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Abstract

In this paper we are concerned with inference on the Lévy measure ν of a Lévy
process in case of noisy high frequency observations. It is known that standard tech-
niques for denoising, developed for diffusion settings, do not work in this case. For
this reason, we provide an extension of the pre-averaging method which allows for
a consistent estimation of the Lévy distribution function even under microstructure
noise. Interestingly, the asymptotic behaviour of the novel estimator is the same as in
the no-noise case. This is in sharp contrast to what is known for diffusions.

Keywords: Lévy process, microstructure noise, nonparametric statistics, weak con-
vergence.
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1 Introduction

Suppose one is interested in statistical inference on the Lévy measure ν of a univariate
Lévy process X. Following the so-called Lévy-Itô decomposition, X can be written as

Xt = at+ σBt +

∫ t

0

∫
|u|≤1

u(µ− µ̄)(ds, du) +

∫ t

0

∫
|u|>1

uµ(ds, du), (1.1)

where a is a scalar, the diffusion part consists of a standard Brownian motion B and some
volatility σ2 > 0, and µ(ds, du) denotes a Poisson random measure with compensator
µ̄(ds, du). It is well-known that the compensator takes the form µ(ds, du) = ds ν(du) for
some σ-finite measure ν, the latter being the Lévy measure of X which governs its jump
behaviour. The triplet (a, σ2, ν) completely determines the distribution of X.

Just as regular probability measures are uniquely determined by their distribution
functions and vice versa, there is a one-to-one correspondence between the Lévy measure
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ν and its Lévy distribution function U : R\{0} → [0,∞) defined by

U(t) =

{
ν([t,∞]), t > 0,

ν([−∞, t]), t < 0.

Bücher and Vetter (2013) used high-frequency data to infer on U , i.e. their estimator is
built from observations Xi∆n , i = 1, . . . , n, where ∆n → 0 and the covered time horizon
satisfies kn = n∆n → ∞. In their work, the Lévy measure was for brevity of notation
assumed to be restricted to the positive half line only, in which case U(t) = 0 identically
for t < 0. We will adopt their setting in this work.

Our aim is to provide similar results in the case of observations contaminated by
microstructure noise. These effects are known to be a severe problem particularly in
econometric practice, as financial data at a high frequency level suffers from observation
errors due to discreteness of prices, bid-ask spreads or asymmetric information in the
market. Suppose therefore that one does not observe the plain Lévy process, but

Zi∆n = Xi∆n + Vi∆n ,

where Vi∆n , i = 1, . . . , n, is an i.i.d. process, independent of X, which satisfies E[Vi∆n ] = 0
and has moments of all order. The latter assumption is not too strict, as the noise is
typically assumed to be responsible for a rather small deviation from the true process and
might thus for example be modelled by a random variable with bounded support.

In this setting, the natural estimator proposed by Bücher and Vetter (2013) does not
work anymore. Setting ∆n

i Y = Yi∆n − Y(i−1)∆n
for an arbitrary process Y , they use

UXn (y) =
1

kn

n∑
i=1

1{∆n
i X≥y}

as an estimator for U(y), which counts large increments of X as they are likely to be
caused by a jump over the corresponding small interval. Standardising with kn instead of
n is justified, since large jumps occur rarely, that is P (∆n

i X ≥ y) ∼ ∆nU(y) under mild
assumptions on ν; see e.g. Corollary 8.9 in Sato (1999).

Suppose now that one observes Z instead. If there is a positive probability of P (∆n
i V ≥

y), then UZn (y) (which is the same statistic as the previous one, but where increments of
X are replaced by those involving Z) will not only count the few large jumps of X, but
more often large increments of Z which are due to microstructure noise. Precisely, the
statistic behaves like ∆−1

n P (∆n
i V ≥ y) which diverges to infinity; recall kn = n∆n. Note

also that if P (∆n
i V ≥ y) = 0, then UZn (y) is still bounded in probability, but we will rather

estimate a convolution of jumps and noise than the plain jump measure.

Throughout the last decade an increasing amount of research has been concerned
with microstructure noise, mostly in connection with diffusion processes. (An exception
is the work by Comte and Genon-Catalot (2010), where inference for pure jump Lévy
processes based on their characteristic exponent has been conducted.) Since it is typically
the jump part of the underlying process which is responsible for heavy tails in standard
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models in econometrics, there is a clear need for reliable tools in order to assess the
Lévy measure. However, none of the standard methods for diffusion processes (e.g. the
multiscale approach by Zhang et al. (2005) or the kernel-based from Barndorff-Nielsen
et al. (2008)) can directly be applied in our context. Even the pre-averaging approach by
Jacod et al. (2009), which provides a general concept for diminishing the influence of the
noise by retaining information of the increments of X, fails when one is interested in the
Lévy measure. See Section 5.4 in Bücher and Vetter (2013) for details.

