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Abstract 

Partial duration series (peak over threshold) form a considerable alternative to the classical 
annual maximum approach since they enlarge the information spectrum. The classical POT 
approach is based on a Poisson distribution for the annual number of exceedances although 
this is can be questionable in some cases. Therefore two different distributions (Binomial 
and Gumbel-Schelling (Gumbel and Schelling (1950)) ) are considered. The results show 
that they do rarely make a difference to the Poisson distribution. In a second step we 
investigate the robustness in the sense of stability against the occurrence of extreme events 
of the POT compared to annual maxima and show that in the case of extreme events the POT 
behaves much more robust and fits very good to the data. 
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1 Introduction 
In the context of the climate change discussion and some extreme floods occurring in the last decade 
the question of a robust estimation of flood probabilities and the connected flood protection is more 
and more foregrounded.  

Since the recorded series of floods (monthly or annual) are very limited and seldom longer than 100 
years the needed information about extreme floods is often not or not well enough represented in the 
data sample. Therefore the fitting of a suitable distribution and the extrapolation to domains lacking of 
data is the key question to gain information about events with very low exceedance probabilities. The 
decision of the underlying statistical model is crucial in this context. 

It is known that partial duration series (Peak over Threshold (POT) approach) form a considerable 
alternative to the classical annual maximum flood series in performing flood frequency analysis. It has 
been argued that the POT approach uses more data and thus more information about the floods 
whereas the annual maximum approach only uses one event per year and so maybe ignores further 
floods in the same year, which are higher than annual maxima in other years. So it is not unlikely that 
the POT has a more robust behavior.  

Robustness can become an important point in the estimation of the underlying statistical model when 

an extreme event with low exceedance probability which is significantly smaller than 1
n  occurs in a 

time series of  n  years. Also robustness does not only mean robustness against outliers but also 
against model misspecifications or errors in the data. 

In literature (Langbein (1949), Stedinger (1993)) there is a comparison between the statistics of time 
periods between flood events derived from partial duration series and annual series. The return periods 
based on annual series are integers of years (annualities), the return periods of POT are time spans, 
expressed as real numbers of years. They show that for return periods higher than 10 years it does not 
make a difference which approach is used. Nevertheless we will see that it makes a difference, if we 
calculate the annual return period based on annual maxima or based on the partial series. 



 Additionally Cunnane (1973), Madsen et al. (1997) and Rosbjerg (1985) compare the efficiency of 
the estimation of annual return periods by the annual maxima and partial duration series respectively 
for independent and dependent peaks and different estimators. Also Tavares and Da Silva (1983) show 
the differences in the estimation variance of both cases.  

Rasmussen and Rosbjerg (1991) considered seasonal approaches for the partial duration series. 

 In this article we want to compare the classical statistic of annual maxima with the annual maximum 
statistic resulting of the POT in respect of its robustness. In particular we want to estimate extreme 
quantiles (99% and 99.5%) of different gauges within the drainage basin of the river Mulde in Saxony. 
In this area several extreme events happened in the last 12 years so that we can find large outliers in 
our data samples. Robustness in this context means stability against the occurrence of extreme events.  

As the distribution of the annual maxima based on the POT is specified by a combination of the 
distribution of the magnitude of exceedances with the discrete distribution for the annual number of 
exceedances (for details see Section 2.2 POT) we investigate the influence of the choice of the discrete 
distribution in the POT approach. The often used application of the Poisson distribution is based on 
the assumption of an underlying Poisson process, which is not the most fitting distribution in this case, 
and extending the study of Önöz and Bayazit (2001) we replace it by other discrete distributions, 
especially the one proposed by Gumbel and Schelling (1950).  

We first give a detailed overview of the different models and methods and in a second step apply them 
on our data. 

2 Methods 

Let us consider a data set ( ) ( )
1( , , )d d

nX X , that is for example a 100n  -year series of 12d   

monthly maximum discharges in a year. Of course this model can also be used for describing seasonal 
models, for example for winter floods, by choosing d  as the times of seasonality (for winter e.g.

6d  ). It is important to consider that not every maximum specifies a flood event, which has to be 
defined by a threshold. 

