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Abstract

In this article we propose two new Multiplicative Bias Correction (MBC) techniques for nonparametric
multivariate density estimation. We deal with positively supported data but our results can easily be ex-
tended to the case of mixtures of bounded and unbounded supports. Both methods improve the optimal
rate of convergence of the mean squared error up to O(n−8/(8+d)), where d is the dimension of the under-
lying data set. Moreover, they overcome the boundary effect near the origin and their values are always
non-negative. We investigate asymptotic properties like bias and variance as well as the performance of
our estimators in Monte Carlo Simulations and in a real data example.

Keywords: Asymmetric kernels, Bias correction, Multivariate density estimation

1. Introduction

In recent literature two multiplicative bias correction (“MBC”) techniques were proposed for nonparamet-
ric estimation of univariate densities with compact (Hirukawa 2010) and with bounded support (Hirukawa
and Sakudo, 2014a). The applied methods were originally investigated in Jones et al. (1995, “JLN”) and in
Terrell and Scott (1980, “TS”) for symmetric kernel functions. Our purpose is now the extension of these
results to multivariate density estimation where the marginals possess bounded supports. As mentioned,
our approach can easily be extended to the case where one has more involved supports like mixtures
of bounded, compact and unbounded supports. As in Hirukawa and Sakudo (2014a) we will focus on
the use of asymmetric kernels which were originally proposed in Chen (1999, 2000) for nonparametric
estimation of compact as well as positively supported univariate probability densities. As kernel func-
tions Chen suggested the use of Beta (“B”), Gamma (“G”) and the so called Modified Gamma (“MG”)
densities. During the last years many other choices of kernels were proposed like Log Normal (“LN”) and
Birnbaum Saunders (“BS”) (Jin and Kawczak, 2003), Inverse Gaussian (“IG”) ans Reciprocal Inverse
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Table 1
Univariate Asymmetric Kernels

Kernel Explicit Form

G KG,h,x(z) = zx/h exp(−z/h)
hx/h+1Γ(x/h+1)

MG KMG,h,x(z) = zρh(x)−1 exp(−z/h)

hρh(x)Γ(ρh(x))

where ρh(x) = x
h1(x ≥ 2h) + ( x

2

4h2 + 1)1(x < 2h)
IG KIG,h,x(z) = 1√

2πhz3
exp

[
− 1

2hx (z/x− 2 + x/z)
]

RIG KRIG,h,x(z) = 1√
2πhz

exp
[
− (x−h)

2h (z/(x− h)− 2 + (x− h)/z)
]

LN KLN,h,x(z) = 1
z
√

2πhz
exp

(
− (log(z)−log(x))2

2h

)
BS KBS,h,x(z) = 1

2x
√

2πh

(
(x/z)1/2 + (x/z)3/2

)
exp

(
− 1

2h (z/x− 2 + x/z)
)

NM KNM,h,x(z) =
2zα−1 exp(−(z/(βΓ(α/2)/Γ((α+1)/2)))2)

(βΓ(α/2)/Γ((α+1)/2))αΓ(α/2) ,

where (α, β) =

{(
x
h , x

)
, for x ≥ 2h(

x2

4h2 + 1, x
2

4h + h
)
, for x < 2h

B KB,h,x(z) = zx/h(1−z)(1−x)/h
B(x/h+1,(1−x)/h+1)

Gaussian (“RIG”) (Scaillet, 2004) as well as Generalized Birnbaum Saunders (“GBS”) (Marchant et. al,
2013). For the details of the derivation of Generalized Birnbaum Saunders distributions, in particular the
so called generator g, see Leiva (2008). In a very recent paper Hirukawa and Sakudo (2014b) proposed
the use of Generalized Gamma (“GG”) densities which are acting as a generator of asymmetric kernel
functions. Due to the variety of their introduced parameters, we will only focus on a special case, namely
the so called Nakagami m-kernel (“NM”).
Given a random sample of observations {Xi}ni=1 with univariate density f which is supported on [0,∞),
all estimators possessing the form

f̂m,h(x) :=
1

n

n∑
i=1

Km,h,x(Xi)

where m = G, MG, IG, RIG, LN, BS, NM or B. K denotes the corresponding density with a certain
choice of parameters.

The use of asymmetric kernel functions has many advantages like adaptive smoothing, optimal rate
of convergence in the mean integrated squared error sense for kernels of order two and due to their
construction they obviously avoid a boundary effect without producing negative values of the estimate.
Although there are many other boundary correction methods available, this approach seems to be a
good and easy implementable method for circumventing the boundary problem of nonparametric density
estimation near the origin.
To our knowledge there is only one paper concerned with multivariate nonparametric density estimation
where asymmetric kernels are employed, namely Bouezmarni and Rombouts (2007). Given a random
sample {(Xi1, ..., Xid)}ni=1 of independent and identically distributed random vectors with positively
supported marginals, they estimate the unknown joint density function f using a product kernel estimator

f̂m,h(x) = f̂m,h(x1, ..., xd) :=
1

n

n∑
i=1

d∏
j=1

Km,hj ,xj (Xij)
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where h := (h1, ..., hd) denotes the vector of bandwidths and m= G or MG. They showed that the optimal
rate of convergence of the mean integrated squared error for this estimator is of order O(n−4/(4+d)). We
will improve this rate with both of our proposed estimators.
The remainder of the article is organized as follows. Section 2 introduces the new estimators and deter-
mines asymptotic properties like bias and variance for several choices of the kernel function K. Section
3 includes a short discussion of the selection of the required bandwidths as well as a Monte Carlo study.
Section 4 concludes and gives an outlook of what could be done in further research investigations. All
proofs are postponed to the Appendix.

2. Nonparametric MBC estimation

2.1. Definition of multivariate JLN and TS estimator

In this section we will define our newly proposed estimators: the multivariate Jones Linton Nielsen
estimator (MV-JLN) and the multivariate Terrell Scott estimator (MV-TS). Consider therefore a random
sample {Xi1, ..., Xid}ni=1 of independent and identically distributed random vectors with joint density f .

