.

[Place Table II about here]

As can be seen from the simulation results given in Table II, the probability to detect a matrix

of VaR-violations suffering from cross-correlation is almost always lower for the Stat-m-test than

for the Ind-m-test. While the Ind-m-test has appealing power properties in almost all settings, the

Stat-m-test is not able to detect cross-sectional dependence. However, both tests have reasonable

size properties.

Next, we also consider the situation with time lag 1 which implies that we test for serial depen-

dence in the VaR-violations. Here, (Xt,1, . . . , Xt,m) follows a MA(1)-process with autocorrelation

parameter φ ∈ {0, 0.25, 0.5, 0.75, 1}, i.e.,

(Xt,1, . . . , Xt,m) = ε t + φεt−1
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for a sequence of i.i.d. bivariate normally distributed vectors εt, t = 1, . . . , n, with cross-correlation

set to ρt = 0.3. The subset As consists of the vectors (1, 1, 1) and (2, 2, 1). The indicator variables

are defined as It,i = I
(
Xt,i ≤ qp

√
1 + φ2

)
. The results of the simulations in which both multivariate

backtests are used on data with serially correlated VaR-violations are given in Table III.

[Place Table III about here]

The results given in Table III show that the Ind-m-test again performs significantly better than the

Stat-m-test.

3.3 First-order instationarities and serial dependence

In the third part of our simulation study, we investigate the performance of our new multivariate

backtests in a setting in which the data exhibit a combination of first-order instationarities and

serial dependence. For this purpose, we define

It,i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I(Xt,i ≤ qp−2δ

√
1 + φ2), 1 ≤ t ≤ n

4 ,∀i;

I(Xt,i ≤ qp+δ

√
1 + φ2), n

4 < t ≤ n
2 ,∀i;

I(Xt,i ≤ qp−δ
√

1 + φ2), n
2 < t ≤ 3n

4 ,∀i;

I(Xt,i ≤ qp+2δ

√
1 + φ2), 3n

4 < t ≤ n,∀i.

Here, (Xt,1, . . . , Xt,m) follows the same MA(1) process as previously described above. Conse-

quently, we use the same parametrization as before and investigate all parameter combinations

of δ and φ. This setting ensures that we can draw correct conclusions concerning the charac-

teristics of both tests in various situations. We consider the Stat-m-test and the Ind-m-test with

As = {(1, 1, 1), (2, 2, 1)}.
The results are given in Tables IV and V.

[Place Tables IV and V about here]
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Again, the results from the simulations show a clear picture. Except for φ = 0, the Ind-m-test

always performs significantly better than the Stat-m-test. In contrast, mean rejection probabilities

are only higher for the Stat-m-test in the setting in which φ is set to zero.

3.4 Violations of the cc-property

Within the last setting of our simulation study, we concentrate on violations of the cc-property. To

this end, we simulate data that exhibit serial dependence and also violations of the uc-property. We

define

It,i = I(Xt,i ≤ qp+δ

√
1 + φ2),∀i, t.

To be more precise, (Xt,1, . . . , Xt,m) follows the same MA(1) process as before and δ is set to

0.2p, 0.4p, 0.6p, 0.8p, and p, respectively. Apart from that, we use the same parametrization

as before and investigate all parameter combinations of δ and φ. We consider the Stat-m-cc-test

and the Ind-m-cc-test with As = {(1, 1, 1), (2, 2, 1)}. The results are given in Tables VI and VII.

[Place Tables VI and VII about here]

Just like in our simulations with data that exhibit cross-sectional dependence and first-order insta-

tionarities together with serial dependence in the matrix of VaR-violations, the Ind-m-test again

performs significantly better than the Stat-m-test expect for the setting for φ = 0.

