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A ROBUST METHOD FOR SHIFT DETECTION IN TIME SERIES

HEROLD DEHLING, ROLAND FRIED, AND MARTIN WENDLER

Abstract. We present a robust test for change-points in time series which is based on
the two-sample Hodges-Lehmann estimator. We develop new limit theory for a class of
statistics based on the two-sample U-quantile processes, in the case of short range dependent
observations. Using this theory we can derive the asymptotic distribution of our test statistic
under the null hypothesis. We study the finite sample properties of our test via a simulation
study and compare the test with the classical CUSUM test and a test based on the Wilcoxon-
Mann-Whitney statistic.
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1. Introduction

Statistical tests for the presence of changes in the structure of a time series are of great
importance in a wide range of scientific discussions, e.g. regarding economic, technological
and climate data. Many procedures for detecting changes and for estimating change points
have been proposed in the statistical literature, see e.g. Csörgő and Horvath (1997) for a
detailed exposition. In the case of independent observations with normal tails, the theory
is quite satisfactory. For a wide variety of change-point models, many statistical procedures
have been proposed and their properties have been investigated. In contrast, the situation
is quite different for dependent data, such as encountered in time series models, and for
heavy-tailed data. For dependent data, most research has focused on linear procedures, such
as CUSUM tests, and there are many open problems when it comes to other types of test
procedures, e.g. those based on robust statistics.

In the present paper, we study tests for detecting a level shift in a time series. Specifically,
we assume that the sequence of observations (Xn)n≥1 is generated by the model

Xn = µn + Yn,

Key words and phrases. Change-point tests, shift detection, Hodges-Lehmann estimator, time series,
weakly dependent data, two-sample U-statistics, two-sample U-process, two-sample U-quantiles, functional
central limit theorem.

1



2 H. DEHLING, R. FRIED, AND M. WENDLER

where (µn)n≥1 is a sequence of unknown constants and (Yn)n≥1 is a stationary process with
mean zero. We will focus on the case when (Yn)n≥1 is a weakly dependent process, in a sense
that we will specify below. As examples, we will be able to treat most standard models of
time series analysis, such as ARMA processes and GARCH processes, but our theory is not
restricted to such concrete models.

Given observations X1, . . . , Xn, we want to test the null hypothesis that the process is
stationary, i.e.

H : µ1 = . . . = µn,

against the alternative that there is a level shift at some unknown point in time, i.e.

A : there exists k ∈ {1, . . . , n− 1} such that µ1 = . . . = µk ̸= µk+1 = . . . = µn.

Note that in case the change-point k is known in advance, the test problem becomes a
standard two-sample problem, where the first sample is X1, . . . , Xk and the second sample is
Xk+1, . . . , Xn. This test problem is obviously much simpler than the change-point problem
studied here. At the same time, tests for the two-sample problem often serve as guideline
for finding tests for the problem of detecting a change at an unknown point in time.

The standard test statistic for the above change-point problem is the CUSUM statistic,
which is defined as

max
k=1,...,n

1√
n

∣∣∣∣∣
k∑

i=1

Xi −
k

n

n∑
i=1

Xi

∣∣∣∣∣ .
The asymptotic distribution of this test statistic under the null hypothesis can be derived

from a functional central limit theorem for the partial sum process ( 1√
n

∑[nλ]
i=1 Yi)0≤λ≤1. In the

case when the noise process (Yi)i≥1 is i.i.d. with finite variance, this is Donsker’s invariance
principle. Similar results have been obtained for a wide range of short range dependent
processes (Yi)i≥1; see e.g. Ibragimov and Linnik (1961), Bradley (2007) and Dedecker et al.
(2007) for various functional central limit theorems for a large class of weakly dependent
processes. In this case, the partial sum process will converge in distribution to a Brownian
motion (σW (λ))0≤λ≤1, where σ2 = Var(Y1) + 2

∑∞
k=2 Cov(Y1, Yk) is the long-run variance.

As an application of the continuous mapping theorem, we thus find that

max
k=1,...,n

1√
n

∣∣∣∣∣
k∑

i=1

Xi −
k

n

n∑
i=1

Xi

∣∣∣∣∣ d−→ σ sup
0≤λ≤1

|W (λ)− λW (1)|.

Hence we can calculate approximate critical values for the CUSUM test from tables of the
Kolmogorov-Smirnov distribution, i.e. the distribution of the supremum of the Brownian
bridge process (W (λ)−λW (1))0≤λ≤1, provided we have a consistent estimator of the asymp-
totic variance σ2. Such estimators have been proposed in the literature; see e.g. Dehling,
Fried, Sharipov, Vogel and Wornowizki (2013) for a recent result under dependence condi-
tions relevant for this paper.

The CUSUM test is based on partial sums and is thus not robust to outliers in the data.
In this paper, we will propose a robust alternative to the CUSUM test and investigate its
properties. Our test will be valid without any moment assumptions on the underlying data,
and can thus be applied to arbitrarily heavy-tailed data. In order to motivate our test, we
note that using some elementary algebra, we obtain the following alternative representation
of the CUSUM test statistic,

1√
n

(
k∑

i=1

Xi −
k

n

n∑
i=1

Xi

)
=

√
n
k

n
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n
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k
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Xi

)
.
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On the right hand side we have the term 1
k

∑k
i=1Xi − 1

n−k

∑n
i=k+1Xi, which is the stan-

dard estimator for the difference of the expected values of the two samples X1, . . . , Xk and
Xk+1, . . . , Xn, in a Gaussian two sample model of i.i.d. data.

In our paper, we propose a test that is based on the Hodges-Lehmann two sample estima-
tor, in the same way that the CUSUM test is based on the difference of the arithmetic means
of the two samples. In a classical two-sample problem with independent samples X1, . . . , Xn1

and Y1, . . . , Yn2 , the Hodges-Lehmann estimator is defined as

med{(Yj −Xi) : 1 ≤ i ≤ n1, 1 ≤ j ≤ n2};
see Hodges and Lehmann (1963). The Hodges-Lehmann estimator is robust, while having a
high efficiency in the case of Gaussian observations. Asymptotic normality of the Hodges-
Lehmann estimator has been established under a wide range of assumptions. Recently, Fried
and Dehling (2011) explored the good robustness properties of two-sample tests based on
this estimator, and Dehling and Fried (2012) proved its asymptotic normality in the case of
short range dependent observations.

We propose the Hodges-Lehmann change-point test statistic, which we define as

Tn :=
√
n max

1≤k≤n

k

n

(
1− k

n

)
|med{(Xj −Xi) : 1 ≤ i ≤ k, k + 1 ≤ j ≤ n}| .

The Hodges-Lehmann change-point test will reject the null hypothesis for large positive or
large negative values of Tn. In this paper, we will derive asymptotic distribution theory for a
class of test statistics, of which the Hodges-Lehmann test statistic is a special example. As
an application of our general results, we can determine the asymptotic distribution of the
Hodges-Lehmann change-point test under very general conditions.

