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Abstract

We propose a RESET-type test for the null hypothesis of linearity of a cointegrating relationship
with an asymptotic chi-squared null distribution. The test is based on an extension of the
Integrated Modified OLS estimator of Vogelsang and Wagner (2014) from linear cointegrating
relationships to multivariate cointegrating polynomial relationships. For the case of full design
we furthermore provide fixed-b asymptotic theory for our RESET test. The theoretical results
are complemented by a small simulation study.
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1 Introduction

The vast majority of both theoretical as well as applied work dealing with cointegration is concerned
with linear cointegrating relationships, be it in a regression setting or when considering dynamic
linear models featuring cointegration, e.g., cointegrated VAR or state space models. For many
applications, linearity may well be an apt description of or at least approximation to the problem.
Nevertheless there is growing interest in nonlinear cointegrating relationships spurred from different
areas of application ranging from empirical macroecoonomics, e.g., deviations from purchasing
power parity (Hong and Phillips, 2010) or linearity of money demand functions (Lütkepohl et al.,
1999; Choi and Saikkonen, 2010) to empirical finance, e.g., currency crises (Saikkonen and Choi,
2004) to environmental economics, e.g., the environmental Kuznets curve hypothesis (Wagner,
2014).1

1A significant part of the nonlinear cointegration literature actually considers nonlinear adjustment mechanisms
towards linear cointegrating relationships, see, e.g., Balke and Fomby (1997), Bec and Rahbek (2004) or Hansen
and Seo (2002). There are also some contributions considering nonlinear cointegrating relationships with a specific
functional form, e.g. Saikkonen and Choi (2004) consider cointegrating smooth transition regressions. In this paper,
however, we are concerned with general or unspecified nonlinearity of a cointegrating relationship. As such our tests
may be useful also for the emerging nonparametric cointegration literature, see, e.g., Karlsen et al. (2007) or Wang
and Phillips (2009).
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More often than not economic theory does not specify the precise form of a potential nonlinear
cointegrating relationship under the alternative and therefore, we believe, an omnibus specification
test such as the RESET test (see Ramsey, 1969) is potentially useful. This type of test is convenient
as it is based on replacement of an unknown nonlinear function by a finite sum approximation, in the
RESET case a polynomial approximation. Such an approach has a long tradition in specification
testing for stationary time series models, see, e.g., Phillips (1983), Lee et al. (1993) or de Benedictis
and Giles (1998). It turns out that for our purposes it is convenient to resort to the Thursby and
Schmidt (1977) formulation of the RESET test, in which higher order powers and/or cross-products
of powers of the regressors are added to the regression rather than using the original formulation
of Ramsey (1969); see also Keenan (1985) or Tsay (1986), in which the least squares residuals of
the linear model are regressed on the auxiliary regressors.

Adding powers and/or cross-products of powers of the integrated regressors to the cointegrat-
ing regression has the advantage that the resulting estimation problem is linear in parameters.
Therefore these parameters can be estimated under the null with a zero mean Gaussian mixture
limiting distribution that allows for asymptotic standard inference by using a slight extension of
the integrated modified OLS (IM-OLS) estimator of Vogelsang and Wagner (2014). For IM-OLS
estimation no choices with respect to tuning parameters like kernel and bandwidths or lead and lag
choices have to be made.2 When using the IM-OLS estimator to test hypotheses, however, a scalar
long run variance needs to be estimated, thus also this estimation procedure involves some user
choices when used for inference. The null hypothesis of linearity of the cointegrating relationship
simply corresponds to the hypothesis that all coefficients corresponding to powers of variables or
cross-products of powers of variables are jointly equal to zero, which is tested with the corresponding
Wald-type test.3

Hong and Phillips (2010) present a modified RESET test for cointegrating regressions with
only one regressor. They follow the Ramsey (1969) version of the RESET test in that they use
a regression of the OLS residuals on the auxiliary regressors, i.e. the powers of the integrated
regressor. Endogeneity of the regressor and error serial correlation necessitate to perform corrections
to the standard RESET test statistic to allow for asymptotic chi-squared inference. The calculation
of the required correction factors essentially amounts to performing FM-OLS estimation of the
regression augmented by the powers.4 Hong andWagner (2012) extend, with respect to specification
testing, these results in that they allow for multiple integrated regressors and their powers but they
do not allow for cross-products of (powers of) the regressors. In addition to an LM-type test based

2The IM-OLS estimator, as seen below, is simpler to implement than other modified least squares estimators
used in the cointegration literature. For the fully modified OLS (FM-OLS) estimator of Phillips and Hansen (1990)
additive correction factors involving long run and half long run variance matrices need to be calculated. For the
dynamic OLS (D-OLS) estimator of Saikkonen (1991) leads and lag choices have to be made and, when used for
inference, also a long run variance needs to be estimated.

3Although the focus of this paper is on the RESET specification test it should be noted, see Remark 1, that
the results in this paper show that the IM-OLS estimator allows for computationally very simple estimation of
multivariate cointegrating polynomial relationships as well for asymptotic standard inference using Wald-type tests
in this setting. Extending either of the other two mentioned modified OLS estimators to this generality appears to
be rather cumbersome, whereas it is straightforward with IM-OLS.

4Hong and Phillips (2010) rests upon results for (fully modified) least squares estimation of specific types of
nonlinear cointegrating relationships, including polynomial relationships, developed inter alia by de Jong (2002),
Ibragimov and Phillips (2008) or Park and Phillips (2001) in slightly varying settings.
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on an auxiliary regression they also consider a Wald-type test based on an augmented regression.5

Our test needs no correction factors, is thus simpler to implement and is more generally applicable
than existing RESET type tests for cointegrating relationships.

As is well-known, standard asymptotic theory does not capture the impact of kernel and band-
width choices, required for long run variance estimation, on the sampling distributions of estimators
and test statistics based upon them. Fixed-b asymptotic theory, put forward in the stationary con-
text by Kiefer and Vogelsang (2005) and in the cointegration framework by Vogelsang and Wagner
(2014), captures the impact of kernel and bandwidth choices on the sampling distributions of HAC-
type test statistics.6 Fixed-b asymptotic theory for the RESET test imposes some restrictions on
the set of auxiliary regressors, in that a so-called full design (see the details in the following sec-
tion) has to be chosen, which essentially means that all powers and cross-products of powers of
the integrated regressors up to the chosen maximal degree have to be included. Exactly as in the
linear cointegration case treated in Vogelsang and Wagner (2014), pivotal fixed-b inference (in the
full design case) rests upon long run variance estimation based on specifically modified residuals
since the IM-OLS residuals cannot directly be used.

The theoretical analysis is complemented by a small simulation study to assess the finite sample
performance of the proposed standard and fixed-b tests. The simulations show that the fixed-b limit
theory well describes the distribution of the test statistic. Altogether the findings of the simulation
study are typical for the cointegration and fixed-b literatures. The performance of the tests is
deteriorating if regressor endogeneity and error serial correlation are increasing for given sample
size, with this fact being true for both classical and to a lesser extent fixed-b testing. Fixed-b tests
often – and also in the present situation – incur smaller size distortions at the expense of only minor
losses in (size adjusted) power than standard tests. It is worth noting that the tests exhibit power
also against smoothly varying logistic alternatives and not only against polynomial alternatives.

The paper is organized as follows: In the following Section 2 we discuss the underlying assump-
tions as well as the RESET test and its standard and fixed-b asymptotic distributions. Section 3
presents selected results from a simulation evaluation of the developed IM-OLS RESET test and
Section 4 briefly summarizes and concludes. All proofs are relegated to the appendix. Supplemen-
tary material available upon request provides tables with the fixed-b critical values.

