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Abstract

In recent years, stationary time series models based on copula func-
tions became increasingly popular in econometrics to model nonlinear
temporal and cross-sectional dependencies. Within these models, we
consider the problem of testing the goodness-of-fit of the parametric
form of the underlying copula. Our approach is based on a dependent
multiplier bootstrap and it can be applied to any stationary, strongly
mixing time series. The method extends recent i.i.d. results by Ko-
jadinovic, Yan and Holmes [I. Kojadinovic, Y. Yan and M. Holmes,
Fast large sample goodness-of-fit tests for copulas, Statistica Sinica
21 (2011), 841–871] and shares the same computational benefits com-
pared to methods based on a parametric bootstrap. The finite-sample
performance of our approach is investigated by Monte Carlo experi-
ments for the case of copula-based Markovian time series models.

Keywords and Phrases: Empirical process, multiplier central limit theorem,
Markov chain, multivariate observations, pseudo-observations, ranks, semi-
parametric copula model.

1 Introduction

It is an issue of fundamental importance in econometrics to understand and
model both temporal and cross-sectional dependence between time series.
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Nowadays, due to their capability of describing non-linear dependencies, cop-
ula functions provide a widely accepted tool to approach this problem, see,
e.g., Frees and Valdez (1998); McNeil et al. (2005) for applications in ac-
tuarial sciences or finance. As a common practice, the copula C used to
describe the dependence of interest is assumed to belong to a parametric
copula family, parametrized by a finite-dimensional parameter θ ∈ P ⊂ Rp,
i.e.,

C ∈ C = {Cθ : θ ∈ P}.

In order to achieve maximal robustness with respect to potential marginal
misspecification, the marginals are often allowed to follow arbitrary abso-
lutely continuous cumulative distribution functions (c.d.f.s), in which case
we speak of a semiparametric copula model.

In most applications hitherto, copulas are used to model the contempo-
rary dependence of a stationary d-dimensional time series. Serial dependence
is often either ignored or filtered out in a preliminary step. Relying on i.i.d.
assumptions, several estimation techniques for the unknown parameter θ
have been proposed, including the method of moments based on inversion
of Spearman’s rho or Kendall’s tau (Berg and Quessy, 2009), minimum dis-
tance type estimators (Tsukahara, 2005) or the pseudo-maximum-likelihood
estimator (Genest et al., 1995). Chen and Fan (2006a) and Rémillard (2010)
developed the asymptotics for the pseudo-ML estimator and moment-based
estimators, respectively, in case they are based on residuals of marginally
fitted time series models. The asymptotics turn out to be the same as in the
i.i.d. case which justifies the common practice of filtering out serial depen-
dence features.

In recent years, it also became increasingly popular to model the tempo-
ral dependence of a stationary time series by copulas. Building upon models
from Darsow et al. (1992), Chen and Fan (2006b) provide asymptotics for the
pseudo-ML estimator for univariate stationary Markovian copula models. In
these time series models, copulas are used to model the serial dependence
at lag one. We refer to Beare (2010), who derived the corresponding mix-
ing properties, for a number of references to applications of these models.
Extensions to the multivariate case which also cover a joint modeling of the
contemporary and the serial dependence are given in Rémillard et al. (2012).

All the afore-mentioned estimation methods depend on the underlying as-
sumption that the unknown copula indeed stems from the model C . Not sur-
prisingly, much research has been devoted to test the assumption H0 : C ∈ C ,
see Genest et al. (2009) for a recent review in the i.i.d. case. Most of the
proposed methods, including those that yield to the best finite-sample per-
formance in large-scale simulation studies, are based on the parametric boot-
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strap. This makes their application quite heavy with respect to computa-
tional feasibility. An attractive alternative has been proposed by Kojadinovic
and Yan (2011) and Kojadinovic et al. (2011), based on a multiplier boot-
strap technique.

With respect to temporal dependence and Markovian copula models,
much less has been done. To the best of our knowledge, the only reference on
goodness-of-fit tests in these models is given by Rémillard et al. (2012). These
authors propose a parametric bootstrap procedure to test the goodness-of-fit
and mention that, apart from their procedure, there exist almost no formal
goodness-of-fit tests for copulas in a serially dependent context.

The present paper tries to fill this gap. Our paper can be regarded as
an extension of the afore-mentioned, computationally attractive goodness-
of-fit tests in Kojadinovic and Yan (2011) and Kojadinovic et al. (2011)
to a general serial dependent setting. Our main assumptions are that the
observed time series is strongly mixing and that the parametric estimator
allows for a linear expansion in terms of a function of the marginal ranks.
Among other settings, this covers the case of multivariate Markovian copula
models along with the corresponding pseudo-ML estimator (Chen and Fan,
2006b; Rémillard et al., 2012). The method can also be used to test the
contemporary dependence of the raw data rather than that of residuals from
marginal time series models.

The test statistic is based on a suitable difference between the empirical
copula Cn and a parametric estimator Cθn , details are given in Section 2
below. We prove weak convergence of the corresponding process

√
n(Cn −

Cθn). In order to get access to the critical values of the test statistcs, we
adapt the dependent multiplier bootstrap of Bücher and Kojadinovic (2013)
to the present setting, following ideas of Kojadinovic and Yan (2011) and
Kojadinovic et al. (2011). The finite-sample performance of our methods are
investigated by Monte Carlo experiments.

The remaining parts of this paper are organized as follows: in Section 2,
we present the basic setting (Section 2.1), introduce the test statistics (Sec-
tion 2.2) and show how critical values can be obtained via the dependent
multiplier bootstrap (Section 2.3). The main result of the paper is given in
Theorem 2.2. In Section 3, we discuss some implementation issues, while
Section 4 presents simulation results. Finally, Section 5 provides an illustra-
tive data application on gasoline price markups, while all technical details
and proofs are deferred to a sequence of appendices.
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2 Goodness-of-Fit Tests

2.1 The general framework

Even though the common copula-based Markovian time series models provide
the main motivation of our work, our methods can be easily worked out in
a slightly more general setting at no additional cost. The special Markovian
case is treated in Example 2.1 below.

Let X = (X1, . . . , Xd)
′ be a d-dimensional random vector with joint cu-

mulative distribution function F and continuous marginal c.d.f.s F1, . . . , Fd.
The copula C of F , or, equivalently, the copula of X, is defined as the c.d.f.
of the random vector U = (U1, . . . , Ud)

′ that arises from marginal application
of the probability integral transform, i.e., Uµ = Fµ(Xµ) for µ = 1, . . . , d. By
construction, the marginal c.d.f.s of C are standard uniform on [0, 1]. By
Sklar’s Theorem, C is the unique function for which we have

F (x1, . . . , xd) = C{F1(x1), . . . , Fd(xd)}

for all x = (x1, . . . , xd) ∈ Rd.
Let (Xi)i∈Z with Xi = (Xi1, . . . , Xid)

′ be a stationary sequence of d-variate
random vectors with joint c.d.f. F , continuous marginal c.d.f.s F1, . . . , Fd and
copula C as described above. For −∞ ≤ a ≤ b ≤ ∞, let F ba denote the
sigma-field generated by those Xi for which i ∈ {a, a+ 1, . . . , b} and define,
for k ≥ 1,

αX(k) = sup
{
|P(A ∩B)− P(A)P(B)| : A ∈ F i−∞, B ∈ F∞i+k, i ∈ Z

}
as the alpha-mixing coefficient of the time series (Xi)i∈Z. Throughout this
paper we will assume that αX(k) → 0 for k → ∞ at a certain rate to be
specified later on, i.e., we assume that (Xi)i∈Z is strongly mixing.

Within this general framework, we observe a “sample” X1, . . . ,Xn and
want to do statistical inference on the unknown copula C. In particular, it
is the main purpose of this paper to develop a test for the hypothesis

H0 : C ∈ C vs. H1 : C 6∈ C .

This shall be done in a semiparametric way treating the marginals as nuisance
parameters, i.e., they remain unspecified.

Example 2.1. The general setting described above includes the important
special case of a (potentially multivariate) copula-based Markovian time se-
ries model (Rémillard et al., 2012), in short Markovian copula model. This
model is based on the assumption that the d-dimensional stationary time
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series (Yi)i∈Z of interest is Markovian of order 1 with continuous marginal
c.d.f.s F1, . . . , Fd. Obviously, the distribution of the times series is deter-
mined through the marginal c.d.f.s and the 2d-dimensional copula C of the
2d-dim. time series Xi = (Yi−1,Yi), i ∈ Z. It follows from the results in
Beare (2010) that (Yi)i∈Z is alpha-mixing for many commonly used copula
families, and it is easy to see that this property transfers to (Xi)i∈Z.

2.2 The test statistic

The procedure described in the following is a suitable adaptation of two
recent publications of Kojadinovic et al. (2011) and Kojadinovic and Yan
(2011) which are restricted to the i.i.d. case. As a test statistic, i.e., as a
measure of the goodness-of-fit, it is reasonable to calculate a suitable distance
between a nonparametric estimator Cn and a parametric estimator Cθn . It
will be a crucial intermediate step to determine the asymptotic distribution
of

√
n(Cn − Cθn) =

√
n(Cn − C) +

√
n(C − Cθn). (2.1)

In the following, we will split the discussion into three steps: two for each
summand of the latter decomposition and one for assembling both parts.

Step 1: The nonparametric part. For the first summand on the right-
hand side of (2.1), the standardized nonparametric part, we can rely on the
empirical copula dating back to Deheuvels (1979) and Rüschendorf (1976).
For its definition, we first introduce pseudo-observations from the copula C,
defined as Ûi = (Ûi1, . . . , Ûid) with Ûiµ = (n+1)−1Riµ and with Riµ denoting
the rank of Xiµ among X1µ, . . . , Xnµ, µ = 1, . . . , d. The empirical copula Cn
is defined as the empirical distribution function of Û1, . . . , Ûn, i.e.,

Cn(u) =
1

n

n∑
i=1

1(Ûi ≤ u), u = (u1, . . . , ud) ∈ [0, 1]d.

The associated standardized version, called the empirical copula process,

Cn : [0, 1]d → R, u 7→ Cn(u) =
√
n(Cn − C)(u),

is well-understood and has been investigated under slightly different condi-
tions in Rüschendorf (1976); Fermanian et al. (2004); Segers (2012); Bücher
and Volgushev (2013), among others. Weak convergence with respect to the
supremum-distance holds provided that there are no ties, marginally, that
αX(k) = O(k−a) for some a > 1 and provided a smoothness condition on
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C originating from Segers (2012) (see Condition I in Appendix A below) is
satisfied, see Bücher and Volgushev (2013), Corollary 2.5, relying on Bücher
(2013), Theorem 1.

More precisely, we have Cn =
√
n(Cn − C)  CC in (`∞[0, 1]d, ‖ · ‖∞),

where CC can be represented as

CC(u) = BC(u)−
d∑

µ=1

C [µ](u)BC(uµ), u ∈ [0, 1]d,

with uµ denoting the vector with uµ in the µ-th component and the other
components equal to 1 and with C [µ] denoting the µth partial derivative of C.
Moreover, BC denotes a centered Gaussian process on [0, 1]d with covariance
function

Cov{BC(u),BC(v)} =
∑
i∈Z

Cov{1(U0 ≤ u),1(Ui ≤ v)}, u,v ∈ [0, 1]d,

where Ui = (Ui1, . . . , Uid)
′ with Uiµ = Fµ(Xiµ) for µ = 1, . . . , d.

Step 2: The parametric part. For the second summand on the right-
hand side of (2.1), the parametric part, let us suppose that the hypothesis H0

is met and let θ0 denote the true, unknown parameter in Θ. Several semi-
parametric estimators for θ0 have been proposed, which we denote by θn
in the following. Among the most popular ones are the maximum pseudo-
likelihood estimator (Genest et al., 1995) or the moment-based estimator
derived from inversion of the sample version of Spearman’s rho (see, for
instance, Berg and Quessy, 2009). Under suitable smoothness and mixing
conditions, the behavior of

√
n(Cθn−C) can be derived from the asymptotics

of Θn =
√
n(θn − θ0). For the latter, we will assume that we can write

Θn =
√
n(θn − θ0) =

1√
n

n∑
i=1

Jθ0(Ûi) + op(1),

where, for any θ ∈ P , Jθ : [0, 1]d → Rp is a (known) score-function satisfying
certain smoothness conditions that are specified in Definition V in the ap-
pendix. Note that both of the afore-mentioned semi-parametric estimators
allow for such a decomposition. We will show later that, under suitable con-
ditions on the model and on the mixing rate, Θn converges weakly to some
limit which we denote by Θ. Moreover, we will obtain that

√
n(Cθn − C) = ∇Cθ0Θn + oP (1) ∇Cθ0Θ (2.2)

in (`∞[0, 1]d, ‖ · ‖∞), where ∇Cθ = ∇Cθ(u) ∈ R1×p denotes the gradient of
θ 7→ Cθ(u).
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Step 3: Joining the nonparametric and the parametric part. It will
be proved in Theorem 2.2 below that the two summands on the right-hand
side of (2.1) converge jointly. Hence, we can conclude that

√
n(Cn − Cθn) CC −∇Cθ0Θ

in (`∞[0, 1]d, ‖ · ‖∞). Based on this result, the continuous mapping theorem
allows to derive the asymptotic distribution of suitable test statistics for H0.
Of particular interest are Kolomogorov-Smirnov-type tests

Tn =
√
n sup

u∈[0,1]d
|Cn(u)− Cθn(u)| (2.3)

and Cramér-von-Mises tests

Sn = n

∫
[0,1]d
{Cn(u)− Cθn(u)}2 dCn(u) =

n∑
i=1

{Cn(Ûi)− Cθn(Ûi)}2. (2.4)

We obtain that Tn  TC and Sn  SC where

TC = sup
u∈[0,1]d

|CC(u)−∇Cθ0(u)Θ|,

SC =

∫
[0,1]d
{CC(u)−∇Cθ0(u)Θ}2 dC(u).

We reject the null hypothesis for large values of Tn or of Sn. To get access
to the critical values of the limiting distributions, we propose a bootstrap
procedure for the process

√
n(Cn − Cθn) in the following subsection.

2.3 Critical values via dependent multiplier bootstrap

In this subsection, we construct a bootstrap approximation for both processes
of the decomposition in (2.1).

Step 1: The nonparametric part. The multiplier bootstrap procedure
for the empirical copula process is a well-established tool for statistical in-
ference on copulas. It has been proposed in Scaillet (2005) and Rémillard
and Scaillet (2009) for i.i.d. data sets, and has been applied to different test-
ing issues in Genest et al. (2011); Kojadinovic et al. (2011); Bücher et al.
(2011, 2012), among others. The procedure has been generalized to the
alpha-mixing case in Bücher and Ruppert (2013) with several further im-
provements in Bücher and Kojadinovic (2013).

