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Forecasting Industrial Production in 
Germany: The Predictive Power of 
Leading Indicators

Abstract
We investigate the predictive power of several leading indicators in order to forecast industrial production 
in Germany. In addition, we compare their predictive performance with variables from two competing 
categories, namely macroeconomic and financial variables. The predictive power within and between 
these three categories is evaluated by applying Dynamic Model Averaging (DMA) which allows for time-
varying coefficients and model change. We find that leading indicators have the largest predictive power. 
Macroeconomic variables, in contrast, are weak predictors as they are even not able to outperform a 
benchmark AR model, while financial variables are clearly inferior in terms of their predictive power 
compared to leading indicators. We show that the best set of predictors, within and between categories, 
changes over time and depends on the forecast horizon. Furthermore, allowing for time-varying model 
size is especially crucial after the Great Recession.
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1. Introduction

One major branch of economics being continuously well-covered by the media are pre-
dictions about the business cycle. The German Council of Economic Experts, several
economic research institutes like the RWI, ifo, IfW and many more institutions provide,
on a regular basis, forecasts about the future state of the economy. The fact that these
forecasts are of fundamental interest to the general public is not surprising as they have
immediate effects on current and future decisions. Policymakers are interested in those
predictions because they may have to adjust budgets or they want to pass legislation to
stabilize the economy. Central banks pay attention to them since economic booms or
busts may cause deviations from the inflation target which in turn call for adjustments
in the stance of monetary policy. Furthermore, business cycle forecasts are of particular
interest to financial market participants to form accurate expectations. Finally, also
households are interested in them since changes in the business cycle may influence em-
ployment and personal income.

Measures of real activity, like industrial production or even GDP itself, are published
with a significant delay. However, policymakers and the private sector have a fundamen-
tal interest in detecting economic down- and upturns in a timely manner. This interest
has led to the evolution of leading indicators. Many institutions spend a large effort to
provide economists and practitioners with such indicators. This study evaluates the pre-
dictive power of the most prominent leading indicators, namely the ifo business climate,
the ZEW indicator, the consumer confidence indicator, the business confidence indica-
tor, the composite leading indicator from the OECD and the euro-coin indicator. But
leading indicators are not the only variable category to be considered when forecasting
industrial production.1 Macroeconomic or financial variables may also contain valuable
information about the future state of the economy. Therefore, we will also compare the
predictive power within as well as across these three categories.

Several studies compare the predictive power of leading indicators and variables from
other categories for Germany, e.g. Schumacher and Dreger (2005), Drechsel and Scheufele
(2012), Ulbricht et al. (2017) or Heinisch and Scheufele (2018). However, our study dif-

1We are aware of the fact that by focusing on industrial production, we are not considering the
evolution in the service sector. However, demand for services is less volatile than production since
service contracts are usually characterized by a relatively long cancellation period. Therefore, the
service sector is less sensitive with respect to the business cycle.
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fers from those in several dimensions. Schumacher and Dreger (2005) also compare the
predictive power of several leading indicators. But some indicators used in their study
have ceased (e.g. the composite leading indicators published by Frankfurter Allgemeine
Zeitung or Handelsblatt) and some other promising indicators are not considered (e.g.
the composite leading indicator published by OECD or the business confidence indica-
tor from the European Commission). Furthermore, they do not consider macroeconomic
and financial variables. Drechsel and Scheufele (2012), in contrast, use a comprehensive
set of 120 predictors and focus on the predictive power of leading indicators during the
Great Recession in 2008/2009. But due to the large set of predictors and their econo-
metric technique, they do not provide time-varying weights attached to single predictors.
We, instead, use data until the recent past which allows us to investigate whether the
financial and sovereign debt crisis has caused a persistent change in the weight attached
to single predictors and/or in the size of the forecasting model. Another related study
is Ulbricht et al. (2017). Even though they also consider leading indicators, their em-
phasis is on the predictive power of media data. Finally, the predictive power of leading
indicators has also been investigated by Heinisch and Scheufele (2018). However, they
use mixed-frequency models to predict GDP on a quarterly basis.

One drawback shared by many studies is that they apply model averaging to single
predictor models. Furthermore, the models used in these studies do not exhibit the
most relevant econometric attributes. That is, a valuable forecasting model should have
the following three properties. First, the parameters should be allowed to change over
time in order to be able to account for structural breaks. Recursive or rolling forecasting
methods can account for time-varying coefficients but only up to a certain extent. Groen
et al. (2009) argue that it is better to design a forecasting model that takes time-variation
in the parameters explicitly into account. Models with time-varying parameters (TVP)
are commonly estimated using the methods described in e.g. Cogley et al. (2005). Many
studies like Chan et al. (2012), Ferrara et al. (2015) or Barnett et al. (2014) document
the usefulness of TVP-models in forecasting exercises. Second, the number of potential
predictors can be large. One strand of the literature has focussed on the development of
factor models (see e.g. Stock and Watson (2002)) which are quite successful in forecast-
ing macroeconomic time series. Within this model class, the need of variable selection is
eluded by extracting a couple of factors that capture the common movements of all time
series. However, many factor models are not able to assess the predictive content of a
certain variable category and none of them is able to evaluate the predictive content of
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a particular variable within a category. Especially the latter is of great interest to many
economists and policy makers because it may contain valuable information about the
state of the economy. Another strand of the literature has introduced Bayesian Model
Averaging (BMA). BMA is attractive since it allows to compute inclusion probabilities
for single predictors. In principle, BMA averages over a wide range of models which
differ with respect to the predictors and therefore also in size.2 Third, the model and
hence the set of predictors might change over time. For instance, some variables are
well suited to predict industrial production in recessions but not in expansions. Ignoring
this regime dependence might explain why models considering the whole predictor set
at each point in time exhibit poor forecast performance.