5Hong and Wagner (2012) consider for their LM-type test the FM-OLS residuals from the cointegrating regression
rather than the OLS residuals considered by Hong and Phillips (2010). This essentially affects the precise form of
the required correction factors. Another difference is that Hong and Wagner (2012) derive their specification test
statistics for the null hypothesis of a cointegrating polynomial relationship of arbitrary form (without cross-terms),
of which the linearity null hypothesis is only one special case. Clearly, the present paper extends the scope of such
test procedures, compare Footnote 3, to general multivariate polynomial relationships.
Let us note in addition that there exist also some tests for the null hypothesis of nonlinear cointegration of a specific
form, see, e.g., Choi and Saikkonen (2010) who present a (subsampling) KPSS-type test and Kasparis (2008) who
presents a CUSUM type test for additively separable nonlinear cointegrating relationships, i.e. functions where in
each of the nonlinear components only one integrated regressor appears.

6Additional fixed-b treatments of cointegration models are contained in Bunzel (2006) and Jin et al. (2006).
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2 Model, Assumptions and the RESET Test

We consider a similar setup as Vogelsang and Wagner (2014), i.e. a cointegrating regression of the
form

yt = D′
tδ +X ′

tβ + ut (1)

Xt = Xt−1 + vt, (2)

with ηt = [ut, v
′
t]
′ fulfilling a functional central limit theorem (FCLT) of the form

T−1/2

[rT ]∑
t=1

ηt ⇒ B(r) = Ω1/2W (r), r ∈ [0, 1], (3)

where [rT ] denotes the integer part of rT , W (r) is a (k + 1)-dimensional vector of independent
standard Brownian motions and

Ω =

∞∑
j=−∞

E(ηtη′t−j) =

[
Ωuu Ωuv

Ωvu Ωvv

]
> 0, (4)

where clearly Ωvu = Ω′
uv. In case that Ωuv ̸= 0 the regressors are endogenous and in addition to

regressor endogeneity the setting also allows for relatively unrestricted forms of serial correlation of
the errors ηt. These two aspects in general necessitate some form of modified least squares estima-
tion in conjunction with HAC arguments to allow for asymptotic standard inference. Partitioning
B(r) = [Bu(r), Bv(r)

′]′ and W (r) = [wu·v(r),Wv(r)
′]′ we have, using the Cholesky decomposition

of Ω, that [
Bu(r)
Bv(r)

]
=

[
ω
1/2
u·v Ωuv(Ω

−1/2
vv )′

0 Ω
1/2
vv

][
wu·v(r)
Wv(r)

]
, (5)

with ωu·v = Ωuu − ΩuvΩ
−1
vv Ωvu.

With respect to the deterministic component Dt we merely assume that there exists a sequence
of p× p scaling matrices GD and a p-dimensional vector of functions D(z) such that for 0 ≤ r ≤ 1
it holds that

lim
T→∞

√
TG−1

D D[rT ] = D(r) with 0 <

∫ r

0
D(z)D(z)′dz < ∞. (6)

If, e.g., Dt = (1, t, t2, ..., tp−1)′, then GD = diag(T 1/2, T 3/2, T 5/2, . . . , T p−1/2) and D(z) = (1, z, z2,
..., zp−1)′.

As discussed in the introduction, we want to test for correct specification of the above linear
cointegrating relationship (1). The proposed test statistic follows the Thursby and Schmidt (1977)
version of the RESET test originally proposed by Ramsey (1969), i.e., it is based on an augmented
regression including powers and cross-products of powers of the regressors. The specific choice of
auxiliary regressors to be included is to be made by the user. The general form of the augmented
regression that underlies the test statistic can be written as:

yt = D′
tδ +X ′

tβ +
∑

(p1,...,pk)∈I

ϑp1,...,pkx
p1
1t · · ·x

pk
kt + ut (7)

= D′
tδ +X ′

tβ +M ′
tϑ+ ut,
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where the RESET null hypothesis of linear cointegration is given by H0 : ϑ = 0.7 The set I denotes
all multi-indices, i.e. combinations of powers pi of the different regressors x1t, . . . , xkt, such that
the corresponding term is included in the chosen set of auxiliary regressors.

Consider as a simple illustration the case of two integrated regressors and as auxiliary regressors
all terms with maximal degree two. In this case I = {(2, 0), (0, 2), (1, 1)}, Mt = [x21t, x

2
2t, x1tx2t]

′

and ϑ ∈ R3.

Developing a test statistic for H0 : ϑ = 0 requires an estimator of the parameters in (7) with
a limiting distribution that allows for asymptotically pivotal inference. The estimator we use is (a
straightforward extension of) the IM-OLS estimator developed in Vogelsang and Wagner (2014) for
linear cointegrating relationships of the form (1). The extended version of this estimator is based
on the partial summed version of (7) augmented by the original Xt:

Sy
t = SD′

t δ + SX′
t β + SM ′

t ϑ+X ′
tγ + Su

t (8)

= SX̃′
t θ + Su

t ,

with Sy
t =

∑t
j=1 yj and SD

t , SX
t and SM

t defined analogously. The OLS estimator of the parameters
of this regression is referred to as IM-OLS estimator, i.e. when using obvious matrix notation

Sy = SX̃θ + Su we have

θ̃ =
(
SX̃′SX̃

)−1
SX̃′Sy. (9)

The basis of the test is the asymptotic distribution of the IM-OLS estimator given in the
following proposition, for which we need to define some further quantities first. We define the
scaling matrix

AIM =


G−1

D 0 0 0
0 T−1Ik 0 0

0 0 G−1
ϑ 0

0 0 0 Ik

 , (10)

with Gϑ a diagonal matrix corresponding to the components of ϑ, i.e. the entry corresponding to

the regressor xp11tx
p2
2t · · ·x

pk
kt is given by T

p1+···+pk+1

2 .

Proposition 1 Assume that the data are generated by (1) and (2) with the FCLT (3) in place
with Ω > 0 and the deterministic components fulfilling (6). Define θ0 = [δ′, β′, 0, (Ω−1

vv Ωvu)
′]′, then

as T → ∞ it holds that

A−1
IM

(
θ̃ − θ0

)
⇒ ω

1/2
u·v

(∫
f(s)f(s)′ds

)−1 ∫
f(s)wu·v(s)ds (11)

= ω
1/2
u·v

(∫
f(s)f(s)′ds

)−1 ∫
[F (1)− F (s)]dwu·v(s),

7If interpreted as data generating process rather than as augmented regression, with arbitrary values of the
coefficient vector ϑ and with Xt and ut as given in the assumptions, then (7) is referred to as multivariate cointegrating
polynomial regression, using the nomenclature of Hong and Wagner (2012). A linear cointegrating regression model
is, by construction, a special case thereof.
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where

f(r) =


∫ r
0 D(s)ds∫ r
0 Bv(s)ds∫ r
0 BM (s)ds
Bv(r)

 , F (r) =

∫ r

0
f(s)ds,

with BM (r) denoting the limiting process corresponding to the auxiliary regressors, whose precise
form depends upon I.

For our illustrative example it is obvious that BM (r) = [Bv1(r)
2, Bv2(r)

2, Bv1(r)Bv2(r)]
′.

Remark 1 Clearly, the above result holds true if (7) is considered not as augmented regression
but as data generating process with Xt and ut fulfilling the stated assumptions for any value of
ϑ and not just for ϑ = 0 and thus establishes consistency, with a zero mean Gaussian mixture
limiting distribution, of the IM-OLS estimator for the case of multivariate cointegrating polynomial
regressions. The IM-OLS limiting distribution allows for hypothesis testing on the parameters, with
the null hypothesis of linearity being just one specific hypothesis. The result thereby substantially
extends the realm of polynomial relationship type cointegration analysis since the existing literature
dealing with this type of relationship imposes additive separability, i.e. does not allow for terms
involving cross-products (of powers) of the integrated regressors.