2.1 Annual Maxima 

Regarding annual maxima one has to deal with the time series  ( ) ( )
1

1 1
max( ), , max( ) .k k

n
k d k d

X X
   

  

It seems naturally to fit the Generalized Extreme Value (GEV) Distribution to annual maxima having 
in mind that the Fisher-Tippet-Gnedenko Theorem says that for independent, identically distributed 

random variables 1, , nY Y  the maximum 1( , , )nmax Y Y  (properly normed) converges in distribution 

to a GEV-distribution (under some technical conditions) for n ™ . In hydrology this limit 
distribution is widely known and often used because of its flexibility reasoned by its three parameter 
distribution function: 

1

( ) 1
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, for1 ( ) / 0x     ,  

where    is the shape parameter, 0   the scale parameter and    the location parameter. 

The special case 0   (Gumbel-distribution) is given by 

( )
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G x exp exp
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
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The estimation of the parameters can be done by the Probability Weighted Moments (PWM) ( 
Hosking, J. R. M. et al. (1985)), since they are in comparison to Maximum-Likelihood or Moment 
estimators a bit less efficient but a bit more robust (Kumar et al. (1994)). 

2.2 POT 
The POT approach in comparison enlarges the information used for the fitting by considering not only 
the annual maxima but every (monthly) maximum above a threshold specifying a flood. In particular 

this means that we involve every flood peak above a certain threshold 0x  (in our case this will be

 ( )
0

1 1
min max( )k

i
i n k d

x X
   

 , the minimum annual maximum of all years). This is the so called partial 

duration series. The independence between the single events has to be ensured, which can be done by a 
consideration of the date of each peak. 

 Again we use a result of the extreme value theory to find a suitable distribution: by the Balkema-de 

Haan-Pickands Theorem the conditional excess distribution of 1, , nY Y  above a certain threshold 0x  

converges to a Generalized Pareto Distribution (GPD) with distribution function: 

1
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
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, for 0x x  if the shape parameter 0   and 0 0 /x x x      

otherwise and the scale parameter 0  . 

We want to mention that in literature there are many other distributions used for the conditional excess 
distribution, especially the special case 0   of the GPD, the shifted Exponential distribution given 

by 0( ) 1
x x

F x exp


 
   

 
, 0x x .  

Rosbjerg et al. (1992) showed that this distribution is preferable in the case where 0.1   in the sense 
that it gives a better approximation to the data. Nevertheless we want to ensure a great flexibility and 
therefore consider the three parameter case, having in mind that we can reduce it to the special case of 
the Exponential distribution. 

To estimate the parameters of the GPD we have a wide range of possibilities. Often the Probability 
Weighted Moments (Wang (1991)) are used, since they are rather efficient . Nevertheless it is also 
worth considering more robust estimators to counter uncertainties in the model selection and also 

outliers in the data. We will become more specific in this point later on. The threshold parameter 0x  

does not have to be estimated and is given by definition. But it is very important to mention that the 
choice of it plays an important role in the behavior of the estimates (cf. Begueria (2005)). 

Still one problem remains since we are interested in annual return periods. Therefore we have to 
transform the results we get for the distribution of the magnitude of excesses, which is the GPD, to get 
results for annual maxima. An often used relationship  between annual maxima and the partial 
duration series is the following: using the total probability theorem we get for the distribution function 

of the annual maxima aF  (cf. Shane and Lynn (1964)): 

 
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( ) ( ) ( )
k

a
k

F x l k F x




 P ,     (1) 

where ( )l kP  is the probability that the annual number of exceedances of 0x  equals k . 

In the following we will compare three discrete probability distributions which could represent P  
properly. 



2.2.1 The Poisson distribution 
The most used discrete distribution for describing the occurrence of rare events is the Poisson 
distribution  

( )
!

k

P l k e
k

  P , based on the assumption that the underlying process is a Poisson process. 

It seems therefore naturally to use this distribution also in the case of the annual number of 
exceedances and actually this done in most cases (e.g. Stedinger (1993), Cunnane (1973)). The 
parameter   represents both the mean and the variance of the distribution and is estimated by the 

mean of the annual number of exceedances ( )
0[ ]
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i jn


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Nevertheless there are also some disadvantages which question the applicability of the Poisson 
distribution in the case of partial duration series. One important point is that because of equation (1) 
there will be probability mass for every 0,1,k   , where in reality it is not possible that k  could 

equal more than d . Having the example of 12d   monthly maxima every year in mind it is not 

possible that 0x  is exceeded more than 12 times, that is every month. It was also mentioned in 

literature before that the assumption of equal mean and variance , which is the base of the Poisson 
distribution, does not always hold (Taesombut and Yevjevich (1978), Cunnane (1979), Önöz and 
Bayazit (2001)).  