The MBC technique proposed by Jones et al. (1995) is based on the identity f(x) = f̂m(x)
(
f(x)

f̂m(x)

)
. In

this sense the unknown density f at a vector x = (x1, ..., xd) ∈ (R+)d is estimated by

f̂JLN,m,h(x) := f̂m,h(x)
1

n

n∑
j=1

∏d
j=1Km,hj ,xj (Xij)

f̂m,h(Xi)
,

where Xi := (Xi1, ..., Xid). The second MBC technique published by Terrell and Scott is based on a
geometric extrapolation which originates from numerical mathematics. Consider therefore a constant
c ∈ (0, 1) which is independent of the dimension d. The unknown density function f is now estimated by

f̂TS,m,h(x) :=
(
f̂m,h(x)

) 1
1−c
(
f̂m,h/c(x)

)− c
1−c

.

In contrast to other boundary correction methods both estimators only produce positive values for f .

2.2. Bias and Variance

In this section we will develop the convergence properties of our estimators. Due to notational limitations
and to the sake of brevity we will restrict ourselves to the case where h1 = ... = hd ≡ h and also where all
components of the vector x lie in the interior or at the boundary of the support. Results for more involved
locations as well as unequal bandwidths can be examined in a straight forward manner. To explore the
asymptotic properties we have to impose two assumptions:

Assumption 1. f has four continuous and bounded partial derivatives and f(x) > 0.

Assumption 2. The bandwidth h fulfills h→ 0 as well as nhd(rj+1/2)+2 → 0 as n→∞, where

rj =


1/2, for j = G, MG, RIG, NM, B

1, for j = LN, BS,

3/2, for j = IG.

Assumption 1 is usually needed for estimation via 4-th order product kernels. Assumption 2 is used
to control the convergence order of remainder terms appearing in certain Taylor expansions during the
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proofs.
We are now ready to formulate the main results of our paper. We will distinguish between two cases
namely the case where xj/hj → ∞ respectively xj/hj → κj for all j = 1, ..., d. The results for other
locations of x can be easily obtained and are here omitted.

Theorem 2.1. Under Assumptions 1 and 2 the bias of the MV-TS MBC estimator is given by

Bias
(
f̂TS,m,h(x)

)
= h2 1

c(1− c)

[
a2

1,m(x; f)

f(x)
− a2,m(x; f)

]
+ o(h2) := h2 pm(x; f)

c(1− c)
+ o(h2),

where aj,m(x; f) := aj,m(x1, ..., xd; f), j = 1, 2 are functions depending on the choice of the kernel and
their explicit forms are given in Table 2 and 3. The variance can be approximated by

Var
(
f̂TS,m,h(x)

)
=

{
n−1h−d/2f(x)νm(x)λd(c) + o(n−1h−d/2), for an interior vector x,

O(
(
nhd(rj+1/2))−1

)
, for a boundary vector x,

where λd(c) :=
(1+c)d/2(1+c(d+4)/2)−(2c)(d+2)/2

(1−c)2(1+c)d/2
and νm(x) := νm(x1, ..., xd) = (2

√
π)−d

∏d
j=1 x

−rj
j .

Theorem 2.2. Under Assumptions 1 and 2 the Bias of the MV-JLN MBC estimator is given by

Bias
(
f̂JLN,m,h(x)

)
= −h2f(x)a1,m(x; g) + o(h2) := qm(x; f)h2 + o(h2),

where a1,m(x; g) is defined by replacing f in the definition of a1,m(x; f) by g = g(x; f) =
a1,m(x;f)
f(x) .

Furthermore the Variance can be approximated by

Var
(
f̂JLN,m,h(x)

)
=

{
n−1h−d/2f(x)νm(x) + o(n−1h−d/2), for an interior vector x,

O(
(
nhd(rj+1/2))−1

)
, for a boundary vector x,

Remark 2.3. The rate of the leading bias term for both estimators is equal to O(h2) instead of O(h) as
in usual asymmetric kernel density estimation. The rate of the variance remains unchanged through the
imposed bias correction. Furthermore, the appealing properties of asymmetric kernel density estimation
like shrinking variance in terms of the location of the components xj and freedom of boundary bias are
still persisting.

2.3. MSE and MISE convergence rates

The rate of the mean squared error (MSE) can now easily be derived using Theorems 1 and 2. Therefore
let x = (x1, ..., xd) be a vector of interior points, then:

MSE
(
f̂TS,m,h(x)

)
=
h4p2

m(x; f)

c2(1− c)2
+ n−1h−d/2f(x)νm(x)λd(c) + o(h4 + n−1h−d/2)

as well as

MSE
(
f̂JLN,m,h(x)

)
= h4q2

m(x; f) + n−1h−d/2f(x)νm(x) + o(h4 + n−1h−d/2).

Which leads to the optimal smoothing parameters

hopt,TS,m = n−2/(8+d)

(
f(x)νm(x)λd(c)(1− c)2c2d

8p2
m(x; f)

)2/(8+d)
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Table 2
Explicit formulas for a1,m(x; f)

Kernel a1,m(x; f)

G
∑d
j=1

(
∂f(x)
∂xj

+
xj
2
∂2f(x)
∂2xj

)
MG

∑d
j=1

(
xj
2
∂2f(x)
∂2xj

1(xj > 2h) + ξh(xj)
∂f(x)
∂xj

1(xj ≤ 2h)
)
,

where ξh(xj) := ρh(xj)− xj
h = O(1)

IG 1
2

∑d
j=1 x

3
j
∂2f(x)
∂2xj

RIG 1
2

∑d
j=1 xj

∂2f(x)
∂2xj

LN 1
2

∑d
j=1 xj

(
∂f(x)
∂xj

+ xj
∂2f(x)
∂2xj

)
BS 1

2

∑d
j=1 xj

(
∂f(x)
∂xj

+ ∂2f(x)
∂2xj

)
NM

∑d
j=1

(
xj
4
∂2f(x)
∂2xj

1(xj > 2h) + ξh(xj)
∂f(x)
∂xj

1(xj ≤ 2h)
)
,

B
∑d
j=1

(
(1− 2xj)

∂f(x)
∂xj

+ 1
2xj(1− xj)

∂2f(x)
∂2xj

)

and

hopt,JLN,m = n−2/(8+d)

(
f(x)νm(x)d

8q2
m(x; f)

)2/(8+d)

.