Conditional upon Wv(r), the limiting distribution given in (11) is normal with zero mean and
the following conditional variance matrix

VIM = ωu·v

(∫ 1

0
f(s)f(s)′ds

)−1(∫ 1

0
[F (1)− F (s)][F (1)− F (s)]′ds

)(∫ 1

0
f(s)f(s)′ds

)−1

. (12)

Therefore, the limiting distribution given in (11) allows for asymptotic chi-squared inference to
test, e.g., the null hypothesis H0 : ϑ = 0, given a consistent estimator of ωu·v to scale out this
conditional long run variance from VIM .8

For the same reason as in Vogelsang and Wagner (2014), the (first differences) of the IM-OLS
residuals S̃u

t cannot be used to consistently estimate ωu·v by standard long run variance estimation
procedures, and in particular it can be shown that their usage is bound to result in a conservative
test statistic even asymptotically. A consistent estimator of ωu·v is most easily obtained using the
OLS residuals of (1), ût say, and by using η̂t = [ût, v

′
t]
′ to estimate Ω and thereby ωu·v.

9 Given
a consistent estimator, ω̂u·v say, of ωu·v an estimator of VIM suggests itself by simply using the
sample counterparts of the expressions appearing in the limiting covariance matrix, i.e.

V̂IM = ω̂u·vA
−1
IM

(
SX̃′SX̃

)−1
C ′C

(
SX̃′SX̃

)−1
A−1

IM , (13)

8Clearly, compare Remark 1, also other hypotheses can be estimated using exactly the same approach and, e.g.,
the Wald-type statistic.

9Under usual assumptions on kernel and bandwidth this approach allows for consistent estimation of Ω in cointe-
grating regressions. For detailed discussions and sets of conditions see, e.g., Jansson (2002) or Phillips (1995). We
could, for instance, formulate primitive assumptions in terms of linear processes as specified in Jansson (2002), rather
than just stating the FCLT (3), and then rely upon Corollary 3 of that paper, since the OLS estimator converges
sufficiently fast, in conjunction with the formulated assumptions on kernel (A3) and bandwidth choice (A4). Any set
of assumptions, however, under which convergence prevails will of course do for our purposes.
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with C = [c1, . . . , cT ]
′, ct = SSX̃

T − SSX̃

t−1 and SSX̃

t =
∑t

j=1 S
X̃
j . Having collected the required

quantities we can test the null hypothesis of linearity of the cointegrating relationship by, e.g., the
corresponding Wald-type test statistic, i.e.

WR = ϑ̃′
[
RAIM V̂IMAIMR′

]−1
ϑ̃, (14)

where R = [0, 0, I|I|, 0] is the selection matrix corresponding to ϑ ∈ θ, |I| denotes the number of
elements in I and I|I| the identity matrix of that size.

In our illustrative example, assuming for concreteness that Dt = 1, we have |I| = 3 and
R = [03×1 03×2 I3 03×2].

The asymptotic behavior of WR is given next:

Proposition 2 Suppose the assumptions of Proposition 1 hold and a consistent estimator ω̂u·v of
ωu·v is used in ṼIM , then under the null hypothesis H0 : ϑ = 0, as T → ∞ it holds that

WR

d→ χ2
|I|, (15)

where χ2
|I| is a chi-squared distributed random variable with |I| degrees of freedom.

In order to construct also a fixed-b test statistic it is first necessary to express the limiting
distribution of the estimator θ̃ as a function involving only powers and products of powers of
standard Wiener processes, WM (r) say.10 This imposes some restrictions on the design of the
augmented regression. Our usual example can be used to illustrate the issues, where for notational
simplicity we denote

Ω1/2
vv =

[
τ11 τ12
0 τ22

]
.

In the example, the limiting process BM (r) = [Bv1(r)
2, Bv2(r)

2, Bv1(r)Bv2(r)]
′ corresponding to

the auxiliary regressors is related to a vector comprising powers and cross-products of powers of
the elements of Wv(r), the vector WM (r) = [Wv1(r)

2,Wv2(r)
2,Wv1(r)Wv2(r)]

′, as follows:
Bv1(r)
Bv2(r)

Bv1(r)
2

Bv2(r)
2

Bv1(r)Bv2(r)

 =


τ11 τ12 0 0 0
0 τ22 0 0 0

0 0 τ211 τ212 2τ11τ12
0 0 0 τ222 0
0 0 0 τ12τ22 τ11τ22




Wv1(r)
Wv2(r)

Wv1(r)
2

Wv2(r)
2

Wv1(r)Wv2(r)

 .

With the assumptions on Ω and because we include all terms up to the maximal power in I in the
example, the lower 3–3 block, ΩM , of the matrix in the middle has full rank. A bijection between
BM (r) and WM (r) would not prevail, if, e.g., the mixed term x1tx2t were not included in the
auxiliary regressor set. We refer to situations in which a bijection between BM (r) and WM (r)

10It is clear that in this respect only the “nonlinear regressors” matter, as of course for the other stochastic regressors
in the IM-OLS regression, SX

t and Xt, a bijection of the corresponding limiting processes expressed in terms of Bv(r)
and in terms of Wv(r) prevails by construction.
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prevails as full design.11 In case of full design we can thus express the IM-OLS limiting distribution
as a function of W (r).

Corollary 1 Suppose the assumptions of Proposition 1 hold and full design prevails, then as T →
∞ it holds that

A−1
IM

(
θ̃ − θ0

)
⇒ ω

1/2
u·v

(
Π

∫
g(s)g(s)′dsΠ′

)−1

Π

∫
g(s)wu·v(s)ds (16)

= ω
1/2
u·v (Π

′)−1

(∫
g(s)g(s)′ds

)−1 ∫
[G(1)−G(s)]dwu·v(s), (17)

where

g(r) =


∫ r
0 D(s)ds∫ r
0 Wv(s)ds∫ r
0 WM (s)ds
Wv(r)

 , Π =


Ip 0 0 0

0 Ω
1/2
vv 0 0

0 0 ΩM 0

0 0 0 Ω
1/2
vv

 , (18)

with WM (r) the vector containing the terms corresponding to the auxiliary regressors expressed as
functions of Wv(r).

Clearly, f(r) = Πg(r), with this relation being bijective in case of full design. Again similarly
to Vogelsang and Wagner (2014) it can be shown that it is not possible to perform asymptotically
pivotal fixed-b inference using the IM-OLS residuals, S̃u

t , because of non-vanishing and nuisance

parameter dependent correlation between the limiting distribution of A−1
IM

(
θ̃ − θ0

)
and the limit

process of T−1/2
∑[rT ]

t=2 ∆S̃u
t .

Valid fixed-b inference can, however, be performed by basing the estimator of ωu·v on a modifi-
cation of the IM-OLS residuals S̃u

t . For doing so it is useful to define

zt = t
T∑

j=1

SX̃
j −

t−1∑
j=1

j∑
s=1

SX̃
s , (19)

and z⊥t as the vector of residuals from individually regressing each element of zt on SX̃
t . The

adjusted residuals S̃u∗
t are then given by the residuals of the OLS regression of S̃u

t on z⊥t , i.e. by

S̃u∗
t = S̃u

t − z⊥′
t π̂, (20)

with π̂ =
(∑T

t=1 z
⊥
t z

⊥′
t

)−1∑T
t=1 z

⊥
t S̃

u
t .

12 For S̃u∗
t it can be shown that T−1/2

∑[rT ]
t=2 ∆S̃u∗

t is, condi-

tional upon Wv(r), asymptotically independent of A−1
IM

(
θ̃ − θ0

)
. Consequently, using a long run

11For most situations this is equivalent to full rank of ΩM and a bijection between BM (r) and WM (r) that contain
similar powers and cross-products of powers of the elements of Bv(r) and Wv(r), respectively. Of course, it is, if so
desired, possible to achieve full design in the augmented regression by simply including all necessary regressors in the
augmented regression. By construction this restricts the flexibility of specifying the augmented regression but allows
for fixed-b inference.