In general, we observe that both the Ind-m-test and the Stat-m-test have sufficient power in almost

all settings of our simulation study even for relatively small sample sizes of n = 250. Moreover,

both tests also hold their nominal level in almost all simulation settings. The simulations thus

underline the suitability of our newly proposed backtests for testing the adequacy of a multivariate

VaR model.
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4 Conclusion

In this paper, we have proposed two new multivariate backtests for clusters in VaR-violations. The

first test is a CUSUM-test which is based on the sums of the violations for different business lines

and sub-portfolios for a single day and which attempts to detect clusters in the matrix of VaR-

violations that are caused by instationarities in the mean of the violations. Second, we consider a

χ2-test for detecting clusters that are caused by cross-sectional and/or serial dependencies within

the VaR-violations. Both tests are easy to implement and work without Monte Carlo simulations

or bootstrap approximations, although bootstrap approximations are readily available.

In simulations, we assess the performance of our new multivariate backtests in several distinct set-

tings in which we consider simulated data that exhibit first-order instationarities, cross-sectional

dependence, and serial dependence in the VaR-violations. Moreover, we also perform simula-

tions in which the new backtests are used to test the simulated VaR-violations for the property of

conditional coverage. With the exception of the setting in which the data only exhibit first-order in-

stationarities, the χ2-test performs better in our simulations than the CUSUM-test. Both tests hold

their nominal level and, more importantly, have considerable power for testing the conditional

coverage of the matrix of VaR-violations even for relatively small sample sizes.

While the multivariate backtests that we propose are intended for the use by risk managers in

individual banks, one can easily think of further applications. For example, our multivariate tests

could be used to backtest a whole banking sector with VaRs being estimated across time and

individual banks (instead of business lines) with clusters in VaR-violations across banks indicating

systemic risk in the sector. In this way, our backtests could be of significant help to regulators to

forecast times of contagion in the financial system and thereby complement current endeavours to

stress-test banking sectors (see, e.g., Acharya and Steffen, 2013).
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Appendix

A.1 Proof of Theorem 6

First, we consider the process

C̃s,n :=

⎛⎜⎜⎜⎜⎜⎝
1√
n

n−l∑

t=1

(It,i(pi) − p̃i)(It+l, j(pj) − p̃ j)

⎞⎟⎟⎟⎟⎟⎠
(i, j,l)∈As

,

and show that C̃s,n = Cs,n + op(1).

We define p̂k := 1
n

∑n
t=1 It,k(pk). Then, it holds

C̃s,n =
1√
n

n−l∑

t=1

It,i(pi)It+l, j(pj) − n − l√
n

p̂i p̃ j − n − l√
n

p̂ j p̃i +
n − l√

n
p̃i p̃ j + op(1)

and

Cs,n =
1√
n

n−l∑

t=1

It,i(pi)It+l, j(pj) − n − l√
n

p̂i p̂ j − n − l√
n

p̂ j p̂i +
n − l√

n
p̂i p̂ j + op(1)

such that

C̃s,n −Cs,n =
n − l√

n
(−p̂i p̃ j + p̂i p̂ j) +

n − l√
n

(−p̂ j p̃i + p̂ j p̂i) +
n − l√

n
(p̃i p̃ j − p̂i p̂ j)

=
n − l√

n
(p̃i p̃ j − p̂i p̃ j + p̂ j p̂i − p̂ j p̃i) =

n − l√
n

(p̃ j(p̃i − p̂i) + p̂ j(p̂i − p̃i))

=
n − l√

n
(p̂i − p̃i)(p̂ j − p̃ j)

= Op(1)op(1) = op(1).

Then, the result from the theorem follows from the fact that, by uniform integrability, one directly

obtains Σs = limn→∞Cov(Cs,n) and Cs,n →d N(0,Σs).

�
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Figures and Tables

Figure I: Multivariate Value-at-Risk hit matrix.

The Figure presents a stylized matrix of Value-at-Risk (VaR) violations for a given firm with m business lines (or
sub-portfolios) and evaluations for n days. If the realized return in business line i on day j exceeds the corresponding
VaR-forecast, the respective entry in the hit matrix is one, and zero otherwise. Stylized clusters of VaR-violations in
time (third column) and across business lines (first row) are highlighted.

Line 1 Line 2 Line 3 Line 4 Line 5 Line 6 · · · Line m

Day 1 0 1 1 1 1 0 · · · 0
Day 2 0 0 1 0 1 0 · · · 0
Day 3 1 0 1 1 0 1 · · · 0
Day 4 0 0 1 0 1 0 · · · 1
Day 5 0 1 0 0 1 0 · · · 0
.
.
.

