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Abstract

Partial duration series (peak over threshold) form a considerable alternative to the classical
annual maximum approach since they enlarge the information spectrum. The classical POT
approach is based on a Poisson distribution for the annual number of exceedances although
this is can be questionable in some cases. Therefore two different distributions (Binomial
and Gumbel-Schelling (Gumbel and Schelling (1950)) ) are considered. The results show
that they do rarely make a difference to the Poisson distribution. In a second step we
investigate the robustness in the sense of stability against the occurrence of extreme events
of the POT compared to annual maxima and show that in the case of extreme events the POT
behaves much more robust and fits very good to the data.
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1  Introduction

In the context of the climate change discussion and some extreme floods occurring in the last decade
the question of a robust estimation of flood probabilities and the connected flood protection is more
and more foregrounded.

Since the recorded series of floods (monthly or annual) are very limited and seldom longer than 100
years the needed information about extreme floods is often not or not well enough represented in the
data sample. Therefore the fitting of a suitable distribution and the extrapolation to domains lacking of
data is the key question to gain information about events with very low exceedance probabilities. The
decision of the underlying statistical model is crucial in this context.

It is known that partial duration series (Peak over Threshold (POT) approach) form a considerable
alternative to the classical annual maximum flood series in performing flood frequency analysis. It has
been argued that the POT approach uses more data and thus more information about the floods
whereas the annual maximum approach only uses one event per year and so maybe ignores further
floods in the same year, which are higher than annual maxima in other years. So it is not unlikely that
the POT has a more robust behavior.

Robustness can become an important point in the estimation of the underlying statistical model when
an extreme event with low exceedance probability which is significantly smaller than < occurs ina

time series of N years. Also robustness does not only mean robustness against outliers but also
against model misspecifications or errors in the data.

In literature (Langbein (1949), Stedinger (1993)) there is a comparison between the statistics of time
periods between flood events derived from partial duration series and annual series. The return periods
based on annual series are integers of years (annualities), the return periods of POT are time spans,
expressed as real numbers of years. They show that for return periods higher than 10 years it does not
make a difference which approach is used. Nevertheless we will see that it makes a difference, if we
calculate the annual return period based on annual maxima or based on the partial series.



Additionally Cunnane (1973), Madsen et al. (1997) and Rosbjerg (1985) compare the efficiency of
the estimation of annual return periods by the annual maxima and partial duration series respectively
for independent and dependent peaks and different estimators. Also Tavares and Da Silva (1983) show
the differences in the estimation variance of both cases.

Rasmussen and Rosbjerg (1991) considered seasonal approaches for the partial duration series.

In this article we want to compare the classical statistic of annual maxima with the annual maximum
statistic resulting of the POT in respect of its robustness. In particular we want to estimate extreme
guantiles (99% and 99.5%) of different gauges within the drainage basin of the river Mulde in Saxony.
In this area several extreme events happened in the last 12 years so that we can find large outliers in
our data samples. Robustness in this context means stability against the occurrence of extreme events.

As the distribution of the annual maxima based on the POT is specified by a combination of the
distribution of the magnitude of exceedances with the discrete distribution for the annual number of
exceedances (for details see Section 2.2 POT) we investigate the influence of the choice of the discrete
distribution in the POT approach. The often used application of the Poisson distribution is based on
the assumption of an underlying Poisson process, which is not the most fitting distribution in this case,
and extending the study of On6z and Bayazit (2001) we replace it by other discrete distributions,
especially the one proposed by Gumbel and Schelling (1950).

We first give a detailed overview of the different models and methods and in a second step apply them
on our data.

2 Methods

Let us consider a data set (XV,..., X @), that is for example a n =100 -year series of d =12
monthly maximum discharges in a year. Of course this model can also be used for describing seasonal
models, for example for winter floods, by choosing d as the times of seasonality (for winter e.g.

d =6). It is important to consider that not every maximum specifies a flood event, which has to be
defined by a threshold.