12Clearly, the required residuals S̃u∗
t can be obtained together with the (unchanged) IM-OLS parameter estimates

θ̃ in one step by augmenting the IM-OLS regression (7) by z⊥t .
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variance estimator

ω̃∗
u·v = T−1

T∑
i=2

T∑
j=2

k

(
|i− j|
B

)
∆S̃u∗

i ∆S̃u∗
j (21)

with kernel function k(·) and bandwidth B allows for asymptotically pivotal fixed-b inference for
the RESET null hypothesis in case of full design.

In order to efficiently describe the fixed-b limiting distributions of the RESET statistic define
for a stochastic process P (r) the random variable Q(P ) as follows. In case that k(·) is such that
k(0) = 1 and k(·) is twice continuously differentiable with first and second derivatives given by k′(·)
and k′′(·) define

Q(P ) = − 1

b2

∫ 1

0

∫ 1

0
k′′
(
|r − s|

b

)
P (s)P (r)′dsdr +

1

b

∫ 1

0
k′
(
|1− s|

b

)
(P (1)P (s)′ + P (s)P (1)′)ds

+P (1)P (1)′. (22)

The above case covers, e.g. the Quadratic Spectral (QS) kernel. The second case considered covers
the Bartlett kernel (with k(x) = 1− |x| for |x| ≤ 1 and 0 otherwise), where we define Q(P ) as

Q(P ) =
2

b

∫ 1

0
P (s)P (s)′ds− 1

b

∫ 1−b

0
(P (s)P (s+ b)′ + P (s+ b)P (s)′)ds

−1

b

∫ 1

1−b
(P (1)P (s)′ + P (s)P (1)′)ds+ P (1)P (1)′. (23)

With the necessary notation collected we can now give the result for the fixed-b RESET test
statistic.

Proposition 3 Suppose the assumptions of Proposition 1 hold, the augmented regression has full
design and the null hypothesis H0 : ϑ = 0 is correct. Furthermore, ω̃∗

u·v is given as in (21) with
B = bT , where b ∈ (0, 1] is held fixed as T → ∞, then as T → ∞ it holds that

W ∗
R = ϑ̃′[RAIM Ṽ ∗

IMAIMR′]−1ϑ̃ ⇒
χ2
|I|

Q(P̃ ∗)
, (24)

with Ṽ ∗
IM as given in (13) with ω̂u·v replaced by ω̃∗

u·v and

P̃ ∗(r) =

∫ r

0
dwu·v(s)− h(r)′

(∫ 1

0
h(s)h(s)′ds

)−1 ∫ 1

0
[H(1)−H(s)]dwu·v(s), (25)

where

h(r) =

[
g(r)′,

∫ 1

0
[G(1)−G(s)]′ds

]′
, H(r) =

∫ r

0
h(s)ds.

Here χ2
|I| is a chi-squared distributed random variable with |I| degrees of freedom independent of

Q(P̃ ∗). The precise form of Q(P̃ ∗) depends upon the kernel chosen and is given by (22) or (23) if
the kernel satisfies the respective assumptions.
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Critical values based on simulating the limiting distribution given in the above proposition
are available in tabulated form for k = 2, 3, 4 regressors for the full design quadratic and cubic
specifications of the RESET test for the cases with intercept only and with intercept and linear
trend. These critical values are available for five different kernels (Bartlett, Bohman, Daniell,
Parzen and Quadratic Spectral) for a grid of 50 values of b = 0.02, 0.04, . . . , 0.98, 1. Supplementary
material available upon request contains the tables with the corresponding critical values.13

Let us close this section with some reflections on the power properties of the IM-OLS RESET
test, which are by construction conceptually similar to, e.g., the power properties discussed for their
univariate RESET test in Hong and Phillips (2010). First, the tests do not only have power against
nonlinear cointegration but also have power against the alternative of no cointegration between
yt and Xt. In that case spurious regression asymptotics leads to non-zero limits of the estimated
coefficients. Second, by construction power will be the higher, the better the augmented regression
captures the true unknown function and will be particularly high in case the augmented regres-
sion coincides with a true unknown multivariate cointegrating polynomial relationship. Thus, the
choice of auxiliary regressors is bound to have impacts on test performance. Third, power can be
expected to be lower against smoothly varying alternatives, like logistic functions, which dampen
the fluctuations of the integrated regressors rather than exacerbating them like polynomial trans-
formations, and which are furthermore not necessarily well approximated by low order polynomials.
The discussion of power properties in the following simulation section illustrates these properties.14

3 Finite Sample Performance

We generate data under the null hypothesis of linear cointegration according to the data generating
process (DGP)

yt = δ + β1x1t + β2x2t + ut, (26)

xit = xi,t−1 + vit, xi0 = 0, i = 1, 2,

where

ut = ρ1ut−1 + εt + ρ2(e1t + e2t), u0 = 0,

vit = eit + 0.5ei,t−1, i = 1, 2,

where εt, e1t and e2t are i.i.d. standard normal random variables independent of each other. The
parameter values chosen are δ = 3, β1 = β2 = 1, where we note that the values of these parameters
have no effect on the results because the IM-OLS estimator corresponding to the RESET test is
exactly invariant to the values of δ, β1 and β2. The values for ρ1 and ρ2 are chosen from the set
{0, 0.3, 0.6, 0.8}. The parameter ρ1 controls serial correlation in the regression error ut, whereas
the parameter ρ2 controls whether the regressors are endogenous or not. The kernels chosen for
long run variance estimation are the Bartlett and the Quadratic Spectral (QS) kernels and the
results are reported for bandwidths using the grid M = bT with b ∈ {0.02, 0.04, ..., 0.98, 1.0} or for

13Furthermore, also MATLAB code implementing the test procedure, with both classical and fixed-b inference, is
available.

14Because power in the no cointegration case is well documented in many settings and behaves similarly for our
test, we do not include the no cointegration case in our set of alternatives simulated.
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data dependent bandwidths chosen according to Andrews (1991), labelled AND, and Newey and
West (1994), labelled NW in the tables. We report a selection of representative results for sample
sizes T = 100, 200, 500. The number of replications is 10,000 in all cases and all tests are carried
out at the 5% nominal significance level.

For the simulations we label WR as IM(O) and W ∗
R as IM(fb). We implement the IM(O)

and IM(fb) RESET tests via estimation of the quadratic and cubic specifications given by the
regression models (which are partial summed and augmented by the original x1t and x2t for IM-
OLS estimation):

yt = δ + x1tβ1 + x2tβ2 + x21tϑ1 + x22tϑ2 + x1tx2tϑ3 + ut (q = 2),

yt = δ + x1tβ1 + x2tβ2 + x21tϑ1 + x22tϑ2 + x1tx2tϑ3 + x31tϑ4 + x32tϑ5

+x21tx2tϑ6 + x1tx
2
2tϑ7 + ut (q = 3),

where we test the null hypothesis that the ϑ parameters are jointly equal to zero in the two
specifications using the IM-OLS estimates. These augmented regressions do not correspond to the
DGP, neither under the null of linearity nor – with one exception – for the considered alternatives.
The IM(O) tests are based on using the OLS residuals of the above augmented regressions to obtain
a consistent estimator ω̂u·v of ωu·v. The IM(fb) tests are based on the fixed-b asymptotic results
given in Proposition 3 and use the modified residuals ∆S̃u∗

t for estimating ωu·v as given in (21).

We first present null rejection probabilities for IM(fb) for the grid of 50 bandwidth values. These
null rejection probabilities are computed using the relevant fixed-b critical values depending on the
kernel, the bandwidth sample size ratio (b) and q. Figures 1 and 2 plot null rejection probabilities
for the Bartlett and QS kernels respectively for the case of q = 2 and T = 100. Each figure depicts
results for our range of ρ1 and ρ2 values with ρ1 = ρ2 in all cases. In Figures 1 and 2 we see that
null rejections are close to 0.05 for all bandwidths when ρ1 = ρ2 = 0. This shows that the fixed-b
critical values are doing a good job of capturing the impact of the kernel and bandwidth choices on
the finite sample behavior of IM(fb) when there is no serial correlation. As ρ1, ρ2 increase, we see
that over-rejections appear. Over-rejections are more substantial for the Bartlett kernel than for
the QS kernel. Increasing the bandwidth helps to reduce over-rejection problems for the QS kernel
but has relatively little effect in the Bartlett kernel case.