Theorem 1.1. Let (Yi)i≥1 be a stationary process that is a near epoch dependent functional
of an absolutely regular process (Zn)n∈Z with mixing coefficients (β(n))n≥1 and approximating
constants (an)n≥1 satisfying β(n) = O(n−8) and an = O(n−12). Moreover, let Y1 have an
absolutely continuous distribution with density f(x) and assume that u(x) =

∫
f(y)f(x+y)dy

is 1
2
-Hölder continuous. Then, under the null hypothesis of no change, we obtain

√
n max

1≤k≤n

k

n
(1− k

n
) |med{(Xj −Xi) : 1 ≤ i ≤ k, k + 1 ≤ j ≤ n}| D−→ σ

u(0)
sup

0≤λ≤1

∣∣W (0)(λ)
∣∣ ,

where

σ2 =
∞∑

k=−∞

Cov(F (X0), F (Xk)),

and where (W (0)(λ))0≤λ≤1 denotes a standard Brownian bridge process.

In order to apply the above theorem, we have to provide consistent estimators for the
nuisance parameters σ2 and u(0). We use a subsampling estimator for σ2 that was proposed
by Dehling and Fried (2012). We choose a block length l = ln in such a way that l√

n
+ 1

l
=

o(1). We then define the estimator

σ̂2 =

√
π√

2ln⌊n/ln⌋

⌊n/l⌋∑
i=1

|Ŝi(l)|,

where Ŝi(l) =
∑i l

j=(i−1)l+1(Fn(Xi) − 1
2
). Dehling, Fried, Sharipov, Vogel and Wornowizki

(2013) have established consistency of this estimator under the same assumptions as made
in the present paper. We use a kernel density estimator for u(0). Observing that u(x)
is the density of X − Y , where X and Y are independent random variables with the same
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distribution asX1, we use a kernel density estimator based on the pairwise differencesXi−Xj,
1 ≤ i < j ≤ n. In this way we get

û(0) =
2

n(n− 1)b

∑
1≤i<j≤n

K

(
Xi −Xj

b

)
for a symmetric, Lipschitz-continuous kernel function K which is integrates to 1. Below, we
will show that û(0) is a consistent estimator of u(0) under H, provided that the bandwidth
b = bn is chosen appropriately.

Corollary 1.2. Under the same assumptions as in the above theorem, we obtain under the
null hypothesis

√
n
û(0)

σ̂
max
1≤k≤n

k

n

(
1− k

n

)
|med{(Xj −Xi) : 1 ≤ i ≤ k, k + 1 ≤ j ≤ n}|

converges in distribution to sup0≤λ≤1

∣∣W (0)(λ)
∣∣, where W (0)(λ) denotes a standard Brownian

bridge process.

The asymptotic distribution of the Hodges-Lehmann test statistic can be derived from a
study of the process

√
nλ(1−λ)med{(Xj −Xi) : 1 ≤ i ≤ [nλ], [nλ]+1 ≤ j ≤ n}, 0 ≤ λ ≤ 1.

More generally, we are lead to the study of the process of quantiles of the values

g(Xi, Xj), 1 ≤ i ≤ [nλ], [nλ] + 1 ≤ j ≤ n,

indexed by 0 ≤ λ ≤ 1, where g(x, y) is a given function of two variables. In the present
paper we investigate the asymptotic distribution of this process in the case of short range
dependent data.

2. Main Theoretical Results

2.1. Near Epoch Dependent Processes. We will derive the asymptotic results in this
paper under the assumption of short range dependence. In the literature, there is a wide
range of notions that formally capture the idea of short range dependent processes. The
classical approach is to impose mixing conditions, such as strong mixing, absolute regularity
and uniform mixing, also known as α-mixing, β-mixing and ϕ-mixing, respectively. This
approach was initiated by the seminal paper of Rosenblatt (1956), where strongly mixing
processes were introduced and where a central limit theorem for partial sums of strongly
mixing processes was proved. For a survey of various mixing concepts and associated limit
theorems for partial sums, see the monographs by Doukhan (1994) and Rio (2000), as well
as the encyclopedic three volume monograph by Bradley (2007).

Mixing concepts provided a unifying structure that allowed establishing limit theorems for
a wide range of stochastic processes, that previously could be treated only by ad hoc methods.
Among these processes are, e.g. ARMA-processes with a continuous innovation distribution,
stationary ergodic Markov Chains, the process of digits in a continued fraction expansion. At
the same time there are very important processes that are not mixing. One of the simplest
examples are AR(1)-processes with discrete innovations, as was pointed out by Andrews
(1984). The largest class of non-mixing processes are deterministic dynamical systems, i.e.
processes defined as Xn = T (Xn−1), where T : X → X is a map on some state space X and
where X0 is a random variable. Such processes do not satisfy any of the classical mixing
conditions, but yet under some assumptions on the map T and the distribution of X0, they
satisfy many of the classical limit theorems. In order to overcome these obvious shortcomings
of mixing concepts, Doukhan and Louhichi (1999) suggested various new notions of weakly
dependent processes, which are based on covariance inequalities for suitable functions of
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blocks of random variables that are separated in time. In their paper and in subsequent
publications of various authors, a large variety of limit theorems was established for processes
satisfying these notions. For a comprehensive survey, see the monograph by Dedecker et al
(2007).

In the present paper, we follow a more classical approach that has been used already
by Billingsley (1968) and Ibragimov and Linnik (1971). We assume that the noise process
(Yi)i≥1 is near epoch dependent (NED) on an absolutely regular process.

Definition 2.1. (i) Let A,B ⊂ F be two σ-fields on the probability space (Ω,F , P ). We
define the absolute regularity coefficient β(A,B) by

β(A,B) = E(sup
A∈A

|P (A|B)− P (A)|)

(ii) For a stationary process (Zn)n∈Z we define the absolute regularity coefficients

β(k) = sup
n≥1

β(Gn
1 ,G∞

n+k),

where Gl
k denotes the σ-field generated by the random variables Zk, . . . , Zl. The process

(Zn)n∈Z is called absolutely regular if β(k) → 0 as k → ∞.

(iii) Let ((Xn, Zn))n∈Z be a stationary process. We say that (Xn)n≥0 is L1-near epoch depen-
dent on the process (Zn)n∈Z with approximating constants (al)l≥1, if

E|X0 − E(X0|Gl
−l)| ≤ al,

and liml→∞ al = 0.

If the process (Xn)n≥0 is near epoch dependent on the process (Zn)n∈Z, we get by defi-
nition the representation X0 = f((Zn)n∈Z) for some measurable function f : RZ → R. By
stationarity, we thus obtain a representation

Xk = f((Zn+k)n∈Z).

Thus, a process that is NED on an absolutely regular process is also called a functional of
an absolutely regular process. The class of processes that are NED on an absolutely regular
process contains all relevant processes from time series analysis as well as many dynamical
systems; see e.g. Borovkova, Burton and Dehling (2001) for a detailed list of examples.

2.2. Two-sample empirical U-quantile process. In this paper, we will investigate the
two-sample empirical quantile process associated with the kernel g(x, y). We will now for-
mally define this process, as well as the related two-sample empirical U-process, both in a
slightly more general setup of empirical processes indexed by classes of functions.

Definition 2.2. Let h : R2 × R → [0, 1] be a measurable function, and let (Xi)i≥1 be a
stochastic process.

(i) We define the two-sample empirical U-process

Un(λ, t) =
1

[nλ](n− [nλ])

[nλ]∑
i=1

n∑
j=[nλ]+1

h(Xi, Xj, t), 0 ≤ λ ≤ 1, t ∈ R.

