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Abstract

Most of the literature on change-point analysis by means of hypothesis testing considers

hypotheses of the form H0 : θ1 = θ2 vs. H1 : θ1 6= θ2, where θ1 and θ2 denote parameters

of the process before and after a change point. This paper takes a different perspective

and investigates the null hypotheses of no relevant changes, i.e. H0 : ||θ1 − θ2|| ≤ ∆,

where ‖ · ‖ is an appropriate norm. This formulation of the testing problem is motivated

by the fact that in many applications a modification of the statistical analysis might not

be necessary, if the difference between the parameters before and after the change-point

is small. A general approach to problems of this type is developed which is based on

the CUSUM principle. For the asymptotic analysis weak convergence of the sequential

empirical process has to be established under the alternative of non-stationarity, and

it is shown that the resulting test statistic is asymptotically normal distributed. Several

applications of the methodology are given including tests for relevant changes in the mean,

variance, parameter in a linear regression model and distribution function among others.

The finite sample properties of the new tests are investigated by means of a simulation

study and illustrated by analyzing a data example from economics.

Keywords: change-point analysis, CUSUM, relevant changes, precise hypotheses, strong mix-

ing, weak convergence under the alternative
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1 Introduction

The analysis of structural breaks in a sequence (Zt)
n
t=1 of random variables has a long history.

Early work on this problem can be found in Page (1954, 1955) who investigated quality control

problems. Since these seminal papers numerous authors have worked on the problem of detect-

ing structural breaks or change-points in various statistical models [see Chow (1960), Brown

et al. (1975), Krämer et al. (1988), among others]. Usually methodology is firstly developed

for independent observations and – in a second step – extended to more complex dependent

processes. Prominent examples of change-point analysis are the detection of instabilities in

mean and variance [see Horváth et al. (1999) and Aue et al. (2009a) among others]. These

results have been extended to more complex regression models [see Andrews (1993) and Bai

and Perron (1998)] and to change-point inference on the second order characteristics of a time

series [see Berkes et al. (2009a), Wied et al. (2012) and Preuss et al. (2014)]. A rather extensive

list of references can be found in the recent work of Aue and Horváth (2013) who described

how popular procedures investigated under the assumption of independent observations can be

modified to analyse structural breaks in data exhibiting serial dependence.

A large portion of the literature attacks the problem of structural breaks by means of hypothesis

testing instead of directly focusing on e.g. estimating the potential break points [compare the

introduction in Jandhyala et al. (2013)]. Usually the hypothesis of no structural break is

formulated as

H0 : θ(1) = θ(2) = · · · = θ(n)(1.1)

where θ(t) denotes a (not necessarily finite dimensional) parameter of the distribution of the

random variable Zt (t = 1, . . . , n), such as the mean, variance, etc. The alternative is then

formulated (in the simplest case of one structural break) as

H1 : θ1 = θ(1) = θ(2) = · · · = θ(k) 6= θ(k+1) = θ(k+2) = · · · = θ(n) = θ2,(1.2)

where k ∈ {1, . . . , n} denotes the (unknown) location of the change-point. If the null hypothesis

of structural breaks has been rejected, the location of the change has to be estimated [see Csörgo

and Horváth (1997) or Bai and Perron (1998) among others] and the statistical analysis has to

be modified to address the different stochastic properties before and after the change-point.

The present work is motivated by the observation that such a modification of the statistical

analysis might not be necessary if the difference between the parameters before and after the

change-point is rather small. For example, in risk management situations, one is interested in

fitting a suitable model for forecasting Value at Risk from “uncontaminated data”, that means

from data after the last change-point [see e.g. Wied (2013)]. But in practice, small changes

in the parameter are perhaps not very interesting because they do not yield large changes in

the Value at Risk. The forecasting quality might only improve slightly, but this benefit could
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be negatively overcompensated by transaction costs. On the other hand, as an illustration

with real interest rates at the end of this paper indicates a relevant difference can potentially

be linked to significant real-world events. One could also think of an application to inflation

rates in the sense that only “large” changes call for interventions of for example the European

Central Bank.

With this point of view it might be more reasonable to replace the hypothesis (1.2) by the null

hypothesis of no relevant structural break, that is

H0 : ‖θ1 − θ2‖ ≤ ∆ versus H1 : ‖θ1 − θ2‖ > ∆,(1.3)

where θ1 and θ2 are the parameters before and after the change-point, ‖·‖ denotes a (semi-)norm

on the parameter space and ∆ is a pre-specified constant representing the “maximal” change

accepted by statisticians without modifying the statistical analysis. Note that this formulation

of the change-point problem avoids the consistency problem as mentioned in Berkson (1938),

that is: any consistent test will detect any arbitrary small change in the parameters if the

sample size is sufficiently large. Moreover, the “classical” formulation of the change-point

problem in formula (1.1) does not allow to control the type II error if the null hypothesis of

no structural break cannot be rejected, and as a consequence the statistical uncertainty in

the subsequent data analysis (under the assumption of stationarity) cannot be quantified. On

the other hand, a decision of “no small structural” break at a controlled type I error can be

easily achieved by interchanging the null hypothesis and alternative in (1.3). The relevance of

testing hypotheses of the form (1.3), which are also called precise hypotheses in the literature

[see Berger and Delampady (1987)], has nowadays been widely recognized in various fields of

statistical inference including medical, pharmaceutical, chemistry or environmental statistics

[see Chow and Liu (1992), Altman and Bland (1995), Roy (1997), McBride (1999)]. On the

other hand – to our best knowledge – the problem of testing for relevant structural breaks has

not been discussed in the literature so far.

In this paper we present a general approach to address this problem, which is based on the

CUSUM principle. The basic ideas are illustrated in Section 2 for the problem of detecting

a relevant change in the mean of a multivariate sequence of independent observations. The

general methodology is introduced in Section 3 and is applicable to several other situations

including changes in the variance, the parameter in regression models and changes in the

distribution function (the nonparametric change-point problem). It turns out that - in contrast

to the classical change-point problem - testing relevant hypotheses of the type (1.3) requires

results on the weak convergence of the sequential empirical process under non-stationarity

(more precisely under the alternative H1), which - to our best knowledge - have not been

developed so far. The reference which is most similar in spirit to investigations of this type

is Zhou (2013), who considered the asymptotic properties of tests for the classical hypothesis

of a change in the mean, i.e. H0 : µ1 = µ2, under local stationarity. The present paper takes
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a different and more general perspective using weak convergence of the sequential empirical

process in the case θ1 6= θ2. These asymptotic properties depend sensitively on the dependence

structure of the basic time series (Zt)t∈Z and are developed in Section 4 for the concept of strong

mixing triangular arrays [see Withers (1975) or Liebscher (1996)]. Although the analysis of the

sequential process under non-stationarities of the type (1.2) is very complicated, the resulting

test statistics for the hypothesis of no relevant structural break have a very simple asymptotic

distribution, namely a normal distribution. Consequently, statistical analysis can be performed

estimating a variance and using quantiles of the standard normal distribution. In Section 5

we illustrate the methodology and develop tests for the hypothesis (1.3) of a relevant change

in the mean, variance, parameters in a linear regression model and distribution function. In

particular, we also consider the situation of testing for a change in the mean with possibly

simultaneously changing variance, which occurs frequently in applications. Note that none of

the classical change-point tests are able to address this problem. In fact it was pointed out by

Zhou (2013) that the classical CUSUM approach and similar methods are not pivotal in this

case leading to severe biased testing results. Section 6 presents some finite sample evidence for

some of the testing problems revealing appealing size and power properties and Section 7 gives

an illustration to a data example from economics.

2 Relevant changes in the mean - motivation

This section serves as a motivation for the general approach discussed in Section 3 and for

illustration purposes we consider independent d-dimensional random variables Z1, ..., Zn with

common positive definite variance Var(Zi) = Σ, such that for some unknown t ∈ (0, 1)

µ1 = E[Z1] = . . . = E[Zbntc] ; E[Zbntc+1] = . . . = E[Zn] = µ2.

The case of a variance simultaneously changing with the mean will be discussed in Section 5.1.

We are interested in the problem of testing for a relevant change in the mean, that is

H0 : ‖µ1 − µ2‖ ≤ ∆ versus H1 : ‖µ1 − µ2‖ > ∆,(2.1)

where ‖ · ‖ denotes the Euclidean norm on Rd. For this purpose we consider the CUSUM

statistic {Un(s)}s∈[0,1] defined by

Ûn(s) =
1

n

bnsc∑
j=1

Zj −
s

n

n∑
j=1

Zj =
1− s
n

bnsc∑
j=1

Zj −
s

n

n∑
j=bnsc+1

Zj

and note that a straightforward computation gives

E[Ûn(s)] = (s ∧ t− st)(µ1 − µ2) (1 + o(1)).
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If s ≤ t we have

E[‖Ûn(s)‖2] =
{(1− s

n

)2
bnsc∑
j,k=1

E[ZT
j Zk]−

2s(1− s)
n2

bnsc∑
j=1

n∑
k=bnsc+1

E[ZT
j Zk]

+
s2

n2

n∑
j,k=bnsc+1

E[ZT
j Zk]

}
(1 + o(1))

=
((1− s

n

)2{
(ns)2‖µ1‖2 + nsσ2

}
− 2s(1− s)

{
sµT1 [(t− s)µ1 + (1− t)µ2]

}
+
( s
n

)2{
(n(t− s))2‖µ1‖2 + n(t− s)σ2 + 2n2(t− s)(1− t)µT1 µ2

+ (n(1− t))2‖µ2‖2 + n(1− t)σ2
})

(1 + o(1))

=
{σ2

n
(1− s)s+ ‖µ1 − µ2‖2s2(1− t)2

}
(1 + o(1)),

where σ2 = tr(Σ). A similar calculation for the case t ≤ s yields

E[‖Ûn(s)‖2] =
{σ2

n
s(1− s) + ‖µ1 − µ2‖2(s ∧ t− st)2

}
(1 + o(1)).

Consequently, we obtain

E
[ ∫ 1

0

‖Ûn(s)‖2ds
]

=
{∫ 1

0

σ2

n
s(1− s) + ‖µ1 − µ2‖2(s ∧ t− st)2ds

}
(1 + o(1))(2.2)

=
{σ2

6n
+ ‖µ1 − µ2‖2 (t(1− t))2

3

}
(1 + o(1)),

and therefore it is reasonable to consider the statistic

3

(t(1− t))2

∫ 1

0

‖Ûn(s)‖2ds

as an estimator of the distance ‖µ1 − µ2‖2 (a bias correction addressing for the term σ2/(6n)

will be discussed later). The following result specifies the asymptotic properties of this statistic.