7



Let B ∈ N be some large integer. For b ∈ {1, . . . , B} and u ∈ [0, 1]d, set

C(b)
n (u) = B(b)

n (u)−
d∑

µ=1

C [µ]
n (u)B(b)

n (uµ)

with

B(b)
n (u) =

1√
n

n∑
i=1

Z
(b)
i,n{1(Ûi ≤ u)− Cn(u)}.

Here, the multipliers (Z
(b)
i,n)i∈Z are independent sequences of identically dis-

tributed random variables with mean 0 and variance 1, which are independent
of (Xi)i∈N and can be chosen to be either i.i.d. (provided the original time
series is serially independent) or to satisfy some weak dependence condition
(see Definition A.1 in Appendix A). In the latter case, we speak of a depen-
dent multiplier bootstrap. A possible way of simulating these multipliers is
specified in Section 3.1. Moreover, C

[µ]
n denotes an appropriate consistent

estimator of C [µ], for instance an estimator based on finite-differencing as
proposed in Rémillard and Scaillet (2009) or more precisely in Segers (2012),
i.e.,

C [µ]
n (u) =


Cn(u+hneµ)−Cn(u−hneµ)

2hn
if uµ ∈ [hn, 1− hn]

C
[µ]
n (u1, . . . , uµ−1, hn, uµ+1, . . . , ud) if uµ ∈ [0, hn)

C
[µ]
n (u1, . . . , uµ−1, 1− hn, uµ+1, . . . , ud) if uµ ∈ (1− hn, 1]

with a sequence hn → 0 such that infn hn
√
n > 0 and with eµ denoting the

µ-th unit vector in Rd.
Now, under conditions on the mixing rate and on the dependent multipli-

ers, we have(√
n(Cn − C),C(1)

n , . . . ,C(B)
n

)
 
(
CC ,C(1)

C , . . . ,C(B)
C

)
(2.5)

in (`∞[0, 1]d, ‖ · ‖∞)B+1, where C(1)
C , . . . ,C(B)

C denote independent copies of
the process CC . This result can be interpreted in the way that, for n large,
C(1)
n , . . . ,C(B)

n are ‘almost’ independent copies of Cn and can hence be used
to approximate its distribution. For a proof, see Bücher and Kojadinovic
(2013) for the alpha-mixing case or Segers (2012) for the i.i.d. case.

Step 2: The parametric part. For a bootstrap approximation of the
parametric component of decomposition (2.1) we will show in the appendix
that we can write

Θn =
1√
n

n∑
i=1

Jθ0(Ui) +
d∑

µ=1

{
1√
n

n∑
i=1

J
[µ]
θ0

(Ui)(Ûi,µ − Ui,µ)

}
+ oP (1). (2.6)
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Observing that Ûi,µ = n−1
∑n

j=1 1(Uj,µ ≤ Ui,µ) we can write the second
(double) sum as

d∑
µ=1

{
1

n3/2

n∑
i=1

n∑
j=1

J
[µ]
θ0

(Ui){1(Uj,µ ≤ Ui,µ)− Ui,µ}

}
.

Introducing the random multipliers (Z
(b)
i,n)i=1,...,n (b = 1, . . . , B) and replacing

each term on the right-hand side of (2.6) by observable estimates we arrive
at the following bootstrap approximation for Θn,

Θ(b)
n =

1√
n

n∑
i=1

Z
(b)
i,n × {Jθn(Ûi) + K̂i,n,θn}

where, for any θ ∈ P and i ∈ {1, . . . , n},

K̂i,n,θ =
d∑

µ=1

{
1

n

n∑
j=1

J
[µ]
θ (Ûj)× {1(Ûi,µ ≤ Ûj,µ)− Ûj,µ}

}
. (2.7)

Note that the function Jθ is known for common copula families and common
parametric estimators, see also Kojadinovic and Yan (2011); Kojadinovic
et al. (2011). Under H0 and regularity conditions, it will follow from Theo-
rem 2.2 below that(

Θn,Θ
(1)
n , . . . ,Θ(B)

n

)
 
(
Θ,Θ(1), . . . ,Θ(B)

)
(2.8)

where Θ,Θ(1), . . . ,Θ(B) denote independent random vectors each of which
has the same distribution as Θ. This result may be of independent interest
and can be used to construct confidence bands for the estimation of θ0 in
the alpha-mixing case. In fact, we make use of these confidence bands in the
empirical application in Section 5.

Step 3: Joining the nonparametric and the parametric part. As in
Section 2.2, the ‘nonparametric’ convergence in (2.5) and the ‘parametric’
one in (2.8) actually holds jointly. More precisely, the following theorem
summarizes the main results of this paper, including those already mentioned
in the previous paragraphs.

Theorem 2.2. For b = 1, . . . , B, let (Z
(b)
i,n)i∈Z be independent sequences of

multipliers satisfying the conditions in Definition A.1.

(i) Suppose that Conditions I, II and III in Appendix A are met. Then(√
n(Cn − C),C(1)

n , . . . ,C(B)
n

)
 
(
CC ,C(1)

C , . . . ,C(B)
C

)
(2.9)
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in (`∞[0, 1]d, ‖ · ‖∞)B+1, where C(1)
C , . . . ,C(B)

C denote independent copies of
the process CC.

(ii) If Conditions V and VI hold, if κ from Definition A.1 satisfies κ >
1/{2(1 + ν)} with ν from Condition V and if C ∈ C , then(

Θn,Θ
(1)
n , . . . ,Θ(B)

n

)
 
(
Θ,Θ(1), . . . ,Θ(B)

)
(2.10)

where Θ,Θ(1), . . . ,Θ(B) denote i.i.d. d-dimensional random vectors that are
normally distributed with mean 0 and covariance matrix

Σ =
∞∑

i=−∞

E[{Jθ0(U0) +K0,θ0}{Jθ0(Ui) +Ki,θ0}T ],

where Ki,θ0 =
∑d

µ=1

∫
[0,1]d

J
[µ]
θ0

(u){1(Ui,µ ≤ uµ) − uµ}dCθ0(u) and where Jθ
is defined in Condition V.

(iii) If Condition IV and all of the conditions in (i) and (ii) are satisfied,
then the convergence in (2.9) and (2.10) is jointly in {`∞[0, 1]d}B+1×R(B+1)p.
Moreover,(√

n(Cn − Cθn),C(1)
n −∇CθnΘ(1)

n , . . . ,C(B)
n −∇CθnΘ(B)

n

)
 
(
CC −∇Cθ0Θ,C

(1)
C −∇Cθ0Θ

(1), . . . ,C(B)
C −∇Cθ0Θ(B)

)
(2.11)

in {`∞([0, 1]d)}B+1.

This result suggests to use the following bootstrap approximations for
the Kolomogorov-Smirnov-type statistic Tn and the Cramér-von-Mises-type
statistic Sn defined in (2.3) and (2.4), respectively, namely

T (b)
n =

√
n sup

u∈[0,1]d
|C(b)

n (u)−∇Cθn(u)Θ(b)
n |

and

S(b)
n =

∫
[0,1]d
{C(b)

n (u)−∇Cθn(u)Θ(b)
n }2 dCn(u)

=
1

n

n∑
i=1

{C(b)
n (Ûi)−∇Cθn(Ûi)Θ

(b)
n }2,

for b = 1, . . . , B. For a given level α ∈ (0, 1), let tn,B,1−α and sn,B,1−α denote

the empirical (1−α)-quantile of the sample T (1)
n , . . . , T (B)

n and S(1)
n , . . . ,S(B)

n ,
respectively. The following theorem, whose proof can be found in Section F
of the the supplement to Bücher and Kojadinovic (2013), shows that the
tests which reject H0 for Tn > tn,B,1−α or for Sn > sn,B,1−α asymptotically
hold their level, for B →∞ and n→∞.
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Theorem 2.3. Under H0, if the regularity conditions of Theorem 2.2 are
met,

lim
B→∞

lim
n→∞

P(Tn > tn,B,1−α) = lim
B→∞

lim
n→∞

P(Sn > sn,B,1−α) = α.

An approximate p-value for the test based on Tn can hence be defined as
p̂ = B−1

∑B
b=1 1(T (b)

n > Tn), and similarly for the test based on Sn.

3 Implementation Issues

3.1 Simulating dependent multipliers

The bootstrap version of the test statistics in the previous section depends
crucially on a sequence of dependent multipliers satisfying the conditions in
Definition A.1 in the appendix. A detailed discussion of how to simulate such
a sequence can be found in Bücher and Kojadinovic (2013). For the sake of
completeness, we briefly summarize one possible approach originating from
Bühlmann (1993), which the former authors found to lead to a reasonable
finite-sample performance.

First of all, choose a bandwidth parameter `n (see Section 3.2 below) and
set bn = round{(`n + 1)/2}. Let κ be a positive, bounded function which
is symmetric around zero such that κ(x) > 0 for all x ∈ (−1, 1). In our
simulation study, we use the Parzen-kernel defined as

κP (x) = (1− 6x2 + 6|x|3)1(|x| ≤ 1/2) + 2(1− |x|)31(1/2 < |x| ≤ 1).

Now, for j = 1, . . . , `n, define weights ω̃jn = ωjn(
∑`n

i=1 ω
2
in)−1/2 where ωjn =

κ{(j − bn)/bn}. Finally, let ξ1, . . . , ξn+2bn−2 be i.i.d. random variables which
are independent from the sample X1, . . . ,Xn with E[ξ1] = 0, E[ξ2

1 ] = 1
and E[|ξ1|m] < ∞, for any m ≥ 1. Then the sequence of random variables
Z1,n, . . . , Zn,n defined as

Zi,n =
`n∑
j=1

ω̃jnξj+i−1

asymptotically satisfies the conditions in Definition A.1, see Bücher and Ko-
jadinovic (2013). For a detailed discussion on the properties of these multi-
pliers and an alternative simulation procedure for the multpliers see Bücher
and Kojadinovic (2013).
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3.2 Choosing the bandwidth parameter `n

The simulation method described in the previous section depends on the
choice of the ‘bandwidth’ parameter `n. Within the context of empirical
copulas, Bücher and Kojadinovic (2013) derived a closed-form formula for a
theoretically optimal choice, where optimality is to be understood as opti-
mality with respect to a certain MSE-minimizing criterion. Moreover, they
proposed a data-adaptive estimation procedure for this (theoretically) opti-
mal bandwidth. In the following, we adapt their approach to the processes
underlying the goodness-of-fit tests in Section 2.

For u,v ∈ [0, 1]d, let σ(u,v) denote the characterizing covariance kernel
of the process u 7→ CC(u)−∇Cθ0(u)Θ. Its bootstrap approximation, for a

fixed b ∈ {1, . . . , B}, is given by C(b)
n (u)−∇Cθn(u)Θ

(b)
n . The main idea of the

subsequent developments is as follows: if σ̂n denotes the covariance kernel of
the bootstrap process, conditional on the data, then a theoretically optimal
choice of `n is given by the minimizer of the integrated mean squared error of
σ̂n(u,v), seen as an estimator for σ(u,v), with respect to `n. Unfortunately,
necessary closed form expressions for the mean or the variance of σ̂n are out
of reach, whence we follow the proposal of Bücher and Kojadinovic (2013)

and consider an asymptotically equivalent form of C(b)
n (u) − ∇Cθn(u)Θ

(b)
n

instead, for which calculations are feasible.
More precisely, define B̃(b)

n (u) = n−1/2
∑n

i=1 Z
(b)
i,n{1(Ui ≤ u) − Cθ0(u)}

and Θ̃
(b)
n = n−1/2

∑n
i=1 Z

(b)
i,n{Jθ0(Ui) + Ki,θ0}, where Ki,θ0 is defined in Theo-

rem 2.2, and let C̃(b)
n (u) = B̃(b)

n (u) −
∑d

µ=1C
[µ]
θ0

(u)B̃(b)
n (uµ). It follows from

the arguments in the proof of Theorem 2.2 that

sup
u∈[0,1]d

∣∣∣C(b)
n (u)−∇Cθn(u)Θ(b)

n − {C̃(b)
n (u)−∇Cθ0(u)Θ̃(b)

n }
∣∣∣ = oP (1).

In contrast to σ̂n, the (conditional) covariance kernel of the (unobservable)

process C̃(b)
n (u)−∇Cθ0(u)Θ̃

(b)
n can be calculated explicitly, at least up to the

first-order terms. We have

σ̃n(u,v) = CovZ{C̃(b)
n (u)−∇Cθ0(u)Θ̃(b), C̃(b)

n (v)−∇Cθ0(v)Θ̃(b)}

=
1

n

n∑
i,j=1

EZ [Z
(b)
i,nZ

(b)
j,n]f(Ui,u)f(Uj,v)

=
1

n

n∑
i,j=1

ϕ{(i− j)/`n}f(Ui,u)f(Uj,v)

where CovZ and EZ denote covariance and expectation conditional on the

12



data, respectively, and where, for i = 1, . . . , n and u ∈ [0, 1]d,

f(Ui,u) = 1(Ui ≤ u)− Cθ0(u)−
d∑

µ=1

C
[µ]
θ0

(u){1(Uiµ ≤ uµ)− uµ}

− ∇Cθ0(u){Jθ0(Ui) +Kθ0,i}.

Mimicking the proofs of Proposition 5.1 and Proposition 5.2 in Bücher and
Kojadinovic (2013), we obtain the following results regarding bias and vari-
ance of σ̃n, seen as an estimator for σ.

Lemma 3.1. Additionally to the conditions assumed in (iii) of Theorem 2.2
suppose that a defined in Condition VI satisfies a > 3(2 + ν)/ν and that ϕ
defined in Definition A.1 is twice continuously differentiable on [−1, 1] with
ϕ′′(0) 6= 0. Then, for any u,v ∈ [0, 1]d,

E[σ̃n(u,v)]− σ(u,v) =
Γ(u,v)

`2
n

+ rn,1(u,v),

where supu,v∈[0,1]d |r1,n(u,v)| = o(`−2
n ) and Γ(u,v) = ϕ′′(0)

2

∑
k∈Z k

2γ(k,u,v)
with γ(k,u,v) = Cov{f(U0,u), f(Uk,v)}).

Additionally, provided the function ϕ is Lipschitz-continuous and provided∫
[0,1]d

∏d
µ=1 rµ(uµ)4+2νdCθ0(u) <∞, where r1, . . . , rd are defined in Condition

V, then

Var{σ̃n(u,v)} =
`n
n

∆(u,v) + rn,2(u,v),

where ∆(u,v) =
∫ 1

−1
ϕ(x)2dx{σ(u,u)σ(v,v) + σ(u,v)2} and where the re-

mainder term satisfies supu,v∈[0,1]d |rn,2(u,v)| = o(`n/n).

As a consequence of Lemma 3.1, the (pointwise) mean integrated squared
error of σ̃n(u,v) can be written as

MSE{σ̃n(u,v)} =
{Γ(u,v)}2

`4
n

+ ∆(u,v)
`n
n

+ r2
n,1(u,v) + rn,2(u,v).