Figures 3 and 4 depict null rejections for all three sample sizes and both values of q for the case
of ρ1 = ρ2 = 0.3. Increasing the sample size reduces the over-rejection problem. For a given value
of T , increasing q from 2 to 3 tends to, as expected, inflate the over-rejection problem especially
when T = 100.15 Overall, the QS kernel delivers a test with null rejections closer to 0.05 than the
Bartlett kernel.

Figures 5 and 6 have the same configuration as Figures 3 and 4 but with ρ1 = ρ2 = 0.8.
The Bartlett kernel gives a test that has severe over-rejection problems when T = 100, but the
tendency to over-reject quickly falls as T increases. The QS kernel gives a test with substantially
less over-rejection problems especially if T is not small and/or the bandwidth is not too small.

15A recent paper by Sun (2014) has shown, using higher order asymptotic theory, that finite sample size distortions
of tests based on kernel HAC estimators increase as the dimension of the null being testing increases when chi-squared
critical values are used for the test. While the results in Sun (2014) do not apply to models with cointegration, our
simulations suggest that Sun’s results might extend to the cointegration case, although this would most likely be very
challenging to establish formally.
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When T = 500, the QS test is much less sensitive to q than is the Bartlett kernel test. Clearly, the
QS kernel has some advantages over the Bartlett kernel regarding size control when using IM(fb).

Table 1 reports empirical null rejections for IM(O) and IM(fb) when the data dependent band-
widths of Andrews (1991) and Newey and West (1994) are used. The IM(O) statistic uses chi-
squared critical values whereas IM(fb) uses fixed-b critical values. When there is no serial correla-
tion, IM(fb) has rejections close to 0.05 in nearly all cases. In contrast, IM(O) has over-rejections
that tend to be higher for the QS kernel and q = 3. These over-rejections fall as T increases.
As ρ1, ρ2 increase, both tests tend to have larger over-rejections for a given sample size. When
ρ1, ρ2 = 0.8, IM(fb) can have substantial over-rejections that are larger than the IM(O) over-
rejections. This is because the data dependent bandwidths tend to be relatively small, thereby not
fully exploiting the potential of fixed-b inference to reduce the extent of over-rejections by using
larger bandwidths. That fixed-b inference in particular in conjunction with the QS kernel reduces
over-rejections for larger bandwidths is, e.g., indicated in Figure 6.16

Overall, both IM(O) and IM(fb) can have over-rejection problems when the serial correlation is
strong enough relative to the sample size. The QS kernel leads to less over-rejection problems than
the Bartlett kernel and increasing q tends to inflate over-rejection problems. When the sample size
is not too small and the serial correlation is not too strong, both IM(O) and especially IM(fb) have
null rejections relatively close to 0.05.

Next we present some simulations that illustrate size adjusted power of the tests.17 The DGP
under the alternative is specified as

yt = δ + β1x1t + β2x2t + ϕG(Xt) + ut,

where G(Xt) takes on six possible functional forms: i) x21t, ii) x21t + x1tx2t, iii) x21t + x1tx2t + x22t,

iv) x1tx2t, v) x31t and vi) x1t (1 + e−x1t)
−1

. The DGPs for x1t,x2t and ut are the same as in (26).
Note that alternative iii) corresponds exactly to the augmented regression for q = 2. Alternative
vi) corresponds to a cointegrating smooth transition regression, as, e.g., considered by Saikkonen
and Choi (2004). Table 2 presents power of the IM(O) test for sample size T = 200. Null rejection
probabilities are also reported in the tables to put the power results in context. For each alternative
power is reported for the same values of ρ1, ρ2 as used for the size simulations and a given value of
ϕ chosen so that power is nontrivial for the considered sample size. Table 3 reports power for the
IM(fb) test and has the same format as Table 2. The two data dependent bandwidths are used in
both tables.

Several general patterns are evident in Tables 2 and 3. First, power is decreasing in ρ1, ρ2,
which is expected. Second, power is sometimes higher with q = 2 compared to q = 3, but the
opposite is also often true. Because we are not holding bandwidths constant across values of q,
since they are data dependent to mimic applications, we cannot easily disentangle the effect of
changing q on power. Third, power is similar between IM(O) and IM(fb), with IM(O) having

16As argued by Sun et al. (2008), bandwidth rules designed to balance size distortions and power of the tests would
be preferable to using bandwidth rules that minimize approximate MSE of the HAC estimator as in Andrews (1991)
and Newey and West (1994). Such testing oriented bandwidths tend to be larger than MSE based bandwidths.
Unfortunately, the theory of Sun et al. (2008) does not apply in our setting because of the I(1) regressors. It would
be very challenging but worthwhile to extend the Sun et al. (2008) approach to the cointegration setting.

17Throughout the paper all power considerations refer to size adjusted power, for notational brevity simply referred
to as power.
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slightly higher power in some cases. As expected power is highest in case of alternative iii), with
G(Xt) = x21t + x22t + x1tx2t corresponding exactly to the augmented regression for q = 2. Changing
q = 2 to q = 3 in this case entails relatively little power loss with T = 200, thus illustrating the
minimal impact of the degrees of freedom loss incurred by including four extra regressors.

While Tables 2 and 3 have useful information, they give no indication of the shape of the power
curves. Figures 7-10 plot power for various configurations of the tests for the alternative with
G(Xt) = x21t for an equidistant grid of 21 values of ϕ ranging from 0 (the null hypothesis) to 0.04.
Figures 7 and 8 depict power of the Andrews (1991) data dependent bandwidth versions of the
tests for the Bartlett and QS kernels respectively for our range of values for ρ1, ρ2. We see that
the entire power curves shift down as ρ1, ρ2 increase. Power is similar across kernels and is very
slightly higher for IM(O) than IM(fb).

Figures 9 and 10 plot power for IM(fb) for a selection of values for the bandwidth sample size
ratio, b. Figure 9 gives power for the Bartlett kernel and shows that for this kernel power is not that
sensitive to the choice of bandwidth. In contrast, Figure 10 shows that power for the QS kernel
is very sensitive to b and power curves shift down as b increases. Recall that the over-rejection
problem was smallest when using the QS kernel with large values of b. We see that there is a trade-
off in reduction of size distortions and power when choosing the bandwidth for IM(fb), especially
for the QS kernel.

Tables 2 and 3 show that the tests also have power to detect departures from linearity given
by the logistic function, G(Xt) = x1t (1 + e−x1t)

−1
. While the logistic function departs slowly from

linearity, the polynomial terms in the augmented regressions used to compute IM(O) and IM(fb)
are able to detect that the cointegrating relationship is not linear. To give a better sense of the
shape of the power functions in this case, Figures 11 and 12 plot power for the logistic alternative
for an equidistant grid of 21 values of ϕ ranging from 0 (the null hypothesis) to 1. In the figures
results are reported for both q = 2 and q = 3, the Andrews (1991) data dependent bandwidth
and only the Bartlett kernel, given that power is similar for the QS kernel. As the figures show,
power increases as ϕ increases, but power tends to flatten out for large values of ϕ. The fact that
power is lower and increases not as fast in the case of the logistic alternative compared to the case
of polynomial alternatives stems from the fact that larger values of ϕ do not generate as big and
fluctuating regressors in the logistic case as in the polynomial case. Comparing Figures 11 and 12,
we see that increasing q increases power, especially when ρ1, ρ2 are not too large. This reflects the
fact that the logistic function is better approximated by a higher order polynomial and the effect
of the better approximation outweighs the loss of degrees of freedom throughout our simulations
in the logistic case.