Throughout this paper the symbol
D

=⇒ means weak convergence in the appropriate space under

consideration.

Theorem 2.1 For any t ∈ (0, 1) we have as n→∞

Ln =
√
n
( 3

(t(1− t))2

∫ 1

0

‖Ûn(s)‖2ds − ‖µ1 − µ2‖2
)
D

=⇒ N (0, τ 2) ,(2.3)

where the asymptotic variance is given by

τ 2 = (µ1 − µ2)TΣ(µ1 − µ2)
4(1 + 2t(1− t))

5t2(1− t)2 .(2.4)
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Proof. We start calculating the covariance Cov(Ûn(s1), Ûn(s2)) using the decomposition

Ûn(s) = (1− s)U(1)
n (s)− sU(2)

n (s),

where

U(1)
n (s) =

1

n

bnsc∑
j=1

Zj ; U(2)
n (s) =

1

n

n∑
j=bnsc+1

Zj.

For this purpose we first assume that s1 ≤ s2 and note that Cov(U(1)
n (s1),U(2)

n (s2)) = 0 in this

case. Moreover, the remaining covariances are obtained as follows

Cov(U(1)
n (s1),U(1)

n (s2)) =
1

n2

bns1c∑
j,k=1

Cov(Zj, Zk) =
s1

n
Σ (1 + o(1)),

Cov(U(1)
n (s2),U(2)

n (s1)) =
1

n2

bns2c∑
j=1

n∑
k=bns1c+1

Cov(Zj, Zk) =
s2 − s1

n
Σ (1 + o(1)),

Cov(U(2)
n (s1),U(2)

n (s2)) =
1

n2

n∑
j=bns1c+1

n∑
s=bns2c+1

Cov(Zj, Zk) =
1− s2

n
Σ (1 + o(1)),

which gives Cov(Ûn(s1), Ûn(s2)) = s1(1−s2)
n

Σ (1 + o(1)) if s1 ≤ s2. A similar calculation for the

case s1 ≥ s2 finally yields

lim
n→∞

n Cov(Ûn(s1), Ûn(s2)) = (s1 ∧ s2 − s1s2)Σ.

It can be shown (note that for illustration purposes the random variables Z1, . . . , Zn are assumed

to be independent and a corresponding statement under the assumption of a strong mixing

process is given in Section 4) that an appropriately standardized version of the process Ûn

converges weakly, that is

{
√
n(Ûn(s)− µ(s, t))}s∈[0,1]

D
=⇒ Σ1/2{B(s)}s∈[0,1],

where µ(s, t) = (s ∧ t− st)(µ1 − µ2) and B denotes a vector of independent Brownian bridges

on the interval [0, 1]. This gives for the random variable Ln in (2.3)

Ln =
3
√
n

(t(1− t))2

{∫ 1

0

‖Ûn(s)‖2ds− ‖µ1 − µ2‖2 (t(1− t))2

3

}
=

3
√
n

(t(1− t))2

{∫ 1

0

(‖Ûn(s)‖2 − ‖µ(s, t)‖2)ds
}

=
3
√
n

(t(1− t))2

{∫ 1

0

‖Ûn(s)− µ(s, t))‖2ds + 2

∫ 1

0

µT (s, t){Ûn(s)− µ(s, t)}ds
}

D
=⇒ 6

(t(1− t))2

∫ 1

0

µT (s, t)Σ1/2B(s)ds.
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It is well known that the distribution on the right hand side is a centered normal distribution

with variance.

36

(t(1− t))4

∫ 1

0

∫ 1

0

µT (s1, t)Σµ(s2, t)(s1 ∧ s2 − s1s2)ds1ds2,

and it follows by a straightforward but tedious calculation that this expression is given in (2.4).

2

The test statistic for the hypothesis (2.1) is finally defined as

M̂2
n =

3

(t̂(1− t̂))2

∫ 1

0

‖Ûn(s)‖2ds− σ̂2

6n

where t̂ and σ̂2 are consistent estimators of t and σ2, respectively. Note that this definition

corrects for the additional bias in (2.2) which is asymptotically negligible. The null hypothesis

of no relevant change-point is finally rejected, whenever

M̂2
n ≥ ∆2 + u1−α

τ̂√
n
,(2.5)

where u1−α is the (1− α)-quantile of the standard normal distribution and τ̂ is an appropriate

estimator of τ . An estimator of the change-point can be obtained by the argmax-principle, that

is

t̂ = argmaxs∈[0,1]‖Ûn(s)‖(2.6)

[see Carlstein (1988)]. For the estimation of the residual variance we denote by

(2.7) µ̂1 =
1

bnt̂c

bnt̂c∑
i=1

Zi ; µ̂2 =
1

b(1− t̂)nc

n∑
i=bnt̂c+1

Zi

the estimates of the mean “before” and “after” the change-point and define a variance estimator

by

(2.8) Σ̂1 =
1

n

{bnt̂c∑
i=1

(Zi − µ̂1)(Zi − µ̂1)T +
n∑

i=bnt̂c+1

(Zi − µ̂2)(Zi − µ̂2)T
}
.

This yields

(2.9) τ̂ =
2ν̂√

5t̂(1− t̂)

√
1 + 2t̂(1− t̂)
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as an estimation of τ , where ν̂2 = (µ̂1 − µ̂2)T Σ̂1(µ̂1 − µ̂2). An alternative estimator could be

obtained by replacing the estimator Σ̂1 in (2.9) by

Σ̂2 =
1

n

{bnt̂c∑
i=2

(Zi − Zi−1)(Zi − Zi−1)T +
n∑

i=bnt̂c+2

(Zi − Zi−1)(Zi − Zi−1)T
}
.

It will be shown in Section 3.3 that the test defined by (2.5) is consistent and has asymptotic

level α.

3 Testing for relevant changes - a general approach

3.1 General formulation of the problem

Let Z1, . . . , Zn denote d-dimensional random variables such that

Z1, . . . , Zbntc ∼ F1, Zbntc+1, . . . , Zn ∼ F2,(3.1)

where F1 and F2 denote continuous distribution functions before and after the change-point.

Let S denote a (possibly infinite dimensional) Hilbert space with (semi-)norm || · ||, define

`∞(Rd|S) as the set of all bounded functions g : Rd → S and consider F ⊂ `∞(Rd|S). We

denote by

θ :

{
F → S
F → θ(F )

(3.2)

a given function defining the parameter of interest. Typical examples include the mean (θ(F ) =∫
zdF ) or the distribution function (S ⊂ Rk; θ = id). We are interested in testing the

hypothesis of no relevant change in the functional θ(F ), that is

H0 : ‖θ(F1)− θ(F2)‖ ≤ ∆ H1 : ‖θ(F1)− θ(F2)‖ > ∆,(3.3)

where ∆ > 0 is a pre-specified constant. If S ⊂ Rk with k ≤ d, then ‖ · ‖ denotes always the

Euclidean norm, if not specified otherwise.

Our general approach will be based on an estimator of the distance ‖θ(F1) − θ(F2)‖2 by a

CUSUM type statistic. For this purpose we assume for a moment linearity of the functional θ

in (3.2), that is

θ(αF1 + βF2) = αθ(F1) + βθ(F2)(3.4)

for all α, β ∈ R, F1, F2 ∈ F . We introduce the statistic

F̂n(s, z) =
1

n

bnsc∑
j=1

I{Zj ≤ z},(3.5)
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where s ∈ [0, 1], z ∈ Rd and the inequality is understood component-wise. Note that for fixed

s ∈ (0, 1] the function n
bnsc F̂(s, ·) is a distribution function and that a straightforward calculation

yields

lim
n→∞

E[F̂n(s, z)] = EF1,F2,t(s, z) := (s ∧ t)F1(z) + (s− t)+ F2(z).(3.6)

We also introduce the function

ZF1,F2,t(s, z) := EF1,F2,t(s, z)− sEF1,F2,t(1, z) = (s ∧ t− st)(F1(z)− F2(z))(3.7)

and note that ZF1,F2,t vanishes on [0, 1]× Rd if and only if F1 = F2. If

Φlin : `∞([0, 1]× Rd|R)→ `∞([0, 1]|S)

denotes the (linear) operator defined by

Φlin(EF1,F2,t)(s) := θ(EF1,F2,t(s, ·)− sEF1,F2,t(1, ·)) = θ(ZF1,F2,t)(s),

we obtain from (3.4) and (3.7) for the function U := Φlin(EF1,F2,t) the representation

U(s) := Φlin(EF1,F2,t)(s) = (s ∧ t− st)(θ(F1)− θ(F2)).(3.8)

Consequently, the norm of this function is given by

T2(s) = ‖U(s)‖2 = ‖θ(ZF1,F2(s, ·)‖2 = (s ∧ t− st)2‖θ(F1)− θ(F2)‖2,(3.9)

which can be used as the basis for estimating the distance between the parameters θ(F1)

and θ(F2). Before we explain the construction of this estimate in more detail, we “remove”

assumption (3.4) and consider more general nonlinear functionals.

In this case the situation is slightly more complicated and we assume throughout this paper

that there exists a mapping

Φ : `∞([0, 1]× Rd|R)→ `∞([0, 1]|S),(3.10)

such that the difference between θ(F1) and θ(F2) can be expressed as a functional of the function

EF1,F2,t in (3.6), that is

U(s) := Φ(EF1,F2,t)(s) = (s ∧ t− st)(θ(F1)− θ(F2)).(3.11)

For linear functionals such a representation is obvious as shown in the preceding paragraph.

Other examples where assumption (3.11) is satisfied include linear regression models or the

detection of relevant changes in the correlation and will be discussed in Section 5.3 and 5.4.
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For the construction of an estimate of ‖θ(F1) − θ(F2)‖2 we note that it follows by similar

arguments as given in Section 2 that the function T(s) = ‖U(s)‖ satisfies∫ 1

0

T2(s)ds =

∫ 1

0

(s ∧ t− st)2‖θ(F1)− θ(F2)‖2ds =
(t(1− t))2

3
‖θ(F1)− θ(F2)‖2.(3.12)

Observing (3.9) and (3.12) we see that the distance

M2 = M2(F1, F2) = ‖θ(F1)− θ(F2)‖2 =
3

(t(1− t))2

∫ 1

0

‖Φ(EF1,F2,t(s))‖2ds(3.13)

between the parameters θ(F1) and θ(F2) can be expressed as a functional of EF1,F2,t(·, ·), which

can easily be estimated by a sequential empirical process F̂n defined in (3.5). The null hypothesis

(3.3) is then rejected for large values of this estimator. In the following discussion we will derive

the asymptotic properties of this estimator, which can be used for the calculation of critical

values for a test of the null hypothesis (3.3) of no relevant change.