Furthermore, the integrated mean squared error is given by

IMSE(σ̃n) =

∫
[0,1]2d

MSE{σ̃n(u,v)}d(u,v) =
Γ̄2

`4
n

+ ∆̄
`n
n

+ o(`−4
n ) + o(`n/n),

13



where Γ̄ =
∫

[0,1]2d
Γ(u,v)d(u,v) and ∆̄ =

∫
[0,1]2d

∆(u,v)d(u,v). Obviously,

the function `n 7→ Γ̄/`4
n + ∆̄`n/n is minimized for

`n,opt =
(4Γ̄2

∆̄

)1/5

n1/5,

which can be considered as a theoretically optimal choice for the bandwidth
parameter `n.

In practice, the unknown quantities in `n,opt need to be estimated, namely
σ(u,v) =

∑
k∈Z γ(k,u,v) and M(u,v) =

∑
k∈Z k

2γ(k,u,v). For that
purpose, we can closely follow Bücher and Kojadinovic (2013) again. Let
L ∈ {1, . . . , n} be the smallest number such that the marginal autocorrela-
tions at lag L appear to be negligible, see Bücher and Kojadinovic (2013) and
Politis and White (2004) for details. Let K denote the trapezoidal kernel,
defined as K(x) = [{2(1− |x|)} ∨ 0] ∧ 1. Then, set

σ̂n(u,v) =
L∑

k=−L

K(k/L)γ̂n(k,u,v), M̂n(u,v) =
L∑

k=−L

K(k/L)k2γ̂n(k,u,v),

where, for u,v ∈ [0, 1]d and k ∈ {−L, . . . , L},

γ̂n(k,u,v) =

{
n−1

∑n−k
i=1 f̂(Ûi,u)f̂(Ûi+k,v), k ≥ 0

n−1
∑n

i=1−k f̂(Ûi,u)f̂(Ûi+k,v), k < 0
,

and where

f̂(Ûi,u) = 1(Ûi ≤ u)− Cn(u)−
d∑

µ=1

C [µ]
n (u){1(Ûiµ ≤ uµ)− uµ}

− ∇Cθn(u){Jθ0(Ûi) + K̂i,n,θn}.

The plug-in principle finally yields an estimator ˆ̀
n,opt for `n,opt.

3.3 Score functions for common estimators

3.3.1 Inversion of Spearman’s rho for alpha-mixing observations

One example of an estimator which fulfills the smoothness assumptions in
Condition V in the bivariate case provides the moment estimator defined by
θn = ρ−1(ρn), where ρn is the sample version of Spearman’s rho and where

ρ : P → [−1, 1], ρ(θ) = 12

∫
[0,1]2

Cθ(u)du− 3.

14



If the function ρ is bijective and continuously differentiable, this leads to a
consistent estimator of the parameter θ0, with score function given by

Jθ(u) =
1

ρ′(θ)
{12u1u2 − 3− ρ(θ)}.

To see the latter, note that, by the mean value theorem,

√
n(θn − θ0) =

√
n{ρ−1(ρn)− ρ−1(ρ(θ0))} = An +Rn,

where An =
√
n 1
ρ′(θ0)
{ρn − ρ(θ0)} and Rn =

√
n( 1

ρ′(θ′n)
− 1

ρ′(θ0)
){ρn − ρ(θ0)}

with θ′n being an intermediate point between θ0 and θn.
We have Rn = oP (1) by continuity of ρ′, consistency of θ′n and by the

fact that
√
n(ρn − ρ0) = OP (1) (which follows from the continuous mapping

theorem and weak convergence of the empirical copula process for mixing
rates αX(n) = O(n−a) for some a > 1, see Section 2.2).

Moreover, by the definition of ρn,

An =

√
n

ρ′(θ0)

{
1− 6

∑n
i=1(Ûi1 − Ûi2)2

n(n− 1)2
− ρ(θ0)

}

=
1√
n

n∑
i=1

[
1

ρ′(θ0)

{
12Ûi1Ûi2 − 3− ρ(θ0)

}]
=

1√
n

n∑
i=1

Jθ0(Ûi).

Since Jθ is bounded in u ∈ [0, 1]2, all assumptions in Condition V can be eas-
ily shown to hold for most of the most common copula families. For example,
for elliptical copulas, we have ρ(θ) = 6

π
arcsin( θ

2
) whence the corresponding

score function is given by

Jθ(u) =
π

3

√
1− θ2

4

{
12u1u2 − 3− 6

π
arcsin(θ/2)

}
.

3.3.2 The pseudo-ML estimator in Markovian copula models

Another estimator satisfying the smoothness assumptions in Condition V is
provided by the pseudo-ML estimator in Markovian copula models as de-
scribed in Example 2.1 above. If M denotes the d-dimensional copula of Yi,
then, by stationarity, M is also the copula of Yi−1 and for all u ∈ [0, 1]d

C(u,1) = M(u) = C(1,u).

To test for the hypothesis C ∈ {Cθ : θ ∈ P}, where Cθ has density cθ
and where mθ denotes the density corresponding to the marginal copula
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Mθ = Cθ(1, ·) = Cθ(·,1) for any θ ∈ P , one may use the maximum-pseudo-
likelihood estimator for the parameter θ defined as

θ̂n = arg max
θ∈P

n∑
i=2

log
{cθ(Ûi, Ûi−1)

mθ(Ûi−1)

}
.

From the results in Rémillard et al. (2012) it follows that the corresponding
score function Jθ : [0, 1]2d → Rp is given by

Jθ(u) =
{
ECθ
[
∇2 cθ(U1,U0)

mθ(U0)

]}−1

∇
[

log
{ cθ(u)

mθ(u1, . . . . , ud)

}]
.

It can be shown that the assumptions in Condition V hold for most of the
commonly used copulas. For a discussion of similar assumptions in the case
of a one-dimensional Markovian time series, we refer the reader to Chen and
Fan (2006b).

4 Numerical results

In this section, we study the finite-sample performance of the goodness-of-
fit test by means of Monte Carlo simulations. We restrict ourselves to the
investigation of the one-dimensional Markovian copula model described in
Example 2.1.

The experimental design is as follows: we consider four common bivariate
copula models (the Gaussian, the t4, the Clayton and the Gumbel–Hougaard
copula), six different levels of dependence as measured through Kendall’s
rank correlation coefficient (τ = 0.05, 0.1, 0.15, 0.2, 0.25, 0.3) and five differ-
ent sample sizes (n = 50, 100, 200, 400, 800). Due to the high level of serial
dependence introduced through a strongly dependent copula, analogue sim-
ulations for higher values of τ did not lead to satisfying results. For a visual
exploration of the strength of the serial dependence, see Figure 1.

For the parametric estimator, we choose the pseudo-ML estimator from
Chen and Fan (2006b) as described in Section 3.3.2. The multipliers are
generated as described in Section 3.1 (with ξi standard normally distributed)
and the bandwidth parameter is chosen according to the description in Sec-
tion 3.2.

The corresponding results can be found in Tables 1 and 2 where we state
the empirical rejection probabilities for a nominal level of 5% based on N =
1, 000 simulation runs, each of which being based on B = 200 bootstrap
replications. The main findings can be summarized as follows:
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Figure 1: Estimated autocorrelations at lag 1 (◦), 5 (4) and 15 (+) for the
Markovian copula model based on the Gaussian copula (left panel, solid
lines), the t4-copula (left panel, dashed lines), the Clayton copula (right
panel, solid lines) and the Gumbel copula (right panel, dashed lines).

• The approximation of the nominal level is accurate and gets better with
increasing sample size. For the t4 and the Gaussian copula, the test
seems to be globally conservative, while it is slightly too liberal for the
Clayton copula.

• We observe decent power properties for Gaussian or t4 vs. Clayton
or Gumbel and vice versa. Also, Gumbel and Clatyon can be well-
distinguished. On the other hand, a distinction between the t4 and the
Gaussian copula seems to be more difficult. The latter behavior has
also been observed by Kojadinovic et al. (2011) in the i.i.d. context.

• The power of the test is increasing in the strength of the dependence as
measured through Kendall’s tau. This can be explained by the fact the
independence copula is included in all four models under consideration,
whence the difference between the models tends to be very small for
small values of τ .

5 Data application

In this section, we illustrate the use of our goodness-of-fit test by applying
it to a time series of 267 weakly gasoline price markups in Windsor, On-
tario, from August 20, 1989, to September 25, 1994. As described in Beare
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True copula: Gaussian
H0 n τ = .05 τ = .1 τ = .15 τ = .2 τ = .25 τ = .3

Gaussian 50 14.1 10.7 6.5 5.9 5.6 3.1
100 6.8 5.2 3.2 3.1 2.4 1.3
200 5.8 4.2 3.6 3.3 2.3 2.2
400 4.5 4.6 4.1 3.8 3.2 2.4
800 4.8 4.8 3.9 2.6 3.2 4.4

t4 50 6.8 6.7 4.9 4.5 4.1 3.9
100 3.0 2.9 2.9 4.2 1.7 1.6
200 5.3 2.9 3.4 3.4 3.3 3.1
400 5.8 8.7 8.3 9.1 9.4 8.5
800 15.7 15.7 23.0 29.5 31.0 28.7

Clayton 50 24.2 28.3 26.9 33.2 34.3 38.5
100 15.2 23.3 26.5 35.3 45.3 50.7
200 14.3 25.9 39.3 56.2 66.9 79.1
400 14.4 35.1 58.6 80.0 91.8 97.2
800 24.0 56.0 84.3 95.9 99.7 100.0

Gumbel 50 4.8 6.3 7.6 5.9 5.4 6.8
100 5.4 6.6 9.7 8.7 8.6 7.5
200 8.1 12.3 14.6 16.9 17.9 21.8
400 10.4 18.5 27.0 38.3 45.6 49.3
800 16.5 34.4 54.0 71.5 82.5 87.2

True copula: t4
H0 n τ = .05 τ = .1 τ = .15 τ = .2 τ = .25 τ = .3

Gaussian 50 20.6 15.6 14.6 12.3 10.5 7.3
100 12.0 10.6 9.4 8.8 6.4 6.0
200 12.0 11.5 12.0 8.4 7.5 7.9
400 15.9 14.3 12.9 12.6 12.7 8.8
800 32.4 28.4 29.0 27.2 23.3 23.9

t4 50 8.5 5.6 5.7 3.9 2.8 2.9
100 2.9 2.1 2.6 1.8 1.6 0.6
200 2.6 2.4 2.0 1.7 1.3 1.0
400 1.9 1.6 2.0 2.0 0.7 1.4
800 1.4 2.2 1.1 1.3 1.3 1.9

Clayton 50 21.2 21.0 24.2 30.0 30.9 34.2
100 14.9 18.7 23.7 25.3 32.7 40.9
200 11.8 20.8 28.8 42.0 55.0 68.3
400 11.4 27.4 45.3 64.6 81.6 89.1
800 25.2 46.3 73.2 92.0 98.5 99.9

Gumbel 50 6.7 7.6 7.9 8.1 8.1 8.0
100 7.2 7.2 6.5 8.2 9.0 9.4
200 6.9 7.9 11.1 12.0 15.1 19.2
400 10.3 14.3 17.4 23.9 28.2 34.8
800 29.2 27.2 41.5 49.5 60.4 69.7

Table 1: Simulated rejection probabilities for the goodness-of-fit test in the
Markovian copula model based on the Gaussian and the t4-copula.
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True copula: Clayton
H0 n τ = .05 τ = .1 τ = .15 τ = .2 τ = .25 τ = .3

Gaussian 50 12.8 11.5 9.2 9.3 7.6 6.7
100 6.5 5.9 7.6 9.1 10.4 12.6
200 5.6 8.8 16.5 23.4 30.6 34.2
400 6.8 16.0 31.4 50.7 68.1 72.8
800 11.9 34.2 66.6 85.3 95.3 98.3

t4 50 5.9 5.7 3.5 4.0 3.2 3.2
100 2.2 4.4 4.1 4.3 3.6 3.4
200 2.8 5.3 7.1 11.1 14.1 15.0
400 6.6 14.2 21.7 30.0 38.1 41.0
800 17.5 35.5 51.0 64.0 69.0 73.0

Clayton 50 16.6 17.4 12.6 13.0 14.2 13.8
100 10.2 7.6 9.2 8.2 6.6 9.3
200 8.3 5.0 5.3 6.6 7.3 9.3
400 4.4 5.7 5.5 5.7 6.4 7.8
800 3.9 5.0 5.9 6.5 5.9 8.1

Gumbel 50 7.9 10.2 14.6 17.6 19.9 17.5
100 7.4 13.2 25.1 31.6 38.5 40.0
200 13.7 30.4 44.3 64.2 79.3 83.9
400 22.5 56.5 81.0 94.0 98.4 99.1
800 39.1 84.3 99.2 100.0 100.0 100.0

True copula: Gumbel–Hougaard
H0 n τ = .05 τ = .1 τ = .15 τ = .2 τ = .25 τ = .3

Gaussian 50 14.0 13.4 10.8 10.7 7.3 4.6
100 8.3 7.4 6.9 6.1 4.9 3.3
200 5.7 10.3 12.7 11.6 11.4 9.2
400 7.5 13.7 21.1 19.3 23.3 23.6
800 8.5 22.0 31.9 46.1 57.1 59.9

t4 50 7.7 6.5 6.2 5.6 5.6 5.0
100 4.5 3.9 3.8 4.9 4.3 3.7
200 5.3 4.7 6.5 6.5 5.7 5.8
400 6.6 10.2 12.4 13.4 12.6 13.0
800 17.0 19.1 25.5 32.7 33.4 33.8

Clayton 50 27.7 30.0 34.7 36.0 40.9 35.5
100 19.0 25.0 35.7 45.0 45.9 52.7
200 22.0 38.4 54.9 65.2 79.9 84.7
400 24.9 55.8 77.1 90.9 96.1 97.9
800 38.7 81.7 96.7 99.4 100.0 100.0

Gumbel 50 6.2 5.1 8.3 6.1 5.7 4.2
100 5.5 5.6 5.2 4.6 3.6 4.8
200 5.4 6.2 5.8 5.5 4.5 4.6
400 4.9 4.8 6.2 5.5 5.0 3.8
800 6.6 6.2 6.9 5.5 5.4 5.7

Table 2: Simulated rejection probabilities for the goodness-of-fit test in the
Markovian copula model based on the Clayton and the Gumbel–Hougaard
copula.
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and Seo (2013), these markups were obtained by dividing the average retail
price across several gasoline stations in Windsor by the wholesale price of
unbranded gasoline at the terminal in Toronto, Ontario. A plot of the time
series can be found in Figure 2 below. The data set was investigated by
several authors, see, e.g., Eckert (2002) and McCausland (2007). Recently,
Beare and Seo (2013) used Markovian copula models to investigate time re-
versibility of the time series of price markups. Economic and financial time
series frequently exhibit time irreversibility and these authors found indeed
overwhelming evidence for time irreversibility of the markup data.