(ii) Given p ∈ [0, 1], we define the two-sample empirical U-quantile process

Qn(λ, p) = inf{t : Un(λ, t) ≥ p}, 0 ≤ λ ≤ 1.
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Remark 2.3. (i) Given a kernel g(x, y), we can define

h(x, y, t) = 1{g(x,y)≤t}.

Then, Un(λ, ·) is the empirical distribution function of the data g(Xi, Xj), 1 ≤ i ≤ [nλ], [nλ]+
1 ≤ j ≤ n, and Qn(λ) is the p-th quantile of the same data.

(ii) For fiixed t, the process (Un(λ, t))0≤λ≤1 is a two-sample U-process that has been intro-
duced and investigated by Dehling, Fried, Garcia and Wendler (2013).

In this paper, we will study the asymptotic distribution of the two-sample empirical U-
quantile process (Qn(λ))0≤λ≤1 in the case of weakly dependent data (Xi)i≥1. Before we can
formulate the results, we have to make some further definitions.

Definition 2.4. Let h(x, y, t) be a measurable function, and let X, Y be independent random
variables with the same distribution as Xi. Then we define the functions U(t), h1(x, t), and
h2(y, t) by

U(t) = Eh(X,Y, t)(1)

h1(x, t) = Eh(x, Y, t)− U(t)(2)

h2(y, t) = Eh(X, y, t)− U(t).(3)

Moreover, we define the quantile function

Q(p) = inf{t : U(t) ≥ p},

and the p-th quantile tp = Q(p).

Our theorems will require various technical assumptions regarding the process (Xi)i≥1 and
the kernel h(x, y, t), which we list now.

(A1) (Xn)n≥1 is a near epoch dependent functional of an absolutely regular process (Zn)n∈Z
with mixing coefficients β(n)n≥1 and approximation constants (an)n≥1 satisfying

β(n) = O(n−β)

an = O(n−(β+3))

for some constant β > 3.
(A2) (U(t)), as defined in (1) is differentiable in a neighborhood of tp. Moreover, u(t) =

U ′(t) satisfies u(tp) > 0, and

|U(t)− p− u(tp)(t− tp)| = O(|t− tp|3/2),

as t → tp.
(A3) The kernel h : R2 × R is a bounded measurable function. Moreover, t 7→ h(x, y, t)

is nondecreasing, and (x, y) 7→ h(x, y, t) is uniformly p-Lipschitz continuous in a
neighborhood of tp. I.e., there exists a neighborhood of tp and a constant L > 0 such
that

E
(
|h(X, Y, t)− h(X ′, Y, t)|1{|X−X′|≤ϵ}

)
≤ L ϵ

E
(
|h(X, Y, t)− h(X, Y ′, t)|1{|Y−Y ′|≤ϵ}

)
≤ L ϵ

holds for all t in this neighborhood, for all ϵ > 0, and for all quadruples X, Y,X ′, Y ′

of random variables such that (X, Y ) has joint distribution PX1 × PX1 or PX1,Xk
, for

some k, and such that X ′ and Y ′ each have the same marginal distribution as Xi.
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Theorem 2.5. Let (Xi)i≥1 be a near epoch dependent functional of an absolutely regular
process such that assumption (A1) is satisfied. Moreover, let h : R2×R → R be a measurable
kernel such assumptions (A2) and (A3) hold. Then

√
n (λ(1− λ)(Qn(λ, p)−Q(p)))0≤λ≤1

D−→ ((1− λ)W1(λ) + λ(W2(1)−W2(λ)))0≤λ≤1 ,

where (W1(λ),W2(λ)) is a two-dimensional Brownian motion with covariance structure

Cov(Wi(µ),Wj(λ)) = (µ ∧ λ)
1

u2(Q(p))

∑
k∈Z

E(hi(X0;Q(p)), hj(Xk;Q(p))).

Here u(t) = d
dt
U(t).

An important ingredient in the proof of the limit theorem for the two-sample U -quantile
process is the Bahadur-Kiefer representation of the U -quantiles, see Bahadur (1966). The
Bahadur-representation for two-sample U -quantiles (with fixed λ) have been studied by
Inagaki (1973) for independent data and by Dehling and Fried (2012) for dependent data.
To the best of our knowledge, there are no results for the process indexed by λ. There
is much more literature on one-sample U -quantiles, beginning with Geertsema (1970). In
this case, better rates of the Bahadur representation are known, see Dehling et al. (1987),
Choudhury and Serfling (1988) and Arcones (1996) for the independent case, Wendler (2011)
for the dependent case.

Theorem 2.6. Under the same assumptions as in Theorem 2.5, we obtain

sup
0≤λ≤1

λ(1− λ)

(
Qn(λ, p)−Q(p) +

Un(λ,Q(p))− p

u(Q(p))

)
= OP (n

− 5
9 ).

Here u(t) = d
dt
U(t).

3. Simulation Results

The practical value of the theoretical results presented above is illustrated in a simulation
study. We generate time series of length n = 200 from first order autoregressive models with
parameter ϕ ∈ {0, 0.4, 0.8} and the innovations stemming from scaled t-distributions with
ν ∈ {2, 3,∞} degrees of freedom. In case of ν = ∞ this is a standard normal distribution,
while ν = 3 and ν = 2 correspond to the cases where the variance just exists or does not
exist. All t-distributions are scaled to have Fν(1) = 0.8413447, like for the standard normal,
to ease comparison.

For estimation of the long-run variance σ2, needed for our change-point test based on the
Hodges-Lehmann estimator (HLE), we consider the fixed block length ln = [(3n)1/3 + 1)],
corresponding to ln = 9 when n = 200. This agrees well with the findings of Dehling et al.
(2013) for ARMA(1,1) processes. Additionally, we consider the adaptive block length

(4) ln = max(⌈n1/3(2ϕ/(1− ϕ2))2/3⌉, 1).
Carlstein (1986) proved that this block length minimizes the MSE of the estimator for
the long-run variance of the CUSUM test asymptotically in case an AR(1)-process with
autoregression coefficient ϕ. Dehling et al. (2013) obtained good results also when apply-
ing this adaptive block length for subsampling estimation of the long-run variance of their
change-point test based on the Wilcoxon-Mann-Whitney (WMW) statistic, replacing ϕ by
the lag-one sample autocorrelation of the series Fn(xt), t = 1, . . . , n.

The sizes of the different tests under the different error distributions are assessed by
applying the tests with the critical value 1.36, corresponding to an asymptotic 5% significance
level, to 4000 time series without shift. Then we generate 400 time series for shifts with each
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Table 1. Empirical sizes of the different tests for differently strong autocor-
relations (ϕ) and heaviness of the tails (ν).

fixed block length adaptive block length
ϕ ν CUSUM WMW HLE CUSUM WMW HLE
0.0 ∞ 3.9 2.9 3.6 3.8 2.2 2.8
0.0 3 3.5 2.9 3.7 3.1 2.4 2.8
0.0 2 3.4 3.1 4.8 2.5 2.2 3.4
0.4 ∞ 4.9 3.1 3.8 6.0 3.9 4.3
0.4 3 3.8 3.0 3.9 4.9 3.3 4.0
0.4 2 3.6 3.0 4.5 4.2 3.8 5.1
0.8 ∞ 10.6 6.5 7.1 4.0 2.5 2.9
0.8 3 10.5 7.0 7.7 3.9 2.8 3.1
0.8 2 8.8 6.7 10.7 3.7 2.3 5.7

of different heights h = 0.1, 0.2, . . . , 1 in case of ϕ = 0, h = 0.2, 0.4, . . . , 2 under ϕ = 0.4 and
h = 0.4, 0.8, . . . , 4 under ϕ = 0.8 to compare the power of the different tests.