2.1 Annual Maxima

Regarding annual maxima one has to deal with the time series (mkaz((xl(")), . mka>§(X§k))).
1<k< 1<k<

It seems naturally to fit the Generalized Extreme Value (GEV) Distribution to annual maxima having
in mind that the Fisher-Tippet-Gnedenko Theorem says that for independent, identically distributed

random variables Y,,...,Y, the maximum max(Y,,...,Y,) (properly normed) converges in distribution
to a GEV-distribution (under some technical conditions) for Nn™ oo. In hydrology this limit

distribution is widely known and often used because of its flexibility reasoned by its three parameter
distribution function:

G(x) =exp —(1+§X_ﬂj§ forl+ E(x—u) /o >0,
(o)

where £ e[l is the shape parameter, o <0 the scale parameter and « €[] the location parameter.
The special case & =0 (Gumbel-distribution) is given by

G(x)=exp {—exp (—X_—ﬂD .
O



The estimation of the parameters can be done by the Probability Weighted Moments (PWM) (
Hosking, J. R. M. et al. (1985)), since they are in comparison to Maximum-Likelihood or Moment
estimators a bit less efficient but a bit more robust (Kumar et al. (1994)).

2.2POT
The POT approach in comparison enlarges the information used for the fitting by considering not only
the annual maxima but every (monthly) maximum above a threshold specifying a flood. In particular

this means that we involve every flood peak above a certain threshold X, (in our case this will be

I<i<n \ 1<k<d

X, = Min (max(Xi("))) , the minimum annual maximum of all years). This is the so called partial

duration series. The independence between the single events has to be ensured, which can be done by a
consideration of the date of each peak.

Again we use a result of the extreme value theory to find a suitable distribution: by the Balkema-de
Haan-Pickands Theorem the conditional excess distribution of Y,,...,Y, above a certain threshold X,

converges to a Generalized Pareto Distribution (GPD) with distribution function:

X=Xy | ¥ .
Oj , for X > X, if the shape parameter x>0 and X, <X<X,— S/«

F(x)=1- (1+ K
otherwise and the scale parameter 5 > 0.

We want to mention that in literature there are many other distributions used for the conditional excess
distribution, especially the special case x =0 of the GPD, the shifted Exponential distribution given

by F(x) :1—exp(—%j, X > X, .

Rosbjerg et al. (1992) showed that this distribution is preferable in the case where x < 0.1 in the sense
that it gives a better approximation to the data. Nevertheless we want to ensure a great flexibility and
therefore consider the three parameter case, having in mind that we can reduce it to the special case of
the Exponential distribution.

To estimate the parameters of the GPD we have a wide range of possibilities. Often the Probability
Weighted Moments (Wang (1991)) are used, since they are rather efficient . Nevertheless it is also
worth considering more robust estimators to counter uncertainties in the model selection and also

outliers in the data. We will become more specific in this point later on. The threshold parameter X,

does not have to be estimated and is given by definition. But it is very important to mention that the
choice of it plays an important role in the behavior of the estimates (cf. Begueria (2005)).

Still one problem remains since we are interested in annual return periods. Therefore we have to
transform the results we get for the distribution of the magnitude of excesses, which is the GPD, to get
results for annual maxima. An often used relationship between annual maxima and the partial
duration series is the following: using the total probability theorem we get for the distribution function

of the annual maxima F, (cf. Shane and Lynn (1964)):
F.00 =Y P(=K)(F())", (1)
k=0

where P (I =k) is the probability that the annual number of exceedances of x, equals K.

In the following we will compare three discrete probability distributions which could represent P
properly.



2.2.1 The Poisson distribution
The most used discrete distribution for describing the occurrence of rare events is the Poisson
distribution

k
P.(I=k)= %e"l, based on the assumption that the underlying process is a Poisson process.

It seems therefore naturally to use this distribution also in the case of the annual number of
exceedances and actually this done in most cases (e.g. Stedinger (1993), Cunnane (1973)). The

parameter A represents both the mean and the variance of the distribution and is estimated by the
1 n d
mean of the annual number of exceedances A = o .lejzi'l[xmﬂ(’]

Nevertheless there are also some disadvantages which question the applicability of the Poisson
distribution in the case of partial duration series. One important point is that because of equation (1)
there will be probability mass for everyk = 0,1,..., where in reality it is not possible that k could
equal more thand . Having the example of d =12 monthly maxima every year in mind it is not
possible that X, is exceeded more than 12 times, that is every month. It was also mentioned in
literature before that the assumption of equal mean and variance , which is the base of the Poisson

distribution, does not always hold (Taesombut and Yevjevich (1978), Cunnane (1979), On6z and
Bayazit (2001)).

This was the reason for us to consider different distributions and to compare the results.