Our simulation results suggest the following about the practical performance of the IM-OLS
RESET test for detecting departures from linear cointegration. First, if the sample size is large
enough relative to the strength of endogeneity and serial correlation, then both tests, IM(O) and
IM(fb), have null rejections not too far from the nominal level when data dependent bandwidths
are used. In addition, the IM(fb) statistic has stable null rejections for the full range of bandwidths
especially when the QS kernel is used. Second, if the sample size is small relative to the strength
of serial correlation and endogeneity, the tests can have over-rejection problems under the null
that are sometimes severe. If the QS kernel is used, then increasing the bandwidth of IM(fb) can
substantially reduce over-rejection problems. This is less true for the Bartlett kernel. Third, the
tests have respectable power in detecting nonlinearities in the cointegrating relationship, especially,
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by construction, when the nonlinearity is a polynomial in the regressors. In addition, the tests
do have power to also detect smooth, gradual departures from linearity as in the case of a logistic
alternative, and in such a case increasing the order of the polynomial in the augmented regression
can increase power. Finally, increasing the bandwidth has relatively little effect on power of IM(fb)
when the Bartlett kernel is used but causes power to drop substantially when the QS kernel is used.
That increasing the bandwidth when using the QS kernel reduces size distortions at the expense
of power is a typical finding in the fixed-b literature, also found in linear cointegration settings by
Vogelsang and Wagner (2014).

4 Summary and Conclusions

We have presented an easy-to-use RESET test for the null hypothesis of linear cointegration. Given
that economic theory typically does not specify the exact form of a potential nonlinear cointegrating
relationship under the alternative, an omnibus specification test like the RESET test may be a useful
tool for applied work, just like the widely-used original RESET test in standard regression settings.
The test is based on the IM-OLS estimator of Vogelsang and Wagner (2014), which, as is shown in
the paper, straightforwardly extends to the multivariate cointegrating polynomial regression case.
The fact that the extension is so easy is a unique feature of the IM-OLS approach and similar
extensions appear much more cumbersome with competing modified least squares estimators.

The RESET test is performed as a Wald-type test in the regression augmented by powers and
cross-products of powers of the integrated regressors that is estimated by IM-OLS. By construction
such a test has power not only against nonlinear alternatives but also power against the spurious
regression alternative. The null of linearity is easily tested by testing whether all coefficients to
the nonlinear terms are jointly equal to zero. Standard asymptotic theory delivers an asymptotic
chi-squared null limiting distribution of the RESET test. In order to capture the impact of kernel
and bandwidth choices on the sampling distribution of the test statistics we also develop fixed-b
asymptotic theory for the full design case. Fixed-b asymptotic theory rests upon long run variance
estimation using specifically modified IM-OLS residuals since pivotal fixed-b limiting distributions
cannot be based on the IM-OLS residuals directly.

The finite sample simulations show that the fixed-b asymptotic distribution adequately captures
the impact of kernel and bandwidth choices on the test statistics. Comparing the standard with the
fixed-b test statistic shows that fixed-b asymptotic theory trades partly substantially smaller size
distortions in against marginally lower size adjusted power. This is a typical finding in the fixed-b
literature. As is also well-known in the fixed-b literature the size/power tradeoff as a function
of bandwidth sample size ratio b differs substantially between the Bartlett and the QS kernels,
with the latter being more sensitive in this respect. The tests do not only have power against the
polynomial alternatives simulated but also against smoothly varying logistic alternatives. It has
to be noted that commonly used data dependent bandwidth rules, like those of Andrews (1991)
or Newey and West (1994), which typically lead to relatively small bandwidths are not necessarily
optimal for (fixed-b) inference in terms of size/power tradeoffs. Developing in some sense optimal
bandwidth rules for fixed-b inference in a cointegration framework thus appears to be an important
but challenging problem.
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Appendix: Proofs

Proof of Proposition 1

Using standard algebra and the fact that the block of AIM corresponding to γ is an identity matrix,
we can write

A−1
IM

(
θ̃ − θ0

)
=
(
T−2

(
AIMSX̃′

)
SX̃AIM

)−1
T−2

(
AIMSX̃′

)
Su − [0, 0, 0, (Ω−1

vv Ωvu)
′]′

=
(
T−1

(
T−1/2AIMSX̃′

)(
T−1/2SX̃AIM

))−1
T−1

(
T−1/2AIMSX̃′

)(
T−1/2Su

)
− [0, 0, 0, (Ω−1

vv Ωvu)
′]′. (27)

Because T−1/2Su
[rT ] ⇒ Bu(r), the limit of A−1

IM

(
θ̃ − θ0

)
follows by the continuous mapping theorem

(CMT) once we obtain the limit of T−1/2AIMSX̃
[rT ]. Breaking T−1/2AIMSX̃

[rT ] into its components
we have

T−1/2AIMSX̃
[rT ] =


T−1

∑[rT ]
t=1

√
TG−1

D Dt

T−3/2
∑[rT ]

t=1 Xt

T−1/2G−1
ϑ

∑[rT ]
t=1 Mt

T−1/2
∑[rT ]

t=1 vt

 .

The limits of the first, second and fourth sub-vectors follow from (6) and (3). To establish the limit

of T−1/2G−1
ϑ

∑[rT ]
t=1 Mt, consider a typical element given by

T−1/2T− p1+···+pk+1

2

[rT ]∑
t=1

xp11tx
p2
2t · · ·x

pk
kt = T−1

[rT ]∑
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(
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· · ·
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)
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)p1 (
T−1/2x2t

)p2
· · ·
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)pk
⇒
∫ r

0
Bv1(r)

p1Bv2(r)
p2 · · ·Bvk(r)

pkdr,
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where Bv1(r)
p1Bv2(r)

p2 · · ·Bvk(r)
pk is the corresponding element of BM (s). Therefore, it follows

that T−1/2G−1
ϑ

∑[rT ]
t=1 Mt ⇒

∫ r
0 BM (s)ds and we have

T−1/2AIMSX̃
[rT ] ⇒ f(r), (28)

which in turn gives(
T−2

(
AIMSX̃′

)(
SX̃AIM

))−1 (
T−2

(
AIMSX̃′

)
Su
)
⇒
(∫

f(s)f(s)′ds

)−1 ∫
f(s)Bu(s)ds

=

(∫
f(s)f(s)′ds

)−1(
ω
1/2
u·v

∫
f(s)wu·v(s)ds+

∫
f(s)Bv(s)
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vv Ωvuds
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=
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f(s)f(s)′ds

)−1

ω
1/2
u·v
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f(s)wu·v(s)ds+ [0, 0, 0, (Ω−1
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′]′, (29)

where the second line follows from Bu(s) = ω
1/2
u·vwu·v(s)+Bv(s)

′Ω−1
vv Ωvu and the third line follows be-

causeBv(s) the vector of the last k elements of f(s), which implies
(∫

f(s)f(s)′ds
)−1 ∫

f(s)Bv(s)
′ds =

[0, 0, 0, Ik]
′. The proposition follows from (27) and (29) with the representation in terms of dwu·v(s)

easily calculated using integration by parts.

Proof of Proposition 2

Manipulating the expression for WR gives

WR = ϑ̃′[RAIM ṼIMAIMR′]−1ϑ̃ =
(
Gϑϑ̃

)′
[RṼIMR′]−1

(
G−1

ϑ ϑ̃
)

=
[
RA−1

IM

(
θ̃ − θ0

)]′
[RṼIMR′]−1

[
RA−1

IM

(
θ̃ − θ0

)]
.

Using consistency of ω̂u·v, the limit in (28), and arguments used by Vogelsang and Wagner (2014)
in the proof of their Theorem 3, it follows that

ṼIM ⇒ VIM ,

and the chi-squared limit forWR follows by the mixture normal limit of A−1
IM

(
θ̃ − θ0

)
in Proposition

1, upon conditioning on Bv(s), i.e. upon conditioning on f(s).