Figure 1 illustrates the power of the different tests in case of a shift of increasing height in
time series with normal innovations. As expected, the CUSUM is usually the most powerful
test under normality. In case of a shift in the center of the time series, the WMW and the
HLE test are close competitors, with the latter providing good power also when the shift is
not in the center. The adaptive block length for the subsampling increases the power in case
of small or moderate positive autocorrelations, particularly for a shift outside the center,
and it stabilizes the size of the tests in case of large positive autocorrelations. Note that the
HLE test with adaptive block length performs even better than the corresponding CUSUM
test in case of strong positive autocorrelations. Estimation of the asymptotic variance is
less vulnerable to shifts in case of the HLE test than for the CUSUM, since we deal with
autocovariances of random variables which are transformed to the bounded interval [0, 1].

Figure 2 compares the power of the different tests in case of a shift of increasing height in
time series with t3-distributed innovations. The asymptotic theory underlying the CUSUM
still applies for this heavy-tailed distribution, since the variance exists. Nevertheless, our
implementations of the CUSUM test provide smaller power than the WMW and HLE tests.
Again we find little difference between the WMW and the HLE test if a shift occurs in the
center of the series, and a substantial advantage of the HLE test if the shift occurs outside
the center. The increased power in case of small positive autocorrelations and the better
size preservation in case of large positive autocorrelations resulting from the adaptive block
length is also confirmed. We get similar results for the situation of t2-distributed innovations,
see Figure 3. Although the asymptotic theory underlying the CUSUM test does not apply, it
still preserves the size if the autocorrelations are moderate, but the advantages of the WMW
and even more the HLE test in terms of power increase as the tails get heavier.

Table 1 indicates that the better power of the HLE test as compared to the WMW test
is in part due to its size being closer to the nominal significance level. The WMW test is
more conservative, particularly if the autocorrelation ϕ is large or the degrees of freedom ν
are small.

The tests employing Carlstein’s adaptive choice of the block length could be improved
further by using a more sophisticated estimate of ρ than the sample autocorrelation coeffi-
cient applied here. The latter is positively biased in the presence of a shift, which leads to
undesirably large choices of the block length. This negative effect becomes more severe for
larger values of ρ, since the plug-in-estimate of the asymptotically MSE-optimal choice of
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Figure 1. Power of the tests in case of a shift in the center (left) or after 3/4
(right) of AR(1) time series with ϕ = 0 (top), ϕ = 0.4 (middle) or ϕ = 0.8
(bottom) and normal innovations, length n = 200. CUSUM (dotted), WMW
(dashed), HLE (solid) with fixed (black) or adaptive (grey) block length for
the subsampling.
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Figure 2. Power of the tests in case of a shift in the center (left) or after
3/4 (right) of AR(1) time series with ϕ = 0 (top), ϕ = 0.4 (middle) or ϕ =
0.8 (bottom) and t3 innovations, length n = 200. CUSUM (dotted), WMW
(dashed), HLE (solid) with fixed (black) or adaptive (grey) block length for
the subsampling.
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Figure 3. Power of the tests in case of a shift in the center (left) or after 3/4
of AR(1) time series with ϕ = 0 (top), ϕ = 0.4 (middle) or ϕ = 0.8 (bottom)
and t2-distributed innovations, length n = 200. CUSUM (dotted), WMW
(dashed), HLE (solid) with fixed (black) or adaptive (grey) block length for
the subsampling.
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ln increases more rapidly if ϕ̂ is close to 1, while it is rather stable for moderate and small
values of ϕ̂. In our study, in case of ϕ = 0 the average value chosen for ln increases from
about 2 to about 4 on average as the height of the shift increases, while it is from about 6 to
about 10 if ϕ = 0.4, and even from about 16 to about 24 if ϕ = 0.8. A robust estimate of the
autocorrelation coefficient resisting shifts could be used, but this is left for future research.

We also considered direct estimation of the asymptotic variance after correcting the data
for a possible shift as proposed by Huskova and Kirch (2010), but our implementation pro-
vided substantially oversized tests. When correcting the sizes of the tests by using the
empirical 95% percentile of the absolute values of the test statistics, derived from time series
without a shift generated from the same model, the differences between the tests were less
pronounced than those presented here. However, such a comparison is not realistic, since in
practice we usually know neither the time series model nor the type of innovations and can
thus not use such critical values derived from simulations. Instead, bootstrap procedures
might be an interesting alternative, but this will not be pursued here.

4. Data analysis

For illustration of the gains in power arising from the HLE test as compared to the CUSUM
and the WMW test we analyze the monthly averages of the daily minimum temperatures
in Potsdam, Germany, from 1893 to 2010. The 1416 data points have been deseasonalized
by subtracting the median value from each calendar month, see Figure 4. We are interested
in whether the level of this data set is constant or whether there is a monotonic change.
Such a change is likely to show a trend-like behavior and not a jump, but nevertheless a
change-point test should detect such a change if its null hypothesis is a constant level.

The empirical autocorrelation and partial autocorrelations suggest a first order autore-
gressive model with lag-one autocorrelation about 0.25 for the deseasonalized data. The
CUSUM and the HLE test statistics take their maximum value in 1987 after time point
1136, while the WMW test takes it in 1943 after time point 595, i.e. rather in the middle
of the time series. The resulting p-values are 0.002, 0.002 and below 0.001 for the CUSUM,
the WMW and the HLE test with the fixed block length. All p-values are even below 0.001
when using the adaptive block length.

When dividing the data into the times periods before and after the detected change-point,
the HLE test with adaptive block length yields a further significant p-value of 0.042 after time
point 380 in 1924. For the HLE with fixed block length and the WMW with adaptive block
length the p-value is 0.062, while the CUSUM test is far from being significant and does not
reject the null hypothesis of constant levels within the subsequences. The multiple change-
points detected by the HLE test with adaptive block length might be due to a monotonic
trend and can be explained by the superior power of this test in case of heavy tailed data
like daily minima. The HLE estimates an increase of the temperatures by 0.355oC from the
first to the second and by another 0.765oC from the second to the third period.

5. Proofs

5.1. Auxiliary Results. The proofs require some further notations, which we introduce
now. Given the kernel h(x, y, t), we define the two-sample empirical U -process

Un1,n2(t) :=
1

n1 n2

n1∑
i=1

n1+n2∑
j=n1+1

h(Xi, Xj, t),

and the two-sample empirical U -quantile process

Qn1,n2(p) = U−1
n1,n2

(p) = inf{t : Un1,n2(t) ≥ p}.
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Figure 4. Deseasonalized time series representing the monthly average daily
minimum temperatures in Potsdam, Germany, and change-points detected by
the HLE test with adaptive block length.
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Note that Un(λ, t) = U[nλ],n−[nλ](t) and Qn(λ, p) = Q[nλ],n−[nλ](p). Moreover, we define

g(x, y, t) = h(x, y, t)− h1(x, t)− h2(y, t)− U(t),

where h1(x, t), h2(y, t), and U(t) have been defined in (1), (2) and (3), respectively. Thus,
we obtain the Hoeffding decomposition of the two-sample U -statistic as

Un1,n2(t) := U(t) +
1

n1

n1∑
i=1

h1(Xi, t) +
1

n2

n1+n2∑
j=n1+1

h2(Xj, t) +
1

n1n2

n1∑
i=1

n1+n2∑
j=n1+1

g(Xi, Xj, t).