Our aim in this work is therefore to provide an alternative concept which allows for a
consistent estimation of the Lévy distribution function. It will be based on the intuition
of pre-averaging, which is why we will shortly recall the approach from Jacod et al. (2009)
in Section 2 and construct a modified version which turns out to work fine for noisy
observations as well. The asymptotic theory for the novel estimator can be found in
Section 3, alongside with a discussion of the result.

2 A modified pre-averaging estimator

We begin this section with some reminders on the pre-averaging approach: For an auxiliary
sequence ln → ∞ with n/ln → ∞ and some piecewise differentiable function g on [0, 1],

which is positive on (0, 1) and satisfies g(0) = g(1) = 0, one computes Z̃ni = X̃n
i + Ṽ n

i ,
where

Ỹ n
i =

ln∑
j=1

g(j/ln)∆n
i+jY

for an arbitrary process Y , i = 1, . . . , n − ln. The idea behind this approach is that X̃n
i

can be seen as some kind of generalised increment which still bears similar information as
the plain ∆n

i X, while by assumption on g

Ṽ n
i = −g(1/ln)Vi∆n +

ln−1∑
j=1

(g(j/ln)− g((j + 1)/ln))V(i+j)∆n
= Op

(
l−1/2
n

)
, (2.1)

which proves that the larger ln becomes, the less important is the contamination by noise.

For this reason, estimation based on pre-averaging usually works in the way that one
proceeds as usual, but replaces the standard estimators by ones based on Z̃ni . If ln is

rather large compared with n, it is reasonable to replace Z̃ni with X̃n
i in the asymptotics

and thus to recover full information of X. In our setting this would lead to an estimator
of the form

ŨZn (y) =
1

kn

bn/lnc−1∑
i=0

1{Z̃n
iln
≥y},

where the Z̃niln are computed over non-overlapping intervals to retain i.i.d. terms in the

sum. Intuitively, for large ln it is equally well possible to discuss ŨXn (y) which, however,
does not result in a consistent estimator for the Lévy distribution function U(y). The
reason is a rather technical one, connected with the fact that the main contribution to
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X̃n
iln

is coming from a single large jump within [0, ln∆n] whose exact position influences
standardisation with g. An argument similar to the proof of Lemma 3.2 below gives

P (X̃n
iln
≥ y) = ∆n

ln∑
j=1

U(y/g(j/ln)) +O(l2n∆2
n) = ln∆n

∫ 1

0
U(y/g(x))dx+ o(ln∆n),

which proves that ŨXn (y) estimates a functional of U depending on g and y rather than
the plain U(y). Even though one has freedom to choose the auxiliary function g above,
it turns out that the choices which lead to an unbiased estimator for U(y) contradict
the necessary assumptions on g which secure that the noise terms become small in the
asymptotics. For this reason, the standard pre-averaging approach cannot be applied. A
modification, however, gives the desired result.

Define two auxiliary sequences mn and ln which satisfy mn = c∆−an + o(∆−an ) and
ln = d∆−bn + o(∆−bn ) for some c, d > 0 and 0 < a < b < 1. Furthermore, we introduce a
family of weight functions depending on n as follows: Let

gn(x) =


ln
mn
x, x ≤ mn

ln
,

1, mn
ln
≤ x ≤ 1− mn

ln
,

ln
mn

(1− x), 1− mn
ln
≤ x ≤ 1,

which is well defined for ln ≥ 2mn. The latter assumption is eventually satisfied due to
b > a. For any process Y we then set

Y n
i =

ln∑
j=1

gn(j/ln)∆n
i+jY.

Note first that the influence of the noise becomes small as mn grows, as can be seen from
an argument similar to the one leading to (2.1). Also, since ln is much larger than mn,
a jump now typically occurs in the middle of the interval where no standardisation due
to g as for the standard pre-averaging estimator takes place. Finally, an estimator over
non-overlapping blocks is given by

UZn (y) =
1

kn

bn/lnc−1∑
i=0

1{Zn
iln
≥y}. (2.2)

3 The asymptotic theory

In order to derive asymptotics for UZn (y), a smoothness condition on the Lévy measure is
necessary. It secures that probabilities such as P (∆n

i X ≥ y) are close to ∆nU(y), and it
also governs the order of the approximation error.