These parameters lead us now to the optimal rate of convergence of the MSE for an interior vector x:

MSEopt

(
f̂TS,m,h(x)

)
∼ n−8/(8+d) (d+ 8)

(88/dd)d/(8+d)
γd(c)p

2d/(8+d)
m (x; f) (νm(x)f(x))

8/(8+d)

and

MSEopt

(
f̂JLN,m,h(x)

)
∼ n−8/(8+d) (d+ 8)

(88/dd)d/(8+d)
q2d/(8+d)
m (x; f) (νm(x)f(x))

8/(8+d)

where

γd(c) :=
λd(c)

8/(8+d)

(c(1− c))2d/(8+d)
=

(
(1 + c)d/2(1 + c(4+d)/2)− (2c)(2+d)/2

cd/4(1 + c)d/2(1− c)(8+d)/4

)8/(8+d)

.

Remark 2.4. Observe that Assumption 2 guarantees that the smoothing parameter h converges slower
than O(n−1/((rj+1/2)d+2)). As we can see, the optimal bandwidth parameter hopt is of order O(n−8/(8+d))
for both estimators. This means that our requirement is fulfilled for the G, MG, RIG, NM and B kernel
only in the case d < 4. For other kernels, hopt does not fulfill this assumption. From a practical point
of view this should not be a big problem due to the fact that in finite sample examples the bandwidth
is often chosen by a data driven method and also in dimensions higher than 3, nonparametric density
estimation suffers extremely from the curse of dimensionality.

Similarly, we can derive the rates for boundary vectors. The MSE of both estimators is in this case of
order O(h4 + (nhd(rj+1/2))−1) and the optimal bandwidth parameter h∗opt fulfills consequently h∗opt =

O(n−1/(4+d(rj+1/2))) which leads to an optimal mean squared error for boundary vectors of order

MSE∗
(
f̂JLN,m,h(x)

)
= MSE∗

(
f̂TS,m,h(x)

)
= O(n−4/((4+d(rj+1/2)))).

It is natural to include also a global performance criterion like the mean integrated squared error (MISE).
As in Chen (2000) suggested, a trimming argument yields that the unwanted slower rates near the origin
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Table 3
Explicit formulas for a2,m(x; f)

Kernel a2,m(x; f)

G
∑d
j=1

(
∂2f(x)
∂2xj

+ 5
6xj

∂3f(x)
∂3xj

+ 1
8xj

∂4f(x)
∂4xj

)
+
∑
i 6=j

(
∂2f(x)
∂xj∂xi

+
xixj

4
∂4f(x)
∂2xi∂2xj

)
MG

∑d
j=1

(
xj
3
∂2f(x)
∂2xj

+ 5
6xj

∂3f(x)
∂3xj

+
x2
j

8
∂4f(x)
∂4xj

)
1(xj > 2h)

+ 1
2

∑d
j=1

(
ξ2
h(xj) + ξh(xj) +

xj
h

) ∂2f(x)
∂2xj

1(xj ≤ 2h)

+
∑
i 6=j

xixj
4

∂4f(x)
∂4xj

1(xi > 2h;xj > 2h)

+
∑
i 6=j ξh(xj)ξh(xi)

∂2f(x)
∂xj∂xi

1(xj ≤ 2h;xi ≤ 2h)

IG 1
2

∑d
j=1

(
x5
j
∂3f(x)
∂3xj

+
x6
j

4
∂4f(x)
∂4xj

)
+
∑
i 6=j

x3
ix

3
j

4
∂4f(x)
∂2xj∂2xi

RIG 1
2

∑d
j=1

(
∂2f(x)
∂2xj

+ xj
∂3f(x)
∂3xj

+
x2
j

4
∂4f(x)
∂4xj

)
+
∑
i 6=j

xixj
4

∂4f(x)
∂2xj∂2xi

LN
∑d
j=1

(
xj
8
∂f(x)
∂xj

+
7xj
8
∂2f(x)
∂2xj

+
3x3
j

4
∂3f(x)
∂3xj

+
x4
j

8
∂4f(x)
∂4xj

)
+
∑
i 6=j xixj

(
∂2f(x)
∂xj∂xi

+
xixj

4
∂4f(x)
∂2xi∂2xj

)
BS

∑d
j=1

(
3x2
j

4
∂2f(x)
∂2xj

+
3x3
j

4
∂3f(x)
∂3xj

+
x4
j

8
∂4f(x)
∂4xj

)
+
∑
i 6=j xixj

(
∂2f(x)
∂xj∂xi

+
xixj

4
∂4f(x)
∂2xi∂2xj

)
NM 1

8

∑d
j=1

(
∂2f(x)
∂2xj

+
xj
3
∂3f(x)
∂3xj

+
x2
j

4
∂4f(x)
∂4xj

)
1(xj > 2h) +

∑
i 6=j

xixj
16

∂4f(x)
∂2xj∂2xi

1(xi > 2h;xj > 2h)

+
∑d
j=1

(ξh(xj) +
xj
h

)2 Γ

(
ξh(xj)+

xj
h

2

)
Γ

(
ξh(xj)+

xj
h

2 +1

)

Γ2

(
ξh(xj)+

xj
h

+1

2

) − 2xjξh(xj)
h +

(xj
h

)2 1(xj ≤ 2h)