3.2 Estimating M(F1, F2) = ‖θ(F1)− θ(F2)‖

In order to estimate the distance M2(F1, F2) = ‖θ(F1)− θ(F2)‖2 we recall the definition of the

sequential empirical process in (3.5) and its asymptotic expectation EF1,F2,t defined in (3.6).

Observing assumption (3.11) we consider the processes

Ûn(s) = Φ(F̂n(s, ·))(3.14)

and

T̂2
n(s) = ‖Ûn(s)‖2 = ‖Φ(F̂n(s, ·)‖2.(3.15)

Note that Ûn and T̂n are S and R-valued processes. If S ⊂ Rk we make the following assumption{√
n(Ûn(s)− U(s))

}
s∈[0,1]

D
=⇒

{
DF1,F2,t(s)

}
s∈[0,1]

(3.16)

where
D

=⇒ means weak convergence in `∞([0, 1]|Rk) and {DF1,F2,t(s)}s∈[0,1] is a centered, k-

dimensional Gaussian process with covariance kernel

dF1,F2,t(s1, s2) = E[DF1,F2,t(s1)DT
F1,F2,t

(s2)] ∈ Rk×k.

Remark 3.1 Note that the weak convergence results of the type (3.16) have been investigated

for numerous types of stationary stochastic processes [see Horváth et al. (1999), Aue et al.

(2009a) or Dehling et al. (2013)]. However, the detection of relevant change-points by testing

hypothesis of the form (3.3) requires weak convergence results in the non-stationary situation

(3.1), for which – to our best knowledge – no results are available. In particular, as it will be
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demonstrated in Section 4, the distribution of the limiting processes DF1,F2,t depends on the

distribution functions F1, F2 and the change-point t in a complicated way. Only in the case

F1 = F2 it simplifies to the standard situation, which is usually considered in change-point

analysis. Intuitively many results for stationary processes mentioned in the cited references

should also be available in the non-standard situation (3.1), but the limiting distribution is

more complicated and this has to be worked out for each case under consideration. In Section 4

we illustrate the general arguments for this generalization in the case of a strong mixing process

(satisfying (3.1)).

In the same section similar results will be established for the sequential process F̂n, that is{√
n(F̂n(s, z)− EF1,F2,t(s, z))

}
s∈[0,1],z∈Rd

D
=⇒

{
GF1,F2,t(s, z)

}
s∈[0,1],z∈Rd

,(3.17)

where GF1,F2,t denotes a centered (d + 1)-dimensional Gaussian process on [0, 1] × Rd with

covariance kernel

gF1,F2,t(s1, z1, s2, z2) = E[GF1,F2,t(s1, z1)GF1,F2,t(s2, z2)] = kt(s1, s2, z1, z2).

Consequently, if the functional Φ in (3.10) is (for example) Hadamard differentiable, weak

convergence of the process {
√
n(Ûn(s) − U(s))}s∈[0,1] is a consequence of the representation

(3.14) and (3.17). Some details are given in Remark 3.2 below. However, many functionals of

interest in change-point analysis (such as the mean or variance) do not satisfy this property,

and for this reason we also state (3.16) as a basic assumption, which has to be checked in

concrete applications. An example where (3.17) can be used directly consists in the problem

of detecting a relevant change in the distribution function and will be given in Section 5.5.

Theorem 3.1 If S ⊂ Rk and the assumptions (3.16) and (3.4) are satisfied, then

√
n
(∫ 1

0

T̂2
n(s)ds−

∫ 1

0

T2(s)ds
)
D

=⇒ N (0, σ2
F1,F2,t

),

where T2(s) is defined in (3.9) and
∫ 1

0
T2(s)ds = (t(1−t))2

3
‖θ(F1)− θ(F2)‖2. Here the asymptotic

variance is given by

σ2
F1,F2,t

= 4(θ(F1)− θ(F2))T · Γ(t, F1, F2) · (θ(F1)− θ(F2)),(3.18)

where the matrix Γ ∈ Rk×k is defined by

Γ(t, F1, F2) =

∫ 1

0

∫ 1

0

(s1 ∧ t− s1t)(s2 ∧ t− s2t)dF1,F2,t(s1, s2)ds1ds2.(3.19)

Proof. Let 〈·, ·〉 denote the inner product on Rk. Observing the representation

T̂2
n(s)− T2

n(s) = ‖Ûn(s)− U(s)‖2 + 2〈U(s), Ûn(s)− U(s)〉
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it follows from assumption (3.16) that{√
n(T̂2

n(s)− T2(s))
}
s∈[0,1]

D
=⇒

{
2〈U(s),DF1,F2,t(s)〉

}
s∈[0,1]

.

Now the continuous mapping theorem yields

√
n
(∫ 1

0

T̂2
n(s)ds−

∫ 1

0

T2(s)ds
)
D

=⇒ 2

∫ 1

0

〈U(s),DF1,F2,t(s)〉ds,

and standard arguments show that the random variable on the right hand side is normally

distributed with mean 0 and variance

σ2
F1,F2,t

= 4

∫ 1

0

∫ 1

0

E[〈U(s1),DF1,F2,t(s1)〉〈U(s2),DF1,F2,t(s2)〉]ds1ds2

= 4

∫ 1

0

∫ 1

0

(s1 ∧ t− s1t)(s2 ∧ t− s2t)(θ(F1)− θ(F2))T

×E[DF1,F2,t(s1)DF1,F2,t(s2)](θ(F1)− θ(F2))ds1ds2

= 4(θ(F1)− θ(F2))T · Γ(t, F1, F2) · (θ(F1)− θ(F2)).

2

Remark 3.2 A similar statement can be derived under the assumption (3.17) if the function Φ

in (3.11) is Hadamard differentiable at the point EF1,F2,t (tangentially to an appropriate subset,

if necessary). In this case it follows from (3.17) and the same arguments as given in the proof

of Theorem 3.1 that

√
n
(∫ 1

0

T̂2
n(s)ds−

∫ 1

0

T2(s)ds
)
D

=⇒ 2

∫ 1

0

〈
Φ′(GF1,F2,t(s, ·)),Φ(EF1,F2,t(s, ·))

〉
ds

where Φ′ denotes the Hadamard derivative of Φ and 〈, 〉 is the interproduct on the (not neces-

sarily finite dimensional) Hilbert space S. The details are omitted for the sake of brevity.

3.3 Testing for relevant changes

It follows from Theorem 3.1 and (3.12) that

√
n
( 3

(t(1− t))2

∫ 1

0

T̂2
n(s)ds− ‖θ(F1)− θ(F2)‖2

)
D

=⇒ N (0, τ 2
F1,F2,t

),(3.20)

where the asymptotic variance is given by

τ 2
F1,F2,t

=
9σ2

F1,F2,t

(t(1− t))4
=

36(θ(F1)− θ(F2))T · Γ(t, F1, F2) · (θ(F1)− θ(F2))

(t(1− t))4
(3.21)
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and σ2
F1,F2,t

is defined in (3.18). In the following discussion let t̂ denote a consistent estimator

of the change-point t, such that

|t̂− t| = op(1/
√
n),(3.22)

whenever θ(F1) 6= θ(F2) and

t̂
D→ Tmax(3.23)

whenever θ(F1) = θ(F2), where Tmax denotes a [0, 1]-valued random variable. Typically the

argmax-estimator t̂ = argmaxs∈[0,1]‖Ûn(s)‖ satisfies (3.22) and (3.23), where Tmax = argmaxs∈[0,1]

‖G(s)‖ for some Gaussian process G [for a recent review on the relevant literature see Jand-

hyala et al. (2013)]. Consequently, if σ̂2 is an estimator of σ2
F1,F2,t

, we obtain by τ̂ 2 = 9σ̂2

(t̂(1−t̂))4

an estimate of the asymptotic variance in (3.21). This yields for the statistic

M̂2
n =

3

(t̂(1− t̂))2

∫ 1

0

T̂2
n(s)ds

the weak convergence

√
n

τ̂
(M̂2

n − ‖θ(F1)− θ(F2)‖2)
D

=⇒ N (0, 1),(3.24)

whenever θ(F1) 6= θ(F2), while

(3.25)
√
n

∫ 1

0

T̂2
n(s)ds

P−→ 0

if θ(F1) = θ(F2).

Theorem 3.2 If assumption (3.24) is satisfied, then the test, which rejects the null hypothesis

(3.3) of no relevant change, whenever

M̂2
n ≥ ∆2 + u1−α

τ̂√
n
,(3.26)

is a consistent asymptotic level α test.

Proof. Define δ = ‖θ(F1)− θ(F2)‖ and assume that the null hypothesis δ ≤ ∆ holds. If δ > 0

it follows from (3.24) that the probability of rejection by the decision rule (3.26) is given by

βn(δ) = Pδ
(
M̂2

n ≥ ∆2 + u1−α
τ̂√
n

)
= Pδ

(√n(M̂2
n − δ2)

τ̂
≥
√
n(∆2 − δ2)

τ̂
+ u1−α

)
(3.27)

≤ Pδ
(√n(M̂2

n − δ2)

τ̂
≥ u1−α

)
−−−→
n→∞

α.
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Similarly, if δ = 0 (which implies (U(s) ≡ 0), we obtain from (3.25) and (3.23)

(3.28) β(0) = P
(√

n

∫ 1

0

T̂2
n(s)ds ≥ t̂2(1− t̂2)2

3
(
√
n∆2 + u1−ατ̂)

)
−−−→
n→∞

0.

Consequently, the test, which rejects the null hypothesis whenever (3.26) is satisfied, is an

asymptotic level α-test. On the other hand, under the alternative δ > ∆, a similar argument

shows that βn(δ) −−−→
n→∞

1, which proves consistency. 2

The choice of the estimators τ̂ 2 and t̂ depends on specific examples under consideration and

will be discussed in more detail in Section 6, where we illustrate the methodology by several

examples.

4 Strong mixing processes

Assumptions (3.16) and (3.17) are crucial for the asymptotic analysis presented in Sections 3.2

and 3.3. If F1 = F2 (i.e. there exists no structural break) they have been verified in several

situations. For example, Deo (1973) proved that

√
n
{

(F̂n(1, z)− F (1, z))
}
z∈Rd

D
=⇒{G(1, z)}z∈Rd(4.1)

if the process {Zk}nk=1 is stationary and strong mixing with mixing coefficients αn converging

sufficiently fast to 0, that is
∑∞

n=1 α
1/2−τ
n n2 < ∞ for some τ ∈ (0, 1/2). Here {G(1, z)}z∈Rd

denotes a Gaussian process with covariance structure

k(z1, z2) =
∑
k∈Z

E[(I{Zk ≤ z1} − F (z1))(I{Zk ≤ z2} − F (z2))].