Combing the Poisson distribution with the GPD in equation (1) we gain for the distribution function of
annual maxima:

k 1
= A X—X%, ) 1 X=X, )|~
F o)=Y "€ (1 K 0]——) =e"exp| 1 1—[14—](‘ Oj
S s

= exp —ﬂ[lﬂcx_ﬂxoj :

pl1-1*
This is indeed the GEV distribution with parameters & = k', o = A" and u = X, —M.

2.2.2 The Binomial distribution

Mathematically the Binomial distribution seems to be another distribution worth considering since it is
a typical distribution for describing the number of successes (in our case exceedances) in a sample.
Therefore it is not surprising that this distribution was also considered before (c.f. Onéz and Bayazit
(2001)). Its probability mass function is given by

Py (1 =) =@ p“(-p)",



where p is the probability of an exceedance of the threshold and therefore estimated by

R 1 n d
p :—dZZJ.[X(d, e By choosing r =d we do not have the problem of having probability mass
nd =53 "7

fork >d, since then the Binomial distribution equals 0. For n— o0 and p — 0 with np — Athe
Binomial distribution converges against the Poisson distribution.

Although the using of this distribution seems to be great advantage against the Poisson distribution,
Onoz and Bayazit (2001) showed that it does not make a difference.

The annual maxima distribution is then

= (d _ k B d
) b e Rt (v (R LR

2.2.3 The Gumbel-Schelling distribution
As third and last distribution we want to consider is the distribution proposed by Gumbel and

Schelling (1950)
(ndj (d]
m k
PG (I=k)=

i n)(d(n +1)—1j’

m+k-1

wherem is the rank of X, in the sample (X\",..., X ") in decreasing order.

If n,d > and £—>l, Gumbel and Schelling (1950) showed that this distribution converges

asymptotically to a normal distribution, otherwise if n,d —o and m and k remain small it
converges to the Poisson distribution.

This distribution has the great advantage that we do not have to estimate any parameters and therefore
have no uncertainties in this point. The only assumption needed is continuity of the data.

For the distribution of the annual maxima we get

nd d K

(m}“@ ( ji
1|1+ —2 :

d(1+n)(d(n+1)_l] B

m+k-1

Fa,G (X) = i

3 Data Application

We analyzed data from 17 gauges in Saxony within the Mulde river basin (Figure 1) with a length of
at most 75 years and floods recorded up to year 2012. As mentioned above these data series have the
special property of having several extreme events where the most extreme occurred in the year 2002.
An example is shown in Figure 2 where we can see the gauge Nossen (gauge number 10).



We are aware that there could be some dependence in the time series when considering monthly
maximum discharges. Nevertheless we recognized in our calculations that the used estimators are due
to their robustness able to cope with slight dependencies, that are dependencies of monthly maxima.
However the influence of dependence has to be studied further since the madel is conceived for
independent data and an underlying process of dependence could lead to errors.

As threshold we chose X, = min(max(Xi"‘))), that is the minimum annual maximum of the whole

1<i<n \ 1<k<d
data sample.
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Figure 1: Drainage basin of the river Mulde in Saxony (left) and monthly maximum discharges of the
gauge Nossen at the river Freiberger Mulde (right).

At first we want to compare the different POT models. For this we calculated the 99.5% and the
99.9% quantile for all three cases that is the 200 and 1000 years flood respectively. Since there does
not exist an explicit representation of the quantile in the Gumbel-Schelling case we used numerical
approaches to estimate the quantiles. For a better comparison of the results between gauges we use the

ratio of the Poisson- and the Binomial-model quantiles (R, ; = % () forg =0.995,0.999) as well
ToX

B
as of the Poisson- and Gumbel-Schelling-model quantiles (R, ). If they are nearly identically this

ratio of course has to be close to 1.

We calculated these ratios for all 20 gauges with all three models using the PWM estimation for the
GPD distribution.

Although the Poisson distribution has some really undesirable properties, as we stated above, we
cannot find a distinct difference in the estimation of the difference models even if we consider very
extreme quantiles. Comparing Poisson and Binomial distribution in the POT model they are rather
identical. This goes along with the results of Onéz and Bayazit (2001). But even the Gumbel-Schelling
distribution does not make a real difference in estimation, though the estimation tends to be smaller.



The ratios are all very close to one and differ only in the fourth decimal place, which is reasoned
numerically.

A possible reason could be that the Poisson distribution is the limit distribution of both the Binomial
distribution and the Gumbel-Schelling distribution.