Loosely speaking, time reversibility means that the probabilistic behavior
of a time series (Xi)i∈Z does not alter by reversing the direction of time.
Formally, it is defined by the requirement that

(Xi1 , . . . , Xin)
d
= (Xin , . . . , Xi1) for all i1 < · · · < in.

For a Markovian copula model, it is equivalent to exchangeability of the
copula of (Xi−1, Xi), i.e., to the fact that C(u, v) = C(v, u) for all u, v ∈ [0, 1],
see, e.g., Beare and Seo (2013). Therefore, the results on the markup data
in the last-named paper suggest that our goodness-of-fit tests should reject
any exchangeable copula model for C.

We run our procedure based on B = 1, 000 bootstrap replications for the
four copulas considered in the simulation study in Section 4. The corre-
sponding p-values are p = 0.002 for the Gaussian copula, p = 0.471 for the
t4-copula, p = 0.016 for the Clayton copula, and p = 0.011 for the Gumbel–
Hougaard copula. Hence, there is indeed rather strong evidence against three
out of four of these models

Non-exchangeable copula models can for instance be derived by Khoudraji’s
device, see Khoudraji (1995). Based on two arbitrary copulas C1 and C2, one
can construct a new copula through

C(u, v) = C1(uα, vβ)C2(u1−α, v1−β), (u, v) ∈ [0, 1]2,

where α, β ∈ [0, 1], see also Liebscher (2008). We focus on the special case
where C1 is either from the Gumbel–Hougaard or the Clayton family and
where C2 is equal to the independence copula (see also Beare and Seo, 2013,
for the Gumbel–Hougaard choice). For both of the resulting 3-parameter
copula families, we did not find any evidence against H0, with p-values of
p = 0.561 and p = 0.941 for the Gumbel and Clayton extensions, respectively.
For the extension of the Clayton copula, we obtained parameter estimates
α = 0.868, β = 0.726 and θ = 7.362 (the parameter of the Clayton copula),
with corresponding 95%-multiplier bootstrap confidence bands (0.77, 0.97),
(0.63, 0.83) and (3.49, 11.25), respectively.
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Figure 2: Upper panel: the time series of markups. Lower left panel: pseudo
observation (Ûi−1, Ûi) for the markups. Lower right panel: a simulated sam-
ple of size 1, 000 from the fitted non-exchangeable extension of the Clayton
copula with parameters α = 0.868, β = 0.726 and θ = 7.362.

In Figure 2, we show a plot of the pseudo-observations based upon the
observations (Xi−1, Xi), along with a simulated sample from the extension
of the Clayton copula based on the fitted parameters. Indeed, we observe a
very good approximation of the data by the model. Overall, our results are
consistent with the findings in Beare and Seo (2013).

A Technical assumptions

In this section, we will introduce the technical conditions needed for the proof
of Theorem 2.2. Moreover, we will briefly comment on each of the conditions.
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First of all, weak convergence of the empirical copula process in Section 2.2
requires a smoothness condition on C, see Segers (2012).

Condition I. For µ = 1, . . . , d, the partial derivative C [µ](u) = ∂
∂uµ

C(u)

exists and is continuous for any u = (u1, . . . , ud) ∈ [0, 1]d with uµ ∈ (0, 1).

For completeness, we define C [µ](u) as zero for any u such that uµ ∈ {0, 1},
see also Segers (2012); Bücher and Volgushev (2013).

Throughout the proofs, we need to be able to easily go back and forth
between normalized ranks and empirical quantile functions. For that pur-
pose, ties must not occur. In the case of serial independence, it is sufficient
to assume that the marginal distributions are continuous. In the case of se-
rial dependence, continuity of the marginal distributions is not sufficient to
guarantee the absence of ties which brings us to the following condition, see
also Bücher and Kojadinovic (2013).

Condition II. For any µ ∈ {1, . . . , d}, there are no ties in the marginal
time series X1µ, . . . , Xnµ with probability one.

Since we allow for alpha-mixing observations, the multipliers Z
(b)
i,n have

to be chosen serially dependent in an appropriate way. We follow Bücher
and Kojadinovic (2013), relying on previous results from Bühlmann (1993);
Bücher and Ruppert (2013).

Definition A.1. A sequence (Zi,n)i∈Z is called a dependent multiplier se-
quence if the following three conditions are met:

(M1) (Zi,n)i∈Z is independent of the process (Xi)i∈N.

(M2) The sequence (Zi,n)i∈Z in `n-dependent, i.e., Z
(b)
i,n is independent of

Z
(b)
i+h,n for any h > `n and any i ∈ Z, where `n ∈ N tends to infinity

and `n = O(n1/2−κ) for some κ ∈ (0, 1/2), for n→∞.

(M3) The sequence (Zi,n) is strictly stationary with E[Zi,nZi+h,n] = ϕ(h/`n),
where ϕ is a symmetric function which is strictly positive on (−1, 1),
zero on R\(−1, 1) and continuous in 0. Furthermore, supn∈N E[|Zi,n|p] <
∞ for all p ≥ 1.

For the proof of (2.5), Bücher and Kojadinovic (2013) imposed the fol-
lowing condition on the mixing rate of (Ui)i∈Z, where Ui = (Ui1, . . . ,Uid)

′

with Uiµ = Fµ(Xiµ) for µ ∈ {1, . . . , d}.
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Condition III. (Ui)i∈Z is a stationary, strongly mixing process satisfying
αU (n) = O(n−a) for some a > 3 + 3d/2.

The next condition, ensuring uniform continuity of the partial derivative
of the copula with respect to θ, is needed for the proof of (2.2).

Condition IV. As ε ↓ 0,

sup
‖θ′−θ‖<ε

sup
u∈[0,1]d

‖∇Cθ′(u)−∇Cθ(u)‖ → 0.

Regarding the parametric estimator θn, we opt for general conditions
that include the pseudo-maximum likelihood estimator. Following Tsuka-
hara (2005), we begin by defining q-functions and u-shaped functions.

Definition A.2. (q-functions) Let Q be the class of all continuous func-
tions q : [0, 1] → [0, 1] which are positive on (0, 1), symmetric around 1/2,
increasing on (0, 1/2] and for which

∫
[0,1]

q(u)−2du <∞. The functions in Q
are called q-functions .

For instance, for any 0 < δ < 1/2, the function q(u) = {u(1− u)}1/2−δ. is
an element of Q.

Definition A.3. (u-shaped functions) A function r : (0, 1) → (0,∞),
which is symmetric around 1/2, is called a u-shaped function if it is decreasing
on (0, 1/2].

A typical example of a u-shaped function is r(u) = {u(1−u)}−τ for τ ≥ 0.

Condition V. The estimator θn allows for the decomposition

Θn :=
√
n(θn − θ0) =

1√
n

n∑
i=1

Jθ0(Ûi) + op(1),

where, for θ ∈ P , Jθ : [0, 1]d → Rp denotes a score-function with the following
properties:

(i) Jθ is standardized, i.e., ∫
[0,1]d

Jθ(u)dCθ(u) = 0.
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(ii) For any θ ∈ P and for any µ = 1, . . . , d the derivatives J
[µ]
θ = ∂

∂uµ
Jθ ∈

Rp, ∇Jθ ∈ Rp×p and ∇(J
[µ]
θ ) ∈ Rp×p exist, are continuous on (0, 1)d and

there is a constant kθ such that for all θ′ ∈ P with ‖θ − θ′‖ ≤ kθ

‖Jθ′(u)‖ ≤
d∏

µ=1

rµ(uµ) and ‖∇Jθ′(u)‖op ≤
d∏

µ=1

rµ(uµ),

where r1, . . . , rd are u-shaped functions with∫
[0,1]d

d∏
µ=1

rµ(uµ)2+νdCθ0(u) <∞, (A.1)

∫
[0,1]d

d∏
µ=1

sup
|v−uµ|
qµ(uµ)

≤δ
rµ(v)2dCθ0(u) <∞ (A.2)

for some ν and δ > 0. Additionally, for any µ = 1, . . . , d, there exists a
u-shaped function r̃µ with

‖J [µ]
θ0

(u)‖ ≤ r̃µ(uµ)
∏
µ′ 6=µ

rµ′(uµ′) and ‖∇(J
[µ]
θ′ )(u)‖op ≤ r̃µ(uµ)

∏
µ′ 6=µ

rµ′(uµ′)

such that for some q-function qµ with
∫ 1

0
qµ(u)−(2+ν)du <∞∫

[0,1]d
qµ(uµ) sup

|v−uµ|
qµ(uµ)

≤δ
rµ(v)

∏
µ′ 6=µ

sup
|v−uµ′ |
qµ′ (uµ′ )

≤δ

rµ′(v)dCθ0(u) <∞. (A.3)

A discussion of estimators satisfying these assumptions is given in Sec-
tion 3.3. In general, the components of the score function Jθ are not bounded.
Therefore, in order to derive the asymptotic behavior of Θn by a suitable ap-
plication of the central limit theorem for alpha-mixing sequences, we need
a stronger condition on the mixing coefficients of (Ui)i∈Z which depends on
the moments of the score function.

Condition VI. (Ui)i∈Z is a stationary, strongly mixing process satisfying

αU (n) = O(n−a) for some a > 2(2+ν)(1+ν)
ν2

= 2 + 6
ν

+ 4
ν2

, where ν is defined in
Condition V.
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B Proofs of the main results

Let us first recall and introduce some notation. For u ∈ [0, 1]d, let

B̃n(u) =
1√
n

n∑
i=1

{1(Ui ≤ u)− Cθ0(u)}, (B.1)

B̃(b)
n (u) =

1√
n

n∑
i=1

Z
(b)
i,n{1(Ui ≤ u)− Cθ0(u)}, (B.2)

and, recalling the definition of Ki,θ0 in Theorem 2.2, set

Θ̃n =
1√
n

n∑
i=1

{Jθ0(Ui) +Ki,θ0}, Θ̃(b)
n =

1√
n

n∑
i=1

Z
(b)
i,n{Jθ0(Ui) +Ki,θ0}.

(B.3)

Proof of Theorem 2.2. As the other two items can be shown by similar, but
simpler proofs, we only prove (iii). Based on the central result in Lemma C.6,
we begin by showing that

Hn =
(
Cn,Θn,C(1)

n ,Θ(1)
n , . . . ,C(B)

n ,Θ(B)
n

)
 HC =

(
CC ,Θ,C(1)

C ,Θ(1), . . . ,C(B)
C ,Θ(B)

)
(B.4)

in
{
`∞([0, 1]d)× Rp

}B+1
. For the parametric components of Hn in (B.4), note

that Θn = Θ̃n + op(1) for n → ∞ as a consequence of Lemma C.1 and C.2.

Similarly, Θ
(b)
n = Θ̃

(b)
n + op(1) for any b = 1, . . . , B from Lemma C.3, C.4

and C.5.
For the nonparametric components of Hn, we have

sup
u∈[0,1]d

∣∣∣Cn(u)− B̃n(u) +
d∑

µ=1

C
[µ]
θ0

(u)B̃n(uµ)
∣∣∣ = op(1)

and

sup
u∈[0,1]d

∣∣∣C(b)
n (u)− B̃(b)

n (u) +
d∑

µ=1

C
[µ]
θ0

(u)B̃(b)
n (uµ)

∣∣∣ = op(1),

by simple adaptations of the proof of Proposition 3.1 in Segers (2012) and
the proof of Proposition 4.2 in Bücher and Kojadinovic (2013), respectively.
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As a consequence,

Hn(u) =
(
B̃n(u)−

d∑
µ=1

C
[µ]
θ0

(u)B̃n(uµ), Θ̃n,

B̃(1)
n (u)−

d∑
µ=1

C
[µ]
θ0

(u)B̃(1)
n (uµ), Θ̃(1)

n , . . . ,

B̃(B)
n (u)−

d∑
µ=1

C
[µ]
θ0

(u)B̃(B)
n (uµ), Θ̃(B)

n

)
+ oP (1),

where the remainder is uniform in u ∈ [0, 1]d. An application of the contin-
uous mapping Theorem and Lemma C.6 proves (B.4).

It remains to prove assertion (2.11) in Theorem 2.2. Applying Lemma C.7
and the continuous mapping Theorem to (B.4) yields that the process

(√
n(Cn − Cθn),B(1)

n (u)−
d∑

µ=1

C
[µ]
θ0

(u)B(1)
n (uµ)−∇Cθ0(u)Θ(1)

n , . . .

. . . ,B(B)
n (u)

d∑
µ=1

C
[µ]
θ0

(u)B(B)
n (uµ)−∇Cθ0(u)Θ(B)

n

)
converges in {`∞([0, 1]d)}B+1 to the limiting process in (2.11). Hence, it

remains to be shown that replacing C
[µ]
θ0

and ∇Cθ0 by C
[µ]
n and ∇Cθn , respec-

tively, in the last display does not change the limiting distribution. To see
this, fix µ and bound

sup
u∈[0,1]d

∣∣∣C [µ]
θ0

(u)B(b)
n (uµ) +∇Cθ0(u)Θ(b)

n − C [µ]
n (u)B(b)

n (uµ)−∇Cθn(u)Θ(b)
n

∣∣∣
≤ max

{
sup

uµ∈[δ,1−δ]
|B(b)

n (uµ)||C [µ]
n (u)− C [µ]

θ0
(u)|,

sup
uµ /∈[δ,1−δ]

|B(b)
n (uµ)||C [µ]

n (u)− C [µ]
θ0

(u)|
}

+ sup
u∈[0,1]d

|∇Cθn(u)−∇Cθ0(u)||Θ(b)
n |.

Due to Condition III and consistency of θn as a consequence of Lemma C.1,
C.2 and C.6, ∇Cθn provides an uniformly consistent estimator of ∇Cθ0 .
Therefore, the last summand on the right-hand side of the last display con-
verges to zero in probability as n→∞. The first argument in the maximum
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in that display converges to zero in probability since the estimator C
[µ]
n is uni-

formly consistent on the set {u ∈ [0, 1]d : uµ ∈ [δ, 1− δ]} for any 0 < δ < 1/2

and since B(b)
n = OP (1). For the estimation of the second argument in the

maximum note that, since ‖C [µ]
n ‖∞ ≤ 2 and ‖C [µ]

θ ‖∞ ≤ 1, we have

P
(

sup
uµ /∈[δ,1−δ]

|B(b)
n (uµ)||C [µ]

n (u)− C [µ]
θ0

(u)| > η
)
≤ P

(
sup

uµ /∈[δ,1−δ]
|B(b)

n (uµ)| > η/3
)

which can be made arbitrarily small by decreasing δ. This proves the Theo-
rem.