These results can be extended to other concepts of dependency and to the sequential empirical

process defined in (3.5), and for some recent results in this direction we refer to the work of

Berkes et al. (2009b) and Dehling et al. (2013).

However, these results are not applicable anymore in the problem of detecting relevant change-

points by means of a test for the hypothesis (1.3), because statements of the form (3.16) or (3.17)

are required for the case F1 6= F2 in order to obtain the asymptotic distribution in Theorem 3.1.

In this case the process under consideration is not stationary anymore. Additional difficulties

appear because one has to work under the assumption of a triangular array, and it will be

necessary to reflect this fact in our notation throughout this section, that is

Zn,1,, . . . , Zn,bntc ∼ F1 ; Zn,bntc+1, . . . , Zn,n ∼ F2,(4.2)

where F1 and F2 are the distribution functions before and after the change-point. We assume

throughout this section that F1 and F2 are continuous. In principle, it should be possible to
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extend the results for the case F1 = F2 to the case F1 6= F2 for most of the commonly used

dependency concepts, but a general discussion is very complicated and beyond the scope of the

present paper. For these reasons we restrict ourselves to the case of strong mixing triangular

arrays in the subsequent discussion and investigate assumptions (3.16) and (3.17) in this case.

Other concepts of dependency could be treated similarly.

To be precise, consider the triangular array {Zn,k | k = 1, . . . , n}n∈N in (4.2) and define for

1 ≤ s ≤ t the σ-field F ts(n) = σ({Zn,j | s ≤ j ≤ t}) generated by the random variable

{Zn,j | s ≤ j ≤ t}. We denote by

α(m) = sup
n∈N

sup
1≤k≤n−m

sup
{
|P(A ∩B)− P(A)P(B)| | A ∈ Fnm+k(n), B ∈ Fk1 (n)

}
, m ∈ N

the strong mixing coefficients of the triangular array {Zn,1, . . . , Zn,n}n∈N and assume that for

some η > 0

α(n) = O(n−(1+η))(4.3)

as n→∞. Moreover, for ` = 1, 2 let {Wt(`)}t∈Z denote strictly stationary processes, such that

for each n ∈ N

(Zn,1, . . . , Zn,bntc)
D
= (W1(1), . . . ,Wbntc(1))(4.4)

(Zn,bntc+1, . . . , Zn,n)
D
= (W1(2), . . . ,Wn−bntc(2))(4.5)

The interpretation of this assumption is as follows: there exist two regimes {Wt(1)}t∈Z and

{Wt(2)}t∈Z and the process under consideration switches from one regime to the other. The

following statement specifies the weak convergence of the sequential empirical process

(4.6) F̂n(s, x) =
1

n

bnsc∑
i=1

I{Zn,i ≤ z}.

Theorem 4.1 Let {Zn,1, . . . , Zn,n}n∈N denote a triangular array of strong mixing random vari-

ables of the form (4.2), such that (4.3), (4.4) and (4.5) hold, then a standardized version of the

process {F̂n(s, z)}s∈[0,1],z∈Rd converges weakly in `([0, 1]× Rd|R), that is{√
n(F̂n(s, z)− EF1,F2,t(s, z))

}
s∈[0,1],z∈Rd

D
=⇒

{
GF1,F2,t(s, z)

}
s∈[0,1],z∈Rd

.

Here EF1,F2,t is defined in (3.6), GF1,F2,t denotes a centered Gaussian process with covariance

kernel

E[GF1,F2,t(s1, z1)GF1,F2,t(s2, z2)] = (s1 ∧ s2 ∧ t)k1(z1, z2) + (s1 ∧ s2 − t)+k2(z1, z2),(4.7)

and the kernels k1 and k2 are defined by

k`(z1, z2) =
∑
i∈Z

Cov(I{W0(`) ≤ z1}, I{Wi(`) ≤ z2}); ` = 1, 2.(4.8)

15



Proof. Recalling the definition of F̂n and EF1,F2,t in (4.6) and (3.6), respectively, we obtain the

decomposition

F̂n(s, z)− EF1,F2,t(s, z) = X(1)
n (s, z) + X(2)

n (s, z) + op(
1√
n

),(4.9)

uniformly with respect to (s, z) ∈ [0, 1]× Rd, where the processes X(1)
n and X(2)

n are defined by

X(1)
n (s, z) =

1

n

bn(s∧t)c∑
j=1

(I{Zn,j ≤ z} − F1(z)) =

bn(s∧t)c∑
j=1

Yn.j,

X(2)
n (s, z) =

1

n
I{s > t}

bnsc∑
j=bn(s∧t)c+1

(I{Zn,j ≤ z} − F2(z)) = I{s > t}
bnsc∑

j=bn(s∧t)c+1

Yn.j,

and the random variables Yn,j are defined by

Yn,j(z) = I{j ≤ bntc}I{Zn,j ≤ z} − F1(z)

n
+ I{j > bntc}I{Zn,j ≤ z} − F2(z)

n
.(4.10)

Observing (4.4) and (4.5) it then follows from Bücher (2014) that{√
n X(`)

n (s, z)
}
s∈[0,1],z∈Rd

D
=⇒

{
G(`)(s, z)

}
s∈[0,1],z∈Rd

,

where G(1) and G(2) are two centered independent Gaussian processes with covariance structure

E[G(`)(s1, z1)G(`)(s2, z2)] =

{
(s1 ∧ s2 ∧ t)k1(z1, z2) if ` = 1

(s1 ∧ s2 − t)+k2(z1, z2) if ` = 2
.(4.11)

Consequently, the processes
√
n X(1)

n ,
√
n X(2)

n and its sum
√
n Xn =

√
n (X(1)

n + X(2)
n ) are

asymptotically tight [see Section 1.5 in van der Vaart and Wellner (1996)], and in order to

prove weak convergence of the process
√
n Xn it remains to establish the weak convergence of

the finite dimensional distributions. For this purpose we use the Crámer-Wold device and show

for all (s1, z1), . . . , (sk, zk) ∈ [0, 1]× Rd, α1, . . . , αk ∈ R

√
n
{ k∑
j=1

αjXn(sj, zj)
}

D
=⇒

k∑
j=1

αjGF1,F2,t(sj, zj),(4.12)

where GF1,F2,t is the Gaussian process defined in Theorem 4.1. For the sake of a clear exposition

we restrict ourselves to the case k = 2 and begin with a calculation of the covariance of

X
(1)
n (s1, z1) and X

(2)
n (s2, z2). If s1 ≤ s2 ≤ t we can use the same arguments as in Bücher (2014)

and obtain

nCov
(
X(`)
n (s1, z1),X(`)

n (s2, z2)
)
n→∞−→

{
(s1 ∧ s2 ∧ t)k1(z1, z2) if ` = 1

0 if ` = 2
.
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Similarly, if t ≤ s1 ≤ s2 ≤ 1 we have

nCov
(
X(`)
n (s1, z1),X(`)

n (s2, z2)
)
n→∞−→

{
tk1(z1, z2) if ` = 1

(s1 ∧ s2 − t)+k2(z1, z2) if ` = 2
.

Finally, if s1 < t ≤ s2 we have by assumption (4.3)

n
∣∣∣Cov(X(1)

n (s1, z1),X(2)
n (s2, z2))

∣∣∣ = n
∣∣∣Cov

(bns1c∑
j=1

Yn,j(z1),

bns2c∑
j=bntc+1

Ynj(z2)
)∣∣∣ = O(

1

nη
) = o(1),

where the random variables Yn,j are defined in (4.10). If s1 = t ≤ s2 we use a sequence εn

satisfying εnn→∞ and nε2
n → 0 and obtain by the same arguments

n
∣∣∣Cov(X(1)

n (t1, z1),X(2)
n (s2, z2)

∣∣∣
= n

∣∣∣Cov
(bn(t−εn)c∑

j=1

Yn,j +

bntc∑
j=bn(t−εn)c+1

Yn,j,

bn(t+εn)c∑
j=bntc+1

Yn,j +

bns2c∑
j=bn(t+εn)Yn,jc+1

)∣∣∣
= O(

1

(nεn)η
) +O(nε2

n) = o(1).

Using similar arguments for the remaining cases it follows from assumptions (4.4) and (4.5)

that

(4.13)

σ2 = lim
n→∞

Var(
√
n

2∑
j=1

αjXn(sj, zj))

= lim
n→∞

n
{
α2

1Cov(X(1)
n (s1, z1),X(1)

n (s1, z1)) + 2α1α2Cov(X(1)
n (s1, z1),X(1)

n (s2, z2))

+α2
1Cov(X(2)

n (s1, z1),X(2)
n (s1, z1)) + 2α1α2Cov(X(2)

n (s1, z1),X(2)
n (s2, z2))

+α2
2Cov(X(1)

n (s2, z2),X(1)
n (s2, z2)) + α2

2Cov(X(2)
n (s2, z2),X(2)

n (s2, z2))
}

= α2
1

{
(s1 ∧ t)k1(z1, z1) + (s1 − t)+k2(z1, z1)

}
+ α2

2

{
(s2 ∧ t)k1(z2, z2) + (s2 − t)+k2(z2, z2)

}
+2α1α2

{
(s1 ∧ s2 ∧ t)k1(z1, z2) + (s1 ∧ s2 − t)+k2(z1, z2)

}
= Var

(
α1GF1,F2,t(s1, z1) + α2GF1,F2,t(s2, z2)

)
,

where GF1,F2,t denotes the centered Gaussian process defined in Theorem 4.1.

In order to prove asymptotic normality of the statistic
√
n
∑2

j=1 αjXn(sj, zj) we introduce the

notation

Tn =

√
n

σ

2∑
j=1

αjXn(sj, zj) =
n∑
j=1

Sn,j + op(1),
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where the random variably Sn,j are defined by

Sn,j =
α1I{j ≤ bns1c}

σ
√
n

(I{Zn,j ≤ z1} − EF1,F2,t(s1, z1))

+
α2I{j ≤ bns2c}

σ
√
n

(I{Zn,j ≤ z2} − EF1,F2,t(s2, z2)),

and we use a central limit theorem for triangular arrays of strong mixing random variables [see

Theorem 2.1 in Liebscher (1996), where p =∞]. For this purpose we note that it follows from

the discussion in the previous paragraph that limn→∞ E[T 2
n ] = 1 and that it is easy to see that

lim
n→∞

n∑
j=1

(
ess sup

w∈Ω
[|Sn,j|I{|Sn,j| > ε}]

)2
= 0 a.s..