+
∑
i 6=j ξh(xj)ξh(xi)

∂2f(x)
∂xj∂xi

1(xj ≤ 2h;xi ≤ 2h)

B
∑d
j=1

(
−2(1− 2xj)

∂f(x)
∂xj

+ 1
2 (11x2

j − 11xj + 2)∂
2f(x)
∂2xj

)
+
∑d
j=1

(
5
6xj(1− xj)(1− 2xj)

∂3f(x)
∂3xj

+ 1
8x

2
j (1− xj)2 ∂

4f(x)
∂4xj

)
+
∑
i 6=j

(
(1− 2xi)(1− 2xj)

∂2f(x)
∂xj∂xi

+ 1
2 (1− 2xi)xj(1− xj) ∂3f(x)

∂xi∂2xj

)
+
∑
i 6=j

1
4xi(1− xi)xj(1− xj)

∂4f(x)
∂2xi∂2xj

do not affect the global performance. One can easily use this argument in each direction due to the product
form of the chosen kernel (cf. Bouezmarni and Rombouts (2010)). Therefore we have the following rates
for the MISEs of the proposed estimators:

MISE
(
f̂TS,m,h(x)

)
=

h4

c2(1− c)2

∫ ∞
0

p2
m(x)dx+

λd(c)

nhd/2

∫ ∞
0

f(x)νm(x)dx+ o(h4 + n−1h−d/2)

as well as

MISE
(
f̂JLN,m,h(x)

)
= h4

∫ ∞
0

q2
m(x)dx+

1

nhd/2

∫ ∞
0

f(x)νm(x)dx+ o(h4 + n−1h−d/2),

provided that all appearing integrals exist.
The optimal smoothing parameters of the rate for the MISE are therefore given by

h̄opt,TS,m = n−2/(8+d)

(
λd(c)(1− c)2c2d

∫∞
0
f(x)νm(x)dx

8
∫∞

0
p2
m(x; f)

)2/(8+d)
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and

h̄opt,JLN,m = n−2/(8+d)

(
d
∫∞

0
f(x)νm(x)dx

8
∫∞

0
q2
m(x; f)dx

)2/(8+d)

.

Consequently, the optimal MISEs are of order

MISEopt(f̂TS,m,h(x)) ∼ n−8/(8+d) (d+ 8)γd(c)

(88/dd)d/(8+d)

(∫ ∞
0

p2
m(x; f)dx

)2/(8+d)(∫ ∞
0

νm(x)f(x)dx

)8/(8+d)

and

MISEopt(f̂JLN,m,h(x)) ∼ n−8/(8+d) (d+ 8)

(88/dd)d/(8+d)

(∫ ∞
0

q2
m(x; f)dx

)2/(8+d)(∫ ∞
0

νm(x)f(x)

)8/(8+d)

.

We remark that the function γd(c) for our relevant cases is minimized at c ≈ 0.283 for d = 2. We will use
this constant exclusively in our subsequent analysis.
The optimal MISE rate for both estimators is therefore O(n−8/(8+d)) which is faster than the rate
O(n−4/(4+d)) obtained in Bouezmarni and Rombouts (2010).

Remark 2.5. We can easily transmit the results when bias and variance at a generic vector x ∈ (Rd)+

have to be established. As we have seen, the bias remains unchanged and is uniform over the whole
support of order O(h2). The variance has now the following form:

V ar
(
f̂JLN,m,h(x)

)
= V ar

(
f̂TS,m,h(x)

)
= O

(
n−1

d∏
l=1

h−(1/2+rj1l)

)
,

which depends on the location of the respective components and furthermore where 1l := 1(xl/h→ κl >
0) is a function which indicates if a component lies in the boundary region.

3. Finite sample performance

3.1. Monte Carlo Simulation Setup

In this section we compare the performance of the bivariate JLN and TS- estimator with the classical
(“C”) bivariate nonparametric Gamma kernel density estimator

f̂C,m,h(x1, x2) =
1

n

n∑
i=1

KG,h1,x1
(Xi1)KG,h2,x2

(Xi2)

in a Monte Carlo simulation study.The smoothing parameters are chosen by the simple “rule of thumb”
method hi = σ(Xi)n

−1/5, i = 1, 2 with σ(·) denoting the sample standard deviation. We consider data
samples drawn from the following distributions:

• Bivariate independent Gamma distribution with shape parameter α = 1.5 and scale parameter 1.

• Bivariate independent Weibull distribution with equal shape and scale parameters α = β = 1.5.

• Bivariate independent Log-normal distribution with log-scale parameter µ = 0 and shape parameter
σ = 0.75.
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Fig. 1. Surface and contour plots of estimated Weibull(1.5,1.5) density. (a),(d): JLN-estimated density with G
kernel. (b),(e): True density. (c),(f): Squared error.

• Bivariate independent Inverse Gaussian distribution with mean parameter µ = 0.8 and shape
parameter λ = 1.

For each distribution 1000 data sets of sample sizes n = 250 and n = 500 were simulated. We performed
the kernel estimations with the G and MG kernel, since both became quite popular in recent literature.
The constant c in the TS- estimator is set to 0.283, since this value minimizes the function γ2(c) over the
interval (0, 1) as we have already mentioned above. The performance is measured in terms of the mean
root integrated squared error (“MRISE”), which is defined by

MRISE
(
f̂g,m,h

)
= E

[(∫ (
f̂g,m,h(x)− f(x)

)2

dx

)1/2
]

as well as the integrated absolute bias (“IAB”)

IAB
(
f̂g,m,h

)
=

∫ ∣∣∣E [f̂g,m,h(x)
]
− f(x)

∣∣∣ dx

with g = TS, JLN or C. Thereby the expected values are approximated with the sample mean. Ad-
ditionally we provide the standard deviation of the root integrated squared error. The integrals are
approximated on an equidistant grid of 502, 1002 and 2002 points over the square (0, 5)× (0, 5), since the
probability mass of the given distributions is negligible outside this rectangle.
As an example we plotted the true density of a Weibull(1.5,1.5) distribution together with the estimated
density and the corresponding squared error in Figure 1.
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Table 4
Simulation results (50× 50 grid points)