Proof of Corollary 1

Rewrite f(r) as

f(r) =


∫ r
0 D(s)ds∫ r
0 Bv(s)ds∫ r
0 BM (s)ds
Bv(r)

 =


∫ r
0 D(s)ds

Ω
1/2
vv

∫ r
0 Wv(s)ds

ΩM

∫ r
0 WM (s)ds

Ω
1/2
vv Bv(r)

 = Πg(r),

and the corollary follows immediately.
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Proof of Proposition 3

The key calculation is to derive the limit process of T−1/2S̃u∗
[rT ] = T−1/2

∑[rT ]
t=2 ∆S̃u∗

t . Once this

limit has been obtained, the limits for ω̃u·v and W ∗
R follow using similar arguments as in Vogelsang

and Wagner (2014) and details are omitted. It is clear that S̃u∗
t is equivalently given by the OLS

residuals from the regression of Sy
t on SX̃

t and zt. Letting S∗
t =

[
SX̃′
t , z′t

]′
we can therefore write

S̃u∗
t = Su

t − S∗′
t

(
T∑
t=1

S∗
t S

∗′
t

)−1 T∑
t=1

S∗
t S

u
t .

The limit of T−1/2AIMSX̃
[rT ] is given in the proof of Proposition 1 and thus we next show that

T−5/2AIMz[rT ] has a well defined limit:

T−5/2AIMz[rT ] =
[rT ]

T
T−1

T∑
j=1

T−1/2AIMSX̃
j − T−1

[rT ]−1∑
j=1

T−1
j∑

i=1

T−1/2AIMSX̃
i

⇒ r

∫ 1

0
f(s)ds−

∫ r

0

[∫ s

0
f(v)dv

]
ds =

∫ r

0
F (1)ds−

∫ r

0
F (s)ds

=

∫ r

0
[F (1)− F (s)] ds.

Defining

A∗
IM =

[
AIM 0
0 T−2AIM

]
,

it follows that

T−1/2A∗
IMS∗

[rT ] =

[
T−1/2AIMSX̃

[rT ]

T−5/2AIMz[rT ]

]
⇒
[

f(r)∫ r
0 [F (1)− F (s)] ds

]
=

[
Πg(r)

Π
∫ r
0 [G(1)−G(s)] ds

]
= Π∗h(r), (30)

where Π∗ =

[
Π 0
0 Π

]
. Using (30) we easily obtain

T−1/2S̃u∗
[rT ] = T−1/2Su

[rT ]

− T−1/2A∗
IMS∗

[rT ]

(
T−1

T∑
t=1

(
T−1/2A∗

IMS∗
t

)(
T−1/2A∗

IMS∗
t

)′)−1

T−1
T∑
t=1

(
T−1/2A∗

IMS∗
t

)(
T−1/2Su

t

)
⇒ Bu(r)−Π∗h(r)

(
Π∗
∫ 1

0
h(s)h(s)′dsΠ∗

)−1

Π∗
∫ 1

0
h(s)Bu(s)ds

= Bu(r)− h(r)

(∫ 1

0
h(s)h(s)′ds

)−1 ∫ 1

0
h(s)Bu(s)ds. (31)
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Now recall that Bu(s) = ω
1/2
u·vwu·v(s) +Wv(s)

′Ω
−1/2
vv Ωvu and therefore, because Wv(s) is contained

in h(r), the Wv(s) component of Bu(s) is projected out of (31) giving

T−1/2S̃u∗
[rT ] ⇒ ω

1/2
u·v

(∫ r

0
dwu·v(s)− h(r)

(∫ 1

0
h(s)h(s)′ds

)−1 ∫ 1

0
h(s)wu·v(s)ds

)
(32)

= ω
1/2
u·v

(∫ r

0
dwu·v(s)− h(r)

(∫ 1

0
h(s)h(s)′ds

)−1 ∫ 1

0
[H(1)−H(s)] dwu·v(s)

)
= ω

1/2
u·v P̃

∗(r).

The independence of the χ2
|I| random variable and P̃ ∗(r) is established as follows: We show that,

conditional on Wv(r), χ
2
|I| and P̃ ∗(r) are independent. If that is established, because χ2

|I| is inde-

pendent of Wv(r), this implies that χ2
|I| and P̃ ∗(r) are also independent unconditionally.

Thus it remains to establish conditional independence of χ2
|I| and P̃ ∗(r). Conditional on

Wv(s), χ
2
|I| and P̃ ∗(r) are Gaussian processes defined in terms of the Gaussian process wu·v(r).

Therefore conditional independence is established by showing that the covariance between the
two conditional Gaussian processes is zero. For χ2

|I|, the relevant conditional Gaussian process is∫
[G(1)−G(s)]dwu·v(s) and thus it suffices to calculate

Cov

(∫
[G(1)−G(s)]dwu·v(s), P̃

∗(r)

)
=

∫ r

0
[G(1)−G(s)]′ds− (33)

− h(r)′
(∫

h(s)h(s)′
)−1 ∫

[H(1)−H(s)][G(1)−G(s)]′ds

Let h2(r) =
∫ r
0 [G(1)−G(s)]′ds. Using integration by parts∫

[H(1)−H(s)][G(1)−G(s)]′ds =

∫
h(s)h2(s)

′ds,

and it follows that

Cov

(∫
[G(1)−G(s)]dwu·v(s), P̃

∗(r)

)
= h2(r)− h(r)′

(∫
h(s)h(s)′

)−1 ∫
h(s)h2(s)

′ds = 0,

where we obtain zero because h2(r) is contained in h(r).
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Table 1: Empirical Null Rejection Probabilities, Data Dependent Bandwidths

Panel A: IM(O)

Bartlett QS
And NW And NW

T ρ1,ρ2 q = 2 q = 3 q = 2 q = 3 q = 2 q = 3 q = 2 q = 3

100 0 .1545 .3187 .0947 .1667 .1963 .4054 .1194 .2319
.3 .2033 .4006 .2009 .3560 .2043 .4137 .1781 .3310
.6 .2706 .4902 .3573 .5946 .2449 .4453 .3023 .5071
.8 .4034 .6767 .5667 .8343 .3962 .6545 .4901 .7633

200 0 .1008 .1888 .0733 .1128 .1128 .2139 .0870 .1494
.3 .1314 .2403 .1452 .2457 .2457 .2231 .1188 .2035
.6 .1714 .3117 .2513 .4349 .4349 .2686 .2019 .3428
.8 .2460 .4905 .4152 .7008 .7008 .4593 .3342 .6016

500 0 .0735 .1085 .0600 .0725 .0740 .1080 .0622 .0766
.3 .0917 .1416 .1083 .1662 .0803 .1183 .0910 .1279
.6 .1046 .1696 .1646 .2752 .0910 .1387 .1444 .2342
.8 .1158 .2256 .2673 .4932 .1020 .2001 .2445 .4596

Panel B: IM(fb)

Bartlett QS
And NW And NW

T ρ1,ρ2 q = 2 q = 3 q = 2 q = 3 q = 2 q = 3 q = 2 q = 3

100 0 .0566 .0743 .0580 .0825 .0529 .0659 .0548 .0828
.3 .1716 .2850 .1327 .2508 .1300 .2037 .0858 .1325
.6 .4062 .7442 .3283 .6290 .3349 .6180 .2041 .3296
.8 .7045 .9707 .6926 .9432 .6148 .9433 .5418 .7778

200 0 .0520 .0521 .0520 .0521 .0524 .0549 .0524 .0549
.3 .0682 .0833 .0682 .0833 .0547 .0612 .0547 .0612
.6 .0996 .1586 .0996 .1586 .0692 .0877 .0692 .0877
.8 .1829 .3873 .1836 .3884 .1240 .2314 .1240 .2314

500 0 .0520 .0499 .0520 .0499 .0524 .0521 .0524 .0521
.3 .0681 .0816 .0681 .0816 .0547 .0590 .0547 .0590
.6 .1026 .1609 .1026 .1609 .0702 .0853 .0702 .0853
.8 .2048 .3921 .2075 .3942 .1326 .2342 .1326 .2343
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Table 2: Empirical Size Adjusted Power, Data Dependent Bandwidths, T = 200