Similarly, it follows that the condition

n∑
j=1

(
ess sup

w∈Ω
|Sn,j|

)2 ≤ const a.s.

of Theorem 2.1 in Liebscher (1996) is also satisfied. Therefore this result shows that

√
n

2∑
j=1

αjXn(sj, zj) =
σ Tn√
E[T 2

n ]

D
=⇒ N (0, σ2),

where the asymptotic variance σ2 is defined in (4.13). This proves the convergence of the finite

dimensional distributions and completes the proof of Theorem 4.1. 2

As pointed out, there exist many cases where assumption (3.17) (as established by Theorem

4.1 for strong mixing triangular arrays) is not satisfied. In this case it is necessary to prove

(3.16) for the specific functional under consideration. A general statement can be obtained if

the functional of interest is linear. The proof is obtained by similar arguments as given for

Theorem 4.1 and therefore omitted.

Theorem 4.2 Assume that the conditions of Theorem 4.1 are satisfied and that the functional

in (3.2) is linear and S ⊂ Rk. Then a standardized version of the process {Ûn(s)}s∈[0,1] defined

by Ûn(s) = θlin(F̂n(s, ·)− sF̂n(1, ·)) converges weakly in `([0, 1]|Rk), that is{√
n(Ûn(s)− U(s))

}
s∈[0,1]

D
=⇒

{
DF1,F2,t(s)

}
s∈[0,1]

.

Here DF1,F2,t denotes a centered Gaussian process with covariance kernel

dF1,F2,t(s1, s2) = E[DF1,F2,t(s1)DT
F1,F2,t

(s2)](4.14)

= {(s1 ∧ s2 ∧ t) + s1s2t− s2(s1 ∧ t)− s1(s2 ∧ t)}V1

+ {(s1 ∧ s2 − t)+ + s1s2(1− t)− s1(s2 − t)+ − s2(s1 − t)+}V2
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and the matrices V1, V2 ∈ Rk×k are defined by

V` =
∑
k∈Z

Cov(θlin(I{W0(`) ≤ ·}, θlin(I{Wk(`) ≤ ·}), ` = 1, 2.(4.15)

5 Applications: detecting relevant change-points

In this section we discuss several examples to illustrate the theory developed in Section 3. In

particular, we concentrate on the detection of relevant changes in the mean, variance, coefficients

in linear regression, correlation and a relevant change in the distribution itself. In order to be

precise we assume that the assumptions of Theorem 4.1 and 4.2 in Section 4 are satisfied.

Similar results can be derived for alternative dependency concepts.

5.1 Relevant changes in the mean

The most prominent example of change-point analysis in model (3.1) consists in the investiga-

tion of structural breaks in the mean

µ = θmean(F ) =

∫
Rd

zF (dz).

While the “classical” change-point problem H0 : µ1 = µ2 versus H1 : µ1 6= µ2 has been

investigated by numerous authors [see Csörgo and Horváth (1997) for a survey of methods for

the independent case and Aue and Horváth (2013) for an extension to dependent data], we

did not find any references on testing the hypotheses (2.1) of relevant change-points in the

mean. Note that in contrast to the discussion of Section 2 and to most of the literature, we

do not assume that the stochastic features of the process besides the mean coincide before and

after the breakpoint. In particular, the variances or more generally the dependency structures

before and after the change-point can be different, although the means µ1 and µ2 are “close”,

i.e. ‖µ1 − µ2‖ ≤ ∆. Theorem 4.2 establishes condition (3.16), where the covariance kernel of

the limiting process is defined in (4.14) and (4.15) with θlin(I{Wk(`) ≤ ·}) = θmean(I{Wk(`) ≤
·}) = Wk(`). Consequently, the corresponding asymptotic variance in (3.20) is given by

τ 2
F1,F2,t

=
4

5(t(1− t))2
(µ1 − µ2)T

{
t(5− 10t+ 6t2)V mean

1

+ (1− 3t+ 8t2 − 6t3)V mean
2

}
(µ1 − µ2)(5.1)

where V mean
1 and V mean

2 are defined in Theorem 4.2 with θlin(I{Wk(`) ≤ ·) = Wk(`) (` = 1, 2).

5.2 Structural breaks in the variance

Following Aue et al. (2009a) we consider a triangular array of d-dimensional random variables

(Zn,t)
n
t=1 with constant mean and investigate the problem of detecting a relevant change in the
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variance. This means that the functional of interest is given by

θvar(F ) =

∫
Rd

zzTF (dz)−
∫
Rd

zF (dz)

∫
Rd

zTF (dz),

where F is the distribution function. Note that in contrast to the mean discussed in Section

5.1 this functional is not linear. However, if µ = E[Zn,1] = . . . = E[Zn,t], Σ1 = Var(Zn,1)

and Σ2 = Var(Zn,n) denote the common mean and the variance before and after the break,

respectively, a straightforward calculation yields the representation

Uvar(s) = Φvar(EF1,F2,t)(s) := θvar(EF1,F2,t(s, ·)− sEF1,F2,t(1, ·))
= θ̃var(EF1,F2,t(s, ·)− sEF1,F2,t(1, ·)) = (s ∧ t− st)(Σ1 − Σ2),

where

θ̃var(F ) =

∫
Rd

zzTF (dz).

Consequently, assumption (3.11) is satisfied and we obtain from Theorem 4.2 the weak conver-

gence of the process

Ûn(s) =
1− s
n

bnsc∑
j=1

Zn,jZ
T
n,j −

s

n

n∑
j=bnsc+1

Zn,jZ
T
n,j

to a centered Gaussian process with covariance kernel (4.14) and (4.15), where

θlin(I{Wk(`) ≤ ·}) = θ̃var(I{Wk(`) ≤ ·}) = Wk(`)W
T
k (`).

A straightforward but tedious calculation shows that the limiting variance in (3.20) is given by

τ 2
F1,F2,t

=
4

5(t(1− t))2
tr
{[

(t(5− 10t+ 6t2)V var
1

+(1− 3t+ 8t2 − 6t3)V var
2

]
(Σ1 − Σ2)(Σ1 − Σ2)T

}
,

where V var
1 and V var

2 are defined in Theorem 4.2 with θlin(I{Wk(`) ≤ ·}) = Wk(`)W
T
k (`) (` =

1, 2).

5.3 Linear regression models

Early results on change-point inference in linear regression models can be found in Kim and

Siegmund (1989), Hansen (1992), Andrews (1993), Kim and Cai (1993) and Andrews et al.

(1996). More recent work on this problem has been done by Chen et al. (2013) and Nosek and

Skzutnika (2013), among others. In this section we introduce the problem of testing for relevant
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changes in the parameters of a regression model. To be precise, we consider the common linear

regression model

Yn,i = gT (Xi)β(i) + εi i = 1, . . . , n

where (Xi)i=1,...,n and (εi)i=1,...,n are independent strictly stationary processes and

β(i) =

{
β1 if i = 1, . . . , bntc
β2 if i = bntc+ 1, . . . , n

.

In the notation of Section 3 and 4 we have

Zn,1, . . . , Zn,bntc = (X1, Yn,1), . . . , (Xbntc, Yn,bntc) ∼ F1,

Zn,bntc+1, . . . , Zn,n = (Xbntc+1, Yn,bntc+1), . . . , (Xn, Yn,n) ∼ F2,

where F1 and F2 are the joint distribution functions before and after the change-point, respec-

tively. Note that the marginal distribution FX of the predictor X satisfies FX = F1(·,∞) =

F2(·,∞) by these assumptions.

In order to construct tests for the null hypothesis of no relevant change

H0 : ‖β1 − β2‖ ≤ ∆ versus H1 : ‖β1 − β2‖ > ∆(5.2)

we assume that the k × k matrix

B :=

∫
Rd+1

g(x)gT (x)F (dx, dy) =

∫
Rd

g(x)gT (x)FX(dx)(5.3)

is non-singular and note that the parameter βi can be represented as

βi =
(∫

Rd+1

g(x)gT (x)Fi(dx, dy)
)−1{∫

Rd+1

yg(x)Fi(dx, dy)
}

i = 1, 2.(5.4)

However, due to the nonlinearity of this representation, it is more difficult to derive a repre-

sentation of the form (3.11). For this purpose consider the functional

Φ(F )(s) :=
(∫

Rd+1

g(x)gT (x)F (1, dx, dy)
)−1

∫
Rd+1

yg(x)
(
F (s, dx, dy)− sF (1, dx, dy)

)
.

defined on the set F ⊂ `∞([0, 1] × Rd+1|R) of all bounded functions F for which the integrals

exist (for each s ∈ [0, 1]) and which satisfy |
∫
Rd+1 g(x)gT (x)F (1, dx, dy)| 6= 0. The analog of

the quantity (3.6) is given by

EF1,F2,t(s, y, x) = (s ∧ t)F1(x, y) + (s− t)+ F2(x, y),
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and it follows by a straightforward calculation that

Ulin(s) := Φ(EF1,F2,t)(s) =
(∫

Rd

g(x)gT (x)FX(dx)
)−1

(5.5)

×
{

(s ∧ t− st)
∫
Rd+1

yg(x)(F1(dx, dy)− F2(dx, dy))
}

= (s ∧ t− st)(β1 − β2) = (s ∧ t− st)(θ(F1)− θ(F2)),

where we used (5.3) and the representation (5.4).

Assume for a moment that the matrix B in (5.3) is known, then we obtain from Theorem 4.2

that the process

Ũn(s) =

∫
Rd+1

yg(x)(F̂n(s, dx, dy)− sF̂n(1, dx, dy)

converges weakly to a centered Gaussian process, that is{√
n (Ũn(s)− Ũ(s))

}
s∈[0,1]

D
=⇒

{
D̃F1,F2,t(s)

}
s∈[0,1]

where Ũ = BUlin, Ulin is defined in (5.5) and D̃F1,F2,t is a centered Gaussian process with

covariance kernel defined by (4.14) and (4.15), where

θ(I{Wk(`) ≤ ·}) = Wk,2(`)g(Wk,1(`)) ; ` = 1, 2,(5.6)

and Wk,1(`) ∈ Rd, Wk,2(`) ∈ R denote the components of the process {Wk(`)}k∈Z considered

in Theorem 4.1, that is

Wk(`) = (Wk,1(`),Wk,2(`))T (k ∈ Z, ` = 1, 2).

However, the estimation of the matrix B yields an additional effect, which makes the asymp-

totic analysis of the process Ûn substantially more complicated. It is already visible in the

decomposition

√
n (Ûn(s)− Ulin(s)) =

√
n B̂−1

n (Ũn(s)− Ũ(s)) +
√
n (B̂−1

n −B−1)Ũ(s),

where B̂n = 1
n

∑n
i=1 g(Xi)g

T (Xi) =
∫
Rd+1 g(x)gT (x)F̂n(1, dx,∞) denotes the common estimate

of the matrixB defined in (5.3). In order to explain this effect in more detail we restrict ourselves

to one-dimensional models. The general case can be treated exactly in the same way with some

extra matrix algebra. To be precise, define the empirical process Ĥn(s) = (B̂n, F̃n(s))T , where

B̂n =
1

n

n∑
i=1

g2(Xi) ; F̃n(s) =
1

n

bnsc∑
i=1

g(Xi)Yn,i.