.

.

.
.
.
.

Day n 0 0 1 0 1 0 · · · 0

Table I: Simulated rejection probabilities for first-order instationarities.

The table presents the rejections probabilities of the Stat-m-test and the Ind-m-test based on simulated data with
first-order instationarities with p = 0.05 (Panel A) and p = 0.01 (Panel B).

Panel A: p = 0.05
Stat-m-test Ind-m-test

δ/p 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

n

250 0.04 0.06 0.13 0.26 0.49 0.76 0.05 0.05 0.06 0.08 0.11 0.15
500 0.04 0.09 0.27 0.59 0.90 1.00 0.04 0.05 0.06 0.08 0.14 0.21
1,000 0.05 0.14 0.54 0.93 1.00 1.00 0.04 0.05 0.07 0.11 0.18 0.29
2,000 0.04 0.28 0.88 1.00 1.00 1.00 0.04 0.05 0.07 0.13 0.25 0.46

Panel B: p = 0.01
Stat-m-Test Ind-m-Test

δ/p 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

n

250 0.03 0.03 0.04 0.06 0.08 0.11 0.05 0.04 0.05 0.05 0.05 0.07
500 0.03 0.04 0.06 0.11 0.14 0.24 0.07 0.08 0.08 0.10 0.11 0.12
1,000 0.04 0.05 0.10 0.20 0.35 0.56 0.09 0.09 0.11 0.12 0.15 0.16
2,000 0.04 0.07 0.20 0.45 0.78 0.99 0.07 0.08 0.09 0.10 0.13 0.15
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Table II: Simulated rejection probabilities for cross-sectional correlation.

The table presents the rejection probabilities of the Stat-m-test and the Ind-m-test based on simulated data with cross-
sectional correlation ρ, p = 0.05 (Panel A) and p = 0.01 (Panel B).

Panel A: p = 0.05
Stat-m-test Ind-m-test

ρ 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

n

250 0.04 0.04 0.04 0.04 0.03 0.05 0.23 0.56 0.87 0.99
500 0.04 0.04 0.04 0.04 0.04 0.04 0.29 0.77 0.98 1.00
1000 0.05 0.05 0.04 0.04 0.05 0.04 0.43 0.94 1.00 1.00
2000 0.04 0.05 0.04 0.04 0.05 0.05 0.68 1.00 1.00 1.00

Panel B: p = 0.01
Stat-m-test Ind-m-test

ρ 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

n

250 0.04 0.04 0.04 0.04 0.03 0.05 0.23 0.56 0.87 0.99
500 0.04 0.04 0.04 0.04 0.04 0.04 0.29 0.77 0.98 1.00
1000 0.05 0.05 0.04 0.04 0.05 0.04 0.43 0.94 1.00 1.00
2000 0.04 0.05 0.04 0.04 0.05 0.05 0.68 1.00 1.00 1.00

Table III: Simulated rejection probabilities for serial dependence.

The table presents the rejections probabilities of the Stat-m-test and the Ind-m-test based on simulated data with
autocorrelation φ, cross-correlation ρ = 0.3, p = 0.05 (Panel A) and p = 0.01 (Panel B).

Panel A: p = 0.05
Stat-m-test Ind-m-test

φ 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

n

250 0.04 0.06 0.09 0.10 0.11 0.05 0.33 0.73 0.86 0.90
500 0.04 0.07 0.10 0.12 0.12 0.05 0.51 0.92 0.98 0.99
1000 0.05 0.07 0.11 0.13 0.14 0.04 0.74 1.00 1.00 1.00
2000 0.04 0.07 0.11 0.12 0.14 0.04 0.94 1.00 1.00 1.00

Panel B: p = 0.01
Stat-m-Test Ind-m-Test

φ 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

n

250 0.03 0.03 0.04 0.05 0.06 0.05 0.15 0.33 0.43 0.47
500 0.03 0.04 0.05 0.06 0.07 0.08 0.27 0.52 0.65 0.69
1000 0.04 0.05 0.07 0.07 0.08 0.09 0.39 0.71 0.84 0.87
2000 0.04 0.05 0.07 0.08 0.08 0.08 0.49 0.87 0.96 0.98
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Table IV: Simulated rejection probabilities for first-order instationarities and serial dependence
with p = 0.05.