Since the threshold has a great influence on the estimation we also tested the threshold T = 2.5MQ,

that is 2.5 times the average discharge. The tendency of the results remained the same and the results
are therefore omitted here.

Since it seems to make no difference, if we use the supposed to be unfitting Poisson distribution or one
of the other discrete ones, in the following we will continue to use the Poisson distribution, since the
model has a much easier representation than in the other cases, having an underlying GEV
distribution.

In a second step we compare the POT approach (from now on model 2.1.2) with the classical annual

maximum approach. We fit a GEV distribution to the sample ([nka)é(xl(k)),..., maz((xr(]"))) using the

PWM estimation and the POT model to the whole sample (X ?,..., X(?) the same way as before.

We also considered a robust method to estimate the parameters of the GPD by using a Minimum
Distance (MD) estimator with Cramer-von-Mises-distance (cf. Dietrich, D. and Husler, J. (1996) in the
GEV case).

That is, the parameters are estimated by solving
~ ~ . © B 2
(KMD + Byo ) =arg 'T)'ﬁn J._m( F.(x)—F(x; Xo)) dx,

where F. is the empirical distribution function of all X! > x, and F(X;X,) is the Generalized

Pareto distribution with given threshold X, . Contrary to the ML estimator the MD estimator uses the

minimum distance to gain estimates instead of the maximum probability. That means that the MD
estimator declares an estimation even as optimal, if one value does not fit but all the others do
perfectly. Using the ML estimator this is not possible, since such an outlier would be declared as non-
probable and therefore the estimation as non-fitting. Therefore the MD estimator has robust behavior,
which can be also shown by its bounded influence function ( Dietrich, D. and Husler, J. (1996))

We will refer to this as the robust POT approach.

First of all we wanted to know the reliability of the three different fitting approaches. Therefore we
used a criterion proposed by Renard et al. (2013). We calculated the reliability index

pval. (1) = F ([‘J%(Xi(k)(')))

where | =1,...,17 is the gauge number, IfI the fitted distribution function for gauge | (based on the
first 50 years of records) and E@(X}”(l)) the annual maximum discharge of gauge | in year i of
the records. By application of the inverse distribution function one can easily see that under the
hypothesis of an reliable estimation (|£| =Fvl) (pval (1)), ., is uniformly distributed in the

interval [0,1] for every gauge | with record length n,. Therefore a graphical tool to investigate the

goodness of fit of our approaches is a QQ-Plot of pval for every fitting approach (Figure 2). Often
also a PP-Plot is used but since in a QQ-Plot especially the extreme domains are illustrated in a better
way we choose this presentation.
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Figure 2: pval QQ-Plot for annual maximum (upper left), POT (upper right) and robust POT (bottom)
approach for gauges 1 =1,...,17

We can see that all three approaches give a good estimation of the distribution of the whole sample. In
the upper quantiles the POT seems to give the best goodness of fit and all in all seems not to differ
very much from the classical annual maximum statistic. For the robust POT we can see a greater
deviation for some gauges. Nevertheless the deviation of all three approaches does not seem so large
that we have to reject one of the approaches.
We are aware that it is possible by this usage of the pval that for some i we plug in a value on which
the fitting of | is based and therefore could possibly have an alleged good fitting. To consider this we
also applied cross validation, that is

pval(1) = Py (max(x 2 (1)),

1<k<d

where Ifl;(i) is the fitted distribution function for gauge | based on all data except of Tka)é(x‘(k)(l))'

The results we got from this were very similar to the ones of the originally pval so we came to the
conclusion that the abovementioned problem did not influence our results.



To investigate the fitting in the higher quantiles, were a difference in the fitting seems to be biggest,
we want to have a close look on the gauge Nossen (see above) by using a QQ-Plot (Figure 3).
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Figure 3: QQ Plots of the gauge Nossen and the estimates using the Annual Maximum (top left), the
POT with PWM (top right) and the robust POT (bottom) model respectively.

We can see how much the classical annual maximum model is influenced by the single extreme event
leading to a worse fitting to the middle quantiles. The model based on partial series using additional
data values, which mostly lie in the lower domain, has a better fitting in the middle quantiles. Thus the
greater information spectrum leads even in the estimation of annual maximum discharges to a more
robust fitting. If this is robustified by the application of the MD estimator once more we can see a
good fitting of all quantiles except of the single extreme event.