Distribution: Gamma Weibull Log-normal Inv-Gaussian

Kernel: G MG G MG G MG G MG

Panel 1: n = 250

TS MRISE 0.0669 0.0739 0.0738 0.0706 0.1751 0.1796 0.3344 0.3546
(0.0111) (0.0098) (0.0145) (0.0105) (0.0125) (0.0121) (0.0169) (0.0155)

IAB 0.1172 0.1765 0.1445 0.1629 0.2937 0.3854 0.3187 0.4474

JLN MRISE 0.0602 0.0608 0.0644 0.0653 0.1512 0.1683 0.2988 0.3337
(0.0125) (0.0086) (0.0140) (0.0107) (0.0151) (0.0133) (0.0216) (0.0190)

IAB 0.1197 0.0867 0.1336 0.0934 0.2759 0.2944 0.3045 0.3542

C MRISE 0.0933 – 0.0984 – 0.2078 – 0.3871 –
(0.0097) – (0.0111) – (0.0117) – (0.0163) –

IAB 0.2282 – 0.2463 – 0.3923 – 0.4251 –

Panel 2: n = 500

TS MRISE 0.0589 0.0615 0.0645 0.0587 0.1625 0.1633 0.3158 0.3279
(0.0082) (0.0064) (0.0106) (0.0079) (0.0095) (0.0096) (0.0130) (0.0117)

IAB 0.1023 0.1429 0.1282 0.1395 0.2686 0.3437 0.2983 0.4003

JLN MRISE 0.0514 0.0526 0.0527 0.0537 0.1357 0.1528 0.2732 0.3125
(0.0091) (0.0064) (0.0109) (0.0073) (0.0116) (0.0106) (0.0157) (0.0151)

IAB 0.0991 0.0768 0.1084 0.0808 0.2427 0.2672 0.2714 0.3337

C MRISE 0.0845 – 0.0890 – 0.1978 – 0.3684 –
(0.0071) – (0.0081) – (0.0088) – (0.0123) –

IAB 0.2077 – 0.2250 – 0.3724 – 0.4002 –

Note: The C estimator only uses the G kernel.

3.2. Simulation Results

The results of the Monte Carlo simulations are provided in Tables 4, 5 and 6, separated into the different
grids sizes for numerical integral evaluation. One recognizes the similarity of the results across all grid
and sample sizes. Obviously the classical Gamma kernel estimator C is outperformed by the TS and
the JLN- estimators by far, what is particularly observable in the IAB. For instance, the IAB of the C
estimator using the Gamma kernel of the Weibull distribution using a grid size of 100×100 and a sample
size of 500 is 0.2257, whereas the IAB of the TS and JLN- estimator accounts for 0.1276 and 0.1097
respectively. This huge discrepancy is in fact rather the rule than the exception. Only the C estimator
exhibits a smaller IAB than the TS- estimator with MG kernel for the Inverse Gaussian distribution,
what is relativized by the bad performance of the mean root integrated squared error in that case and
the superior performance of the TS- estimator with Gamma kernel. In terms of MRISE and IAB, the
JLN- estimator is – and that is indeed worth to be mentioned – nearly always outperforming the TS and
the C estimator.

The question, which kernel behaves more beneficial, is much harder to answer. In terms of MRISE the
JLN- estimator performs marginally better using the Gamma kernel. On the other hand the IAB of the
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Table 5
Simulation results (100× 100 grid points)

Distribution: Gamma Weibull Log-normal Inv-Gaussian

Kernel: G MG G MG G MG G MG

Panel 1: n = 250

TS MRISE 0.0697 0.0770 0.0759 0.0735 0.1735 0.1799 0.3309 0.3512
(0.0112) (0.0096) (0.0141) (0.0104) (0.0122) (0.0125) (0.0168) (0.0146)

IAB 0.1186 0.1802 0.1460 0.1692 0.2901 0.3871 0.3258 0.4487

JLN MRISE 0.0638 0.0642 0.0654 0.0665 0.1513 0.1668 0.2962 0.3311
(0.0124) (0.0082) (0.0143) (0.0096) (0.0154) (0.0137) (0.0207) (0.0192)

IAB 0.1241 0.0905 0.1333 0.0960 0.2746 0.2920 0.3170 0.3552

C MRISE 0.0945 – 0.0998 – 0.2092 – 0.3837 –
(0.0097) – (0.0107) – (0.0118) – (0.0176) –

IAB 0.2294 – 0.2486 – 0.3958 – 0.4281 –

Panel 2: n = 500

TS MRISE 0.0620 0.0650 0.0655 0.0609 0.1620 0.1629 0.3107 0.3243
(0.0083) (0.0062) (0.0106) (0.0074) (0.0094) (0.0093) (0.0130) (0.0120)

IAB 0.1040 0.1457 0.1276 0.1420 0.2673 0.3410 0.3024 0.4061

JLN MRISE 0.0540 0.0559 0.0536 0.0560 0.1352 0.1538 0.2701 0.3090
(0.0090) (0.0058) (0.0109) (0.0069) (0.0108) (0.0111) (0.0157) (0.0145)

IAB 0.1012 0.0808 0.1097 0.0828 0.2414 0.2676 0.2806 0.3270

C MRISE 0.0869 – 0.0903 – 0.1964 – 0.3650 –
(0.0071) – (0.0081) – (0.0087) – (0.0124) –

IAB 0.2106 – 0.2257 – 0.3695 – 0.4051 –

Note: The C estimator only uses the G kernel.

JLN- estimator is smaller for the Gamma and Weibull distribution using the MG kernel, whereas the
opposite is observable for the Log-normal and Inverse Gaussian distributions. The TS- estimator exhibits
an essential better performance in terms of IAB when the Gamma kernel is used, while the MRISE seems
to behave very similar for both kernels.