The next two lemmas will deal with the last sum, which is called degenerate part:

Lemma 5.1. Under the assumptions (A1) and (A3), there exists a constant C, such that
for any integers 0 ≤ m1 ≤ n1 ≤ m2 ≤ n2

E

(
n1∑

i=m1+1

n2∑
j=m2+1

g(Xi, Xj, t)

)2

≤ C(n1 −m1)(n2 −m2),

for all t in the neighborhood refered to in assumption (A3).

Proof. For the special case m2 = n1, this is Proposition 6.2 of Dehling and Fried (2012). The
more general case can be proved with the same arguments, we omit the details. �
Lemma 5.2. Suppose that the assumptions (A1) and (A3) hold.

(i) There is a constant C, such that

E

(
max

0≤m1≤n1≤m2≤n2≤2l

∣∣∣ n1∑
i=m1+1

n2∑
j=m2+1

g(Xi, Xj, t)
∣∣∣)2

≤ C22ll4.

(ii) As n → ∞, we have

sup
0≤λ≤1

∣∣∣∣∣
⌊λn⌋∑
i=1

n∑
j=⌊λn⌋+1

g(Xi, Xj, t)

∣∣∣∣∣ = o(n log3 n),

almost surely.
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Proof. To prove the first part of the lemma, we introduce the notation

Qm1,n1,m2,n2 =

n1∑
i=m1+1

n2∑
j=m2+1

g(Xi, Xj, t),

for m1 ≤ n1 ≤ m2 ≤ n2, and Qm1,n1,m2,n2 = 0 otherwise. These quantities satisfy an addition
rule

Qm1,n1,m2,n2 +Qn1,n′
1,m2,n2

= Qm1,n′
1,m2,n2

Qm1,n1,m2,n2 +Qm1,n1,n2,n′
2
= Qm1,n1,m2,n′

2

Note that

max
0≤m1≤n1≤m2≤n2≤2l

|Qm1,n1,m2,n2 | ≤ 2 max
0≤m1≤n1≤m2≤2l

|Qm1,n1,m2,2l | ≤ 4 max
0≤n1≤m2≤2l

|Q0,n1,m2,2l |

Now we use a chaining technique. For example,

|Q0,5,7,16| ≤ |Q0,4,7,8|+ |Q0,4,8,16|+ |Q4,5,7,8|+ |Q4,5,8,16|.
We conclude that

max
0≤m1≤n1≤m2≤n2≤2l

|Qm1,n1,m2,n2 | ≤ 4
l∑

d1=0

l∑
d2=0

max
i=1,...,2l−d1

j=1,...,2l−d2

|Q((i−1)2d1 ,i2d1 ,(j−1)2d2 ,j2d2 )|.

Note that for any random variables Y1, . . . , Yk we have that E (maxi=1,...,k Yk)
2 ≤

∑k
i=1EY 2

i .
Using this inequality and Lemma 5.1, we conclude that

E

(
max

0≤m1≤n1≤m2≤n2≤2l
|Qm1,n1,m2,n2 |

)2

≤ 16E

(
l∑

d1=0

l∑
d2=0

max
i=1,...,2l−d1

j=1,...,2l−d2

|Q((i−1)2d1 ,i2d1 ,(j−1)2d2 ,j2d2 )|

)2

≤ 16l2
l∑

d1=0

l∑
d2=0

E

(
max

i=1,...,2l−d1

j=1,...,2l−d2

|Q((i−1)2d1 ,i2d1 ,(j−1)2d2 ,j2d2)|

)2

≤ 16l2
l∑

d1=0

l∑
d2=0

2l−d1∑
i=1

2l−d2∑
j=1

E
(
Q((i−1)2d1 ,i2d1 ,(j−1)2d2 ,j2d2 )

)2
≤ Cl2

l∑
d1=0

l∑
d2=0

2l−d1∑
i=1

2l−d2∑
j=1

2d12d2 ≤ Cl422l.

So the first part of the lemma is proved. For the second part, it suffices to show that

max
0≤m1≤n1≤m2≤n2≤2l

|Qm1,n1,m2,n2 | = o(2ll3).

Now by the Chebyshev inequality, we obtain

∞∑
l=1

P

(
1

2ll3
max

0≤m1≤n1≤m2≤n2≤2l
|Qm1,n1,m2,n2 | ≥ ϵ

)

≤ 1

ϵ2

∞∑
l=1

1

22ll6
E

(
max

0≤m1≤n1≤m2≤n2≤2l
|Qm1,n1,m2,n2 |

)2

≤ C

∞∑
l=1

1

l2
< ∞.

The Borel-Cantelli lemma completes the proof. �
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In order to prove Theorem 2.6, we need some information about the local behaviour of the
empirical U -process. We will first concentrate on the first half of the process, i.e. λ ∈ [0, 1/2]:

Lemma 5.3. Under the assumptions (A1), (A2), and (A3),

sup
λ∈[0,1/2]

|t−tp|≤C
√

log log(min{λ,1−λ}n)
min{λ,1−λ}n

λ(1− λ)
∣∣(U⌊λn⌋,n−⌊λn⌋(t)− U(t))− (U⌊λn⌋,n−⌊λn⌋(tp)− p)

∣∣ = O
(
n− 5

9

)

almost surely.

Proof. We define n1 = ⌊nλ⌋ and n2 = n − ⌊nλ⌋, and note that n1 + n2 = n. We define the

sequences c2l = 2−
5
9
l, and for n = 2l−1 + 1, . . . , 2l we set cn = c2l . By the monotonicity of

Un1,n2 and U in t, we have that

sup
n1≤n

2

|t−tp|≤C
√

log logn1
n1

n1n2

n2

∣∣∣(Un1,n2(t)− U(t))− (Un1,n2(tp)− p)
∣∣∣

≤ max
n1≤n

2
t∈cnZ

|t−tp|≤C
√

log logn1
n1

n1n2

n2

∣∣∣(Un1,n2(t)− U(t))− (Un1,n2(tp)− p)
∣∣∣+ max

t∈cnZ
|t−tp|≤C

√
log logn1

n1

|U(t)− U(t+ cn)|.