This study uses the econometric technique called DMA, developed by Raftery et al.
(2010) and introduced to economic applications by Koop and Korobilis (2012). DMA
is equipped with all three properties described above. It allows the coefficients of the
model to change over time, deals with model selection appropriately and, finally, allows
the entire forecasting model to change over time. In so doing, we contribute to the
literature in the following ways. We show that the weight attached to all three vari-
able categories is time-varying and that variables from the category of leading indicators
receive the largest weight independent from the forecast horizon. Leading indicators
exhibit the best quantitative forecasting properties while both, macroeconomic and fi-
nancial variables, have less predictive power. Our analysis shows that the average model
size changes considerably over time and especially during the financial crisis. During this
period of considerable economic turmoil, larger models receive a higher weight. Further-
more, there seems to be a positive correlation between model size and forecast horizon as
larger models tend to perform relatively better for longer forecasting horizons. Finally,
the cumulated absolute forecast error points towards similar forecast performance before
and after the Great Recession.

The paper proceeds as follows. Section 2 presents the econometric framework, Section
3 the design of the forecasting experiment, Section 4 the data, Section 5 the empirical
results, Section 6 contains robustness checks and, finally, Section 7 concludes.

2Hendry and Clements (2004) or Timmermann (2006) show that pooling models can lead to substantial
forecast improvements.
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2. Dynamic Model Averaging

In order to take parameter and model uncertainty into account, we use the framework
described in Koop and Korobilis (2012). Let k = 1, ..., K denote the set of models a
professional forecaster wants to consider.3 Each model can be written in state-space
form as

yt = x
(k)
t θ

(k)
t + ε

(k)
t

θ
(k)
t = θ

(k)
t−1 + η

(k)
t (1)

where ε(k)t ∼ N(0, H
(k)
t ) and η(k)t ∼ N(0,Q

(k)
t ). Let Mt ∈ 1, ..., K denote which model

applies in each point in time. Since all K models shall be used in forecasting industrial
production, we need to calculate the time-varying model probabilities denoted as P (Mt =

k|yt−1) to average across these models.4 How P (Mt = k|yt−1) is calculated will be
discussed below. The beauty of this model is to allow for changes in the marginal effects
of each predictor and their corresponding weight. In a first step, we focus on estimating
one of these K models.5 In general, the model could be estimated by applying the
Kalman filter and Markov chain Monte Carlo (MCMC) methods. That is, in a first step
one would draw θT by applying the conventional Kalman Filter as follows:

Predictions

θt|t−1 = µ+ θt−1|t−1 (2)

Σt|t−1 = Σt−1|t−1 +Qt (3)

ηt|t−1 = yt − yt|t−1 = yt − xtθt|t−1 (4)

ft|t−1 = xtΣt|t−1x
′
t +Ht (5)

Updating

θt|t = θt|t−1 +Ktηt|t−1 (6)

Σt|t = Σt|t−1 −KtxtΣt|t−1 (7)

where Kt = Σt|t−1x
′
tft|t−1 is the Kalman gain. In a second step, Ht could be drawn by

using the algorithm of Kim et al. (1998). Finally, one might draw Qt as in Primiceri
3DMA averages over 2m models, where m denotes the number of variables. For example, in the case
m=10 this amounts to averaging over 1024 models.

4An index in the exponent denotes an information set.
5Note that, for simplicity, the model index (k) is removed temporarily.
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(2005). Note that this algorithm depends on both, Ht and Qt. Running MCMC on
K models, where each of these models may have many predictors, is computationally
demanding. Therefore, we follow the suggestion in Raftery et al. (2010), which results
in a proper approximation, such that the Kalman Filter only needs to be run K times.
This approximation requires to set three hyperparameters λ, α and κ. The first two
are called forgetting factors and the third a decay factor. Note that conditional on Ht,
computation simplifies if equation (3) is replaced by

Σt|t−1 =
1

λ
Σt−1|t−1 (8)

or, equivalently, Qt = (λ−1 − 1)Σt−1|t−1, where 0 < λ ≤ 1.6 Such approaches go back
to Jazwinsky (1970). The term forgetting factor arises from the fact that observations
i periods in the past obtain a weight of λi. E.g. if λ = 0.99 observations 12 months
ago receive a weight of approximately 90%. To prevent the model from overfitting and
to ensure that the coefficients evolve gradually over time, our analysis is limited to
λ ∈ {0.99, 0.98}. Such values are common in the literature of forgetting factors, see
e.g. Koop and Korobilis (2013), Di Filippo (2015) or Prüser (2019).7 It is important
to note that using (8) instead of (3) simplifies the MCMC algorithm since the need
of estimating Qt disappears. To fully circumvent the computational costs of MCMC-
methods, a recursive estimator for Ht is needed. We follow the suggestion in Koop and
Korobilis (2012) and use an Exponentially Weighted Moving Average (EWMA) such
that