Similar arguments as given in Section 4 show{√
n (Hn(s)− (B, ẼF1,F2,t(s))

T )
}
s∈[0,1]

D
=⇒

{
H(s)

}
s∈[0,1]

(5.7)

22



where B =
∫
R g

2(x)FX(dx), ẼF1,F2,t(s) = (s ∧ t)Bβ1 + (s − t)+Bβ2 and H denotes a two-

dimensional centered Gaussian process with covariance matrix

Cov(H(s1),H(s2)) =

(
V0 V0((s2 ∧ t)β1 + (s2 − t)+β2)

V0((s2 ∧ t)β1 + (s2 − t)+β2) (s1 ∧ s2 ∧ t)V0,1 + (s1 ∧ s2 − t)+V0,1

)
,

where V0,1 = (V0β
2
1 + V1) and the matrices V0 and V1 are defined by

V0 =
∑
k∈Z

Cov(g2(X0), g2(Xk)), V1 =
∑
k∈Z

Cov(g(X0)ε0, g(Xk)εk).

Now an application of the functional Delta-method [see van der Vaart and Wellner (1996)]

yields{√
n Ûn(s)− Ulin(s)

}
s∈[0,1]

D
=⇒

{
B−1

(
H2(s)− sH2(1)− (s ∧ t− st)H1(1)(β1 − β2)

)}
s∈[0,1]

,

where H1 and H2 denote the components of the limiting process in (5.7). A tedious calculation

yields for the covariance structure of this process

k(s1, s2) =
V0

B2

[
β2

1

{
(s1 ∧ s2 ∧ t)− s1(s2 ∧ t)− s2(s1 ∧ t) + s1s2t− (s1 ∧ t− s1t)(s2 ∧ t− s2t)

}
+ β2

2

{
(s1 ∧ s2 − t)+ − s1(s2 − t)+ − s2(s1 − t)+ + s1s2(1− t) + (s1 ∧ t− s1t)(s2 ∧ t− s2t)

+(s2 ∧ t− s2t)((s1 − t)+ − s1(1− t)) + (s1 ∧ t− s1t)((s2 − t)+ − s2(1− t))
}

+ β1β2

{
(s1 ∧ t− s1t)(s2(1− t)− (s2 − t)+) + (s2 ∧ t− s2t)(s1(1− t)− (s1 − t)+)

}]
+

V1

B2

[
(s1 ∧ s2 ∧ t) + (s1 ∧ s2 − t)+ − s2(s1 ∧ t+ (s1 − t)+)

−s1(s2 ∧ t+ (s2 − t)+) + (s1 ∧ t− s1t)(s2 ∧ t− s2t)
]
.

Observing (5.5) we have by similar arguments as given in Section 2 that

√
n
(∫ 1

0

Û2
n(s)ds− t2(1− t)2

3
(β1 − β2)2

)
D

=⇒ N (0, σ2
F1,F2,t

),

where the asymptotic variance is given by

σ2
F1,F2,t

=
4(β1 − β2)2t2(1− t)2

45B2

{
V1(1 + 2(1− t)t) + V0

[
5t(1− t)((1− t)β1 + tβ2)2

+(t3β2
1 + (1− t)3β2

2)
]}
.(5.8)

From these considerations a test for the hypothesis of a relevant change in the parameters of

the linear regression model can easily be constructed as indicated in Section 2 and 3 with

τ 2
F1,F2,t

=
9σ2

F1,F2,t

t4(1− t)4
;(5.9)

see Section 6.2 for details, where we also investigate the finite sample properties of the test for

the hypotheses (5.2).
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5.4 Relevant changes in correlation

Let Zn,1, . . . , Zn,n = (Xn,1, Yn,1), . . . , (Xn,n, Yn,n) denote two-dimensional random variables with

existing second moments. Following Wied et al. (2012) we assume that E[Xi] = µ1, E[X2
i ] =

µ2, E[Yi] = ν1, E[Y 2
i ] = ν2 and we are interested in a relevant change-point in the correlation,

that is

H0 : |ρ1 − ρ2| ≤ ∆ versus H1 : |ρ1 − ρ2| > ∆,

where for some t ∈ [0, 1]

Zn,1, . . . , Zn,bntc ∼ F1, Zn,bntc+1, . . . , Zn,n ∼ F2,(5.10)

and

ρi = θ(Fi) =

∫
R2(x−

∫
R2 uFi(du, dv))(y −

∫
R vFi(du, dv))Fi(dx, dy){∫

R2(x−
∫
R2 uFi(du, dv))2Fi(dx, dy)

∫
R2(y −

∫
R2 vFi(du, dv))2Fi(dx, dy)

}1/2

denotes the correlation of the distribution function Fi (i = 1, 2). Consider the functional

Φcorr(F )(s) =

∫
R2 xy(F (s, dx, dy)− sF (1, dx, dy)){∫

R2(x−
∫
R2 uF (1, du, dv))2F (1, dx, dy)

∫
R2(y −

∫
R2 vF (1, du, dv))2F (1, dx, dy)

}1/2

defined on the set F ⊂ `∞([0, 1]×R2|R) of functions such that all integrals exist. If F1 and F2

denote the distributions of the two-dimensional vector (X, Y ) before and after the change-point

and

EF1,F2,t(s, x, y) = (s ∧ t)F1(x, y) + (s− t)+ F2(x, y),

then a straightforward but tedious calculation yields a representation of the form (3.11), that

is

Ucorr(s) := Φcorr(EF1,F2,t)(s) =
(s ∧ t− st)

∫
R2 xy(F1 − F2)(dx, dy){

(µ2 − µ2
1)(ν2 − ν2

1)
}1/2

= (s ∧ t− st)(θ(F1)− θ(F2)).

Recall the definition F̂n(s, x, y) = 1
n

∑bnsc
i=1 I{Xn,i ≤ x, Yn,i ≤ y}, and define Ûn(s) = Φcorr(F̂n)(s),

then it follows that

Ûn(s) =
Fn(s)− sFn(1)√

(µ̂2 − µ̂2
1)(ν̂2

2 − (ν̂1)2)
,(5.11)

where

Fn(s) =
1

n

bnsc∑
j=1

Xn,jYn,j,

and

µ̂i =
1

n

n∑
j=1

X i
n,j ; ν̂i =

1

n

n∑
j=1

Y i
n,j i = 1, 2(5.12)
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denote the common estimators of the moments E[X i] and E[Y i] (i = 1, 2). Similar arguments

as given in Section 4 yield{√
n
(
(µ̂1, µ̂2, ν̂1, ν̂2,Fn(s))T − (µ1, µ2, ν1, ν2, EF1,F2,t)

T
)}

s∈[0,1]

D
=⇒

{
H(s)

}
s∈[0,1]

where {H(s)}s∈[0,1] is a centered Gaussian process with covariance structure

Cov(H(s1),H(s2)) =



V 0
xx V 0

xx2 V 0
xy V 0

xy2 V 1
x2y(s2)

V 0
xx2 V 0

x2x2 V 0
x2y V 0

x2y2 V 1
x3y(s2)

V 0
xy V 0

x2y V 0
yy V 0

yy2 V 1
xy2(s2)

V 0
xy2 V 0

x2y2 V 0
yy2 V 0

y2y2 V 1
xy3(s2)

V 1
x2y(s1) V 1

x3y(s1) V 1
xy2(s1) V 1

xy3(s1) V 2
xy(s1, s2)


with

V 0
xixj = t

∑
k∈Z

Cov(W i
0,1(1),W j

k,1(1)) + (1− t)
∑
k∈Z

Cov(W i
0,1(2),W j

k,1(2)),

V 0
xiyj = t

∑
k∈Z

Cov(W i
0,1(1),W j

k,2(1)) + (1− t)
∑
k∈Z

Cov(W i
0,1(2),W j

k,2(2)),

V 0
yiyj = t

∑
k∈Z

Cov(W i
0,2(1),W j

k,2(1)) + (1− t)
∑
k∈Z

Cov(W i
0,2(2),W j

k,2(2)),

V 1
xiyj(s) = (s ∧ t)

∑
k∈Z

Cov(W i
0,1,W

j
k,2(1)) + (s− t)+

∑
k∈Z

Cov(W i
0,1(2),W j

k,2(2)),

V 2
xy(s1, s2) = (s1 ∧ s2 ∧ t)

∑
k∈Z

Cov(W 2
0,1(1),W 2

k,2(1)) + (s1 ∧ s2 − t)+

∑
k∈Z

Cov(W 2
0,1(2),W 2

k,2(2)),

and we have assumed that there exist strictly stationary processes (Wk,1(`),Wk,2(`))k∈Z, such

that for each n ∈ N {
(Xn,i, Yn,i)

}bntc
i=1

D
=
{

(Wk,1(1),Wk,2(1))
}bntc
k=1{

(Xn,i, Yn,i)
}n
i=bntc+1

D
=
{

(Wk,1(2),Wk,2(2))
}n
k=bntc+1

.

Now weak convergence of the process {Ûn(s)}s∈[0,1] follows by the functional Delta-method and

a tedious calculation using the same arguments as in Section 5.3. The details are omitted for

the sake of brevity.

5.5 Relevant changes in the distribution

In order to investigate the problem of a relevant change with respect to the distribution in a

univariate sequence of the form (4.2) we consider the distance

‖F1 − F2‖ =
(∫

R
(F1(z)− F2(z))2dz

)1/2

(5.13)
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on the set of all distribution functions with existing first moment. In this case the null hypothesis

of no relevant change in the distribution function is formulated as

H0 : ‖F1 − F2‖ ≤ ∆ H1 : ‖F1 − F2‖ > ∆.(5.14)

In order to estimate the distance we define F ⊂ `∞([0, 1]× R|R) as the set of all functions F ,

such that for each s ∈ [0, 1] the integral∫
R
(F (s, z)− sF (1, z))2dz(5.15)

exists (for all s ∈ [0, 1]). Note that this set contains the set of all functions of the form

EF1,F2,t defined in (3.6), such that F1 and F2 have moments of order one [see Székely and Rizzo

(2005), p. 73]. We consider the functional Φnon : F → `∞([0, 1]|R) defined by Φnon(F )(s) =

F (s, ·)− sF (1, ·), then

Φnon(EF1,F2,t)(s) = (s ∧ t− st)(F1 − F2)(·) =: ZF1,F2,t(s, ·).(5.16)

In this case it follows from Theorem 4.1 that assumption (3.17) is satisfied, and as a consequence

we obtain {√
n(Ẑn(s, z)− ZF1,F2,t(s, z))

}
s∈[0,1],z∈Rd

D
=⇒

{
HF1,F2,t(s, z)

}
s∈[0,1],z∈Rd

,(5.17)

where the limiting process H is defined by

HF1,F2,t(s, z) = GF1,F2,t(s, z)− s GF1,F2,t(1, z),

and the covariance kernel of this process is given by

hF1,F2,t(s1, z1, s2, z2) = {(s1 ∧ s2 ∧ t) + s1s2t− s2(s1 ∧ t)− s1(s2 ∧ t)}k1(z1, z2)

+ {(s1 ∧ s2 − t)+ + s1s2(1− t)− s1(s2 − t)+ − s2(s1 − t)+}k2(z1, z2).