Assumption 3.1 Let X be a Lévy process with the representation (1.1). We assume that
ν has support on (0,∞), on which it is of the form ν(du) = s(u)du for a positive Lévy
density s which satisfies supu>η(|s(u)|+ |s′(u)|) <∞ for any η ∈ (0,∞).
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We are now interested in P (Xn
iln
≥ y), and due to stationarity and independence we

discuss i = 0 only. The following claim contains an expansion of this probability to first
order, where the approximation error comes from two sources: One is naturally due to the
fact that a convolution of two or more (or no) large jumps may be responsible for a large
value of Xn

0 and appears in the no-noise case as well. The other one comes from effects
on the boundary of the interval [0, ln∆n] involving the auxiliary sequence mn.

Lemma 3.2 Suppose that Assumption 3.1 holds and let δ > 0 be fixed. Then there exist
a constant K = K(δ) such that for all y ≥ δ∣∣∣P (Xn

0 ≥ y)− ln∆nU(y)
∣∣∣ ≤ Kδln∆n(mn/ln + ln∆n).

Proof. Before we begin with the proof, note that there are several different represen-
tations of Y n

0 which will all be used throughout the paper, namely

Y n
0 = (Y(ln−mn)∆n

− Ymn∆n) +

mn∑
j=1

j

mn
∆n
j Y −

mn−1∑
j=1

j

mn
∆n
ln−jY (3.1)

=
1

mn

mn−1∑
j=0

(Y(ln−mn+j)∆n
− Yj∆n) =

1

mn

mn−1∑
j=0

Y(ln−mn+j)∆n
− 1

mn

mn−1∑
j=0

Yj∆n .

We follow the ideas from Figueroa-López and Houdré (2009) who prove a similar result
for plain increments of X. Let ε < (δ/r ∧ 1) for some r > 0 to be specified later and pick
a smooth function cε : R→ R satisfying

1[−ε/2,ε/2](u) ≤ cε(u) ≤ 1[−ε,ε](u).

We also define the function c̄ε via c̄ε(u) = 1 − cε(u). It is straightforward to see that
there exist independent processes Xε and X̃ε such that X ∼ Xε + X̃ε and where X̃ε

is a compound Poisson process with intensity λε =
∫
c̄ε(u)ν(du) and jump distribution

fε(du) = c̄ε(u)ν(du)/λε and Xε is a Lévy process with triplet (aε, σ
2, cε(u)ν(du)), where

we set aε = a−
∫

1{|u|≤1}uc̄ε(u)ν(du). Let us work with this particular decomposition of
X in the following.

Call N ε
ln∆n

the number of jumps of X̃ε up to time ln∆n and set f(u) = 1{u≥y}. Using
the law of total expectation we then have

E[f(Xn
0 )] =

∞∑
k=0

e−λεln∆n
(λεln∆n)k

k!
E[f(Xn

0 )|N ε
ln∆n

= k]. (3.2)

Let us start with the case for k = 0. In this situation we are interested in P (Xε,n
0 ≥ y),

which can be bounded by

P
( 1

mn

mn−1∑
j=0

(Xε
(ln−mn+j)∆n

−Xε
j∆n

) ≥ y
)
≤

mn−1∑
j=0

P
(

(Xε
(ln−mn+j)∆n

−Xε
j∆n

) ≥ y
)
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using the second identity in (3.1). Equation (3.3) in Figueroa-López and Houdré (2009)
proves that the probability on the right hand side above can be bounded by Kδ(ln∆n)r,
such that

P (Xε,n
0 ≥ y) ≤ Kδmn(ln∆n)r ≤ Kδln∆n(mn/ln + ln∆n)

by choosing r large enough due to 0 < a < b < 1. The same upper bound holds for k > 2,

∞∑
k=2

e−λεln∆n
(λεln∆n)k

k!
E[f(Xn

0 )|N ε
ln∆n

= k] ≤
∞∑
k=2

e−λεln∆n
(λεln∆n)k

k!
≤ Kδ(ln∆n)2.