Ĥt|t−1 = κĤt−1|t−2 + (1− κ)(yt − xtθt|t−1)2, (9)

where κ is the decay factor. EWMA estimators are frequently used in finance to model
time-varying volatilities. Since monthly data are used in this application, we follow
the suggestion in RiskMetrics (1996) and set κ = 0.97. The obvious advantage is that
simulating Ht becomes obsolete and, in consequence, we do not need MCMC methods.
Forecasting is then conducted by applying the predictive distribution

yt|yt−1 ∼ N(xtθt|t−1,xtΣt|t−1x
′
t +Ht). (10)

Finally, and in order to be able to average over K models, we need to calculate P (Mt =

k|yt−1). We again follow the suggestion in Raftery et al. (2010) and calculate time-

6In the special case of λ = 1, the marginal effects are time-invariant.
7Note that in the case of monthly data λ = 0.98 leads to a similar size of forgetting as using λ = 0.95
on quarterly data.
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varying inclusion probabilities for each model as

πt|t−1,k =
παt−1|t−1,k
K∑
l=1

παt−1|t−1,l

(11)

where α is typically set to a value slightly less than one. The advantage of this specifi-
cation is parsimony. That is, we do not need to specify a transition matrix which would
again require MCMC methods. Finally, equation (11) is updated such that

πt|t,k =
πt|t−1,kpk(yt|yt−1)
K∑
l=1

πt|t−1,lpl(yt|yt−1)
(12)

where pk(yt|yt−1) is the predictive likelihood of model k. The predictive likelihood is
defined as the predictive density evaluated at the actual observation yt where the latter
is given by equation (10). Forecasting is then done by weighting the predictive results
of each model by using πt|t−1,k. That is, DMA point predictions are given by

E(yt|yt−1) =
K∑
k=1

πt|t−1,kx
(k)
t θ̂

(k)
t|t−1. (13)

Dynamic Model Selection (DMS), instead, selects the single best model with highest
πt|t−1,k at each point in time to make a prediction.
In order to provide a deeper understanding of the forgetting factor α, note that the
weights assigned to each model k at time t are given by

πt|t−1,k ∝
t−1∏
i=1

[pk(yt−i|yt−i−1)]α
i

. (14)

Thus, the weight attached to model k at time t depends on its forecasting performance in
the recent past measured by the predictive likelihood pk(yt−i|yt−i−1) and is controlled by
the forgetting factor α. Therefore, the weight decays exponentially such that forecasts i
periods in the past obtain a weight of αi. E.g. if α = 0.99, as in our benchmark scenario,
forecasting performance 12 months in the past receives a weight of approximately 90%.
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3. Design of the Forecasting Experiment

In order to evaluate the pseudo out-of-sample forecasting performance of the leading
indicators, we follow the direct forecasting approach described in Marcellino et al. (2006).
Let Xt denote the log level of the variable to be forecasted, in our example the log of
the seasonally adjusted industrial production index. Furthermore, let yt denote the
stationary transformation of Xt after applying first differences. Since we are interested
in annualized h-step ahead predictions, where h ∈ {1, 3, 6, 12}, the dependent variable
in our forecasting exercise is yht+h where

yht+h =
12

h
Xt+h −Xt.

By including lags and exogenous regressors, the forecasting regression model becomes

yht+h = ct +

p∑
i=1

ρt,iyt+1−i + xtθt + εt+h,

where ct denotes a constant term, ρt,i the autoregressive coefficients, p the number of
lags and θt the effect of the m exogenous predictors xt. When applying DMA and
DMS, a constant term and three lags enter each of the K models, regardless of h.8

The lag length is motivated by the benchmark, a recursive AR(3) model, and has been
determined by the AIC over the whole sample.9 The prediction error of model j is given
by ehj,t = yt+h − ŷj,t+h.10 To evaluate the predictive performance, we use two common
forecast metrics, the root mean squared error (RMSE) and the mean absolute error
(MAE) defined as

RMSEhj =

√√√√ 1

T

T∑
t=1

(ehj,t)
2

MAEhj =
1

T

T∑
t=1

|ehj,t|.

8In an additional robustness check, the number of lags in each of the K models has been doubled.
This did not improve the overall forecast accuracy. Furthermore, the variable inclusion probabilities
stay the same. Results are available upon request.

9Using an AR process as the benchmark model is common in the literature on predicting industrial
production in Germany, see e.g. Schumacher and Dreger (2005) or Wohlrabe and Robinzonov (2008).

10Note that j 6= k. Instead, j refers to, e.g., DMA for a certain combination of λ and α.
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To allow for an immediate quantitative judgement of the actual forecasting model (j)
against the benchmark model (j = 0), the relative forecasting performance is used.
That is, we divide the RMSE (MAE) of the current forecasting model by the RMSE
(MAE) of the benchmark model. If the resulting value is smaller than one, the current
model outperforms the benchmark model. In addition, the predictive accuracy between
the current forecasting model and the benchmark model is evaluated by applying the
Diebold and Mariano (1995) test (DM-test). This test bases on the loss difference
dj,t = g(e0,t) − g(ej,t) where g(.) can be any arbitrary function. Within our analysis,
g(.) is either the squared loss function or the absolute loss function depending on the
forecasting metric at hand. The corresponding test-statistic is defined as