Another criterion for a fitting is its stability. We show the stability of the estimation of the annual
return period generic for the gauges Nossen and Wechselburg (number 2). As tool we used the
absolute deviation of the annual return period of an event estimated on the basis of all recorded events
up to this point (we call this predicted return period) and the annual return period of the same event



estimated on the basis of all recorded events up to this point including this event (occurring return
period). This is done for an increasing sample length, starting with ten years (Tables 1 and 2).

We can see that after a short time of stabilization, which is needed for an adequate calibration, the
POT and especially the robust POT approach give much more stable estimations of the annual return
period. Whereas the classical annual maximum approach is highly influenced by the occurring of
extreme events the other two approaches are not so much. Where the difference is oo the model was
not able to fit a suitable distribution with the given data. We can also see that the flood in the years
2002 in Nossen is so extreme that every model estimates return periods much higher than 10000.

Table 1: absolute deviation of predicted and occurring annual return period for the gauge
Wechselburg with the three different fitting approaches. Only differences higher than 5 years in one
case are shown.

year GEV POT robust POT
1923 4 35 0
1924 67 57925 0
1926 10 69 0
1932 92 76 127
1944 354 445 131
1975 19 16 6

2002 173 124 85

Table 2: absolute deviation of predicted and occurring annual return period for the gauge Nossen with

the three different fitting approaches. Only differences higher than 5 years in one case are shown.

year GEV POT robust POT
1931 ) 30 3

1956 18 6 5

1958 750 65 26
2002 19528768 2712055 10213

The stability was also investigated by using the robustness criteria. SPAN; proposed by Garavaglia et

al. (2010) and often used to compare the robustness of fitting methods ( Kochanek et al. (2013),
Renard et al. (2013)). The SPAN for the annual return period T at gauge number | is calculated by the
following formula

max{d; (s)}-min{d;, (s)}
SPAN, (1) =258 —— 1= |
a Z dT (5)

where §; (S) is the estimated quantile related to annual return period T for a subperiod s of b non-

)

overlapping subperiods. It is a kind of rank function, where the optimal value of SPAN; indicating a
robust behavior of the model is 0.

Since in our case the sample length is very limited and the estimators need a certain quantity of data
we reduce the quantity of subperiods to two, having one with length 50. Equation (2) therefore reduces
to

|dT (s)—Gr (52)| .
E(QT (s)+0; (Sz))

SPAN, (1) =




To give a graphical evaluation, SPAN; is calculated for all gauges and annual return periods of 100,
200 and 1000 years and finally the empirical distribution of these values is plotted (Figure 4).

T=100 T=200

14
12

- GEV
== POT
== robust

12

10

08

SPAN
SPAN
08
1

06

04

02
1

00

empincal cumulative frequency empincal cumulative frequency

T=1000

— GEV
- = POT
w === robust

1.0

SPAN

05

0o
L

0 0.2 04 0.6 08 1

empirical cumutative frequency

Figure 4: Empirical distribution of SPAN, for annual return periods of T=100,200 and 1000 years
and all gauges.

The GEV approach is most sensitive to changes in the data having clearly higher SPAN scores for
every three different annual return periods. In general the maximum value of SPAN increases with
increasing T, indicating that the estimates become more sensitive for higher quantiles. This is reasoned
by the small quantity of data in these high domains. POT and robust POT behave similar in the high
quantiles, whereas the robust POT approach seems to have advantages in the lower quantiles. That is
the main part of the calculated SPAN were small and therefore the robust POT approach can be
declared as the most robust approach of these three.

The behavior observed in the investigations above leads us to the assumption that the POT approach
with its robust property gives us an overtime stable estimation of high quantiles which is less
influenced by single high floods. To underline this we consider the 99%-quantile of a gauge where we
use an increasing sample length. That is we start with the first 10 years of recorded monthly maximum



discharges (respectively annual maximum discharges for the classical approach) and estimated the
99%-quantile of this sample. Then the sample length is increased step by step by one year and the
99%-quantile is estimated again. This is done up to the point where all recorded floods are included, in
our case the year 2012. Plotting these results the typical shape would be a “sawtooth” curve, since
every large event occurring in the considered series causes a jump in the quantile estimation in the
moment of its occurrence which then decreases slowly until the next large event aoccurs. All in all we
normally have a slight increase in the quantile-value with growing sample length.