Thus, let us finally discuss k = 1 which corresponds to one single large jump within
[0, ln∆n]. Call s the time and ξ ∼ fε the size of the jump. Then E[f(Xn

0 )|N ε
ln∆n

= 1] can
be written as

E[f(Xn
0 )|N ε

ln∆n
= 1, s ∈ [0,mn∆n)]P (s ∈ [0,mn∆n)|N ε

ln∆n
= 1)

+E[f(Xn
0 )|N ε

ln∆n
= 1, s ∈ ((ln −mn)∆n, ln∆n]]P (s ∈ ((ln −mn)∆n, ln∆n]|N ε

ln∆n
= 1)

+E[f(Xn
0 )|N ε

ln∆n
= 1, s ∈ [mn∆n, (ln −mn)∆n]]P (s ∈ [mn∆n, (ln −mn)∆n]|N ε

ln∆n
= 1).

Since the jump time is uniformly distributed over [0, ln∆n], the first two terms can be
bounded by mn/ln each. In the same way, the final term becomes

E[f(Xn
0 )|N ε

ln∆n
= 1, s ∈ [mn∆n, (ln −mn)∆n]]

(
1− 2

mn

ln

)
= P (Xε,n

0 + ξ ≥ y)
(

1− 2
mn

ln

)
,

where ξ is not affected by the weight function gn, since the jump is assumed to occur away
from the boundary of [0, ln∆n]. See the first identity in (3.1). By independence of Xε and

ξ one may set h(u) = P (ξ ≥ y − u) and compute E[h(Xε,n
0 )] then. The same arguments

as in Figueroa-López and Houdré (2009) show that

|E[h(Xε,n
0 )]− h(0)| ≤ Kδln∆n

with h(0) = P (ξ ≥ y) = U(y)/λε by our choice of ε. Putting all bounds together and
using (3.2) plus an expansion of exp(−λεln∆n)− 1 the claim follows. 2

We have now obtained an expression for the probability of Xn
0 exceeding a deterministic

bound, but in reality we observe Zn0 instead. Therefore we need a result which proves that
the error due to replacing the observable statistic based on Z by the same one based on
the latent X is small compared to the rate of convergence. This is what we aim at in the
the following lemma.

Lemma 3.3 Suppose that Assumption 3.1 holds and that mn and ln are chosen in such
a way that

kn = O(mγ
n) for some 0 < γ < 1 and

√
kn(ln∆n +mn/ln)→ 0 (3.3)

hold. Then we have

1√
kn

bn/lnc−1∑
i=0

(
1{Zn

iln
≥y} − 1{Xn

iln
≥y}

)
= op(1),

uniformly on [δ,∞).
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Proof. The summands above are identically distributed, which is why we begin with
a discussion of the first one. We use the general relation

1{p+q≥y} − 1{p≥y} = 1{q≥y} + 1{p<y,q<y,p+q≥y} − 1{p≥y,p+q<y} − 1{q≥y,p+q<y} − 1{p≥y,q≥y},

where the role of p and q is played by Xn
0 and V n

0 , respectively. Observe that

|1{p+q≥y} − 1{p≥y}| ≤ 3× 1{q≥y} + 1{p<y,q<y,p+q≥y} + 1{p≥y,p+q<y}

≤ 5× 1{|q|≥dn} + 2× 1{y−dn≤p≤y+dn}

for any sequence dn < δ/2. For later reasons we set dn = m−$n with some $ < 1/2 such
that 2$ > γ holds. Therefore we have to show that Bn1 + supy≥δ Bn2(y) = op(1), where

Bn1 =
1√
kn

bn/lnc−1∑
i=0

1{|V n
0 |≥dn}

and Bn2(y) =
1√
kn

bn/lnc−1∑
i=0

1{y−dn≤Xn
0 ≤y+dn}.

From the third identity in (3.1) we see that

E[|V n
0 |

2r] = E
[∣∣∣ 1

mn

mn−1∑
j=0

Vln−mn+j −
1

mn

mn−1∑
j=0

Vj

∣∣∣2r] ≤ Crm−rn (3.4)

for any integer r > 0 which proves using Markov inequality that P (|V n
0 | ≥ dn) can be

made arbitrarily small, due to dn = m−$n with $ < 1/2. Bn1 = op(1) then follows. Thus,
let us discuss the claim involving Bn2(y) and fix y ≥ δ first. From Lemma 3.2 we have∣∣∣P (y − dn ≤ Xn

0 ≤ y + dn)− ln∆nν([y − dn, y + dn])
∣∣∣ ≤ Kδln∆n(mn/ln + ln∆n).