C Auxiliary results

Let us first introduce some additional notation: for u ∈ [0, 1]d, let

Gn(u) =
1

n

n∑
i=1

1(Ui ≤ u), G?
n(u) =

1

n+ 1

n∑
i=1

1(Ui ≤ u)

and Gnµ(uµ) = Gn(1, . . . , 1, uµ, 1, . . . , 1) with uµ at the µth coordinate, for
µ = 1, . . . , d, and similar for G?

nµ. By Theorem 2.2 in Shao and Yu (1996)
and a simple adaptation of Lemma 2.3.1 in Ruymgaart (1973) to the alpha-
mixing case we can find, for any γ > 0, some constant D > 0 such that
P(Ωn,D) ≥ 1− γ for any n ∈ N, where

Ωn,D =

{
ω : sup

u∈[U1:n,µ,Un:n,µ]

∣∣∣∣√n{G?
nµ(u)− u}
qµ(u)

∣∣∣∣∨ sup
u∈(0,1)

∣∣∣∣√n{Gnµ(u)− u}
qµ(u)

∣∣∣∣ ≤ D

for all µ = 1, . . . , d

}
(C.1)

and where Ui:n,µ denotes the ith order statistic of U1,µ, . . . , Un,µ. Note that,

on the event Ωn,D, we have maxni=1 |Ûi,µ − Ui,µ|/qµ(Ui,µ) ≤ D/
√
n for all

µ = 1, . . . , d.

Lemma C.1. Suppose that (Ui)i∈Z satisfies αU (n) = O(n−a) for some
a > 1 +

√
2 (which is a consequence of Condition III). Moreover, suppose

that Condition V holds. Then

Ln1 = Θn −
1√
n

n∑
i=1

{Jθ0(Ui) +Ki,n,θ0} = oP (1),
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where, for θ ∈ P and i ∈ {1, . . . , n},

Ki,n,θ =
1

n

n∑
j=1

d∑
µ=1

J
[µ]
θ (Uj)× {1(Ui,µ ≤ Uj,µ)− Uj,µ}.

Proof. Recall the definition of Ωn,D in (C.1). Since we can make P(Ω \Ωn,D)
arbitrary small by increasingD, it is sufficient to show that Ln11Ωn,D = oP (1),
for any D > 0. For the ease of notation, we will suppress this indicator in the
following and we will assume without loss of generality, that the inequality
in (C.1) holds for any ω ∈ Ω.

Now, the mean value theorem allows to write

Jθ0(Ûi) = Jθ0(Ui) +
d∑

µ=1

J
[µ]
θ0

(Ui)(Ûi,µ − Ui,µ) +Rni,

where the remainder term is given by

Rni =
d∑

µ=1

{J [µ]
θ0

(Ūi,n)− J [µ]
θ0

(Ui)}(Ûi,µ − Ui,µ)

and where Ūi,n denotes an intermediate point lying between Ui and Ûi. Let
us first show that 1√

n

∑n
i=1Rni = oP (1). We have∥∥∥∥∥ 1√
n

n∑
i=1

Rni

∥∥∥∥∥ ≤ D
d∑

µ=1

{
1

n

n∑
i=1

Sniµ

}

where Sniµ = ‖J [µ]
θ0

(Ūi,n) − J
[µ]
θ0

(Ui)‖qµ(Ui,µ). It remains to be shown that
each of the d sums inside the curly brackets converges to 0 in probability.
For η > 0, set Mη = [η, 1− η]d, and write

1

n

n∑
i=1

Sniµ =
1

n

n∑
i=1

Sniµ1(Ui ∈Mη) +
1

n

n∑
i=1

Sniµ1(Ui ∈MC
η ) (C.2)

Let us first consider the second sum on the right. By Condition V, for
sufficiently large n such that D/

√
n < δ with δ as in the condition, we can

bound its expected value by

2

∫
MC
η

qµ(uµ) sup
|v−uµ|
qµ(uµ)

≤δ
r̃µ(v)

∏
µ′ 6=µ

sup
|v−uµ′ |
qµ′ (uµ′ )

≤δ

rµ′(v) dCθ0(u) <∞.
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The latter can be made arbitrary small by decreasing η, whence it remains
to consider the first sum on the right-hand side of (C.2) for fixed η > 0.
Obviously, the sum can be bounded by

max{‖J [µ]
θ0

(Ūi,n)− J [µ]
θ0

(Ui)‖ : i = 1, . . . , n,Ui ∈Mη}

This expression converges to 0 by uniform continuity of J
[µ]
θ0

on Mη/2 and
by the fact that maxni=1 ‖Ūi,n −Ui‖ ≤ D/

√
n as a consequence of assuming

Ω = Ωn,D. To conclude, ‖ 1√
n

∑n
i=1Rni‖ = oP (1).

To finalize the proof of Lemma C.1, it remains to be shown that

1√
n

n∑
i=1

d∑
µ=1

J
[µ]
θ0

(Ui)(Ûi,µ − Ui,µ)− 1√
n

n∑
i=1

Ki,n,θ0

converges to 0 in probability. By exchanging the indices in the double sum
resulting from the sum over the Ki,n,θ0 , the last display can be written as

1

n

n∑
i=1

d∑
µ=1

J
[µ]
θ0

(Ui)×
√
n[{G?

nµ(Ui,µ)− Ui,µ} − {Gnµ(Ui,µ)− Ui,µ}].

We can bound the norm of the last display by 2D
n

∑n
i=1

∑d
µ=1 J

[µ]
θ0

(Ui)q(Ui,µ),

which is integrable by Condition V. Then, since supu∈[0,1] |
√
n{G?

nµ(u) −
Gnµ(u)| ≤ n−1/2, the assertion follows from dominated convergence.

Lemma C.2. Suppose that (Ui)i∈Z satisfies αU (n) = O(n−a) for some
a > 1 +

√
2 (which is a consequence of Condition III). Moreover, suppose

that Condition V holds. Then

1√
n

n∑
i=1

(Ki,n,θ0 −Ki,θ0)
P−→ 0,

where Ki,n,θ0 and Ki,θ0 are defined in Lemma C.1 and Theorem 2.2, respec-
tively.

Proof. As in the proof of Lemma C.1, we may assume without loss of gener-
ality that Ω = Ωn,D for some D > 0. Note that we can write

1√
n

n∑
i=1

(Ki,n,θ0 −Ki,θ0) =
d∑

µ=1

In,µ([0, 1]d),
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where, for some Borel-measurable subset A ⊂ [0, 1]d,

In,µ(A) =

∫
A

J
[µ]
θ0

(u)
√
n{Gnµ(uµ)− uµ} d{Gn(u)− Cθ0(u)}.

It suffices to show that In,µ([0, 1]d) = oP (1) for fixed µ ∈ {1, . . . , d}. For η ∈
(0, 1/2), set Mη = [η, 1− η]d, decompose In,µ([0, 1]d) = In,µ(Mη) + In,µ(MC

η )
and treat both summands separately.

For In,µ(MC
η ), we proceed similar as in the proof of Lemma C.1: since we

can work on the event Ωn,D, we can bound ‖In,µ(MC
η )‖ by

D

n

n∑
i=1

‖J [µ]
θ0

(Ui)‖qµ(Ui,µ)1(Ui ∈MC
η ) +D

∫
MC
η

‖J [µ]
θ0

(u)‖qµ(uµ) dCθ0(u),

and the expectation of this expression can be made arbitrary small by de-
creasing η.

Thus, it remains to be shown that In,µ(Mη) = oP (1) for each fixed η > 0.
This is a consequence of Lemma C.8, the continuous mapping theorem, weak
convergence of u 7→ J

[µ]
θ0

(u)
√
n{Gnµ(uµ)− uµ} as an element of `∞(Mη) and

the fact that supu∈[0,1]d |Gn(u) − Cθ0(u)| = oP (1) as a consequence of, for
instance, Theorem 7.3 in Rio (2000).

Lemma C.3. Suppose that (Ui)i∈Z satisfies αU (n) = O(n−a) for some
a > 6 (which is a consequence of Condition III). Moreover, suppose that
Condition V holds. Then, for any b = 1, . . . , B,

L
(b)
n1 =

1√
n

n∑
i=1

Z
(b)
i,n

[
{Jθn(Ûi) + K̂i,n,θn} − {Jθ0(Ûi) + K̂i,n,θ0}

]
= oP (1),

where K̂i,n,θ is defined in (2.7).

Proof. As in the proof of Lemma C.1, we may assume without loss of gener-
ality that Ω = Ωn,D for some D > 0. By definition, we have

K̂i,n,θn − K̂i,n,θ0 =
d∑

µ=1

1

n

n∑
j=1

{J [µ]
θn

(Ûj)− J [µ]
θ0

(Ûj)} × {1(Ûi,µ ≤ Ûj,µ)− Ûj,µ}.

Therefore, by the mean value theorem, there exist some θ′i,n and θµj,n, i, j =
1, . . . , n, µ = 1, . . . , d, all lying between θn and θ0, such that

Jθn(Ûi)− Jθ0(Ûi) = ∇Jθ′i,n(Ûi)(θn − θ)

K̂i,n,θn − K̂i,n,θ0 =
d∑

µ=1

1

n

n∑
j=1

∇J [µ]

θµj,n
(Ûj)(θn − θ0)× {1(Ui,µ ≤ Uj,µ)− Ûj,µ},
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where we used the fact that 1(Ui,µ ≤ Uj,µ) = 1(Ûi,µ ≤ Ûj,µ). This allows to

write L(b)

n1 = An +
∑d

µ=1 Bn,µ, where

An =
1√
n

n∑
i=1

Z
(b)
i,n∇Jθ′i,n(Ûi)(θn − θ0),

Bn,µ =
1

n

n∑
j=1

∇J [µ]

θµj,n
(Ûj)(θn − θ0)× 1√

n

n∑
i=1

Z
(b)
i,n{1(Ui,µ ≤ Uj,µ)− Ûj,µ}.

Let us first treat An, which we decompose as An = An,1×Θn+An,2, where

An,1 =
1

n

n∑
i=1

Z
(b)
i,n∇Jθ′i,n(Ûi)1

{
‖∇Jθ′i,n(Ûi)‖op ≤

d∏
µ=1

rµ(Ûi,µ)
}

An,2 =
1√
n

n∑
i=1

Z
(b)
i,n∇Jθ′i,n(Ûi)(θn − θ0)1

{
‖∇Jθ′i,n(Ûi)‖op >

d∏
µ=1

rµ(Ûi,µ)
}
,

with r1, . . . , rd being defined in Condition V. We begin with the estimation

of the first term in this decomposition. Let A
(s,s′)
n,1 denote the (s, s′)-entry of

the p× p-matrix An,1. Obviously, its mean is equal to 0 and its variance can
be estimated by

E
[
{A(s,s′)

n,1 }2
]

≤ 1

n

n∑
i,j=1

|E[Z
(b)
i,nZ

(b)
j,n]|
{
E
[ d∏
µ=1

rµ(Ûi,µ)2
]}1/2{

E
[ d∏
µ=1

rµ(Ûj,µ)2
]}1/2

≤ 1

n2

n∑
i,j=1

|E[Z
(b)
i,nZ

(b)
j,n]|

∫
[0,1]d

d∏
µ=1

sup
|v−uµ|
qµ(uµ)

≤Bn−1/2

rµ(v)2 dCθ0(u)

= O(n−2)O(n`n) = o(1),

where we used the Cauchy-Schwarz inequality, (A.2) and the fact that

1

n

n∑
i,j=1

|E[Z
(b)
i,nZ

(b)
j,n]| = 1

n

n∑
i,j=1

ϕ{(i− j)/`n}

=
`n∑

k=−`n

(1− |k|/n)ϕ(k/`n) ≤ {2`n + 1}ϕ(0). (C.3)

Thus, An,1 ×
√
n(θn − θ0) = oP (1). For the estimation of An,2, let ε > 0 be
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arbitrary. By Condition V, we can find n0 ∈ N such that, for any n ≥ n0,

1− ε < P
(
‖θn − θ0‖ < kθ

)
≤ P

(
∩ni=1 {|θ′i,n − θ0| < kθ}

)
≤ P

(
∩ni=1 {‖∇Jθ′i,n(Ûi)‖op ≤

d∏
µ=1

rµ(Ûi,µ)}
)
.

This implies that, for any η > 0 and for all n ≥ n0 ,

P(|An,2| > η) ≤ P
(
∪ni=1 {‖∇Jθ′i,n(Ûi)‖op >

d∏
µ=1

rµ(Ûi,µ)}
)
< ε,

that is An,2 = op(1) and hence An = oP (1).
It remains to be shown, that Bn,µ = oP (1) for all µ = 1, . . . , d. For this

purpose, we bound Bn,µ as follows

‖Bn,µ‖

=

∥∥∥∥ 1

n

n∑
j=1

∇J [µ]

θµj,µ
(Ûj)(θn − θ0)

1√
n

n∑
i=1

Z
(b)
i,n{I(Ui,µ ≤ Uj,µ)− Uj,µ + Uj,µ − Ûj,µ}

∥∥∥∥
≤ ‖θn − θ0‖ ×

{
1

n

n∑
j=1

‖∇J [µ]

θµj,n
(Ûj)‖op qµ(Uj,µ)

}
×

{
sup
u∈[0,1]

∣∣∣∣ 1√
n

n∑
i=1

Z
(b)
i,n

1(Ui,µ ≤ u)− u
qµ(u)

∣∣∣∣
+ sup

u∈[U1:n,µ,Un:n,µ]

√
n

∣∣∣∣G?
nµ(u)− u
qµ(u)

∣∣∣∣× ∣∣∣∣ 1n
n∑
i=1

Z
(b)
i,n

∣∣∣∣}
Since ‖θn− θ0‖ converges to zero in probability, it suffices to show that both
factors in curly brackets are stochastically bounded. For the second factor,
this follows from Lemma D.1, Theorem 2.2 in Shao and Yu (1996), a simple
adaptation of Lemma 2.3.1 in Ruymgaart (1973) to the alpha-mixing case
and from (C.3). Regarding the first factor, we decompose

1

n

n∑
j=1

‖∇J [µ]

θµj,n
(Ûj)‖op qµ(Uj,µ)

=
1

n

n∑
j=1

‖∇J [µ]

θµj,n
(Ûj)‖op qµ(Uj,µ)× 1(‖θn − θ0‖ ≤ kθ0)

+
1

n

n∑
j=1

‖∇J [µ]

θµj,n
(Ûj)‖op qµ(Uj,µ)× 1(‖θn − θ0‖ > kθ0).
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Clearly, the second sum on the right is oP (1) by consistency of θn. By Condi-
tion V (in particular (A.3)), Markov’s inequality and |Ûj,µ−Uj,µ|/qµ(Uj,µ) ≤
D/
√
n for all µ as a consequence of the fact that we may assume Ω = Ωn,D,

we have

1

n

n∑
j=1

‖∇J [µ]

θµj,n
(Ûj)‖op qµ(Uj,µ)× 1(‖θn − θ0‖ ≤ kθ0)

≤ 1

n

n∑
j=1

r̃µ(Ûj,µ)qµ(Uj,µ)
∏
µ′ 6=µ

rµ′(Ûj,µ′) = OP (1).