This was the reason for us to consider different distributions and to compare the results. 

Combing the Poisson distribution with the GPD in equation (1) we gain for the distribution function of 
annual maxima: 
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This is indeed the GEV distribution with parameters  ,    and
 

0

1
x

 
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
  .  

2.2.2 The Binomial distribution 
Mathematically the Binomial distribution seems to be another distribution worth considering since it is 
a typical distribution for describing the number of successes (in our case exceedances) in a sample. 
Therefore it is not surprising that this distribution was also considered before (c.f. Önöz and Bayazit 
(2001)). Its probability mass function is given by 
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k
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where p  is the probability of an exceedance of the threshold and therefore estimated by 
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  . By choosing r d  we do not have the problem of having probability mass 

for k d , since then the Binomial distribution equals 0. For n   and 0p   with np  the 

Binomial distribution converges against the Poisson distribution. 

Although the using of this distribution seems to be great advantage against the Poisson distribution, 
Önöz and Bayazit (2001) showed that it does not make a difference.  

The annual maxima distribution is then 
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2.2.3 The Gumbel-Schelling distribution 
As third and last distribution we want to consider is the distribution proposed by Gumbel and 
Schelling (1950) 
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where m  is the rank of 0x  in the sample ( ) ( )
1( , , )d d

nX X  in decreasing order. 

If ,n d   and 1
n

d
 , Gumbel and Schelling (1950) showed that this distribution converges 

asymptotically to a normal distribution, otherwise if ,n d   and m  and k  remain small it 

converges to the Poisson distribution. 

This distribution has the great advantage that we do not have to estimate any parameters and therefore 
have no uncertainties in this point. The only assumption needed is continuity of the data.  

For the distribution of the annual maxima we get 
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3 Data Application 
We analyzed data from 17 gauges in Saxony within the Mulde river basin (Figure 1) with a length of 
at most 75 years and floods recorded up to year 2012. As mentioned above these data series have the 
special property of having several extreme events where the most extreme occurred in the year 2002. 
An example is shown in Figure 2 where we can see the gauge Nossen (gauge number 10). 
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The ratios are all very close to one and differ only in the fourth decimal place, which is reasoned 
numerically. 

A possible reason could be that the Poisson distribution is the limit distribution of both the Binomial 
distribution and the Gumbel-Schelling distribution.  

Since the threshold has a great influence on the estimation we also tested the threshold 2.5T MQ , 

that is 2.5 times the average discharge. The tendency of the results remained the same and the results 
are therefore omitted here. 

Since it seems to make no difference, if we use the supposed to be unfitting Poisson distribution or one 
of the other discrete ones, in the following we will continue to use the Poisson distribution, since the 
model has a much easier representation than in the other cases, having an underlying GEV 
distribution. 

In a second step we compare the POT approach (from now on model 2.1.2) with the classical annual 

maximum approach. We fit a GEV distribution to the sample  ( ) ( )
1

1 1
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PWM estimation and the POT model to the whole sample ( ) ( )
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nX X  the same way as before. 

We also considered a robust method to estimate the parameters of the GPD by using a Minimum 
Distance (MD) estimator with Cramer-von-Mises-distance (cf. Dietrich, D. and Hüsler, J. (1996) in the 
GEV case).  

That is, the parameters are estimated by solving  
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where nF  is the empirical distribution function of all ( )
0

j
iX x  and 0( ; )F x x  is the Generalized 

Pareto distribution with given threshold 0x . Contrary to the ML estimator the MD estimator uses the 

minimum distance to gain estimates instead of the maximum probability. That means that the MD 
estimator declares an estimation even as optimal, if one value does not fit but all the others do 
perfectly. Using the ML estimator this is not possible, since such an outlier would be declared as non-
probable and therefore the estimation as non-fitting. Therefore the MD estimator has robust behavior, 
which can be also shown by its bounded influence function ( Dietrich, D. and Hüsler, J. (1996)) 

We will refer to this as the robust POT approach. 