As U is differentiable in tp, we get that the second summand is of the order O(cn). For the
first summand, we use the Hoeffding decomposition and get

max
n1≤n

2
t∈cnZ

|t−tp|≤C
√

log logn1
n1

n1n2

n2

∣∣∣(Un1,n2(t)− U(t))− (Un1,n2(tp)− p)
∣∣∣(5)

≤ max
n1≤n

2
t∈cnZ

|t−tp|≤C
√

log logn1
n1

∣∣∣ 1
n

n1∑
i=1

h1(Xi, t)−
1

n

n1∑
i=1

h1(Xi, tp)
∣∣∣

+ max
n1≤n

2
t∈cnZ

|t−tp|≤C
√

log logn1
n1

n1

n

∣∣∣ 1
n

n∑
j=n1+1

h2(Xj, t)−
1

n

n∑
j=n1+1

h2(Xj, tp)
∣∣∣

+ max
n1≤n

2
t∈cnZ

|t−tp|≤C
√

log logn1
n1

∣∣∣ 1
n2

n1∑
i=1

n1+n2∑
j=n1+1

g(Xi, Xj, t)
∣∣∣+ max

n1≤n
2

∣∣∣ 1
n2

n1∑
i=1

n1+n2∑
j=n1+1

g(Xi, Xj, tp)
∣∣∣

For the first summand, we refer to (13) in Theorem 1 of Wendler [34] and conclude that it

is of size o(n− 5+γ
8 (log n)

3
4 (log log n)

1
2 ) = O(n− 5

9 ) almost surely for a γ > 0. Note that the
continuity condition on the kernel in [34] is different, but the continuity is only needed to
guarantee that (h1(Xi))i∈N is near epoch dependent. This also holds under our continuity
condition by Proposition 2.11 from Borovkova et al. [5].
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We split the second summand into two parts, so that for the first part n1/n is small and

for the second part
√

log logn1

n1
:

max
n1≤n

2
t∈cnZ

|t−tp|≤C
√

log logn1
n1

n1

n

∣∣∣∣∣1n
n∑

j=n1+1

h2(Xj, t)−
1

n

n∑
j=n1+1

h2(Xj, tp)

∣∣∣∣∣
≤ max

n1≤n
4
9

t∈cnZ
|t−tp|≤C

√
log logn1

n1

n−5/9

∣∣∣∣∣1n
(

n∑
j=n1+1

h2(Xj, t)−
n∑

j=n1+1

h2(Xj, tp)

)∣∣∣∣∣
+ max

n1≤n
2

t∈cnZ

|t−tp|≤C

√
log logn4/9

n4/9

∣∣∣∣∣ 1n
n∑

j=n1+1

h2(Xj, t)−
1

n

n∑
j=n1+1

h2(Xj, tp)

∣∣∣∣∣
=: A1 + A2.

As h is bounded and therefore h2 is bounded, we have that A1 = O(n− 5
9 ). Along the lines

of the proof of Theorem 1 in Wendler [34], we obtain

A2 = O(n− 2
9

1+γ
4 n− 1

2 (log n)
3
4 (log log n)

1
2 ) = O(n− 5

9 )

almost surely. For the third summand on the r.h.s. of (5), we use the first part of Lemma
5.2, the Chebyshev inequality, and the fact that the second moment of the maximum of
random variables is smaller or equal to the sum of second moments. We obtain

∞∑
l=1

P

(
1

c2l
max

2l−1≤n≤2l
max
n1≤n

2
t∈cnZ

|t−tp|≤C
√

log logn1
n1

∣∣∣∣∣ 1n2

n1∑
i=1

n1+n2∑
j=n1+1

g(Xi, Xj, t)

∣∣∣∣∣ ≥ ϵ

)

≤
∞∑
l=1

1

c2
2l
ϵ224(l−1)

E

(
max

2l−1≤n≤2l
max
n1≤n

2
t∈cnZ

|t−tp|≤C
√

log logn1
n1

∣∣∣∣∣
n1∑
i=1

n1+n2∑
j=n1+1

g(Xi, Xj, t)

∣∣∣∣∣
)2

≤
∞∑
l=1

∑
t∈c

2l
Z

|t−tp|≤C

1

c2
2l
ϵ224(l−1)

E

(
max

0≤n1≤n1+n2≤2l

∣∣∣∣∣
n1∑
i=1

n1+n2∑
j=n1+1

g(Xi, Xj, t)

∣∣∣∣∣
)2

≤ C
∞∑
l=1

1

c3
2l
24l

22ll4 ≤ C
∞∑
l=1

l4

2
1
3
l
< ∞,

as the set {t ∈ c2lZ, |t − tp| ≤ C} has at most C c−1
2l

elements. Using the Borel-Cantelli
lemma, we conclude that the third summand on the r.h.s. of (5) is of size o(cn) almost surely.
The last summand can be treated in the same way and so in total we have proved the order
O(n− 5

9 ) almost surely. �
Lemma 5.4. Unter the assumptions (A1) and (A3),

sup
n2>n1

|Un1,n2(tp)− p| = O

(√
log log n1

n1

)
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almost surely.

Proof. We use the Hoeffding decomposition

sup
n2>n1

|Un1,n2(tp)− p| ≤

∣∣∣∣∣ 1n1

n1∑
i=1

h1(Xi, tp)

∣∣∣∣∣+
∣∣∣∣∣ 1n2

n1∑
i=1

h2(Xi, tp)

∣∣∣∣∣
+ sup

n2>n1

1

n2

∣∣∣∣∣
n1+n2∑
j=1

h2(Xj, tp)

∣∣∣∣∣+ sup
n2>n1

1

n1n2

∣∣∣∣∣
n1∑
i=1

n2∑
j=n1+1

g(Xi, Xj, tp)

∣∣∣∣∣ .
For the first two summands, we use Proposition 3.7 of Wendler [34], which leads to∣∣∣∣∣ 1n1

n1∑
i=1

hk(Xi, tp)

∣∣∣∣∣ = O

(√
log log n1

n1

)
for k = 1, 2 almost surely. Furthermore

sup
n2>n1

1

n2

∣∣∣∣∣
n1+n2∑
j=1

h2(Xj, tp)

∣∣∣∣∣ ≤ sup
n2>n1

2

n1 + n2

∣∣∣∣∣
n1+n2∑
j=1

h2(Xj, tp)

∣∣∣∣∣ = O

(√
log log n1

n1

)
.

For the last summand, we use Lemma 5.2 to obtain

E

 max
0≤m1≤n1≤2l1

n1≤m2≤n2≤2l2

|Qm1,n1,m2,n2 |

2

≤ Cl21l
2
22

l12l2 .

Now by the Chebyshev inequality, we obtain

∞∑
l2=1

l2∑
l1=1

P

√ 1

2l1 log l1

1

2l2
max

0≤m1≤n1≤2l1

n1≤m2≤n2≤2l2

|Qm1,n1,m2,n2 | ≥ ϵ


≤ 1

ϵ2

∞∑
l2=1

l2∑
l1=1

1

2l1 log l122l2
E

 max
0≤m1≤n1≤2l1

n1≤m2≤n2≤2l2

|Qm1,n1,m2,n2 |

2

≤ C

∞∑
l2=1

l2∑
l1=1

l21l
2
2

log l12l2
< ∞,

so we can conclude that the last summand is of the required order almost surely. �
Proposition 5.5. Under the assumptions (A1), (A2) and (A3), the process

√
n
(
λ(1− λ)(U⌊λn⌋,n−⌊λn⌋(tp)− p

)
λ∈[0,1]

converges weakly to
((1− λ)W1(λ) + λ(W2(1)−W2(λ)))λ∈[0,1] ,

where W = (W1,W2) is a two-dimensional Brownian motion with covariance structure

Cov(Wi(µ),Wj(λ)) = (µ ∧ λ)
∑
k∈Z

E(hi(X0;Q(p)), hj(Xk;Q(p))).