To conclude, Bn,µ = oP (1) which proves the lemma.

Lemma C.4. Suppose that (Ui)i∈Z satisfies αU (n) = O(n−a) for some
a > 6 (which is a consequence of Condition III). Moreover, suppose that
Condition V holds. Then, for any b = 1, . . . , B,

L
(b)
n2 =

1√
n

n∑
i=1

Z
(b)
i,n

[
{Jθ0(Ûi) + K̂i,n,θ0} − {Jθ0(Ui) +Ki,n,θ0)}

]
= oP (1).

Proof. As in the proof of Lemma C.1, we may assume without loss of gener-
ality that Ω = Ωn,D for some D > 0. Let us write L(b)

n2 = An +Bn, where

An =
1√
n

n∑
i=1

Z
(b)
i,n{Jθ0(Ûi)− Jθ0(Ui)}, Bn =

1√
n

n∑
i=1

Z
(b)
i,n{K̂i,n,θ0 −Ki,n,θ0},

and consider each term separately. For η ∈ (0, 1/2), set Mη = [η, 1− η]d. By

the mean value theorem, there exist intermediate values Ũi between Ûi and
Ui such that we can write An =

∑d
µ=1{An,µ(Mη) + An,µ(MC

η )}, where, for

any M ⊂ [0, 1]d,

An,µ(M) =
1√
n

n∑
i=1

Z
(b)
i,nJ

[µ]
θ0

(Ũi)(Ûi,µ − Ui,µ)1(Ui ∈M).

We begin with the treatment of An,µ(MC
η ), for a fixed µ. Since we may

assume Ω = Ωn,D, we can bound ‖An,µ(MC
η )‖ by

D

n

n∑
i=1

|Z(b)
i,n |qµ(Ui,µ) sup

|u−Ui,µ|
qµ(Ui,µ)

≤ B√
n

r̃µ(u)
∏
µ′ 6=µ

sup
|u−Ui,µ′ |
qµ′ (Ui,µ′ )

≤ B√
n

rµ′(u)1(Ui ∈MC
η )
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As in the proof of Lemma C.1, by Condition V, for sufficiently large n, the
expectation of the latter expression converges to zero as η → 0. Therefore,
it remains to consider An,µ(Mη) for fixed η ∈ (0, 1/2).

Since maxni=1 ‖Ûi − Ui‖ ≤ D/
√
n, we get that An,µ(Mη) = Ān,µ(Mη) +

oP (1) for n→∞, where

Ān,µ(Mη) =
1√
n

n∑
i=1

Z
(b)
i,nJ

[µ]
θ0

(Ũi)(Ûi,µ − Ui,µ)1(Ui ∈Mη, ‖Ûi −Ui‖ ≤ η/2).

By the Cauchy-Schwarz inequality, we obtain

E
[
‖Ān,µ(Mη)‖2

]
= E

[
{Ān,µ(Mη)}′{Ān,µ(Mη)}

]
≤ sup

u∈Mη/2

‖J [µ]
θ0

(u)‖2 × E
[ n

max
i=1
|Ûi,µ − Ui,µ|2

]
× 1

n

n∑
i,j=1

|E[Z
(b)
i,nZ

(b)
j,n]|.

The first factor on the right-hand side is bounded by Condition V. The second
factor is bounded by D2/n as we may assume that Ω = Ωn,D. Regarding the

third factor, note that 1
n

∑n
i,j=1 |E[Z

(b)
i,nZ

(b)
j,n]| = O(`n) as shown in (C.3). We

can conclude that Ān,µ(Mη) is of order Op(n
−1/4−κ/2) = oP (1), and therefore

also An = oP (1).
For the proof of the lemma, it remains to be shown that Bn = oP (1). We

can decompose Bn =
∑d

µ=1(Bn,1,µ +Bn,2,µ +Bn,3,µ), with

Bn,1,µ =
1√
n

n∑
i=1

Z
(b)
i,n

1

n

n∑
j=1

{J [µ]
θ (Ûj)− J [µ]

θ (Uj)}{1(Ui,µ ≤ Uj,µ)− Uj,µ}

Bn,2,µ =
1√
n

n∑
i=1

Z
(b)
i,n

1

n

n∑
j=1

{J [µ]
θ (Ûj)− J [µ]

θ (Uj)}(Uj,µ − Ûj,µ)

Bn,3,µ =

{
1√
n

n∑
j=1

J
[µ]
θ (Uj)(Ûj,µ − Uj,µ)

}
×
{

1

n

n∑
i=1

Z
(b)
i,n

}
.

Bn,3,µ converges in probability to zero: the first factor is of order OP (1) by
a similar argumentation as before based on the fact that we may assume
Ω = Ωn,D, and the second factor is of order OP (`

1/2
n /n1/2) by (C.3).

Regarding Bn,1,µ, we can bound

‖Bn,1,µ‖ ≤
{

1√
n

sup
u∈[0,1]

∣∣∣ n∑
i=1

Z
(b)
i,n

1(Ui,µ ≤ u)− u
qµ(u)

∣∣∣}
×
{

1

n

n∑
j=1

‖J [µ]
θ (Ûj)− J [µ]

θ (Uj)‖qµ(Uj,µ)

}
.
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The first factor on the right-hand side is of order OP (1) by Lemma D.1. The
second factor converges to 0 in probability by the same argumentation as for
the treatment of (C.2) in the proof Lemma C.1.

A similar argumentation also works for Bn,2,µ: on the set Ωn,D, we have

‖Bn,2,µ‖ ≤
{ 1

n

n∑
i=1

|Z(b)
i,n |
}
×
{D
n

n∑
j=1

‖J [µ]
θ (Ûj)− J [µ]

θ (Uj)‖qµ(Uj,µ)
}
,

and this expression is oP (1) since E[|Z(b)
i,n |] <∞ and by the same reasons as

in the proof of Lemma C.1.

Lemma C.5. Suppose that (Ui)i∈Z satisfies αU (n) = O(n−a) for some
a > 6 (which is a consequence of Condition III). Moreover, suppose that
Condition V holds. Then, for any b = 1, . . . , B,

1√
n

n∑
i=1

Z
(b)
i,n {Ki,n,θ0 −Ki,θ0}

P−→ 0.

Proof. For µ ∈ {1, . . . , d} and A ⊂ [0, 1]d, set

Ĩn,µ(A) =

∫
A

J
[µ]
θ0

(u)
1√
n

n∑
i=1

Z
(b)
i,n{1(Ui,µ ≤ uµ)− uµ}d{Gn(u)− Cθ0(u)}.

As in the proof of Lemma C.2, it suffices to show that Ĩn,µ([0, 1]d) = oP (1)
for any fixed µ = 1, . . . , d. This follows along the same lines as in the proof of
Lemma C.2 with the weak convergence of

√
n{Gnµ(uµ)− uµ} and Theorem

2.2 in Shao and Yu (1996) replaced by the weak convergence of the process
1√
n

∑n
i=1 Z

(b)
i,n{I(Ui,µ ≤ uµ)− uµ} and Lemma D.1, respectively.

Lemma C.6. If Conditions III, V and VI hold and if κ > 1
2(1+ν)

with κ and
ν as defined in Definition A.1 and Condition V, respectively, then(

B̃n, Θ̃n, B̃(1)
n , Θ̃(1)

n , . . . , B̃(B)
n , Θ̃(B)

n

)
 
(
BC ,Θ,B(1)

C ,Θ(1), . . . ,B(B)
C ,Θ(B)

)
.

in
{
`∞([0, 1]d)× Rp

}B+1
, where the expressions on the left are defined in

(B.1), (B.2) and (B.3).

Proof. Using Condition III, tightness of the vector of processes follows from
marginal tightness of B̃n and B̃(b)

n , see Theorem 3.1 in Bücher and Kojadinovic
(2013).
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Regarding weak convergence of the finite dimensional distributions, we
only consider (B̃n, Θ̃n, B̃(b)

n , Θ̃
(b)
n ) for the ease of reading. By the Cramér-Wold

device, we have to show that, for any q, q′ ∈ N, any c1, . . . , cq, c̄1, . . . , c̄q′ ∈ R,
c, c̄ ∈ Rp and any u1, . . . ,uq,v1, . . . ,vq′ ∈ [0, 1]d,

Vn :=

q∑
s=1

csB̃n(us) +

q′∑
s=1

c̄sB̃(b)
n (vs) + c′Θ̃n + c̄′Θ̃(b)

n

 V :=

q∑
s=1

csBC(us) +

q′∑
s=1

c̄sB(b)
C (vs) + c′Θ + c̄′Θ(b).

First of all, we decompose

Vn =
1√
n

n∑
i=1

Wi +W
(b)
i + Ti + T

(b)
i

with Wi =
∑q

s=1 cs{1(Ui ≤ us) − Cθ0(us)},W
(b)
i =

∑q′

s=1 Z
(b)
i,n c̄s{1(Ui ≤

vs) − Cθ0(vs)}, Ti = c′{Jθ0(Ui) + Ki,θ0} and T
(b)
i = Z

(b)
i,n c̄
′{Jθ0(Ui) + Ki,θ0}.

The subsequent proof is based on the ‘big block-small block’-technique. The
assumption on a in Condition VI is equivalent to 1

2(1+ν)
< 1

2
− 2+ν

aν
whence,

noting that also κ > 1
2(1+ν)

by assumption, we may choose 0 < η1 < η2 <

κ such that 1
2(1+ν)

< η1 < η2 < 1
2
− 2+ν

aν
. Now, set bn = bn1/2−η1c (the

length of the big blocks), sn = bn1/2−η2c (the length of the small blocks)
and kn = bn/(bn + sn)c (the number of big or small blocks). Notice, that
kn = O(n1/2+η1). For j = 1, . . . , kn, set

Bjn =

(j−1)(bn+sn)+bn∑
i=(j−1)(bn+sn)+1

Wi +W
(b)
i + Ti + T

(b)
i ,

Sjn =

j(bn+sn)∑
i=(j−1)(bn+sn)+bn+1

Wi +W
(b)
i + Ti + T

(b)
i ,

such that we can write

Vn =
1√
n

kn∑
j=1

Bjn +
1√
n

kn∑
j=1

Sjn +
1√
n
Rn,

where Rn =
∑n

i=kn(bn+sn)+1Wi+W
(b)
i +Ti+T

(b)
i is the sum over the remaining

indices that are not part of a big or a small block.
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First of all, let us show that the variance of Vn is equal to Var( 1√
n

∑kn
j=1Bjn)+

o(1) as n→∞, i.e., that

1

n
Var

( kn∑
j=1

Sjn

)
+

1

n
Var(Rn) +

2

n

kn∑
j,j′=1

Cov(Bjn, Sj′n)

+
2

n

kn∑
j=1

Cov(Bjn, Rn) +
2

n

kn∑
j=1

Cov(Sjn, Rn) (C.4)

vanishes as n → ∞. To this end, we will frequently exploit the following
bounds which are consequences of Lemma 3.9 and Lemma 3.11 in Dehling
and Philipp (2002)

|E[WiWi′ ]| =
∣∣∣ q∑
s,s′=1

cscs′E[{1(Ui ≤ us)− Cθ0(us)}{1(Ui ≤ us′)− Cθ0(us′)}]
∣∣∣

≤ 4

q∑
s,s′=1

|cscs′ |α(|i− i′|) ≤ const×α(|i− i′|)

|E[WiTi′ ]| =
∣∣∣ q∑
s=1

csc
′E[{1(Ui ≤ us)− Cθ(us)}Jθ0(Ui′)]

∣∣∣
≤ 20‖c‖

q∑
s=1

|cs|α(|i− i′|)
1+ν
2+νE[‖Jθ0‖2+ν ]

1
2+ν ≤ const×α(|i− i′|)

1+ν
2+ν

|E[TiTi′ ]| = |c′E[Jθ0(Ui)Jθ0(Ui′)
′]c| ≤ 40‖c‖2α(|i− i′|)

ν
2+νE[‖Jθ0‖2+ν ]

2
2+ν

≤ const×α(|i− i′|)
ν

2+ν .

Analogously, |E[W
(b)
i W

(b)
i′ ]| ≤ const×α(|i−i′|)), |E[W

(b)
i T

(b)
i′ ]| ≤ const×α(|i−

i′|)
1+ν
2+ν and |E[T

(b)
i T

(b)
i′ ]| ≤ const×α(|i−i′|)

ν
2+ν . Notice that all the other pairs

of random variables are uncorrelated and that largest bound is a constant
multiple of α(|i− i′|)

ν
2+ν . Now, we can begin with the discussion of the first

summand in (C.4). We have

1

n
Var

( kn∑
j=1

Sjn

)
=

1

n

kn∑
j=1

Var(Sjn) +
2

n

∑
j 6=j′

Cov(Sjn, Sj′n). (C.5)

Since the distance between any two summands in Sjn and Sj′n for j 6= j′ is at

least bn, their covariance is of order α(bn)
ν

2+ν = O(b
−aν/(2+ν)
n ). Observing that

Sjn consists of sn summands, we obtain that the second term in the last dis-

play is of order O(k2
ns

2
nb
−aν/(2+ν)
n n−1) = O(n1−aν/(4+2ν)+η1(2+aν/(2+ν))−2η2) =

37



O(n1−aν/(4+2ν)+η2aν/(2+ν)) = o(1) since, by construction, η1 < η2 <
1
2
− 2+ν

aν
.

For the first sum on the right-hand side of (C.5), we have, by dominated
convergence,

1

n

kn∑
j=1

Var(Snj) =
1

n

kn∑
j=1

E[S2
nj] ≤ const× 1

n

kn∑
j=1

sn∑
i=−sn

(sn − |i|)α(|i|)
ν

2+ν

= O(knsnn
−1) = O(nη1−η2) = o(1).