Defining

Tn(s) = ‖Ẑn(s, ·)‖, T(s) = ‖Z(s, ·)‖

and observing the representation∫ 1

0

T2
n(s)ds−

∫ 1

0

T2(s)ds =

∫ 1

0

(‖Ẑn(s, ·)‖2 − ‖ZF1,F2,t(s, ·)‖2)ds

=

∫ 1

0

∫
R
(Ẑn(s, z)− ZF1,F2,t(s, z))

2dzds+ 2

∫ 1

0

∫
R
ZF1,F2,t(s, z)(Ẑn(s, z)− ZF1,F2,t(s, z))dzds

= op

(
1√
n

)
+ 2

∫ 1

0

∫
R
ZF1,F2,t(s, z)(Ẑn(s, z)− ZF1,F2,t(s, z))dzds

26



we have

√
n
(∫ 1

0

T2
n(s)ds−

∫ 1

0

T2(s)ds
)
D

=⇒ 2

∫ 1

0

∫
R
ZF1,F2,t(s, z)HF1,F2,t(s, z)dzds(5.18)

where HF1,F2,t is the limiting process defined in (5.17). Note that the right hand side of (5.18)

is normal distributed with variance

σ2
F1,F2,t

= 4

∫
[0,1]2

∫
R2

ZF1,F2,t(s1, z1)ZF1,F2,t(s2, z2)(s1 ∧ s2 − s1s2)hF1,F2,t(s1, z1, s2, z2)dz1dz2ds1ds2

=
4

45
(t2(1− t)2)

[
t(5− 10t+ 6t2)

∫
R2

(F1(z1)− F2(z1))(F1(z2)− F2(z2))k1(z1, z2)dz1dz2

+(1− 3t+ 8t2 − 6t3)

∫
R2

(F1(z1)− F2(z1))(F1(z2)− F2(z2))k2(z1, z2)dz1dz2

]
.

(5.19)

Consequently, we obtain

√
n
(∫ 1

0

T2
n(s)ds− t2(1− t)2

3
‖F1 − F2‖

)
D

=⇒ N (0, σ2
F1,F2,t

),

and the test for the hypotheses of relevant change-points can be constructed following the

arguments given in Section 3.3 with τ 2
F1,F2,t

=
9σ2

F1,F2,t

t4(1−t)4 . The finite sample properties of the

corresponding test for the hypothesis (5.13) will be investigated in Section 6.

6 Finite sample properties

In this section, we illustrate the application of the new testing procedure and provide some

finite sample evidence. For the sake of brevity we investigate three cases: the detection of

relevant changes in the mean, parameter of a linear regression model and a relevant change

in the distribution function. Similar results can be obtained for the other testing problems

considered in Section 5 but are not displayed here for the sake of brevity. In all examples

under consideration, we performed 5000 replications of the test (3.26) at significance level

α = 0.05. Note that the structure of this test is the same in all cases under consideration, but

the estimation of the change-point and the asymptotic variance differ from example to example

and the details will be explained below. We also note that it follows from the proof of Theorem

3.2 that the power of the test (3.26) is approximately given by

(6.1) βn(δ) ≈ 1 − Φ
(√n(∆2 − δ2)

τF1,F2,t

+ u1−α

)
.

Similarly, we obtain a formula for the p-value of the test, that is

(6.2) 1− Φ
(√ n

τ̂ 2
F1,F2,t

(
M̂2

n −∆2
))
,
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where Φ is the distribution function of the standard normal distribution. These formulas will

be helpful to understand some properties of the test (3.26).

6.1 Testing for relevant changes in the mean

At first, we look at the test for changes in the mean as discussed in Section 5.1 focussing on a

one-dimensional sample Z1, . . . , Zn. In this case the test statistic is obtained as

M̂2
n =

3

(t̂(1− t̂))2

1

n

n∑
i=1

T 2
n(i),

where Tn(i) = 1
n

∑i
j=1 Zj−

i
n2

∑n
j=1 Zj and t̂ = 1

n
argmax1≤i≤n|Tn(i)|. The null hypothesis of no

relevant change in the mean with potentially different variances before and after the change-

point is rejected whenever (3.26) holds. The estimator τ̂ 2
F1,F2,t

of the asymptotic variance is

obtained from formula (5.1) in Section 5.1 by replacing the unknown quantities t, µ1, and µ2

by their empirical counterparts t̂, µ̂1 and µ̂2 [see formula (2.7) and (2.8) in Section 2]. For the

estimation of the long-run variances V mean
1 and V mean

2 in (5.1) one has to account for potential

serial dependence, and we consider a kernel-based estimator as described in Andrews (1991) in

the two different subsamples. More precisely we choose the Bartlett kernel and a data-adaptive

bandwidth

γn = 1.1477

(
4ρ̂2bnt̂c

(1− ρ̂2)2

)1/3

with the estimated AR parameter ρ̂ for the sample before the estimated break point (note that

this choice is optimal for an AR(1) process). The estimator of V mean
1 is then defined by

V̂ mean
1 =

1

bnt̂c

bnt̂c∑
i=1

(Xi − µ̂1)2 +
2

bnt̂c

bnt̂c−1∑
j=1

k

(
j

γn

) bnt̂c−j∑
i=1

(Xi − µ̂1)(Xi+j − µ̂1)

with k(x) = (1 − |x|)1{|x|≤1} and an analogue expression is used for the estimation of the

quantity V mean
2 in (5.1). The choice of the bandwidth has no big impact in the case of serial

independence, but reduces size distortions if there is high serial dependence.

In Figure 1 we display the rejection probabilities of the test (3.26) for sample sizes n =

200, 500, 1000 and independent normally distributed random variables with mean µ1 = 0 in

the first half and mean µ2 = 1 in the second half of the sample, i.e. t = 0.5. The variance is

constant and equal to 1. The left part of Figure 1 presents the empirical rejection probabilities

of the test (3.26) for fixed δ = 1, where the parameter ∆, which defines the size of a relevant

change in the hypothesis (2.1), varies in the interval [0.2, 1.2]. We observe that the power of

the test decreases in ∆ as predicted by formula (6.1). For ∆ = 1, the power is approximately

0.05, which shows that the test keeps its nominal level.
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Figure 1: Empirical rejection probabilities of the test (3.26) for the null hypothesis of no relevant

change in the mean, where µ1 = 0, µ2 = 1, t = 0.5. Left panel: constant δ = 1, varying ∆.

Right panel: constant ∆ = 1, varying δ.

The right part of Figure 1 displays the power curve of the test (3.26) for the same sample

sizes and ∆ = 1, where the “true” difference δ = µ1 − µ2 varies in the interval [−2, , 2]. As

expected, the power curve is U-shaped with a minimum at δ = 0 [note that the power of the

test converges to zero in this case - see formula (3.28) in the proof of Theorem 3.2]. Again the

nominal level is well approximated at the boundary of the null hypothesis, that is δ = ±1. We

also observe that the type I error is much smaller inside the interval {δ ∈ R | |δ| < ∆}.
Figures as displayed in the left part of Figure 1 are useful to obtain the minimal size of the

parameter ∆ in (2.1) such that the null hypothesis of no relevant change of size ∆ is rejected at

controlled type I error, while the figure in the right part directly display the power function of

the test (3.26). Both types essentially provide the same information and for the sake of brevity

we focus in the following discussion only on the power function. Moreover, due to the obvious

symmetry, we just present the values for δ ≥ 0.

In Figure 2 we analyze the effect of changes in the variances on the testing procedure, where

the sample size is fixed as n = 200 and the setting is the same as in Figure 1. The left part

of the figure shows the power of the test (3.26) for the null hypothesis of no relevant change

in the mean, where the variances are the same before and after the change-point and given

by σ2 = 0.22, 0.52, 1, 22, 52. We observe that the approximation of the nominal level is rather

accurate at the point δ = 1. Moreover, the rejection probabilities decrease in σ2. Note that

there is essentially no power for σ2 = 52 because in this case the variance is dominating the

mean and it is difficult to distinguish between signal and mean. Moreover, in this case the level

of the test is not very well approximated, which is due to the fact that it is difficult to estimate

the change-point t accurately under a large signal to noise ratio. In the right part of Figure
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Figure 2: Empirical rejection probabilities of the test (3.26) for the null hypothesis of no relevant

change in the mean, where ∆ = 1. Left panel: constant variances. Right panel: different

variances before and after the change-point. The sample site is n = 200 and the horizontal line

marks the significance level 0.05.

2 we display the effect of changing variances in the same setting as in the left part where the

variance in the first half is equal to 1 and in the second half given by σ2 = 0.22, 0.52, 1, 22, 52.

We do not observe substantial differences with respect tot the quality of the approximation of

the nominal level. Compared to the case of constant variances the power is in general lower for

σ2
2 > 1 and higher for σ2

2 < 1. These empirical findings reflect the asymptotic theory, because

the asymptotic variance of the estimator M̂2
n is a linear and increasing function of σ2

1 and σ2
2

[see formula (5.1)] and it follows from (6.1) that the power of the test (3.26) is decreasing with

this variance.

Finally, we investigate the effect of serial dependence on the test (3.26) for the null hypothesis

of no relevant change in the the mean. For this purpose we generate n = 200 and n = 500

realizations of an AR(1) process with AR parameter ρ = 0, 0.4, 0.8, mean zero and standard

normal distributed innovations using the R-function arima.sim. Note that such a process fulfills

a strong mixing condition with mixing coefficients that decay exponentially [see for example

Doukhan (1994), Theorem 6, p. 99.]. After that, we add δ to the last 100 realizations. Figure 3

shows the serial dependence has an impact on the quality of the approximation of the nominal

level if the sample size is n = 200. Moreover, the power decreases with increasing correlation.

These properties have also been observed by other authors in the context of CUSUM-type

testing procedures [see Xiao and Phillips (2002) and Aue et al. (2009b)]. Moreover, using the

asymptotic theory from Section 5 we can also give a precise explanation of these observations.