DM =
d̄j

V̂ (dj,t)

where d̄j and V̂ (dj,t) are estimates of the mean and the long-run variance of dj,t, re-
spectively, and DM ∼ N(0, 1). In certain circumstances, estimates of the long-run
variance may become negative. Harvey et al. (2017) provide an overview about alterna-
tive estimators for the long-run variance in such circumstances. We follow one of their
suggestions and make use of the Bartlett kernel. But Kiefer and Vogelsang (2005) show
that the asymptotic distribution of such heteroskedasticity-autocorrelation (HAC) tests,
based on nonparametric variance estimators, depends on the kernel and the bandwidth.
Therefore, we make use of the Fixed-b asymptotic critical values suggested by them.11

4. Data

Within this out-of-sample forecasting exercise, we use monthly data ranging from June
1999 until October 2018. The first three years of data are used to initialize the recursive
AR benchmark model. In addition, we lose three observations due to the lag length of all
models. To forecast industrial production, 23 exogenous variables from three categories
are considered.12 The first category consists of twelve variables which typically exhibit
leading properties. Within this study, we use three types of leading indicators. The first
are survey based indicators and the second are composite indicators. While the former
are immediately derived from survey data, the latter is an aggregated index comprising

11The interested reader is referred to Kiefer and Vogelsang (2005) for further details.
12The exact choice of the variables is a distillate of the relevant literature.
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individual indicators.13 Four out of six indicators used in this study, namely the ifo
business climate, the ZEW indicator, the consumer confidence indicator and the business
confidence indicator, are survey based while the two remaining indicators, namely the
composite leading indicator from the OECD and the euro-coin indicator, belong to the
class of composite indicators. The third type includes various new orders time series for
industry, intermediate goods, investment, consumption, domestic and foreign.
The second category consists of five macroeconomic time series, namely the unemploy-
ment rate, EONIA, harmonized consumer price index, labor force and employees with
social insurance. Six financial variables constitute the third category, namely M3, a
commodity price index, the DAX, an interest rate spread (10 year government bond -
EONIA), the effective exchange rate and a financial stress indicator. Table 1 provides
an overview about the data sources and the transformations applied to each time series.
Since the survey based and composite indicators are approximately stationary in levels,
one might be tempted to include them in levels. But Wohlrabe and Wollmershäuser
(2017) show for both, the ifo and the ZEW indicator, that the correlation between the
rates of change of GDP and first differences of these indicators is higher. Therefore, we
follow this suggestion.14

We provide a comprehensive overview about the forecasting properties of all three vari-
able categories by estimating five different models. Each models’ ingredients are provided
in Table 1. Model 1 (M1) consists of 18 variables from all three categories. That is,
we consider the whole range of survey and data based leading indicators, several new
orders time series, three macroeconomic indicators and all six financial indicators.15 The
remaining four models are, with respect to the included variable categories, in principle
subsets of M1. Model 2 (M2) considers only survey based and composite indicators.16

Model 3 (M3) extends M2 by the new orders indicators. Model 4 (M4) considers exclu-
sively macroeconomic variables and Model 5 (M5) solely financial indicators. One might
question the need for M2 until M5 since our econometric framework considers variable
uncertainty such that less important predictors receive little weight. However, only esti-
mating M1 will not provide information regarding the quantitative predictive power of

13A comprehensive overview about the construction of composite indicators is given by Nardo et al.
(2005).

14In a later robustness check the leading indicators enter the model in levels.
15We did not consider estimating a model with all predictors, because computation time of this model

increases exponentially. Furthermore, the correlation coefficients between all new orders series are
very high.

16Both composite indicators, the CLI and the EUC, are omitted in a later robustness check.

10



Table 1: Variable and Model Overview
Category Variable M1 M2 M3 M4 M5 Abbr. Source T-Code

Endogenous Industrial Production x x x x x IP Buba 4

Leading
Indicator

Ifo Business Climate x x x IFO CESifo 3
ZEW x x x ZEW ZEW 3
Consumer Confidence x x x CCI EC 3
Business Confidence x x x BCI EC 3
Composite Leading x x x CLI OECD 3
Euro-coin x x x ECI CEPR 3
New Orders Industry x x NOIN Buba 4
New Orders Intermediate x NOINP Buba 4
New Orders Investment x NOINV Buba 4
New Orders Consumption x x NOCO Buba 4
New Orders Domestic x NODOM Buba 4
New Orders Foreign x x NOFO Buba 4

Macro

Unemployment Rate x x UN BFA 3
EONIA x x EON EZB 1
Consumer Prices x x HICP Buba 4
Labor Force x LF Buba 4
Social insured Employees x SILF Buba 4

Finance

M3 x x M3 Buba 4
Commodity Price Index x x COM HWWI 4
Dax x x DAX YF 4
10 Year - EONIA x x SPREAD OC 1
Effective Exchange Rate x x FX EZB 1
Financial Stress Indicator x x FS EZB 2