This is Theorem 2.4 of Dehling et al. (2013).

Lemma 5.6. Under the assumptions (A1), (A2) and (A3) for any bandwidth b = bn with
b+ 1

nb3
= o(1)

û(0) =
2

n(n− 1)b

∑
1≤i<j≤n

K(
Xi −Xj

b
) → u(0)

in probability.
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Proof. First note that û is a one-sample U -statistic with symmetric kernel kn(x, y) =
1
b
K(x−y

b
)

depending on n. We use the Hoeffding decomposition

ũn = Ekn(X, Y ),

k1,n(x) = Ekn(x,X)− ũn,

k2,n(x, y) = kn(x, y)− k1,n(x)− k1,n(y)− ũn,

where X, Y are independent with the same distribution as X1. We obtain

û(0) = ũn +
2

n

n∑
i=1

k1,n(Xi) +
2

n(n− 1)

∑
1≤i<j≤n

k2,n(Xi, Yi)

By our assumptions, K has a bounded support, so let K(x) = 0 for |x| > M . Because the
density u is continuos and K integrates to 1, we can conclude that

ũn − u(0) =

∫
1

b
K(

x

b
)u(x)dx− u(0) ≤ sup

|x|≤Mb

|u(x)− u(0)| n→∞−−−→ 0,

since bn → 0. As K is Lipschitz continous, i.e. |K(x)−K(y)| ≤ L1|x−y|, for some constant
L1, we have that k1,n(x) is Lipschitz continous with constant L1/b

2. By Proposition 2.11 of
Borovkova et al. [5], it follows that (k1,n(Xi))i∈N is near epoch dependent with approximation
constants a′k = 3

√
ak/b

2
n. Let C1 = C/b be the upper bound of k1,n(Xi), then by Lemma

2.18 of Borovkova et al.

|E (k1,n(Xi)k1,n(Xj))| ≤ 4C1a
′
|i−j|/3 + 2C2

1β(|i− j|/3) ≤ C
1

b3
(
√
a|i−j|/3 + β(|i− j|/3)),

so we obtain by stationarity that

E
( 2
n

n∑
i=1

k1,n(Xi)
)2

≤ 4

n

∞∑
i=1

|E (k1,n(X1)k1,n(Xi))|

≤ C
1

nb3

∞∑
i=1

(
√
a|i−j|/3 + β(|i− j|/3)) → 0,

because nb3 → ∞, so the second summand converges to 0. For the third summand, we use
Lemma 4.3 of Borovkova et al. and the fact that k2,n(x, y) is a degenerate kernel bounded by
4C1/b and that the product k2,n(x1, x2)k2,n(x3, x4) is P -Lipschitz with constant 4(4C1

b
L1

b2
) =

Cb−3. We get the inequality

|E (k2,n(Xi1 , Xi2)k2,n(Xi3 , Xi4))| ≤
C

b2
(
Am/3 + β(m/3)

)
+ C

1

b3
Am/3

with Ai =
√

2
∑∞

n=i an and m = max
{
i(2) − i(1), i(4) − i(3)

}
, where i(1) ≤ i(2) ≤ i(3) ≤ i(4)

are the order statistics of the indices i1, i2, i3, i4. Thus, we obtain

E
( 2

n(n− 1)

∑
1≤i<j≤n

k2,n(Xi, Yi)
)2

≤ C
1

n4

n∑
i1,i2,i3,i4=1

|E (k2,n(Xi1 , Xi2)k2,n(Xi3 , Xi4))|

= C
1

n4

n∑
m=0

∑
i1,i2,i3,i4

max{i(2)−i(1),i(4)−i(3)}=m

|E (k2,n(Xi1 , Xi2)k2,n(Xi3 , Xi4))|

≤ C
1

n4b3

n∑
m=0

∑
i1,i2,i3,i4

max{i(2)−i(1),i(4)−i(3)}=k

(
Am

3
+ β(

m

3
)
)
.
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A this point, we have to calculate the number of quadrubles (i1, i2, i3, i4) such that max{i(2)−
i(1), i(4) − i(3)} = m. First note that there are at most 6 quadrubles wich lead to the same
ordered numbers i(1), i(2), i(3), i(4). There are at most n2 possibilities to choose i(1) and i(4).
If i(2) − i(1) = max{i(2) − i(1), i(4) − i(3)} = m, then i(2) is already fixed and there are k
possibilities i(3). The same argument applies if i(4) − i(3) = max{i(2) − i(1), i(4) − i(3)} = m,
so we finally obtain

E
( 2

n(n− 1)

∑
1≤i<j≤n

k2,n(Xi, Yi)
)2

≤ C
1

n2b3

n∑
m=0

m
(
Am

3
+ β(

m

3
)
)
→ 0,

as the mAm
3
and mβ(m

3
) are summable by assumption (A1), and n2b3 → ∞. �

Lemma 5.7. Let G be a non-decreasing function, c, l > 0 constants and [C1, C2] ⊂ R. If for
all t, t′ ∈ [C1, C2] with |t− t′| ≤ l + 2c

|G(t)−G(t′)− (t− t′)| ≤ c,

then for all p, p′ ∈ R with |p− p′| ≤ l and G−1(p), G−1(p′) ∈ (C1 + 2c+ l, C2 − 2c− l)

|G−1(p)−G−1(p′)− (p− p′)| ≤ c

where G−1(p) := inf
{
t
∣∣G(t) ≥ p

}
is the generalized inverse.

Proof. This is Lemma 3.5 of Wendler [35]. �

5.2. Proof of the Main Theorems.

Proof of Theorem 2.6. Without loss of generality, we can assume that u(tp) = 1, otherwise
replacing h(x, y, t) by h(x, y, t

u(tp)
). We will first concentrate on the first half, that means we

will investigate

sup
λ∈[0, 1

2
]

λ(1− λ)
∣∣∣U−1

⌊λn⌋,n−⌊λn⌋(p)− tp + U⌊λn⌋,n−⌊λn⌋(tp)− p
∣∣∣

≤ sup
λ∈[0, 1

2
]

λ(1− λ)
∣∣∣U−1

⌊λn⌋,n−⌊λn⌋(p)− U−1
⌊λn⌋,n−⌊λn⌋(U⌊λn⌋,n−⌊λn⌋(tp)) + U⌊λn⌋,n−⌊λn⌋(tp)− p

∣∣∣
+ sup

λ∈[0, 1
2
]

λ(1− λ)
∣∣∣U−1

⌊λn⌋,n−⌊λn⌋(U⌊λn⌋,n−⌊λn⌋(tp))− tp

∣∣∣
By Lemma 5.4, we can choose C1 > 0, such that for all n

P

(
sup

λ∈[0, 1
2
]

∣∣U⌊λn⌋,n−⌊λn⌋(tp)− p
∣∣ /√ log log(λn)

λn
≥ C1

)
≤ ϵ.
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Hence, using Lemma 5.3 and 5.7, there exists a constant C2 such that

P
(

sup
λ∈[0, 1

2
]