3.3. Real Data Example

For an illustration purpose we have applied our introduced methods to a bivariate data set containing the
eruption waiting times (X1) and eruption duration times (X2) of the Old Faithful Geyser in Yellowstone
National Park, Wyoming, USA1. This data set contains 272 bivariate samplesand has been investigated by
Hirukawa (2010), who estimated the marginal density of the eruption times using univariate Beta kernel
based JLN- and TS-estimators. We extend his results to the estimation of the bivariate joint probability
density, including the waiting times data set.

1We used the data provided from http://www.stat.cmu.edu/˜larry/all-of-statistics/=data/faithful.dat
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Table 6
Simulation results (200× 200 grid points)

Distribution: Gamma Weibull Log-normal Inv-Gaussian

Kernel: G MG G MG G MG G MG

Panel 1: n = 250

TS MRISE 0.0703 0.0791 0.0774 0.0745 0.1749 0.1795 0.3299 0.3510
(0.0107) (0.0099) (0.0139) (0.0104) (0.0129) (0.0123) (0.0165) (0.0156)

IAB 0.1190 0.1794 0.1500 0.1688 0.2938 0.3845 0.3249 0.4511

JLN MRISE 0.0648 0.0653 0.0661 0.0678 0.1506 0.1679 0.2951 0.3310
(0.0125) (0.0082) (0.0149) (0.0100) (0.0155) (0.0138) (0.0206) (0.0189)

IAB 0.1235 0.0916 0.1331 0.0966 0.2745 0.2951 0.3141 0.3547

C MRISE 0.0962 – 0.1005 – 0.2085 – 0.3840 –
(0.0096) – (0.0111) – (0.0121) – (0.0168) –

IAB 0.2320 – 0.2496 – 0.3945 – 0.4309 –

Panel 2: n = 500

TS MRISE 0.0634 0.0664 0.0665 0.0618 0.1621 0.1639 0.3104 0.3243
(0.0085) (0.0057) (0.0106) (0.0070) (0.0094) (0.0099) (0.0127) (0.0119)

IAB 0.1044 0.1460 0.1289 0.1439 0.2686 0.3437 0.3013 0.4053

JLN MRISE 0.0552 0.0572 0.0544 0.0570 0.1356 0.1533 0.2686 0.3082
(0.0092) (0.0054) (0.0103) (0.0070) (0.0118) (0.0108) (0.0160) (0.0153)

IAB 0.1011 0.0826 0.1102 0.0835 0.2425 0.2681 0.2792 0.3267

C MRISE 0.0871 – 0.0911 – 0.1961 – 0.3643 –
(0.0067) – (0.0079) – (0.0091) – (0.0125) –

IAB 0.2096 – 0.2273 – 0.3694 – 0.4047 –

Note: The C estimator only uses the G kernel.

Since the support of the data is embedded in the set [43, 96] × [1.6, 5.1], we have used the following
transformation to get a [0, 1]× [0, 1] supported data set:

Zi =
Xi

1.1 max(Xi)
, i = 1, 2.

We performed a TS and JLN- estimation on the transformed data using Beta kernels and the least
squares cross-validation method (LSCV) to select the bandwidth. The idea behind the LSCV method is
minimizing the integrated squared error, which is defined as

ISE(h) =

∫
(f̂g,m,h(x)− f(x))2 dx

=

∫
f̂2
g,m,h(x) dx− 2

∫
f̂g,m,h(x)f(x) dx+

∫
f2(x) dx

=

∫
f̂2
g,m,h(x) dx− 2E[f̂g,m,h(X)] +

∫
f2(x) dx
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with h = (h1, h2) and g = TS or JLN. Since the last term is independent of h1 and h2, we are only
interested in finding a minimum of the remaining two terms. The LSCV selected bandwidth h is therefore
defined as

LSCV(h) = argmin
h1,h2

(∫
f̂2
g,m,h(x) dx− 2Ê[f̂g,m,h(X1, X2)]

)
,

where Ê denotes the expectation with respect to the empirical distribution. The last expression is deter-
mined via the so called “leave one out” estimator, which we define as

Ê[f̂TS,m,h(X1, X2)] =
1

n

n∑
i=1

f̂TS,m,h,−i(Xi1, Xi2)

=
1

n2

n∑
i=1

(
n∑
j=1
j 6=i

Km,h1,Xi1(Xj1)Km,h2,Xi2(Xj2)

) 1
1−c
(

n∑
j=1
j 6=i

Km,h1/c,Xi1(Xj1)Km,h2/c,Xi2(Xj2)

)− c
1−c

for the TS estimator and as

Ê[f̂JLN,m,h(X1, X2)] =
1

n

n∑
i=1

f̂JLN,m,h,−i(Xi1, Xi2)

=
1

n2

n∑
i=1

(
n∑
j=1
j 6=i

Km,h1,Xi1(Xj1)Km,h2,Xi2(Xj2)

n∑
j=1
j 6=i

Km,h1,Xi1(Xj1)Km,h2,Xi2(Xj2)∑n
k=1Km,h1,Xj1(Xk1)Km,h2,Xj2(Xk2)

)

for the JLN estimator.
We calculated bandwidths using the LSCV method for the Geyser data on a grid with 50 different values
for each h. The resulting shapes are displayed in Figure 2 and we obtained ĥ = (0.0164, 0.0155) for the

TS estimator and ĥ = (0.0078, 0.0116) for the JLN estimator. The results are presented in Figure 3 and
both methods provide similar results.
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grid points. (a) TS-estimator with B kernel. (b) JLN-estimator with B kernel.
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Fig. 3. Estimated density of Old Faithful Geyser data. (a) Scatter plot of transformed data. (b) TS-estimated
density with B kernel. (c) JLN-estimated density with B kernel.