Notes: T-Code: 1 - Level; 2 - Log Level; 3 - First Difference; 4 - Log Difference. BFA - Bundesagentur
für Arbeit, YF - Yahoo Finance, OC - Own Calculation.
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Table 2: Correlation coefficients between leading indicators (in differences)

ifo ZEW CCI BCI CLI EUC

ifo 1.00
ZEW 0.14 1.00
CCI 0.46 0.14 1.00
BCI 0.73 0.06 0.39 1.00
CLI 0.71 0.16 0.44 0.75 1.00
EUC 0.50 0.22 0.33 0.47 0.33 1.00

all three categories. Estimating all five models allows for an immediate comparison of
the quantitative predictive power across all three categories.
Before we present our empirical results, we briefly sketch the construction of the sur-

vey based and composite indicators. The ifo business climate bases on 9.000 monthly
reports of the manufacturing, service, building and retail branch. It is an average of
the questions about the current business situation and about the expectation about the
next six months. The ZEW indicator uses a survey of 300 experts from banks, insurance
companies and finance departments. More explicitly, the index bases on their expecta-
tions about the business cycle in six months. In order to capture the expectations of
households, the consumer confidence indicator utilises information from a survey of 2.000
persons. Those individuals are asked about their expected financial situation, the gen-
eral economic situation, prices, unemployment as well as about their consumption and
savings behaviour. The business confidence indicator, calculated by the European Com-
mission, uses the same questionnaire as the ifo business climate. However, it utilises
information from different questions. This indicator combines information about the
stock of finished goods, new orders as well as about domestic production within the
next three months. Compared to the just mentioned survey based indicators, the com-
posite leading indicator is a weighted average of the ifo business climate indicator, orders
inflow, export order books, new orders in manufacturing, finished goods stock, spread of
interest rates, service demand evolution and the consumer confidence indicator. There-
fore, it draws on a wider information set compared to the survey based indicators and
provides a good approximation of the business cycle. Finally, the euro-coin indicator
bases on generalized principal components and condenses information from 145 monthly
time series, from various countries, to a single indicator of economic activity for the Euro
area. Therefore, our analysis does not only employ information from Germany, but also
from the Euro area. Utilizing such information is especially important for foreign trade
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dependent countries like Germany. Table 2 provides an overview about the correlation
between all six leading indicators. While the pairwise correlations between the business
confidence indicator, the composite leading indicator, the ifo index and the euro-coin
are relatively high (around 0.7, except between BCI and EUC) the ZEW indicator is,
surprisingly, only weakly correlated with all other indicators.

5. Empirical results

This section presents the empirical results. We begin with the quantitative forecasting
results of M1 until M5. Next, the posterior inclusion probabilities of M1 are shown,
followed by a discussion about the average model size considered at each point in time.
Finally, we investigate the evolution of the cumulated absolute forecast error to reveal
periods with poor forecast performance.
The relative forecast performance of all models is summarized in Table 3. The core
results base on the forgetting factors λ = 0.99 and α = 0.99 in order to favor gradual
changes of the model and its parameters.17 The relative forecast performance is pro-
vided based on both, the RMSE- and the MAE-metric. As a first step, we compare the
predictive power of the benchmark model with an autoregressive time-varying parame-
ter model.18 The results show that allowing for time-variation increases the predictive
power slightly. Focussing on the quantitative forecasting results of M1 until M3 in terms
of the relative forecasting performance leads to the following conclusions.19 Both, DMA
and DMS beat the benchmark model at all four horizons independent from the model’s
ingredients since the relative forecast performance is below one.20 The improvements
range between -3% and -33%. In most instances, the DM-test reveals significant outper-
formance of DMA and DMS against the benchmark model. The forecast performance
of these three models, conditional on h, is very similar. The only exception arises at
h = 12. The relative forecasting performance of M1 collapses to 0.94 while the rela-
tive forecasting performances of M2 and M3 is approximately 0.77 when considering the
RMSE.

17This assumption is relaxed in a later sensitivity analysis.
18The forgetting factor of the autoregressive time-varying parameter has been set to λ = 0.99.
19Note that all three models contain variables from the class of leading indicator.
20There are very few instances in which a contrary result arises and these are limited to M1 when using

the MAE-metric with a forecast horizon of twelve months. Note that this result depends on the
specification of α. In a later robustness check we consider a higher degree of model change.

13



Table 3: Relative Forecast Performance: λ = 0.99, α = 0.99

Metric h AR-TVP
(0.99)

M1 M2 M3 M4 M5

DMA DMS DMA DMS DMA DMS DMA DMS DMA DMS

RMSE

1 0.99** 0.91** 0.92** 0.90** 0.90** 0.91** 0.92* 0.99 1.00 0.97** 0.98
3 0.93* 0.71* 0.72* 0.74** 0.75* 0.73* 0.75* 0.95 0.95 0.90* 0.90*
6 0.96 0.69** 0.69** 0.67** 0.68** 0.67** 0.68** 0.97 0.97 0.87** 0.87*
12 1.01 0.94 0.95 0.77*** 0.77*** 0.77*** 0.77*** 1.07 1.07 1.02 1.00

MAE

1 0.99* 0.97 0.97 0.95* 0.95 0.96 0.97 0.99 0.99 1.00 1.02
3 0.95** 0.84** 0.85* 0.81** 0.83** 0.82** 0.83** 0.97 0.97 0.97 0.99
6 0.93** 0.76** 0.77** 0.70*** 0.71*** 0.70*** 0.71*** 1.01 1.02 0.94 0.96
12 0.99 1.02 1.06 0.73*** 0.73*** 0.73*** 0.73*** 1.19 1.19 1.07 1.06