For the second term of (C.4), we have

1

n
Var(Rn) ≤ const× 1

n

n∑
i,i′=kn(bn+sn)+1

α(|i− i′|)
ν

2+ν

≤ const× 1

n

n−kn(bn+sn)∑
i=−{n−kn(bn+sn)}

(n− kn(sn + bn)− |i|)α(|i|)
ν

2+ν

= O({n− kn(bn + sn)}/n) = O((bn + sn)/n) = o(1),

where we used that kn ≥ n/(bn + sn)− 1.
Now, let us bound the third term in (C.4). First we notice that, if j = j′

or j′ = j − 1, we have |E[BjnSj′n]| ≤ const
∑bn

i=1

∑sn+bn
i′=bn+1 α(|i − i′|)

ν
2+ν ≤

const
∑sn+bn

i=1 iα(i)
ν

2+ν ≤ const < ∞, since aν/(2 + ν) > 2 + 1/ν by Condi-
tion VI. In the other cases the distance between the blocks Bjn and Sj′n is
at least bn, such that |E[BjnSj′n]| = O(bnsnα(bn)

ν
2+ν ). Together, this yields

2

n

kn∑
j,j′=1

E[BjnSj′n] = O(n−1kn) +O(k2
nbnsnb

−a ν
2+ν

n n−1)

= O(n−1/2+η1) +O(n1−a
2

ν
2+ν

+η1(1+a ν
2+ν

)−η2) = o(1),

where the last equality follows exactly as above for the treatment of the
first summand in (C.4). In the same manner, we get 2

n

∑kn
j=1 E[BjnRn] =

O(n
1
2
−a

2
ν

2+ν
−η1+a ν

2+ν
η2) = o(1) and 2

n

∑kn
j=1 E[SnjRn] = O(n

1
2
−a

2
ν

2+ν
−η2+a ν

2+ν
η1)+

O({bn + sn}/n) = o(1).
For the next step of the proof, let B′jn, j = 1, . . . , kn denote independent

random variables such that each B′jn has the same distribution as Bjn. We

will show that the characteristic function of n−1/2
∑kn

j=1Bjn is asymptotically

equivalent to the characteristic function of n−1/2
∑kn

j=1B
′
jn. For t ∈ R, define

Ψjn(t) = exp(itn−1/2Bjn) and notice that E[
∏kn

j=1 Ψjn(t)] and
∏kn

j=1 E[Ψjn(t)]
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are the characteristic functions of n−1/2
∑kn

j=1 Bjn and n−1/2
∑kn

j=1B
′
jn, re-

spectively. The difference of the two characteristic functions can be decom-
posed as follows

∣∣∣E[ kn∏
j=1

Ψjn(t)
]
−

kn∏
j=1

E[Ψjn(t)]
∣∣∣ ≤ ∣∣∣E[ kn∏

j=1

Ψjn(t)
]
− E[Ψ1n(t)]E[

kn∏
j=2

Ψjn(t)]
∣∣∣

+ |E[Ψ1n(t)]| ×
∣∣∣E[ kn∏

j=2

Ψjn(t)
]
− E[Ψ2n(t)]E[

kn∏
j=3

Ψjn(t)]
∣∣∣

+ · · ·+
∣∣∣ kn−2∏
j=1

E[Ψjn(t)]
∣∣∣× ∣∣∣E[ kn∏

kn−1

Ψjn(t)
]
−

kn∏
j=kn−1

E[Ψjn(t)]
∣∣∣

Applying Lemma 3.9 in Dehling and Philipp (2002) (kn − 1) times, we get

∣∣∣E[ kn∏
j=1

Ψjn(t)
]
−

kn∏
j=1

E[Ψjn(t)]
∣∣∣

≤ 2π × (kn − 1) max
i=1,...,kn−1

α(σ(Ψin), σ{
kn∏

j=i+1

Ψjn(t)}),

which is of order O(knα(sn)) = O(n1/2−a/2+aη2+η1). Using that η1 < η2, this
expression converges to 0 by the choice of η2 and the fact that (2+v)/(aν) >
1/a > 1/(a + 1). As a consequence, provided n−1/2

∑kn
j=1B

′
jn converges

weakly, then so does n−1/2
∑kn

j=1 Bjn with the same limiting distribution.
Therefore, in order to finalize the proof, it remains to be shown that

n−1/2
∑kn

j=1B
′
jn converges weakly to V . This will be accomplished by proving

that the variance of n−1/2
∑kn

j=1B
′
jn converges to Var(V ) as n→∞ and that

the Lindeberg-condition from the Lindeberg-Feller central limit theorem for
independent triangular arrays is met. We begin with the convergence of the
variance and note that

Var(V ) =

q∑
s,s′=1

cscs′
∑
i∈Z

γ(i,us,us′) +

q′∑
s,s′=1

c̄sc̄s′
∑
i∈Z

γ(i,vs,vs′)

+

q∑
s=1

csc
′
∑
ı∈Z

γ̄(i,us) +

q′∑
s=1

c̄sc̄
′
∑
i∈Z

γ̄(i,vs)

+ c′
∑
i∈Z

γ̃(i)c+ c̄′
∑
i∈Z

γ̃(i)c̄,
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where γ(i,u,v) = Cov{1(U1 ≤ u),1(U1+i ≤ v)}, γ̄(i,u) = Cov{Jθ0(U1) +
K1,θ0 ,1(U1+i ≤ u)} and γ̃(i) = Cov{Jθ0(U1) + K1,θ0 , Jθ0(U1+i) + K1+i,θ0}.
Now, let us show that Var( 1√

n

∑kn
j=1B

′
jn) = Var(Vn)+o(1). To this end, note

that

Var
(
n−1/2

kn∑
j=1

B′jn

)
=

1

n

kn∑
j=1

Var(B′jn) =
1

n

kn∑
j=1

Var(Bjn)

= Var
(
n−1/2

kn∑
j=1

Bjn

)
− 1

n

∑
j 6=j′

Cov(Bjn, Bj′n).

Since we have already shown in the beginning of the proof that the variance
on the right-hand side equals Var(Vn) + o(1), it remains to be shown that
1
n

∑
j 6=j′ Cov(Bjn, Bj′n) = o(1). Since the distance between the random vari-

ables within the two blocks is at least sn, we have E[BjnBj′n] = O(b2
nα(sn)

ν
2+ν )

for j 6= j′. Therefore, n−1
∑

j 6=j′ Cov(Bjn, Bj′n) = O(n−1k2
nb

2
ns
−a ν

2+ν
n ) =

O(n1−a
2

ν
2+ν

+a ν
2+ν

η2), which is o(1) as shown above.
Now, let us show that Var(Vn) → Var(V ) as n → ∞. We can write

Var(Vn) as

1

n

n∑
i,i′=1

[{ q∑
s,s′=1

cscs′γ(i− i′,us,us′) +

q′∑
s,s′=1

c̄sc̄s′ϕ{(i− i′)/`n}γ(i− i′,vs,vs′)
}

+

{ q∑
s=1

c′csγ̄(i− i′,us) +

q′∑
s=1

c̄′c̄sϕ{(i− i′)/`n}γ̄(i− i′,vs)
}

+
{
c′γ̃(i− i′)c+ ϕ{(i− i′)/`n}c̄′γ̃(i− i′)c̄

}]
=

n∑
i=−n

n− |i|
n

[{ q∑
s,s′=1

cscs′γ(i,us,us′) +

q′∑
s,s′=1

cscs′ϕ(i/`n)γ(i,vs,vs′)

}

+

{ q∑
s=1

c′csγ̄(i,us) +

q′∑
s=1

c̄′c̄sϕ(i/`n)γ̄(i,vs)

}
+
{
c′γ̃(i)c+ ϕ(i/`n)c̄′γ̃(i)c̄

}]
. (C.6)

For the sake of brevity, we will only show convergence of the terms in the
first curly brackets on the right-hand side of the last display to the respective
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terms in Var(V ). We have

n∑
i=−n

n− |i|
n

q∑
s,s′=1

cscs′γ(i,us,us′)

=

q∑
s,s′=1

cscs′
n∑

i=−n

γ(i,us,us′)−
q∑

s,s′=1

cscs′
1

n

n∑
i=−n

|i|γ(i,us,us′).

Since |γ(i,u,v)| ≤ const×α(|i|) and
∑∞

i=1 |i|α(i) < ∞, the second term on
the right-hand side vanishes as n → ∞, whereas the first term converges to∑q

s,s′=1 cscs′
∑

i∈Z γ(i,us,us′).
Moreover, as ϕ(h) = 0 for |h| > 1 and `n = o(n), we have

n∑
i=−n

n− |i|
n

q′∑
s,s′=1

c̄sc̄s′ϕ(i/`n)γ(i,vs,vs′)

=

q′∑
s,s′=1

c̄sc̄s′
∑
i∈Z

n− |i|
n

ϕ(i/`n)γ(i,vs,vs′),

By continuity of ϕ in 0, we have n−|i|
n
ϕ{i/`n} → 1 as n → ∞ for any fixed

i ∈ Z. Moreover, |n−|i|
n
ϕ(i/`n)γ(i,vs,vs′)| ≤ const×α(i) for all i ∈ Z and all

s, s′ = 1, . . . , q′. Therefore, by dominated convergence, as n→∞,

q′∑
s,s′=1

c̄sc̄s′
n∑

i=−n

n− |i|
n

ϕ(i/`n)γ(i,vs,vs′)→
q′∑

s,s′=1

c̄sc̄s′
∑
i∈Z

γ(i,vs,vs′).

The convergence of the remaining summands in (C.6) follows along similar

lines, exploiting that ‖γ̄(i,u)‖ ≤ const×α(i)
1+ν
2+ν , ‖γ̃(i)‖op ≤ const×α(i)

ν
2+ν

and that
∑∞

i=1 |i|α(i)
ν

2+ν <∞.
Finally, let us prove the Lindeberg condition, i.e., that, for any ε > 0,

1

n

kn∑
j=1

E[B′2jn1(|B′jn| >
√
nε)] =

1

n

kn∑
j=1

E[B2
jn1(|Bjn| >

√
nε)]→ 0

as n→∞. To bound the former expression we use Hölder’s inequality with
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p = (2 + ν)/2 and q = (2 + ν)/ν and Markov’s inequality to obtain

1

n

kn∑
j=1

E[B2
jn1(|Bjn| ≤

√
nε)] ≤ 1

n

kn∑
j=1

E[|Bjn|2+ν ]
2

2+νE[1(|Bjn| ≤
√
nε)

2+ν
ν ]

ν
2+ν

=
1

n

kn∑
j=1

E[|Bjn|2+ν ]
2

2+νP(|Bjn| ≤
√
nε)

ν
2+ν

≤ 1

n

kn∑
j=1

E[|Bjn|2+ν ]
2

2+νE[|Bjn|2+ν ]
ν

2+ν (
√
nε)−ν

=
1

n

kn∑
j=1

E[|Bjn|2+ν ](
√
nε)−ν

By Minkowski’s inequality, we can bound E[|Bjn|2+ν ]
1

2+ν by a sum over

bn summands of the form E[|Wi|2+ν ]
1

2+ν + E[|W (b)
i |2+ν ]

1
2+ν + E[|Ti|2+ν ]

1
2+ν +

E[|T (b)
i |2+ν ]

1
2+ν , whence E[|Bjn|2+ν ] = O(b2+ν

n ). This finally implies

1

n

kn∑
j=1

E[B2
jn1(|Bjn| ≤

√
nε)] = O(b2+ν

n knn
−ν/2−1) = O(n1/2−η1(1+ν)) = o(1),

by the definition of η1 and the Lemma is proved.

Lemma C.7. Under Conditions IV, V and VI, we have

√
n{Cθn(u)− Cθ0(u)} = ∇Cθ0(u)Θn +Rn(u),

where Θn =
√
n(θn − θ0) and supu∈[0,1]d ‖Rn(u)‖ = op(1).

Proof. It follows from the mean value theorem that

√
n{Cθn(u)− Cθ0(u)} = ∇Cθ0(u)Θn +Rn(u),

where Rn(u) =
√
n
∑p

s=1

{
∂
∂θs
Cθ̃(u) − ∂

∂θs
Cθ0(u)

}
(θns − θ0s) and where θ̃

denotes an intermediate point lying between θ0 and θn. The Cauchy-Schwarz
inequality allows to estimate

sup
u∈[0,1]d

‖Rn(u)‖ ≤ sup
‖θ′−θ0‖<‖θn−θ0‖

sup
u∈[0,1]d

‖∇Cθ′(u)−∇Cθ0(u)‖ × ‖Θn‖.

Since Θn = Θ̃n + op(1) for n→∞ as a consequence of Lemma C.1 and C.2,
we obtain that ‖Θn‖ = OP (1) from Lemma C.6 (note that Condition III was
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used in Lemma C.6 only for the tightness part, whence we do not need to
assume it here). Fix η > 0. By Condition IV, we may choose δ > 0 such
that sup‖θ′−θ0‖<δ supu∈[0,1]d ‖∇Cθ′(u)−∇Cθ0(u)‖ ≤ η. Therefore,

P( sup
u∈[0,1]d

sup
‖θ′−θ0‖<‖θn−θ‖

‖∇Cθ′(u)−∇Cθ0(u)‖ > η) ≤ P(‖θn − θ0‖ > δ),

which converges to 0 as n→∞, since θn is a consistent estimator of θ0.

Lemma C.8. Let A be a continuous function on [a, b] and Bn be a sequence
of functions on [a, b] with

∫
[a,b]
|dBn| ≤ V , uniformly in n, for some V > 0.

If supx∈[a,b] |Bn(x)| → 0 and if there is a sequence of functions An such that
supx∈[a,b] |An(x)− A(x)| → 0 as n→∞, then we have

Φ(An, Bn)→ 0

as n→∞, where Φ(A,B) =
∫

[a,b]
A(x)dB(x).

Proof. For m ∈ N, j = 1, . . . ,m and µ = 1, . . . d, let yj,µ,m = aµ + (bµ −
aµ)j/m. Define a piecewise constant approximation of A through

Ãm(x) =
m∑

k1,...,kd=1

1(x ∈ (yk1−1,...,kd−1,yk1,...,kd ])A(yk1,...kd),

where yk1,...,kd = (yk1,1,m, . . . , ykd,d,m). Note, that r(m) = supx∈[a,b] |A(x) −
Ãm(x)| → 0 as m→∞ by uniform continuity of A on [a, b].

Now, write Φ(An, Bn) = In1 + In2 + In3, where

In1 =

∫
[a,b]

{An(x)− A(x)}dBn(x),

In2 =

∫
[a,b]

{A(x)− Ãm(x)}dBn(x), In3 =

∫
[a,b]

Ãm(x)dBn(x).

We begin by bounding In1. We have

|In1| ≤
∫

[a,b]

|An(x)− A(x)||dBn(x)| ≤ sup
x∈[a,b]

|An(x)− A(x)| × V

which converges to zero as n→∞ by uniform convergence of An to A. Simi-
larly, |In2| can be bounded by r(m)×V , which can be made smaller than any
given ε > 0 by increasing m. Finally, for any fixed m, |In3| can be bounded
by md× supx∈[a,b] |A(x)|× supx∈[a,b] |Bn(x)|. The latter expression converges
to 0 for n → ∞ by uniform convergence of Bn. Assembling everything, for
any ε > 0, lim supn→∞ |Φ(An, Bn)| ≤ ε, which proves the Lemma.
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D Weighted Convergence of a dependent mul-

tiplier bootstrap empirical process

Lemma D.1. Let (Ui)i∈Z be a stationary, strongly mixing sequence of uni-
formly distributed random variables with αU(k) = O(k−a), where a > 6, and
suppose that Z(b)

i,n satisfies the conditions in Definition A.1. For u ∈ [0, 1], set

Ā(b)
n (u) =

1√
n

n∑
i=1

Z
(b)
i,n{1(Ui ≤ u)− u}

and let q be a q-function with q(u) ≥ K{u(1−u)}γ for some constant K > 0
and some 0 ≤ γ < (a− 3)/(2a). Then, in `∞([0, 1]),

Ā(b)
n (u)/q(u) A(u)/q(u)

where A denotes the weak limit of the process u 7→ n−1/2
∑n

i=1{1(Ui ≤ u)−u}.