The table presents the rejections probabilities of the Stat-m-test and the Ind-m-test based on simulated data that exhibit
a combination of first-order instationarities and serial dependence with autocorrelation φ and cross-correlation ρ = 0.3.

Panel A: φ = 0
Stat-m-test Ind-m-test

δ/p 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

n

250 0.04 0.06 0.13 0.23 0.42 0.66 0.06 0.05 0.07 0.08 0.10 0.15
500 0.04 0.08 0.24 0.52 0.86 1.00 0.04 0.05 0.06 0.09 0.14 0.21
1000 0.05 0.14 0.50 0.90 1.00 1.00 0.04 0.05 0.07 0.11 0.18 0.29
2000 0.04 0.26 0.84 1.00 1.00 1.00 0.04 0.05 0.07 0.13 0.24 0.46

Panel B: φ = 0.25
Stat-m-test Ind-m-test

δ/p 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

n

250 0.06 0.09 0.16 0.28 0.45 0.68 0.33 0.35 0.38 0.42 0.48 0.56
500 0.07 0.11 0.28 0.56 0.87 1.00 0.50 0.53 0.56 0.61 0.71 0.80
1000 0.07 0.18 0.52 0.89 1.00 1.00 0.75 0.75 0.80 0.85 0.92 0.96
2000 0.08 0.30 0.84 1.00 1.00 1.00 0.94 0.95 0.97 0.99 0.99 1.00

Panel C: φ = 0.5
Stat-m-test Ind-m-test

δ/p 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

n

250 0.09 0.11 0.19 0.32 0.49 0.69 0.71 0.71 0.73 0.77 0.81 0.86
500 0.10 0.15 0.32 0.58 0.86 1.00 0.91 0.93 0.93 0.95 0.97 0.98
1000 0.11 0.22 0.56 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2000 0.11 0.35 0.85 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Panel D: φ = 0.75
Stat-m-test Ind-m-test

δ/p 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

n

250 0.11 0.12 0.20 0.32 0.50 0.71 0.86 0.86 0.87 0.90 0.92 0.94
500 0.12 0.17 0.33 0.61 0.87 1.00 0.98 0.99 0.99 0.99 0.99 1.00
1000 0.13 0.25 0.57 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2000 0.14 0.37 0.86 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Panel E: φ = 1
Stat-m-test Ind-m-test

δ/p 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

n

250 0.11 0.14 0.21 0.34 0.50 0.70 0.89 0.91 0.90 0.92 0.94 0.96
500 0.13 0.19 0.34 0.61 0.87 1.00 0.99 0.99 0.99 0.99 1.00 1.00
1000 0.13 0.26 0.58 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2000 0.14 0.39 0.85 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table V: Simulated rejection probabilities for first-order instationarities and serial dependence
with p = 0.01.

The table presents the rejections probabilities of the Stat-m-test and the Ind-m-test based on simulated data that exhibit
a combination of first-order instationarities and serial dependence with autocorrelation φ and cross-correlation ρ = 0.3.

Panel A: φ = 0
Stat-m-test Ind-m-test

δ/p 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

n

250 0.02 0.03 0.04 0.06 0.08 0.11 0.04 0.04 0.05 0.06 0.06 0.06
500 0.03 0.04 0.06 0.10 0.15 0.22 0.08 0.07 0.08 0.09 0.12 0.11
1000 0.04 0.06 0.10 0.19 0.33 0.52 0.10 0.09 0.11 0.11 0.15 0.15
2000 0.04 0.08 0.21 0.42 0.74 0.99 0.07 0.08 0.09 0.10 0.12 0.15