Notes: Metric determines one of the two forecast metrics, the Root Mean Squared Error (RMSE) or the Mean Abso-
lute Error (MAE); h ∈ {1, 3, 6, 12} corresponds to the forecast horizon; *** (**/*) denotes significant outperformance
of the respective model against an AR(3) at the 1 (5/10)% level using the one-sided Diebold-Mariano-Test. The crit-
ical values have been calculated by using the Fixed-b asymptotic derived in Kiefer and Vogelsang (2005). AR-TVP
(0.99) is a simple time-varying AR model where λ = 0.99.
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Next, we focus our attention on M4 and M5 considering solely macroeconomic or finan-
cial variables, respectively. When applying the RMSE, the relative forecasting perfor-
mance of M4 is below one for h ∈ {1, 3, 6} while for the MAE, it is only below one if
h ∈ {1, 3}. Therefore, macroeconomic variables are relatively weak predictors, especially
at a longer forecasting horizon, e.g. at h = 12. The null hypothesis of equal forecast
accuracy is not rejected in almost all instances. The pattern changes slightly when con-
sidering the relative forecasting performance of M5. In most cases the relative forecast
performance is below one. But more important, the relative forecast performance is
better than in M4. Additionally, the DM-test confirms the outperformance at several
horizons.
Summing up, those models considering leading indicators, M1 until M3, beat the bench-
mark model at all horizons. The relative forecast performance of these three models,
conditional on h, is very similar. Comparing the relative forecast performance of M2
and M3, where M2 is basically a constrained version of M3, yields that the additional
explanatory power of the new orders series is limited. M4 and M5, the models uniquely
considering either macroeconomic or financial variables, forecast slightly better than the
benchmark model. But they exhibit a weaker predictive performance compared to M1
until M3. Furthermore, macroeconomic variables forecast worse compared to financial
variables. The finding that the relative forecast performance of M1, M2 and M3 de-
creases with the forecast horizon h is in line with Drechsel and Scheufele (2012).21

So far, we have only focused on the quantitative forecasting performance of each model
against the benchmark model and additionally on the forecasting performance of these
models with partly non-overlapping categorial ingredients. However, this perspective
ignores one important component, namely the weight attached to each predictor. For
example, a single predictor of a certain category might have a lot of predictive power
while the remaining variables are mostly useless. One attractive feature of our econo-
metric framework is that it allows to compute weights for each single predictor. Such
weights are typically called inclusion probabilities. These probabilities are the sum of
the weights of all models which include a particular predictor. This feature of the model
allows us to detect the variable with the highest weight. Furthermore, the weight of
each predictor might change along two dimensions, over time and with respect to the
forecast horizon. DMA is able to detect such circumstances. For example, some leading

21This finding is due to the fact that leading indicators deploy their predictive power at longer forecast
horizons.
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indicators might forecast well if h is small and some if h is large. Obviously, these indi-
cators should be attached with higher weight when h is small or large. We will focus on
the time-varying variable probabilities derived from M1, since the weights are of special
interest when considering a model with many competing predictors.22

Figure 1 provides an overview about the inclusion probabilities and consists of twelve
sub-plots. The rows correspond to the forecast horizon h while the three columns display
the time-varying variable probabilities for the 18 candidate predictors. We begin with the
first row of Figure 1 depicting the time-varying variable probabilities when forecasting
one period ahead (h = 1). The first sub-plot shows the inclusion probabilities of the
survey and composite indicators. The weights of most leading indicators stay below
50%. The only exceptions are BCI and CLI. The former has an inclusion probability
of more than 60% over the whole period under investigation while the latter has the
second highest weight. This pattern changes after 2014. The inclusion probability of
CLI exceeds that of BCI. The second sub-plot shows the inclusion probabilities of NOIN,
NOCO, NOFO, UN, EON and HICP. The weights of all variables are quite similar.
NOFO and HICP have, taking an average over time, the highest inclusion probability.
But none of these series exceeds the probability of 50%. Finally, we turn our attention
to the financial variables. Their inclusion probabilities are again quite similar. All of
them rarely exceed the 50% threshold. In summary, for making forecasts one month
ahead (h = 1) the leading indicators BCI and CLI are most useful.
When predicting industrial production three months ahead (row 2 of Figure 1), the
pattern starts to change. The first sub-plot reveals that the weight attached to several
leading indicators varies strongly over time. The weight attached to CLI is now higher
than the weight attached to BCI along almost the entire sample period under investiga-
tion for predicting industrial production in Germany. Furthermore, the weight attached
to CLI is 100% since the onset of the Great Recession. In addition, the weight attached
to ZEW and EUC increases at the beginning of the Great Recession and stays relatively
high over the remaining sample. The inclusion probabilities in the second sub-plot, those
of new orders series as well as of the macroeconomic variables, are on average smaller
compared to h = 1 . Finally, the third sub-plot reveals that both, FS and COM, receive
the highest weight from 2008 onwards while the weight of the remaining variables stays
below 40% over the entire sample.