Proof. The proof is similar to the proof of Theorem 2.1 in Shao and Yu
(1996). First, note that Ā(b)

n  A by Theorem 3.1 in Bücher and Kojadinovic
(2013). Hence, by Theorem 3.2 in Billingsley (1999) it suffices to show that,
for any ε > 0,

lim
η→0

lim sup
n→∞

P
(

sup
0<u≤η

∣∣Ā(b)
n (u)/q(u)

∣∣ ≥ ε
)

= 0 and

lim
η→0

P
(

sup
0<u≤η

|A(u)/q(u)| ≥ ε
)

= 0, (C.7)

and that

lim
η→0

lim sup
n→∞

P
(

sup
1−η≤u<1

∣∣Ā(b)
n (u)/q(u)

∣∣ ≥ ε
)

= 0 and

lim
η→0

P
(

sup
1−η≤u<1

|A(u)/q(u)| ≥ ε) = 0. (C.8)

Since the proofs for (C.7) and (C.8) are very similar, we only treat (C.7).
We begin with a proof of the left-hand side of (C.7). Let K ≥ 1 be a

constant and let us first assume that, for any n ≥ 1 and i ∈ {1, . . . , n}, we

have Z
(b)
i,n ≥ −K. The general case will be treated afterwards. We begin by

showing the following three inequalities, which we will need in the course of
this proof. For any p > 2a/(a− 1) and for any u, v ∈ [0, 1]

E[|Ā(b)
n (u)− Ā(b)

n (v)|2] ≤ const×|u− v|
2
p . (C.9)
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For any p′ ∈ ( 2a
a−3

, 4) and for any u, v ∈ [0, 1]

E[|Ā(b)
n (u)− Ā(b)

n (v)|4] ≤ const×(|u− v|4/p′ + n−1|u− v|2/p′). (C.10)

For any 0 ≤ u ≤ v ≤ u+ h ≤ 1,

|Ā(b)
n (u)− Ā(b)

n (v)| ≤ |Ā(b)
n (u+ h)− Ā(b)

n (u)|
+K|An(u+ h)− An(u)|+

√
nh
{

2K + n−1
∑n

i=1 Z
(b)
i,n

}
, (C.11)

where An(u) = n−1/2
∑n

i=1{1(Ui ≤ u)− u}.
The assertion in (C.10) follows directly from Lemma B.2 in Bücher and

Kojadinovic (2013), whereas (C.11) can be shown by the same arguments as
in the proof of (31) in Bücher and Kojadinovic (2013).

Hence, it remains to show (C.9). We have, for any u ≤ v,

E[|Ā(b)
n (u)− Ā(b)

n (v)|2] = E
[∣∣ 1√

n

n∑
i=1

Z
(b)
i,n{1(u < Ui ≤ v)− (v − u)}

∣∣2]
=

∣∣∣∣∣ 1n
n∑

i,j=1

E[Z
(b)
i,nZ

(b)
j,n]× E[{1(u < Ui ≤ v)− (v − u)}{1(u < Uj ≤ v)− (v − u)}]

∣∣∣∣∣ .
The fact that |E[Z

(b)
i,nZ

(b)
j,n]| is bounded by 1 together with an application of

Lemma 3.11 in Dehling and Philipp (2002) with r = s = p and t = p/(p− 2)
allows to bound the right-hand side of the last display by

10

n

n∑
i,j=1

α(|i− j|)
p−2
p E[1(u < Ui ≤ v)]

2
p = |v − u|

2
p

10

n

n∑
i,j=1

α(|i− j|)
p−2
p

= |v − u|
2
p

10

n

n∑
i=0

(n− |i|)α(i)
p−2
p ≤ |v − u|

2
pK1,

where K1 <∞ since p > 2a/(a− 1).
In the following, we choose p = p′ ∈ ( 2a

a−3
, 4 ∧ γ−1).

Let An ⊂ Ω denote the event that {n−1
∑n

i=1 Z
(b)
i,n ≤ K}. By Markov’s

inequality, we have P(Ω \ An) = o(1).
Now, consider the probability on the left-hand side of (C.7). We have

P
(

sup
0<u≤η

∣∣Ā(b)
n (u)/q(u)

∣∣ ≥ ε
)

= P
(

sup
0<u≤η

∣∣Ā(b)
n (u)/q(u)

∣∣ ≥ ε, An

)
+ o(1),
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for n→∞. The probability on the right-hand side can be bounded by

∞∑
j=1

P
(

sup
η2−j<u≤η2−j+1

∣∣Ā(b)
n (u)/q(u)

∣∣ ≥ ε, An

)
≤

∞∑
j=1

P
(

sup
η2−j<u≤η2−j+1

∣∣Ā(b)
n (u)

∣∣ ≥ εq(η2−j), An

)
≤

∞∑
j=1

P
(

sup
0<u≤η2−j+1

∣∣Ā(b)
n (u)

∣∣ ≥ εq(η2−j), An

)
.

We will now split the sum according to j ∈ Gn or j ∈ Hn, where

Gn = {j ∈ N : n1/23Kη2−j+1 ≤ εj/2},
Hn = {j ∈ N : n1/23Kη2−j+1 > εj/2},

and where εj = εq(η2−j). First, consider those summands with j ∈ Gn. In
this case, (C.11) yields

P
(

sup
0<u≤η2−j+1

|Ā(b)
n (u)| ≥ εj, An

)
≤ P

(
|Ā(b)

n (η2−j+1)|+ |An(η2−j+1)|+
√
nη2−j+1

{
2K +

1

n

n∑
i=1

Z
(b)
i,n

}
≥ εj, An

)
≤ P

(
|Ā(b)

n (η2−j+1)|+ |An(η2−j+1)| ≥ εj/2
)

≤ P
(
|Ā(b)

n (η2−j+1)| ≥ εj/4
)

+ P
(
|An(η2−j+1)| ≥ εj/4

)
.

The first probability on the right can be bounded with the help of (C.9) by

(εj/4)−2E[|Ā(b)
n (η2−j+1)|2] ≤ const×(εj/4)−2 × (η2−j+1)

2
p

≤ const×{εq(η2−j)}−2 × (η2−j)
2
p

≤ const×(η2−j)2( 1
p
−γ)

= const×η2β(22β)−j,

where β = 1/p− γ > 0, by the choice of p. Hence, for any n ∈ N,∑
j∈Gn

P
(
|Ā(b)

n (η2−j+1)| ≥ εj/4
)
≤ const×η2β

∑
j∈Gn

(22β)−j ≤ const×η2β

which converges to 0 for η → 0. For the estimation of P(|An(η2−j+1)| ≥ εj/4)
notice that the conditions of Theorem 2.2 in Shao and Yu (1996) are met
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(since γ < (a−3)/(2a) and since α(n) = O(n−a) for some a > 6). Therefore,
also the conditions in Theorem 2.1 in the latter reference are met and we can
estimate the probability exactly as in the proof of this Theorem.

Now, let j ∈ Hn and define

δ = δn,j =
1

4

εj
3Kn1/2

=
ε

4

q(η2−j)

3Kn1/2

It follows form (C.11) that

P
(

sup
0<u≤η2−j+1

|Ā(b)
n (u)| ≥ εj, An

)
≤ P

(
max

1≤i≤bδ−1η2−j+1c
|Ā(b)

n (iδ)| ≥ εj/2
)

+ P
(

max
0≤i≤bδ−1η2−j+1c

sup
iδ<u≤(i+1)δ

|Ā(b)
n (u)− Ā(b)

n (iδ)| ≥ εj/2, An

)
The second probability on the right can be further estimated by

P
(

max
0≤i≤bδ−1η2−j+1c

|Ā(b)
n (iδ)− Ā(b)

n ((i+ 1)δ)|+ |An(iδ)− An((i+ 1)δ)|

+
√
nδ{2K +

1

n

n∑
i=1

Z
(b)
i,n} ≥ εj/2, An

)
≤ P

(
max

0≤i≤bδ−1η2−j+1c
|Ā(b)

n (iδ)− Ā(b)
n ((i+ 1)δ)|+ |An(iδ)− An((i+ 1)δ)| ≥ εj/4

)
≤ 2 P

(
max

1≤i≤bδ−1η2−j+2c
|Ā(b)

n (iδ)| ≥ εj/16
)

+ 2 P
(

max
1≤i≤bδ−1η2−j+2c

|An(iδ)| ≥ εj/16
)
.

By (C.10) (note that p′ = p) we have, for any 0 ≤ i < k ≤ bδ−1η2−j+2c, that

E[|Ā(b)
n (iδ)− Ā(b)

n (kδ)|4] ≤ const×{(|k − i|δ)4/p + n−1(|k − i|δ)2/p}
≤ const×{(|k − i|δ)4/p + n−1|k − i|δ2/p}.

Then, the main result in Móricz (1982) (with γ = 4, f(k,m) = const×mδ and

ϕ(t,m) = {(mδ)4/p−1 +n−1δ2/p−1}1/4 ), which can be applied since Ā(b)
n (iδ) =∑i

k=1 Ā
(b)
n (kδ)− Ā(b)

n ((k − 1)δ), implies

E
[

max
0≤i≤bδ−1η2−j+2c

|Ā(b)
n (iδ)|

]
≤ const×η2−j+2 ×

{ blog(bδ−1η2−j+2c)c−1∑
k=0

{
n−1δ2/p−1 + (η2−j−k+1)4/p−1

}1/4

}4

≤ const×η2−j+2 ×

{( blog(δ−1η2−j+2)c∑
k=0

(n−1δ2/p−1)1/4

)4
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+

( blog(δ−1η2−j+2)c∑
k=0

(η2−j+1−k)1/p−1/4

)4}

≤ const×η2−j+2 ×

{
n−1δ2/q−1 log4(δ−1η2−j+2)

+ (η2−j+1)4/p−1

( blog(δ−1η2−j+2)c∑
k=0

2−k(1/p−1/4)

)4}
≤ const×

{
n−1δ2/p−1(η2−j) log4(η2−j+2δ−1) + (η2−j)4/p

}
Now, we can estimate by Markov’s inequality and the fact, that log(x)4 ≤
const×x1+2/p for all x ≥ 1 and that, for j ∈ Hn, η2−j+2δ−1 > 4 ,

P
(

max
0≤i≤bδ−1η2−j+2c

|Ā(b)
n (iδ)| ≥ εj/16

)
≤ const×ε−4

j {n−1δ2/p−1η2−j log4(η2−j+2δ−1) + (η2−j)4/p}
≤ const×ε−4

j {n−1δ2/p−1η2−j(η2−j+2)1+2/pδ−1−2/p + (η2−j)4/p}
≤ const×ε−4

j {ε−2
j (η2−j)2+2/p + (η2−j)4/p}

= const×ε−4{ε−2q(η2−j)−6(η2−j)2+2/p + q(η2−j)−4(η2−j)4/p}
≤ const×{(η2−j)−6γ+2+2/p + (η2−j)4/p−4γ}

Since γ < 1/p, the right-hand side is bounded by const×ηβ × (2γ)−j, where
β = 1/p− γ > 0.

Thus, for any n ∈ N,∑
j∈Hn

P
(

max
0≤i≤bδ−1η2−j+2c

|Ā(b)
n (iδ)| ≥ εj/16

)
≤ const×ηβ

∑
j∈Gn

(2β)−j ≤ const×ηβ

which, as to be shown, converges to 0 for η → 0.
For the estimation of P(max1≤i≤bδ−1η2−j+2c |An(iδ)| ≥ εj/16) we can again

proceed exatly as in the proof of Theorem 2.1 in Shao and Yu (1996).
Now, consider the general case where the multipliers are not bounded from

below. Let Z(b),+

i,n = max{0, Z(b)

i,n}, Z
(b),−
i,n = max{0,−Z(b)

i,n}, K+ = E[Z(b),+

i,n ] and

K− = E[Z(b),−
i,n ] and note that K+ = K−. Furthermore, set M (b),+

i,n = Z(b),+

i,n −
K+ and M (b),−

i,n = Z(b),−
i,n −K−, such that Z(b)

i,n = Z(b),+

i,n − Z
(b),−
i,n . Then we can

write A(b)
n (u) = A(b),+

n (u)−A(b),−
n (u) , where Ā(b),±

n (u) = 1√
n

∑n
i=1 M

(b),±
i,n {1(Ui ≤

u) − u}, and it is sufficient to show that (C.7) and (C.8) hold with A(b)
n

replaced by A(b),+
n and A(b),−

n . This, however, follows from what have shown
so far, observing that both (M (b),+

i,n )i∈Z and (M (b),+

i,n )i∈Z satisfy the conditions
in Definition A.1 and are bounded below by −K∗ = −K−.
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Finally, let us treat P(sup0<u≤η |A(u)/q(u)| ≥ ε). Since A is sub-Gaussian

with respect to the semimetric d(u, v) = |u − v|1/p, we can apply Corollary
8.5 in Kosorok (2008) to get the bound

E
[

sup
0≤u≤η2−j+1

|A(u)|
]
≤ E|A(0)|+ const

∫ η2−j+1

0

√
log(2x−p)dx,

for any j ∈ N0. Since A(0) = 0, almost surely, and since log(x) ≤ const×x(1−γ)/p

for all x ≥ 1, we can bound the right-hand side by

const×
∫ η2−j+1

0

x(γ−1)/2dx ≤ const×(η2−j)(γ+1)/2.

Therefore, by Markov’s inequality,

P
(

sup
0<u≤η

|A(u)/q(u)| ≥ ε
)
≤

∞∑
j=0

P
(

sup
η2−j<u≤η2−j+1

|A(u)/q(u)| ≥ ε
)

≤
∞∑
j=0

P
(

sup
0≤u≤η2−j+1

|A(u)| ≥ εq(η2−j)
)

≤
∞∑
j=0

E
[

sup
0≤u≤η2−j+1

|A(u)|
]
q(η2−j)−1ε−1

≤ const×
∞∑
j=0

(η2−j)(γ+1)/2q(η2−j)−1

≤ const×η(1−γ)/2

∞∑
j=0

2−j(1−γ)/2,

which converges to 0 for η → 0 since (1− γ)/2 > 0.
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dépendants, Volume 31 of Mathématiques & Applications (Berlin) [Math-
ematics & Applications]. Berlin: Springer-Verlag.
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