4. Conclusion

This paper has proposed two new MBC techniques for nonparametric density estimation of multivariate
bounded data which reduce the order of magnitude of the bias from O(h) to O(h2). It is demonstrated that
both classes of estimators which where originally investigated in Hirukawa (2010) for compact supported
and in Hirukawa and Sakudo (2014a) for positively supported data can be extended to the multivariate
setting. The variance is not influenced by this procedure and both estimators possess a MSE of order
O(n−8/(8+d)).

Moreover the results of the Monte Carlo simulations reveal the superior performance of the JLN estimator
especially compared to the classical one. This observation coincides with the univariate results from
Hirukawa (2010) as well as Hirukawa and Sakudo (2014a).

Further research can be done in applying these methods in nonparametric multivariate regression models
as it was proposed in Hjort and Glad (1995) in the univariate setting. Moreover it could be interesting to
use the proposed Beta kernel estimators for nonparametric estimation of copula densities, see for example
Charpentier et al. (2007). Both topics are under investigation and will be covered in seperate papers.

5. Appendix

In this section we will derive the above rates for bias and variance. The arguments are mainly based on
Taylor expansions and distribution specific properties. Moreover we only focus on the proof for the use
of the Gamma kernel due to the sake of brevity. We start with the MV-TS estimator. The corresponding
proof is based on Hirukawa (2010).

Proof of Theorem 2.1. For the bias of the MV-TS estimator, we start with a multivariate Taylor expan-
sion up to order 4. Therefore let Yi, i = 1, ..., d be independent and Gamma-distributed random variables
such that Yi ∼ G(xi/h+ 1, h) with mean µi = xi + h. Using the smoothness assumption on the unknown
density f as well as the fact that E[(Yi − µi)r] = O(h3), r ≥ 5 (cf. Gospodinov and Hirukawa 2007), we

13



can derive that

Ih(x) := E[f̂G,h(x)] =

∫
R+

...

∫
R+

d∏
j=1

KG,h,xj (yj)f(y1, ..., yd)dy1...dyd = E[f(Y1, ..., Yd)]

= f(µ1, ..., µd) +

d∑
j=1

V ar(Yj)

2

∂2f(µ1, ..., µd)

∂2xj
+

d∑
j=1

E[(Yj − µj)3]

6

∂3f(µ1, ..., µd)

∂3xj

= f(x1, ..., xd) + h

 d∑
j=1

(
∂f(x1, ..., xd)

∂xj
+
xj
2

∂2f(x1, ..., xd)

∂2xj

)
+ h2

( d∑
j=1

(
∂2f(x1, ..., xd)

∂2xj
+

5xj
6

∂3f(x1, ..., xd)

∂3xj
+

1

8

∂4f(x1, ..., xd)

∂4xj

)

+
∑
i 6=j

(
∂2f(x1, .., xd)

∂xi∂xj
+ xixj

∂4f(x1, ..., xd)

∂4xj

))
+ o(h2)

:= f(x1, ..., xd)

(
1 + h

a1,G(x; f)

f(x)
+ h2 a2,G(x; f)

f(x)
+ o(h2)

)
.

In an analogous manner we can handle the term Ih/c(x). Using a Taylor expansion of the exponential
function, we find that

(Ih(x))
1

1−c
(
Ih/c(x)

) −c
1−c = f(x) +

h2

c(1− c)

(
a2

1,G(x; f)

2f(x)
− a2,G(x; f)

)
+ o(h2).

To use this expression we will at first decompose our estimator as follows. Let Z := f̂G,h(x) − Ih(x)

and W := f̂G,h/c(x) − Ih/c(x). It will be seen that E[Z2], E[W 2] and E[ZW ] are all at most of order

O(n−1h−d) = o(h2) due to Assumption 1. Using a Taylor expansion it holds that

f̂TS,G,h(x) = (Ih(x))
1

1−c

(
1 +

Z

Ih(x)

) 1
1−c (

Ih/c(x)
) −c

1−c

(
1 +

W

Ih/c(x)

) −c
1−c

= (Ih(x))
1

1−c
(
Ih/c(x)

) −c
1−c +

Z

1− c

(
Ih(x)

Ih/c(x)

) c
1−c

− cW

1− c

(
Ih(x)

Ih/c(x)

) 1
1−c

+O(n−1h−d). (5.1)

Using the asymptotic equivalence of Ih(x) and Ih/c(x) we finally derive that

E[f̂TS,G,h(x)] = (Ih(x))
1

1−c
(
Ih/c(x)

) −c
1−c + o(h2)

= f(x) +
h2

c(1− c)

(
a2

1,G(x; f)

2f(x)
− a2,G(x; f)

)
+ o(h2).

Using (4.1) we are able to decompose the variance as follows

f̂TS,G,h(x) = E

[(
Z

1− c
− cW

1− c

)2
]

+O(n−1)

=
1

(1− c)2

(
V ar(f̂G,h(x))− 2cCov(f̂G,h(x), f̂G,h/c(x)) + c2V ar(f̂G,h/c(x))

)
+O(n−1).
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We will restrict ourselves only to the case where x is a vector including interior components xj for all
j = 1, ..., d. Using the results in Bouezmarni and Rombouts (2010) we can conclude that

V ar(f̂G,h(x)) = n−1h−d/2(2
√
π)−df(x1, ..., xd)

d∏
j=1

x
−1/2
j + o(n−1h−d/2)

V ar(f̂G,h/c(x)) = n−1h−d/2cd/2(2
√
π)−df(x1, ..., xd)

d∏
j=1

x
−1/2
j + o(n−1h−d/2)

Cov(f̂G,h(x), f̂G,h/c(x)) = n−1E

 d∏
j=1

KG,h,xj (X1j)

d∏
k=1

KG,h/c,xk(X1k)

+O(n−1)

= n−1
d∏
j=1

Cb(xj)(f(x1, ..., xd) + o(1)) +O(n−1),

where

Cb(xj) :=
Γ
(
xj(1+c)

h + 1
)(

h
1+c

) xj(1+c)
h +1

Γ
(xj
h + 1

)
h
xj
h +1Γ

( cxj
h + 1

) (
h
c

) cxj
h +1

.