22We have also calculated the time-varying variable probabilities for M2 until M5. The results are
available upon request.
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Figure 1: Posterior Inclusion Probabilities of M1, λ = 0.99, α = 0.99.
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The picture again changes slightly when moving to the third row, which provides time-
varying inclusion probabilities when forecasting six periods ahead (h = 6). Interestingly,
DMA puts a weight of almost one on CLI over almost the entire sample. Additionally,
the weight attached to EUC increases with the onset of the Great Recession, while the
weight of the ZEW indicator decreases compared to the three month horizon. This
increase might be caused by the substantial economic spillovers during the sovereign
debt crisis. The remaining indicators receive a weight smaller than approximately 30%.
The inclusion probabilities in the second sub-plot are almost equal to those of the three
period horizon. The only exception is EON which spikes at three points in time. Lastly,
we focus on the inclusion probabilities of the financial variables. Compared to the three
months horizon, FS is of similar importance while the weight on COM has decreased
strongly. Two further variables exceed the threshold of 50% at some points in time,
namely the SPREAD and FX.
Lastly, we investigate the time-varying inclusion probabilities for a forecasting horizon
of twelve months (fourth row). The first sub-plot reveals that DMA still puts the largest
weight on CLI while the weights on the remaining indicators are quite low. Within the
variable set depicted in the second sub-plot, only EON receives a relatively high weight.
Finally, the third sub-plot shows that SPREAD, FS and FX experience periods with
relatively high weights.
Summing up, there are considerable changes in the inclusion probabilities along both
dimensions, time and forecast horizon. At the one month forecast horizon, BCI and CLI
are the predictors with the largest weight. Especially BCI seems to be an important
predictor in the short run. When forecasting three months ahead, one should consider
CLI, ZEW, BCI, EUC, FS and COM. At the six months horizon, the weights attached
to BCI, ZEW, COM decrease while the weights on EUC and SPREAD increase. Fi-
nally, on the twelve months horizon, only CLI, EON, SPREAD, FS and FX are equipped
with a relatively high weight. The high weight attached to CLI when forecasting three,
six and twelve months ahead fits roughly to the lead length targeted by Gyomai and
Guidetti (2012) ranging between six to nine months. In the case of the EON, the high
weight attached at h = 12 might be due to the lag with which monetary policy affects
the economy. The sudden decline of the weight since 2013 may be due to the fact that
the EON has already reached a very low level. Overall, the results confirm the need of
a dynamic estimator where the set of candidate predictors receives time-varying weights.

In the following, we provide evidence regarding the need of an econometric framework
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Figure 2: Predicted Model Size of M1 over time and in relation to the forecasting horizon,
λ = 0.99, α = 0.99.

that can deal with the issue of model size in a dynamic fashion. Let Sizek,t denote the
number of predictors in model k at time t.23 Then

E(Sizet) =
K∑
k=1

πt|t−1,kSizek,t

can be interpreted as the average number of predictors used in DMA at time t. Figure
2 illustrates this measure for M1 conditional on h. It is remarkable that the full set of
predictors is never considered. Instead, DMA favours more parsimonious models. At the
beginning of the sample, the average model size is slightly below five. Moving along the
time line, the average model size starts to increase with the onset of the Great Reces-
sion. Therefore, during times of economic turmoil, DMA favours additional regressors
or, put differently, more complex models. Not unsurprisingly, the average number of
predictors of models with large h seem to experience this increase somewhat earlier.
Immediately after the Great Recession the average number of predictors stays the same
and starts to decline for h ∈ {3, 6, 12} at approximately 2012. Furthermore, Figure 2
clearly highlights that multi-predictor models are superior compared to single-predictor
models, which are usually considered in many empirical studies.

Next, we focus on the predictive performance of all five models over time by investigating
the cumulated absolute forecast error. This allows us to detect structural breaks in the

23Note that Sizek,t does not contain the intercept as well as the three lags included in each model.
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forecasting performance. Figure 3 provides the corresponding overview. The figure
consists of 20 sub-plots. The rows correspond to the forecast horizon h ∈ {1, 3, 6, 12}
and the columns to M1 until M5. Within each sub-panel, the cumulated absolute forecast
errors are depicted. The blue line corresponds to the benchmark model, the red line to
the AR-TVP(0.99) model and the yellow and purple line to DMA and DMS, respectively.
A very similar pattern is observed in many sub-plots. That is, a steady increase of the
cumulated absolute forecast error until the beginning of the Great Recession followed
by a sudden jump and finally a steady increase in the aftermath of the Great Recession.
Therefore, the largest forecasting errors are made during times of economic turmoil.
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Figure 3: Cumulated absolute forecast error for each model. The four rows correspond to h ∈ {1, 3, 6, 12}.
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6. Robustness

We investigate the robustness of our results in two ways. In a first step, we focus on
the sensitivity of the results with respect to the two forgetting factors λ and α. In a
second step, we focus on the forecasting properties of M2, the leading indicators. Since
we are primarily interested in their forecasting abilities, we focus on M2 and consider
the following scenarios. We evaluate the forecasting performance of those indicators in
level (Abbr. LiL in Table A.1). Furthermore, we solely consider survey based indicators
(Abbr. SV in Table A.1). That is, we do not consider the CLI and EUC when forecasting
industrial production in Germany. This is due to the fact that composite indicators are
usually subject to revisions and may be published with a delay due to data availability.

We start with the sensitivity analysis where λ = 0.98 and α = 0.98. Table A.2 provides
an overview. In principle, there are no major differences in the quantitative results.
Figure A.2 depicts the posterior inclusion probabilities. The major conclusions drawn
stay the same even though the inclusion probabilities are more erratic compared to the
specification above. Furthermore, the average number of predictors used at time t, as
depicted in Figure A.1 in general tells the same story. The only differences are that
the average model size is somewhat larger along the entire sample and that it decreases
more quickly after the Great Recession.
Finally, we focus attention on the robustness checks for M2 to be found in Table A.1.
Using all leading indicators in levels (see column LiL in Table A.1) leads to worse predic-
tions compared to first differences. Finally, when removing the two data based indicators,
the forecast quality worsens quite strongly (see column SV in Table A.1). However, this
does not come as a surprise since our empirical investigation has shown that the weight
attached to CLI is very large independent from the forecast horizon.