Panel A: IM(O)

Bartlett QS
And NW And NW

G(Xt) ϕ ρ1,ρ2 q = 2 q = 3 q = 2 q = 3 q = 2 q = 3 q = 2 q = 3

NA, Null 0 0 .1008 .1888 .0733 .1128 .1128 .2139 .0870 .1494
.3 .1314 .2403 .1452 .2457 .2457 .2231 .1188 .2035
.6 .1714 .3117 .2513 .4349 .4349 .2686 .2019 .3428
.8 .2460 .4905 .4152 .7008 .7008 .4593 .3342 .6016

x21t .01 0 .8600 .8487 .8631 .8547 .8549 .8388 .8615 .8499
.3 .7473 .7260 .7520 .7325 .7453 .7193 .7488 .7289
.6 .5243 .4830 .5162 .4714 .5209 .4789 .5184 .4668
.8 .2495 .2157 .2611 .2263 .2441 .2097 .2589 .2256

x21t + x1tx2t .01 0 .9202 .9136 .9220 .9193 .9176 .9048 .9208 .9151
.3 .8270 .8164 .8312 .8177 .8239 .8099 .8276 .8181
.6 .6191 .5798 .6136 .5693 .6177 .5748 .6125 .5675
.8 .3066 .2660 .3199 .2871 .3010 .2617 .3177 .2822

x21t + x22t + x1tx2t .01 0 .9756 .9758 .9774 .9784 .9745 .9728 .9765 .9772
.3 .9283 .9214 .9286 .9243 .9270 .9179 .9288 .9229
.6 .7755 .7458 .7715 .7368 .7733 .7415 .7721 .7350
.8 .4551 .3967 .4691 .4195 .4490 .3894 .4668 .4163

x1tx2t .01 0 .8209 .8028 .8267 .8099 .8176 .7899 .8244 .8024
.3 .6786 .6404 .6790 .6411 .6744 .6314 .6765 .6435
.6 .4082 .3548 .4015 .3402 .4049 .3508 .4017 .3390
.8 .1572 .1324 .1647 .1409 .1543 .1287 .1628 .1396

x31t .001 0 .8380 .8690 .8470 .8780 .8310 .8670 .8480 .8750
.3 .7810 .8200 .7920 .8290 .7780 .8180 .7850 .8240
.6 .6850 .7180 .6910 .7090 .6830 .7160 .6880 .7020
.8 .5300 .5480 .5410 .5550 .5170 .5370 .5390 .5620

x1t (1 + e−x1t)
−1

.5 0 .5320 .5856 .5456 .5901 .5250 .5773 .5390 .5850
.3 .4660 .5115 .4753 .5157 .4645 .5066 .4724 .5143
.6 .3261 .3446 .3260 .3377 .3241 .3414 .3237 .3334
.8 .1466 .1336 .1535 .1429 .1445 .1299 .1511 .1395
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Table 2: Empirical Size Adjusted Power, Data Dependent Bandwidths, T = 200

Panel B: IM(fb)

Bartlett QS

And NW And NW

G(Xt) ϕ ρ1,ρ2 q = 2 q = 3 q = 2 q = 3 q = 2 q = 3 q = 2 q = 3

NA, Null 0 0 .0520 .0521 .0520 .0521 .0524 .0549 .0524 .0549
.3 .0682 .0833 .0682 .0833 .0547 .0612 .0547 .0612
.6 .0996 .1586 .0996 .1586 .0692 .0877 .0692 .0877
.8 .1829 .3873 .1836 .3884 .1240 .2314 .1240 .2314

x21t .01 0 .8544 .8395 .8544 .8395 .8455 .8205 .8455 .8205
.3 .7362 .7000 .7362 .7000 .7258 .6853 .7258 .6853
.6 .4997 .4404 .4956 .4381 .4910 .4246 .4899 .4246
.8 .2274 .1982 .2215 .1951 .2221 .1928 .2190 .1891

x21t + x1tx2t .01 0 .9160 .9031 .9160 .9031 .9087 .8918 .9087 .8918
.3 .8185 .7912 .8185 .7912 .8091 .7763 .8091 .7763
.6 .5925 .5363 .5898 .5353 .5858 .5174 .5842 .5172
.8 .2774 .2458 .2771 .2388 .2782 .2377 .2733 .2331

x21t + x22t + x1tx2t .01 0 .9741 .9720 .9741 .9720 .9711 .9656 .9711 .9656
.3 .9226 .9084 .9226 .9084 .9157 .8987 .9157 .8987
.6 .7549 .7052 .7522 .7035 .7460 .6886 .7452 .6885
.8 .4145 .3622 .4138 .3584 .4094 .3522 .4093 .3472

x1tx2t .01 0 .8163 .7865 .8163 .7865 .8050 .7648 .8050 .7648
.3 .6625 .6059 .6625 .6059 .6510 .5838 .6510 .5838
.6 .3827 .3176 .3782 .3164 .3731 .3024 .3717 .3023
.8 .1430 .1221 .1404 .1209 .1427 .1212 .1391 .1192

x31t .001 0 .8400 .8700 .8400 .8700 .8360 .8620 .8360 .8620
.3 .7940 .8140 .7940 .8140 .7890 .8040 .7890 .8040
.6 .6820 .6930 .6790 .6920 .6780 .6830 .6770 .6830
.8 .5150 .5220 .5160 .5190 .5220 .5110 .5130 .5080

x1t (1 + e−x1t)
−1

.5 0 .5440 .5816 .5440 .5816 .5344 .5702 .5344 .5702
.3 .4711 .4970 .4710 .4970 .4629 .4862 .4629 .4862
.6 .3197 .3147 .3161 .3135 .3119 .3008 .3105 .3007
.8 .1302 .1221 .1291 .1197 .1282 .1162 .1275 .1153
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Figure 1: Empirical Null Rejections, IM(fb), q = 2, T = 100
Bartlett Kernel, 5% Nominal Level

Figure 2: Empirical Null Rejections, IM(fb), q = 2, T = 100
QS Kernel, 5% Nominal Level
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Figure 3: Empirical Null Rejections, IM(fb), ρ1 = ρ2 = .3
Bartlett Kernel, 5% Nominal Level

Figure 4: Empirical Null Rejections, IM(fb), ρ1 = ρ2 = .3
QS Kernel, 5% Nominal Level
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Figure 5: Empirical Null Rejections, IM(fb), ρ1 = ρ2 = .8
Bartlett Kernel, 5% Nominal Level

Figure 6: Empirical Null Rejections, IM(fb), ρ1 = ρ2 = .8
QS Kernel, 5% Nominal Level
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ϕ

Figure 7: Empirical Size Adjusted Power, T = 200, q = 2, G(Xt) = x21t
Bartlett Kernel, Andrews Bandwidth, 5% Nominal Level

ϕ

Figure 8: Empirical Size Adjusted Power, T = 200, q = 2, G(Xt) = x21t
QS Kernel, Andrews Bandwidth, 5% Nominal Level
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ϕ

Figure 9: Empirical Size Adjusted Power, IM(fb), T = 200, q = 2, ρ1 = ρ2 = .3
G(Xt) = x21t, Bartlett Kernel, Andrews Bandwidth, 5% Nominal Level

ϕ

Figure 10: Empirical Size Adjusted Power, IM(fb), T = 200, q = 2, ρ1 = ρ2 = .3
G(Xt) = x21t, QS Kernel, Andrews Bandwidth, 5% Nominal Level
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ϕ

Figure 11: Empirical Size Adjusted Power, T = 200, q = 2, G(Xt) = x1t (1 + e−x1t)
−1

Bartlett Kernel, Andrews Bandwidth, 5% Nominal Level

ϕ

Figure 12: Empirical Size Adjusted Power, T = 200, q = 3, G(Xt) = x1t (1 + e−x1t)
−1

Bartlett Kernel, Andrews Bandwidth, 5% Nominal Level
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