First of all we wanted to know the reliability of the three different fitting approaches. Therefore we 
used a criterion proposed by Renard et al. (2013). We calculated the reliability index  
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 the annual maximum discharge of gauge l  in year i  of 

the records. By application of the inverse distribution function one can easily see that under the 

hypothesis of an reliable estimation ( l̂ lF F l  ) 1, ,( ( ))
li i npval l    is uniformly distributed in the 

interval [0,1] for every gauge l  with record length ln . Therefore a graphical tool to investigate the 

goodness of fit of our approaches is a QQ-Plot of pval for every fitting approach (Figure 2). Often 
also a PP-Plot is used but since in a QQ-Plot especially the extreme domains are illustrated in a better 
way we choose this presentation.  
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estimated on the basis of all recorded events up to this point including this event (occurring return 
period). This is done for an increasing sample length, starting with ten years (Tables 1 and 2). 

We can see that after a short time of stabilization, which is needed for an adequate calibration, the 
POT and especially the robust POT approach give much more stable estimations of the annual return 
period. Whereas the classical annual maximum approach is highly influenced by the occurring of 
extreme events the other two approaches are not so much. Where the difference is   the model was 
not able to fit a suitable distribution with the given data. We can also see that the flood in the years 
2002 in Nossen is so extreme that every model estimates return periods much higher than 10000. 

Table 1: absolute deviation of predicted and occurring annual return period for the gauge 
Wechselburg with the three different fitting approaches. Only differences higher than 5 years in one 
case are shown. 

year GEV POT robust POT 
1923 4 35   
1924 67 57925   
1926 10 69   
1932 92 76 127 
1944 354 445 131 
1975 19 16 6 
2002 173 124 85 

 

Table 2: absolute deviation of predicted and occurring annual return period for the gauge Nossen with 
the three different fitting approaches. Only differences higher than 5 years in one case are shown. 

year GEV POT robust POT 
1931   30 3 
1956 18 6 5 
1958 750 65 26 
2002 19528768 2712055 10213 

 

The stability was also investigated by using the robustness criteria TSPAN proposed by Garavaglia et 

al. (2010) and often used to compare the robustness of fitting methods ( Kochanek et al. (2013), 
Renard et al. (2013)). The SPAN for the annual return period T at gauge number l is calculated by the 
following formula 

11
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where ˆ ( )Tq s  is the estimated quantile related to annual return period T for a subperiod s of b non-

overlapping subperiods. It is a kind of rank function, where the optimal value of TSPAN  indicating a 

robust behavior of the model is 0.  

Since in our case the sample length is very limited and the estimators need a certain quantity of data 
we reduce the quantity of subperiods to two, having one with length 50. Equation (2) therefore reduces 
to 
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We can see that the classical annual maximum estimation for a return period of T=200 years is mostly 
higher than the POT estimation leading to ratios greater than 1. The mean ratio is about 1.3 and so we 
have an averagely 30% higher estimation in the annual maximum model. Using robust estimation in 
the POT model we see even greater differences. Again the most estimations are smaller with the POT 
model than with the classical annual maximum model, up to 1/3. The single extreme event therefore 
influences the classical annual maximum estimation very much, whereas the POT approach gives an 
estimation where the influence of the extreme event is downweighted. This regards the possibility that 
the extreme event is an event occurring rarer than in 100 years, which cannot be seen in a data series 
of only 100 years. We can also see that the lower return periods, e.g. T=5, do not differ so much, 
regardless of the chosen estimation approach. So the more robust approaches only change the higher 
quantiles by downweighting the influence of extreme events. This supports the results concerning the 
reliability of the POT approach. 

4 Conclusions 
The distribution of flood quantiles by partial duration series is a combination of two distributions, one 
for the annual number of exceedances and the other for the magnitude of exceedances. Although the 
Poisson distribution does not seem to fit in a large number of cases, replacement by other, better fitting 
distributions does not make a difference in the estimation of annualities and can therefore be omitted.  

In comparison with the classical annual maximum approach the POT approach forms a robust 
alternative, which has advantages especially in the occurrence of extreme events. It delivers a stable 
estimation of high quantiles over large time periods and avoids sudden jumps in estimation. Therefore 
it gives security in the estimation. The robust POT approach should only be used for samples with a 
length of at least 50 years, since in Figure 5 we see that at least this sample length is needed for a 
stable estimation. Otherwise the efficiency of the estimator is much too low. It is therefore unsuitable 
for the most hydrological series. In the presence of extreme events the estimation based on the POT 
(robust and non-robust) is mostly lower than that based on the classical approach. 

The dependence structure of the times series could play a crucial role in the estimation and a suitable 
model in the dependence case has to be studied further.  
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