For the AR(1) model under consideration the quantities V mean
i in (5.1) are given by V mean

1 =

V mean
2 = ρ2/(1 − ρ2). Consequently the asymptotic variance τ 2

F1,F2,t
is increasing with |ρ| and
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Figure 3: Empirical rejection probabilities of the test (3.26) for the null hypothesis of no relevant

change in the mean under serial dependence, where ∆ = 1. Left panel: sample size n = 200.

Right panel: sample size n = 500. The horizontal line marks the significance level 0.05.

by formula (6.1) the power is decreasing.

6.2 Testing for relevant changes in the parameters of a regression

In this section we investigate the problem of testing for a relevant change in the slope parameter

of the regression model

Yi = βXi + εi , i = 1, . . . , n

based on a sample of independent bivariate random vectors (X1, Y1), . . . , (Xn, Yn). The test

statistic is defined as

M̂2
n =

3

(t̂(1− t̂))2

1

n

n∑
i=1

T 2
n(i),

where Tn(i) = 1

B̂n
( 1
n

∑i
j=1XjYj− i

n2

∑n
j=1 XjYj), B̂n = 1

n

∑n
i=1X

2
i and t̂ = 1

n
argmax1≤i≤n|Tn(i)|.

The null hypothesis (5.2) of no relevant change in the parameter β is rejected whenever (3.26) is

satisfied, where the estimator τ̂ 2
F1,F2,t

of the asymptotic variance can be obtained from formula

(5.8) and (5.9) in Section 5.3. Here we replace the unknown quantities t, B, β1, β2, V0 and V1

by t̂, B̂n, the OLS-estimates β̂1 and β̂2 from the two subsamples before and after the estimated

change-point bnt̂c and the estimators

V̂0 =
1

n

n∑
i=1

(
X2
i −

1

n

n∑
j=1

X2
j

)2
,

V̂1 =
1

n

bnt̂c∑
i=1

(
Xiε̂

(1)
i −

1

bnt̂c

bnt̂c∑
j=1

Xj ε̂
(1)
j

)2
+

1

n

n∑
i=bnt̂c+1

(
Xiε̂

(2)
i −

1

n− bnt̂c

n∑
j=bnt̂c+1

Xj ε̂
(2)
j

)2

,
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Figure 4: Empirical rejection probabilities of the test (3.26) for the null hypothesis of no relevant

change in the parameter of aa linear regression model. Left panel: normal distributed regressors.

Right panel: t5-distributed regressors. The horizontal line marks the significance level 0.05.

where ε̂
(1)
i and ε̂

(2)
i are the least squares residuals form the sample before and after the estimated

change-point. In the case of serial dependence the estimators V̂0 and V̂1 have to be modified

appropriately as indicated in Section 6.1 and the details are omitted for the sake of brevity.

In the left part of Figure 4 we display the power of the test (3.26) for the null hypothesis

of no relevant change in the parameter β, where β1 = 0 in the first half and β2 = δ ≥ 0 of

the sample and the explanatory variables Xi and errors εi in the linear regression model are

independent identically standard normal distributed. The approximation of the nominal level

is rather accurate and the power is increasing with the sample size. On the other hand, the

power of the test for a change in the slope is lower than the power for the test for change of

the same size in the mean as considered in Figure 11.This observation can be easily explained

by the asymptotic representation of the probability of rejection in (6.1) which is a decreasing

function of the asymptotic variance τ 2
F1,F2,t

. For the test of the null hypothesis of no relevant

change in the mean and slope these variances are given by 307.2 and 576, respectively [see (5.1)

and (5.8),(5.9)]. In the right part of Figure 4 we display the results for heavy-tailed predictors

Xi, that is Xi ∼
√

3
5
t5, where tf denote a t-distribution with f degrees of freedom. Note the

t-distribution is standardized such that Var(Xi) = 1. We observe a less accurate approximation

of the nominal level if the sample size is n = 200. Moreover, t5 distributed regressors yield also

a loss in power. This observation can also be explained by formula (6.1), where the asymptotic

variance τ 2
F1,F2,0.5

is given by 576 and 1024 for the normal and t5-distribution, respectively.

1Additional simulations show that this power difference still exists if we do not account for serial dependence

in the mean test, that means if we consider V̂ mean
1 = 1

bnt̂c
∑bnt̂c

i=1 (Xi− µ̂1)2 and the analogue formula for V̂ mean
2 .
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6.3 Relevant changes in the distribution function

We conclude this section with a brief finite sample study of the test for the null hypothesis of

no relevant change in the distribution function, which was discussed in Section 5.5. For a given

sample Z1, . . . , Zn of independent random variables the test statistic for the null hypothesis

(5.13) of no relevant change in the distribution function is defined as

M̂2
n =

3

(t̂(1− t̂))2

1

n

n∑
i=1

Tn(i),

where

(6.3) Tn(i) =
n−1∑
k=1

(Z(k+1) − Z(k))

(
1

n

i∑
j=1

1{Zj≤Z(k)} −
i

n2

n∑
j=1

1{Zj≤Z(k)}

)2

.

Here Z(1), . . . , Z(n) denotes the order statistic of Z1, . . . , Zn. The null hypothesis of no relevant

change in the distribution function is rejected whenever (3.26) holds. For the definition of an

estimator of the asymptotic variance we note that we assumed independent observations such

that the formula for τ 2
F1,F2,t

reduces to

τ 2
F1,F2,t

=
4

5t2(1− t)2

[
t(5− 10t+ 6t2)

∫
R2

∆(z1, z2)(F1(z1) ∧ F1(z2)− F1(z1)F1(z2))dz1dz2

+(1− 3t+ 8t2 − 6t3)

∫
R2

∆(z1, z2)(F2(z1) ∧ F2(z2)− F2(z1)F2(z2))dz1dz2

]
.

where we use the notation ∆(z1, z2) = (F1(z1)−F2(z1))(F1(z2)−F2(z2)). The estimator τ̂ 2
F1,F2,t

is now obtained by plugging in t̂ = 1
n
argmax1≤i≤n|Tn(i)| and replacing the unknown distribution

functions by F1 and F2 by the empirical distribution functions calculated from the subsample

before and after the estimated change-point.

In order to analyze size and power, we choose sample sizes n = 200, 500, 1000 with serially

independent random variables, N (0, 1)-distributed in the first half and χ2-distributed with

different degrees of freedom f = 0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4 in the second half of the sample. The

χ2-distributed random variables are standardized such that they have mean 0 and variance 1.

The distance ||F1 − F2|| for f = 1 is approximately equal to 0.2254 and this value was chosen

as ∆ in the test (3.26). Table 1 shows the rejection probabilities of the test (3.26). Due to

the different distance measure, they are somewhat difficult to compare to the other figures,

but apparently, the test does work well. The power decreases in f as the χ2
f -distribution,

standardized such that it has mean zero and variance one, converges to the N (0, 1)-distribution

for f →∞.
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df f = 0.2 f = 0.4 f = 0.6 f = 0.8 f = 1 f = 1.2 f = 1.4

n / δ 0.3730 0.3154 0.2764 0.2476 0.2254 0.2077 0.1932

200 0.995 0.784 0.404 0.174 0.078 0.042 0.021

500 1.000 0.978 0.614 0.221 0.069 0.023 0.006

1000 1.000 1.000 0.846 0.313 0.064 0.011 0.001

Table 1: Empirical rejection probabilities of the test (3.26) for the null hypothesis of no relevant

change in the distribution function. The first half of the sample is generated from N(0, 1) a

normal distribution and the second half from a (standardized) χ2-distribution with different

degrees of freedom. The size of a relevant change is defined by ∆ = 0.2254 and corresponds to

f = 1.
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Figure 5: US ex post real interest rates

7 Empirical illustration

We illustrate the new method analyzing US ex post interest rates. This data set was also

considered in Perron and Bai (2003) and Garcia and Perron (1996), among others, and is

available on the website of the Journal of Applied Econometrics. The data consists of 103

quarterly observations from 1961:1 to 1986:3 and is displayed in Figure 5.

We are interested in testing for relevant changes in the mean of these interest rates with the

motivation that large shifts might be linked to a significant, long-ranging change in the economic

or politic structure of the US, while this need not be true for small shifts. Indeed, both the figure

and previous analysis in the literature indicate that there might be a large, statistically and

economically significant break around 1980. However, there does not seem to be a consensus
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Figure 6: p-values for the mean test for different ∆. The horizontal line marks the significance

level 0.05. The solid line corresponds to an analysis based on the full sample, while the dashed

line represents the p-values for a subsample.

about the specific date of the break. Garcia and Perron (1996) discuss monetary factors as a

potential cause for this change, leading to a break point in the end of 1979. On the other hand,

they argue that a change-point about one year later would have to be assumed if one argued

that fiscal policies are a cause for the change. Based on formal change-point detection, Perron

and Bai (2003) identify 1980:3 as a break point.

As there is no clear evidence for a distinguished point in time that can be considered as a break

point, our new methods can provide new insight into the question if there exists a relevant

break around 1980. Applied on the whole data set for ∆ = 0.1, 0.2, . . . , 8, we can find no ∆

such that the p-value is smaller than 0.05, as Figure 6 shows. A reason for this might consist

in the fact that there might exist mean jumps up- and downwards. In these cases, a CUSUM

procedure is not optimal. So, we take a further look at a specific part of the data set, namely

the values after 1972:3, a change-point that Perron and Bai (2003) identify.2 In this situation

which is well-suited for a CUSUM approach, our test rejects the null hypothesis for ∆ ≤ 6.1.

We interpret this result as an evidence for a relevant change. The estimated break point is

1980:1, which lies in the middle between the dates mentioned above, and the empirical means

before and after the break are equal to −1.80 and 5.64, respectively.
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Csörgo, M. and Horváth, L. (1997). Limit Theorems in Change-Point Analysis. Wiley, New York.

Dehling, H., Durieu, O., and Tusche, M. (2013). A sequential empirical central limit theorem for mul-

tiple mixing processes with application to B-geometrically ergodic Markov chains. arXiv:1303.4537.

Deo, C. M. (1973). A note on empirical processes of strong-mixing sequences. The Annals of Proba-

bility, 1(5):870–875.

Doukhan, P. (1994). Mixing: Properties and Examples (Lecture Notes in Statistics 85). Springer,

Berlin.

Garcia, R. and Perron, P. (1996). An analysis of the real interest rate under regime shifts. The Review

of Economics and Statistics, 78(1):111–125.

Hansen, B. E. (1992). Tests for parameter instablity in regression with I(1) processes. Journal of

Business and Economic Statistics, 10(3):321–335.
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