Panel B: φ = 0.25
Stat-m-test Ind-m-test

δ/p 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

n

250 0.03 0.03 0.04 0.07 0.09 0.12 0.16 0.17 0.18 0.18 0.19 0.21
500 0.04 0.05 0.07 0.11 0.18 0.23 0.28 0.28 0.29 0.31 0.34 0.35
1000 0.05 0.07 0.12 0.21 0.35 0.54 0.40 0.40 0.42 0.43 0.46 0.50
2000 0.05 0.09 0.22 0.45 0.76 0.99 0.47 0.49 0.51 0.54 0.58 0.64

Panel C: φ = 0.5
Stat-m-test Ind-m-test

δ/p 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

n

250 0.04 0.05 0.06 0.08 0.11 0.14 0.33 0.34 0.34 0.36 0.37 0.39
500 0.05 0.07 0.09 0.12 0.18 0.26 0.54 0.52 0.53 0.55 0.56 0.60
1000 0.07 0.07 0.13 0.24 0.37 0.55 0.71 0.71 0.71 0.75 0.76 0.80
2000 0.06 0.11 0.23 0.46 0.76 0.99 0.86 0.86 0.88 0.89 0.91 0.93

Panel D: φ = 0.75
Stat-m-test Ind-m-test

δ/p 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

n

250 0.05 0.06 0.06 0.09 0.12 0.16 0.44 0.45 0.44 0.45 0.47 0.50
500 0.06 0.07 0.09 0.14 0.20 0.28 0.66 0.66 0.66 0.67 0.69 0.72
1000 0.07 0.09 0.16 0.25 0.39 0.56 0.86 0.85 0.86 0.87 0.87 0.90
2000 0.09 0.13 0.26 0.49 0.76 0.99 0.96 0.96 0.96 0.96 0.97 0.98

Panel E: φ = 1
Stat-m-test Ind-m-test

δ/p 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

n

250 0.05 0.06 0.07 0.09 0.13 0.16 0.47 0.47 0.49 0.49 0.51 0.53
500 0.07 0.08 0.11 0.14 0.20 0.29 0.69 0.67 0.69 0.70 0.73 0.75
1000 0.09 0.10 0.16 0.25 0.39 0.57 0.87 0.87 0.88 0.89 0.91 0.91
2000 0.08 0.14 0.27 0.48 0.76 0.98 0.97 0.97 0.97 0.98 0.98 0.99
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Table VI: Simulated rejection probabilities for violation of the cc-property with p = 0.05.

The table presents the rejections probabilities of the Stat-m-test and the Ind-m-test based on simulated data that violate
the cc-property with autocorrelation φ and cross-correlation ρ = 0.3.

Panel A: φ = 0
Stat-m-cc-test Ind-m-cc-test

δ/p 0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

n

250 0.06 0.09 0.31 0.61 0.85 0.96 0.06 0.11 0.18 0.26 0.36 0.45
500 0.05 0.19 0.63 0.91 0.99 1.00 0.05 0.11 0.19 0.29 0.40 0.53
1000 0.06 0.38 0.92 1.00 1.00 1.00 0.04 0.12 0.22 0.33 0.47 0.61
2000 0.05 0.71 1.00 1.00 1.00 1.00 0.05 0.13 0.23 0.39 0.58 0.77

Panel B: φ = 0.25
Stat-m-cc-test Ind-m-cc-test

δ/p 0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

n

250 0.08 0.12 0.33 0.61 0.83 0.94 0.35 0.50 0.63 0.73 0.82 0.89
500 0.08 0.22 0.62 0.90 0.99 1.00 0.52 0.69 0.80 0.90 0.96 0.98
1000 0.07 0.41 0.91 1.00 1.00 1.00 0.74 0.88 0.96 0.99 1.00 1.00
2000 0.07 0.69 1.00 1.00 1.00 1.00 0.94 0.98 1.00 1.00 1.00 1.00

Panel C: φ = 0.5
Stat-m-cc-test Ind-m-cc-test

δ/p 0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

n

250 0.10 0.16 0.34 0.60 0.82 0.93 0.70 0.82 0.90 0.95 0.97 0.98
500 0.10 0.23 0.62 0.89 0.98 1.00 0.90 0.96 0.99 1.00 1.00 1.00
1000 0.10 0.41 0.89 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00
2000 0.10 0.69 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Panel D: φ = 0.75
Stat-m-cc-test Ind-m-cc-test