An example of such a moving quantile estimation is shown in Figure 5 for the gauge Wechselburg
and the gauge Nossen. For the classical annual maximum approach (GEV) we see the typical
“sawtooth” curve as mentioned above. Every large event occurring in the sample leads to an abrupt
increase. This behavior is strongly impaired when the POT approach is used. Although there are still
jumps in the estimation their height is much smaller and all in all we have a smaller variability of the
guantiles and a smoother increase. When a robust parameter estimation is used additionally, we can
see that the estimation is no longer affected by any jumps. Nevertheless the variability is very high
caused by the low efficiency of the MD estimator, a typical property of robust estimators.

One can also see that all three approaches need a sample length of nearly 30 years to deliver
homogenous results, analogous to the results in Fehler! Verweisquelle konnte nicht gefunden
werden..

99%-Quantile for growing sample length, gauge Wechselburg 99%-Quantile for growing sample length, gauge Nossen

"
o "
Q- .
= N
.
'
'

200
1

99%-Quantile
99%-Quantile

10 30 50 70 90

Sample length Sample length

Figure 5: Estimation of the 99%-Quantile of the gauges Wechselburg (left) and Nossen (right) for
growing sample length with three different approaches.

Therefore we investigated all 17 gauges and calculated the coefficient of variation of the series of
guantile estimations for growing sample length starting with 30 years (Figure 6). As expected we can
see that the coefficient of variation for the POT approach is mostly smaller than that for the classical
approach. The coefficient of variation for the POT with robust estimators is often very high what
comes along with what we mentioned before. When the minimum length of the given series is
increased the variation for the robust POT approach decreases averagely faster than that of the other
approaches.
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Figure 6: Coefficient of Variation of the 99%-quantile estimation for increasing sample length with
three different approaches for 17 gauges of the Mulde basin.

These observations lead of course to similar differences in the estimation of the 99.5%-quantile of the
whole sample. For a better comparison we again used the ratio of the estimated 200-year flood for
classical annual maxima and POT or robust POT respectively and additionally calculated the ratio also
for the 5-year flood to show differences in the lower guantiles. The results can be found in Figure 7.
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Figure 7: Ratio of the T-year flood estimation of the annual Maximum Approach and the POT (white
dots) and the robust POT (filled dots) respectively.



We can see that the classical annual maximum estimation for a return period of T=200 years is mostly
higher than the POT estimation leading to ratios greater than 1. The mean ratio is about 1.3 and so we
have an averagely 30% higher estimation in the annual maximum model. Using robust estimation in
the POT model we see even greater differences. Again the most estimations are smaller with the POT
model than with the classical annual maximum model, up to 1/3. The single extreme event therefore
influences the classical annual maximum estimation very much, whereas the POT approach gives an
estimation where the influence of the extreme event is downweighted. This regards the possibility that
the extreme event is an event occurring rarer than in 100 years, which cannot be seen in a data series
of only 100 years. We can also see that the lower return periods, e.g. T=5, do not differ so much,
regardless of the chosen estimation approach. So the more robust approaches only change the higher
quantiles by downweighting the influence of extreme events. This supports the results concerning the
reliability of the POT approach.

4  Conclusions

The distribution of flood quantiles by partial duration series is a combination of two distributions, one
for the annual number of exceedances and the other for the magnitude of exceedances. Although the
Poisson distribution does not seem to fit in a large number of cases, replacement by other, better fitting
distributions does not make a difference in the estimation of annualities and can therefore be omitted.

In comparison with the classical annual maximum approach the POT approach forms a robust
alternative, which has advantages especially in the occurrence of extreme events. It delivers a stable
estimation of high quantiles over large time periods and avoids sudden jumps in estimation. Therefore
it gives security in the estimation. The robust POT approach should only be used for samples with a
length of at least 50 years, since in Figure 5 we see that at least this sample length is needed for a
stable estimation. Otherwise the efficiency of the estimator is much too low. It is therefore unsuitable
for the most hydrological series. In the presence of extreme events the estimation based on the POT
(robust and non-robust) is mostly lower than that based on the classical approach.

The dependence structure of the times series could play a crucial role in the estimation and a suitable
model in the dependence case has to be studied further.

Acknowledgement

The financial support of the Deutsche Forschungsgemeinschaft (SFB 823, ”Statistical modelling of
nonlinear dynamic processes”) is gratefully acknowledged.

References

Begueria, S. (2005) Uncertainties in partial duration series modelling of extremes related to the choice
of the threshold value.