Using a result in Hirukawa (2010) for the function Cb(xj), the covariance can be approximated by

Cov(f̂G,h(x), f̂G,h/c(x)) = n−1h−d/2
(

2c

1 + c

)d/2
f(x1, ..., xd)

d∏
j=1

x
−1/2
j + o(n−1h−d/2).

Bringing all three parts of the variance of the MV-TS estimator together we are finally able to deduce
that

V ar
(
f̂TS,G,h(x)

)
·
=

1

(1− c)2

(
n−1h−d/2

f(x1, ..., xd)

(2
√
π)d

∏d
j=1 x

1/2
j

(
1− 2c

(
2c

1 + c

)d/2
+ c2+d/2

))

= n−1h−d/2
f(x1, ..., xd)

(2
√
π)d

∏d
j=1 x

1/2
j

(
(1 + c)d/2(1 + c(d+4)/2)− (2c)(d+2)/2

(1− c)2(1 + c)d/2

)
= n−1h−d/2

f(x1, ..., xd)λd(c)

(2
√
π)d

∏d
j=1 x

1/2
j

.

Now we turn to the MV-JLN- estimator. The proof is again based on the results in Hirukawa (2010).

Proof of Theorem 2.2. We start by decomposing the MV-JLN- estimator as follows. Denote by

α̂(x) = α̂(x1, ..., xd) :=
1

n

n∑
i=1

∏d
j=1KG,h,xj (Xij)

f̂G,h(Xi)

such that

E[f̂JLN (x)] = f(x) + f(x)

(
E

[
f̂G(x)− f(x)

f(x)

]
+ E[(α̂(x)− 1)] + E

[
(f̂G(x)− f(x))

f(x)
(α̂(x)− 1)

])
:= f(x) + f(x)(I + II + III).
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We will handle the terms I, II, III separately and start with term II. Using a geometric expansion
around f(x), α̂(x) can be approximated by

α̂(x) =
1

n

n∑
i=1

∏d
j=1KG,h,xj (Xij)

f(Xi)

1− f̂G,h(Xi)− f(Xi)

f(Xi)
+

(
f̂G,h(Xi)− f(Xi)

f(Xi)

)2
+o(h2+(nhd/2)−1).

Notice that the order of the remainder term is of order o(h2 + (nhd/2)−1) = o(h2) due to Assumption 2.
We now make again use of a multivariate Taylor expansion to handle these terms separately. Remember
that

g = g(x; f) =
a1,G(x)

f(x)
=

∑d
j=1

(
∂f
∂xj

+ 1
2xj

∂2f
∂2xj

)
f(x)

and additionally define

g2 = g2(x; f) :=
a2,G(x)

f(x)
=

∑d
j=1

(
∂2f
∂2xj

+
5xj
6

∂3f
∂3xj

+ 1
8
∂4f
∂4xj

)
+
∑
i 6=j

(
∂2f

∂xi∂xj
+

xixj
4

∂4f
∂2xi∂2xj

)
f(x)

.

Using these abbreviations, the term II can be approximated by

II = E[α̂(x)− 1] = −hg(x; f)− h2

 d∑
j=1

(
∂g(x; f)

∂xj
+
xj
2

∂2g(x; f)

∂2xj

)
+ g2(x; f)− g2(x; f)

+ o(h2).

Under the previous results, term I has the following form

I = E

[
(f̂G,h(x)− f(x))

f(x)

]
= hg(x; f) + h2g2(x; f) + o(h2).

Finally by the use of the Cauchy-Schwarz inequality and the derived results for terms I and II one has
for the last term III that

III = E

[
(f̂G,h(x)− f(x))

f(x)
(α̂(x)− 1)

]
= −h2g2(x; f) + o(h2).

Applying all results one has the following form for the Bias of our proposed estimator

E[f̂JLN,G,h(x)] = f(x)− h2f(x)

d∑
j=1

(
∂g(x; f)

∂xj
+
xj
2

∂2g(x; f)

∂2xj

)
+ o(h2).

We now turn to the variance of the MV-JLN- estimator. At first approximate the estimator by making
again use of a geometric expansion and focus only on the first term:

f̂JLN,G,h(x) = f̂G,h(x)

(
1

n

n∑
i=1

∏d
j=1KG,h,xj (Xij)

f̂G,h(Xi)

)

= f(x)

(
1 +

f̂G,h(x)− f(x)

f(x)

)(
1

n

n∑
i=1

∏d
j=1KG,h,xj (Xij)

f(Xi)

)(
1− f̂G,h(Xi)− f(Xi)

f(Xi)
+ o (s.o.)

)
·
= f(x)

(
1

n

n∑
i=1

∏d
j=1KG,h,xj (Xij)

f(Xi)

)(
2− f̂G,h(Xi)

f(Xi)

)
:= f(x)

1

n

n∑
l=1

ζ(Xl).
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Now by the trimming argument in Chen (2000) and the use of Stirling´s Formula for approximations of
the Gamma function, the leading term of the variance of the right-hand side is of the following form:

V ar(f̂JLN,G,h(x))
·
= n−1f(x)

d∏
j=1

A(xj , h),

where

A(xj , h) :=
h−1Γ(2xj/h+ 1)

22xj/h+1Γ2(xj/h+ 1)
=


h−1/2

2
√
πxj

, if xj/h→∞
h−1Γ(2κj+1)

22κj+1Γ2(κj+1)
, if xj/h→ κj .

Therefore one finally has for a vector x = (x1, ..., xd) possessing exclusively interior components that

V ar(f̂JLN (x1, .., xd))
·
=

f(x)

nhd/2
(2
√
π)−d

d∏
j=1

x
−1/2
j .
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