δ/p 0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

n

250 0.13 0.16 0.36 0.61 0.81 0.92 0.83 0.92 0.96 0.99 0.99 0.99
500 0.11 0.26 0.61 0.88 0.98 1.00 0.98 0.99 1.00 1.00 1.00 1.00
1000 0.12 0.43 0.89 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2000 0.12 0.68 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Panel E: φ = 1
Stat-m-cc-test Ind-m-cc-test

δ/p 0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

n

250 0.13 0.16 0.36 0.60 0.81 0.92 0.86 0.94 0.97 0.99 0.99 1.00
500 0.12 0.24 0.61 0.89 0.98 1.00 0.98 1.00 1.00 1.00 1.00 1.00
1000 0.12 0.43 0.88 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2000 0.12 0.68 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table VII: Simulated rejection probabilities for violation of the cc-property with p = 0.01.

The table presents the rejections probabilities of the Stat-m-test and the Ind-m-test based on simulated data that violate
the cc-property with autocorrelation φ and cross-correlation ρ = 0.3.

Panel A: φ = 0
Stat-m-cc-test Ind-m-cc-test

δ/p 0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

n

250 0.03 0.02 0.03 0.06 0.12 0.20 0.05 0.07 0.10 0.12 0.14 0.18
500 0.07 0.05 0.09 0.20 0.36 0.53 0.09 0.13 0.18 0.23 0.28 0.31
1000 0.06 0.07 0.24 0.48 0.72 0.89 0.17 0.22 0.27 0.28 0.32 0.34
2000 0.05 0.15 0.50 0.83 0.97 1.00 0.04 0.08 0.12 0.18 0.27 0.36

Panel B: φ = 0.25
Stat-m-cc-test Ind-m-cc-test

δ/p 0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

n

250 0.03 0.03 0.04 0.08 0.13 0.21 0.19 0.26 0.30 0.35 0.41 0.46
500 0.09 0.06 0.11 0.21 0.37 0.52 0.33 0.42 0.49 0.57 0.65 0.69
1000 0.07 0.08 0.23 0.49 0.72 0.88 0.53 0.62 0.69 0.74 0.77 0.80
2000 0.06 0.16 0.51 0.83 0.97 1.00 0.43 0.54 0.66 0.77 0.85 0.91

Panel C: φ = 0.5
Stat-m-cc-test Ind-m-cc-test

δ/p 0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

n

250 0.03 0.03 0.06 0.10 0.15 0.23 0.37 0.44 0.51 0.56 0.62 0.68
500 0.09 0.08 0.12 0.22 0.37 0.54 0.57 0.66 0.73 0.79 0.85 0.89
1000 0.08 0.10 0.25 0.50 0.73 0.87 0.80 0.87 0.91 0.94 0.96 0.97
2000 0.07 0.18 0.50 0.82 0.96 0.99 0.83 0.90 0.95 0.97 0.99 0.99

Panel D: φ = 0.75
Stat-m-cc-test Ind-m-cc-test

δ/p 0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

n

250 0.03 0.04 0.06 0.10 0.16 0.24 0.48 0.56 0.60 0.68 0.71 0.75
500 0.10 0.09 0.14 0.23 0.38 0.54 0.69 0.77 0.84 0.88 0.92 0.94
1000 0.09 0.11 0.27 0.50 0.72 0.86 0.89 0.95 0.96 0.98 0.99 0.99
2000 0.09 0.19 0.52 0.82 0.96 0.99 0.94 0.98 0.99 1.00 1.00 1.00

Panel E: φ = 1
Stat-m-cc-test Ind-m-cc-test

δ/p 0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

n

250 0.04 0.04 0.06 0.11 0.17 0.24 0.51 0.57 0.64 0.70 0.74 0.78
500 0.11 0.09 0.14 0.24 0.39 0.53 0.71 0.78 0.85 0.90 0.94 0.95
1000 0.10 0.11 0.27 0.50 0.71 0.86 0.91 0.95 0.97 0.99 0.99 0.99
2000 0.08 0.19 0.53 0.82 0.96 0.99 0.96 0.98 0.99 1.00 1.00 1.00
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