Cunnane, C. (1973) A particular comparison of annual maxima and partial duration series methods of
flood frequency prediction. Journal of Hydrology, 18(3-4), 257-271.

Cunnane, C. (1979) A note on the Poisson assumption in partial duration series models. Water Resour.
Res, 15(2), 489-494.

Dietrich, D. and Husler, J. (1996) Minimum distance estimators in extreme value distributions.
Communications in Statistics - Theory and Methods, 25(4), 695-703.

Garavaglia, F., Lang, M., Paquet, E., Gailhard, J., Garcon, R., and Renard, B. (2010) Reliability and
robustness of rainfall compound distribution model based on weather pattern sub-sampling.
Hydrol. Earth Syst. Sci. Discuss., 7(5), 6757-6792.

Gumbel, E. J. and Schelling, H. von (1950) The Distribution of the Number of Exceedances. Ann.
Math. Statist., 247-262.

Hosking, J. R. M., Wallis, J. R., and Wood, E. F. (1985) Estimation of the Generalized Extreme-Value
Distribution by the Method of Probability-Weighted Moments. Technometrics, 27(3), 251-261.



Kochanek, K., Renard, B., Arnaud, P., Aubert, Y., Lang, M., Cipriani, T., and Sauquet, E. (2013) A
data-based comparison of flood frequency analysis methods used in France. Nat. Hazards Earth
Syst. Sci. Discuss., 1(5), 4445-4479.

Kumar, P., Guttarp, P., and Foufoula-Georgiou, E. (1994) A probability-weighted moment test to
assess simple scaling. Stochastic Hydrology and Hydraulics, 8(3), 173-183.

Langbein, W. B. (1949) Annual floods and the partial-duration flood series. Transactions, American
Geophysical Union, 30(6), 879.

Madsen, H., Rasmussen, P. F., and Rosbjerg, D. (1997) Comparison of annual maximum series and
partial duration series methods for modeling extreme hydrologic events: 1. At-site modeling.
Water Resources Research, 33(4), 747-757.

Onoz, B. and Bayazit, M. (2001) Effect of the occurrence process of the peaks over threshold on the
flood estimates. Journal of Hydrology, 244(1-2), 86-96.

Rasmussen, P. F. and Rosbjerg, D. (1991) Prediction Uncertainty in Seasonal Partial Duration Series.
Water Resources Research, 27(11), 2875-2883.

Renard, B., Kochanek, K., Lang, M., Garavaglia, F., Paquet, E., Neppel, L., Najib, K., Carreau, J.,
Arnaud, P., Aubert, Y., Borchi, F., Soubeyroux, J.-M., Jourdain, S., Veysseire, J.-M., Sauquet, E.,
Cipriani, T., and Auffray, A. (2013a) Data-based comparison of frequency analysis methods: A
general framework. Water Resources Research, 49(2), 825-843.

Renard, B., Kochanek, K., Lang, M., Garavaglia, F., Paquet, E., Neppel, L., Najib, K., Carreau, J.,
Arnaud, P., Aubert, Y., Borchi, F., Soubeyroux, J.-M., Jourdain, S., Veysseire, J.-M., Sauquet, E.,
Cipriani, T., and Auffray, A. (2013b) Data-based comparison of frequency analysis methods: A
general framework. Water Resources Research, 49(2), 825-843.

Rosbjerg, D. (1985) Estimation in partial duration series with independent and dependent peak values.
Journal of Hydrology, 76(1-2), 183-195.

Rosbjerg, D., Madsen, H., and Rasmussen, P. F. (1992) Prediction in partial duration series with
generalized pareto-distributed exceedances. Water Resources Research, 28(11), 3001-3010.

Shane, R. M. and Lynn, W. R. (1964) Mathematical model for flood risk evaluation.

Stedinger, J. R. (1993) Frequency analysis of extreme events. in Handbook of Hydrology.

Taesombut, V. and Yevjevich, V. (1978) Use of partial series for estimating the distribution of
maximum annual flood peak, Ft. Collins.

Tavares, L. V. and Da Silva, J. Evaristo (1983) Partial duration series method revisited. Journal of
Hydrology, 64(1-4), 1-14.

Wang, Q. J. (1991) The POT model described by the generalized Pareto distribution with Poisson
arrival rate. Journal of Hydrology, 129(1-4), 263-280.