7. Conclusions

This study uses Dynamic Model Averaging to investigate the predictive power of leading
indicators within a pseudo out-of-sample forecasting exercise. Furthermore, we challenge
them with macroeconomic and financial variables when forecasting industrial production
in Germany. DMA has three important and attractive econometric properties. That is,
it allows the model coefficients to change over time, it deals with model selection ap-
propriately and, finally, allows the entire forecasting model to change over time. Our
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analysis shows that the weight attached to all three variable categories is time-varying
and that variables from the category of leading indicators receive the largest weight
independent from the forecast horizon. Leading indicators show the best quantitative
forecasting properties for industrial production while both, macroeconomic and financial
variables are less informative. We find that the model size changes considerably over
time, especially since the onset of the Great Recession. That is, during this period of
massive economic turmoil, larger forecasting models receive a higher weight. Further-
more, there seems to be a positive association between the model size and the forecast
horizon. Finally, the cumulated absolute forecast error points towards similar forecast
performance before and after the Great Recession.
Many time series are subject to revisions. This implies that information available earlier
may differ from later-available information for a certain point in time. Researchers pro-
moting the use of real-time data in forecasting comparisons usually argue that models
should be evaluated with data available at the point in time when the forecasts are made.
Indeed, when comparing the performance of econometric models with forecasts from pro-
fessionals this issue is uncontroversial. However, the consequences for model/variable
selection and evaluation are less clear. This issue has been investigated by Heinisch and
Scheufele (2018). They find that the relative forecasting performance does not depend
on the use of real-time or final data.24 Furthermore, using real-time data is not with-
out costs. It increases the number of time series to be used substantially and therefore
causes enormous computational costs, especially when DMA is used. Therefore, more
efficient methods are needed. One solution could be the use of dynamic Occam’s win-
dow as suggested by Onorante and Raftery (2016). The idea behind this extension is
to decrease the computational burden by focusing on models whose weights exceed a
certain threshold. However, we leave this issue for future research.

24Bernanke and Boivin (2003) and Schumacher and Breitung (2008) also have shown that there is no
major difference between forecasts from final and real-time data.
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A. Appendix

Table A.1: Forecast Errors: λ = 0.99, α = 0.99

Robustness LiL SV

Metric h M2 M2

DMA DMS DMA DMS

RMSE

1 0.98 1.01 0.90** 0.90**
3 0.93 0.93 0.78** 0.79**
6 0.93 0.94 0.82*** 0.82***
12 0.99 0.98 0.90*** 0.90***

MAE

1 0.97 1.01 0.95 0.95
3 0.93 0.94 0.87*** 0.87***
6 0.97 0.98 0.80*** 0.80***
12 0.96 0.97 0.85*** 0.87***

Notes: Metric determines one of the two forecast metrics:
Root Mean Squared Error (RMSE) or Mean Absolute Er-
ror (MAE); h ∈ {1, 3, 6, 12} corresponds to the forecast
horizon; *** (**/*) denotes significant outperformance of
the model against an AR(3) at the 1 (5/10)% level using
the one-sided Diebold-Mariano-Test. The critical values
have been calculated by using the Fixed-b asymptotic de-
rived in Kiefer and Vogelsang (2005). LiL - Leading Indi-
cator in Level; SV - considers only survey based indicators.
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Figure A.1: Predicted Model Size of M1 over time and in relation to the forecast horizon,
λ = 0.98, α = 0.98.
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Table A.2: Forecast Errors: λ = 0.98, α = 0.98

Metric h AR-TVP
(0.99)

M1 M2 M3 M4 M5

DMA DMS DMA DMS DMA DMS DMA DMS DMA DMS

RMSE

1 0.99** 0.91** 0.91** 0.91** 0.92** 0.91** 0.94 0.98 0.99* 0.95* 0.96
3 0.93* 0.72* 0.72* 0.76* 0.76* 0.75* 0.77* 0.96 0.98 0.89* 0.88
6 0.96 0.74* 0.75* 0.72** 0.71** 0.72** 0.72* 0.96 0.96 0.92* 0.92*
12 1.01 0.93 0.96 0.79*** 0.79*** 0.80*** 0.79*** 1.05 1.06 1.07 1.07

MAE

1 0.99* 0.97 0.98 0.96 0.97 0.97 1.00 0.99 1.00 1.00 1.01
3 0.95** 0.85* 0.87 0.84** 0.85** 0.83** 0.85** 0.98 1.01 0.97 0.98
6 0.93** 0.81** 0.86* 0.74** 0.75** 0.74** 0.76** 1.00 1.00 0.97 0.98
12 0.99 0.99 1.07 0.74*** 0.74*** 0.74*** 0.74*** 1.11 1.12 1.09 1.10

Notes: Metric determines one of the two forecast metrics: Root Mean Squared Error (RMSE) or Mean Absolute
Error (MAE); h ∈ {1, 3, 6, 12} corresponds to the forecast horizon; *** (**/*) denotes significant out performance
of the Model against an AR(3) at the 1 (5/10)% level using the one-sided Diebold-Mariano-Test. The critical values
have been calculated by using the Fixed-b asymptotic derived in Kiefer and Vogelsang (2005).
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Figure A.2: Posterior Inclusion Probabilities of Model 1, λ = 0.98, α = 0.98.
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