λ(1− λ)
∣∣U−1

⌊λn⌋,n−⌊λn⌋(p)− U−1
⌊λn⌋,n−⌊λn⌋(U⌊λn⌋,n−⌊λn⌋(tp)) + U⌊λn⌋,n−⌊λn⌋(tp)− p

∣∣ > C2n
−5/9

)
≤ P

(
sup

λ∈[0, 1
2
]

|p−p′|≤C1

√
log log(λn)

λn

λ(1− λ)
∣∣∣U−1

⌊λn⌋,n−⌊λn⌋(p)− U−1
⌊λn⌋,n−⌊λn⌋(p

′) + p′ − p
∣∣∣ > C2n

−5/9

)

+P

(
sup

λ∈[0, 1
2
]

∣∣U⌊λn⌋,n−⌊λn⌋(tp)− p
∣∣ /√ log log(λn)

λn
≥ C1

)

≤ P

(
sup

λ∈[0, 1
2
]

|t−tp|≤C1

√
log log(λn)

λn

λ(1− λ)
∣∣U⌊λn⌋,n−⌊λn⌋(t)− U(t)− U⌊λn⌋,n−⌊λn⌋(tp) + p

∣∣ > C2n
−5/9

)
+ ϵ

≤ 2ϵ

Thus, the first summand is of order n−5/9. It remains to show the convergence of the
second summand U−1

⌊λn⌋,n−⌊λn⌋(U⌊λn⌋,n−⌊λn⌋(tp)) − tp. By the definition of the generalized

inverse, U−1
⌊λn⌋,n−⌊λn⌋(U⌊λn⌋,n−⌊λn⌋(tp)) − tp ≤ 0. Furthermore, if Un1,n2(t) < Un1,n2(tp) by the

monotonicity of h, we have for all n′
2 ≥ n2 that Un1,n′

2
(t) < Un1,n′

2
(tp). As U−1

n1,n2
(Un1,n2(tp))

is the supremum of all t such that Un1,n2(t) < Un1,n2(tp), it follows that U
−1
n1,n2

(Un1,n2(tp)) is
nondecreasing in n2.

For every c > 0 it holds that (U−1
n1,n1

(Un1,n1(tp))−tp) < −c only if Un1,n1(tp−c)−Un1,n1(tp) ≥
0, which is equivalent to

Un1,n1(tp − c)− Un1,n1(tp)− U(tp − c) + p ≥ −U(tp − c) + p.

By Lemma 5.3, there a constant C3 such that

P

(
sup
n1∈N

n
5
9
1 sup

|t−tp|≤
√

log log(n1)
n1

|Un1,n1(t)− U(t)− (Un1,n1(tp)− p)| > C3

)
< ϵ.

As U is differentiable, we have that U(tp − C4n
− 5

9
1 ) + p > C3n

− 5
9

1 for some constant C4 and
consequently for all n2 ≥ n1

U−1
n1,n2

(Un1,n2(tp))− tp ≥ −C4n
− 5

9
1 .

Finally we have that λ(1− λ)⌊λn⌋− 5
9 ≤ n− 5

9 , and so we arrive at

P

(
sup

λ∈[0, 1
2
]

λ(1− λ)
∣∣∣U−1

⌊λn⌋,n−⌊λn⌋(U⌊λn⌋,n−⌊λn⌋(tp))− tp

∣∣∣ > C4n
−5/9

)

≤ P

(
sup

n1≤n/2

n
5/9
1

∣∣U−1
n1,n1

(Un1,n1(tp))− tp
∣∣ > C4

)

≤ P

(
sup
n1∈N

n
5/9
1

∣∣∣Un1,n1(tp − C4n
−5/9
1 )− U((tp − C4n

−5/9
1 )− (Un1,n1(tp)− p)

∣∣∣ | > C3

)

≤ P

(
sup
n1∈N

n
5
9
1 sup

|t−tp|≤
√

log log(n1)
n1

|Un1,n1(t)− U(t)− (Un1,n1(tp)− p)| > C3

)
< ϵ.
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So we have shown the convergence in probability for λ restricted to [0, 1
2
]. For the second

half (λ ∈ [1/2, 1]), note that

sup
λ∈[ 1

2
,1]

λ(1− λ)
∣∣∣U−1

⌊λn⌋,n−⌊λn⌋(p)− tp + U⌊λn⌋,n−⌊λn⌋(tp)− p
∣∣∣

= sup
λ∈[0, 1

2
]

λ(1− λ)
∣∣∣Ũ−1

⌊λn⌋,n−⌊λn⌋(p)− tp + Ũ⌊λn⌋,n−⌊λn⌋(tp)− p
∣∣∣ ,

where Ũn1,n2 is the two sample U -statistics with kernel h̃(x, y, t) = h(y, x, t) calculated for

the stochastic process (X̃i)i∈Z with X̃i = Xn−i. Because of the stationarity, the probability
distribution of this does not change if we insert the random variables X̃ ′

i = X−i instead. The
process (X−i)i∈Z inherits the near epoch properties of (Xi)i∈Z. And with the same arguments
as above, it follows that

sup
λ∈[0, 1

2
]

λ(1− λ)
∣∣∣Ũ−1

⌊λn⌋,n−⌊λn⌋(p)− tp + Ũ⌊λn⌋,n−⌊λn⌋(tp)− p
∣∣∣ = OP (n

−5/9)

�

Proof of Theorem 2.5. We decompose the stochastic process into two parts:

√
n
(
λ(1− λ)(U−1

⌊λn⌋,n−⌊λn⌋(p)− tp)
)
λ∈[0,1]

=
√
n

(
λ(1− λ)

1

u(tp)
(p− U⌊λn⌋,n−⌊λn⌋(tp))

)
λ∈[0,1]

+
√
n

(
λ(1− λ)

(
U−1
⌊λn⌋,n−⌊λn⌋(p)− tp +

U⌊λn⌋,n−⌊λn⌋(tp)− p

u(tp)

))
λ∈[0,1]

.

By Theorem 2.6, the second part converges to zero in supremums norm. As a consequence
of Proposition 5.5, the first part converges weakly to

((1− λ)W1(λ) + λ(W2(1)−W2(λ)))λ∈[0,1] ,

where W = (W1,W2) is a two-dimensional Brownian motion with covariance structure

Cov(Wi(µ),Wj(λ)) = (µ ∧ λ)
1

u2(Q(p))

∑
k∈Z

E(hi(X0;Q(p)), hj(Xk;Q(p))).

�

Proof of Theorem 1.1. By Theorem 2.5,

λ(1− λ)median
{
Xi −Xj

∣∣1 ≤ i ≤ ⌊nλ⌋, ⌊nλ⌋+ 1 ≤ j ≤ n
}
λ∈(0,1)

converges to

((1− λ)W1(λ) + λ(W2(1)−W2(λ)))λ∈[0,1] ,

where W = (W1,−W1) and W1 is a Brownian motion, as h1(x, 0) = −h2(x, 0). The variance

is Var(W1(1)) =
σ2

u2(0)
. Now

u(0)

σ
((1− λ)W1(λ) + λ(−W1(1) +W1(λ))) =

u(0)

σ
W1(λ)− λ

u(0)

σ
W1(1)

is a Brownian Bridge. Finally, by Lemma 5.6 and Theorem 1.2 of Dehling et al. [15],
û
σ̂
→ u(0)

σ
in probability, which completes the proof. �
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