Since ν has a bounded Lévy density on [δ/2,∞), we obtain

1√
kn

bn/lnc−1∑
i=0

P (y − dn ≤ Xn
iln
≤ y + dn) ≤ Kδ

n

ln
√
kn
ln∆n(dn +mn/ln + ln∆n).

The latter two terms converge to zero due to (3.3). For the remainder, note that we have
chosen $ such that 2$ > γ. We obtain

Kδ
n

ln
√
kn
ln∆ndn = Kδ

√
kndn ≤ Kδm

γ/2−$
n → 0,

which proves the claim for each fixed y, i.e. convergence of the finite dimensional distribu-
tions of Bn2(y) to those of the zero process. Therefore we are left to establish asymptotic
tightness which can be shown using the conditions in Theorem 11.16 of Kosorok (2008).
Here, we use the fact that indicator functions over sets (a, b),−∞ ≤ a < b ≤ ∞ shatter
no set of size 3 to obtain manageability due to a finite VC index. 2

We now come to the result on weak convergence of the process

αn(y) =
√
kn

(
UZn (y)− U(y)

)
in the space B∞(0,∞] of all real functions on (0,∞] that are bounded on sets which
are bounded away from the origin. We equip this space with the metric d(f, g) =∑∞

k=1 2−k (‖f − g‖Tk ∧ 1), where Tk = [1/k,∞] and || · ||Tk denotes the uniform norm.
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Theorem 3.4 Assume that X is a Lévy process satisfying Assumption 3.1. If (3.3) holds,
then we have αn(y)

w−→ B(y) in (B∞(0,∞], d). Here, B is a tight, centered Gaussian
process with covariance E [B(x)B(y)] = U(x ∨ y). The sample paths of B are uniformly
continuous on each Tk with respect to the pseudo distance

ρ(x, y) = E
[
(B(x)− B(y))2

]1/2
= |U(x)− U(y)|1/2 .

Proof. Note that, due to Theorem 1.6.1 in van der Vaart and Wellner (1996),
weak convergence in (B∞(0,∞], d) is equivalent to weak convergence on each `∞(Tk).
Therefore, it is possible to fix one such Tk throughout the rest of the proof. We set
α̃n(y) =

√
kn
(
UXn (y)− E[UXn (y)]

)
. Based on Lemma 3.2 and Lemma 3.3 it is possible to

show that weak convergence of αn(y) and of α̃n(y) are equivalent. Indeed, we have

|αn(y)− α̃n(y)| ≤
√
kn
∣∣UZn (y)− UXn (y)

∣∣+
√
kn
∣∣E[UXn (y)]− U(y)

∣∣ .
The first term on the right hand side above becomes uniformly small on Tk due to Lemma
3.3, whereas the second one is smaller than

1√
kn

bn/lnc−1∑
i=0

(∣∣P (Xn
iln
≥ y)− ln∆nU(y)

∣∣+ ∆nU(y)

∣∣∣∣ln − n

bn/lnc

∣∣∣∣) .
Using Lemma 3.2 the first summand can be bounded by

K
√
kn(ln∆n +mn/ln),

whereas the second term is smaller than

K
1√
kn

∆n|lnbn/lnc − n| ≤ K
1√
kn
ln∆n,

and both claims hold uniformly on Tk. The latter bound is obviously smaller than the
previous one, thus all terms converge to zero using (3.3).

In order to prove weak convergence of α̃n(y) we define a class of functions Fn = {fn,y :
y ∈ Tk} with corresponding envelope Fn via

fn,y(u) =

√
bn/lnc
kn

1{u≥y} and Fn(u) =

√
bn/lnc
kn

1{u∈Tk}.

With this notation we obtain

α̃n(y) = (bn/lnc)−1/2

bn/lnc−1∑
i=0

(
fn,y(Xn

iln
)− E[fn,y(Xn

iln
)]
)
.

Since the summands form a sequence of independent and identically distributed random
variables, we are in a position to employ Theorem 11.20 in Kosorok (2008), for which
six intermediate step have to the proven. Note first that the entropy condition on Fn
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follows from Lemma 11.21 in Kosorok (2008), since Fn is integrable with respect to any
probability measure and the indicator functions fn,y(u) form a VC class with index 2.
Furthermore, the sequence Fn is almost measurable Suslin due to the fact that the fn,y(u)
are indicator functions; see the proof of Proposition 4.2 in Bücher and Vetter (2013) for
an explicit reasoning. The remaining conditions are concerned with the computation of
several (co)variances. We have

lim
n→∞

E[α̃n(x)α̃n(y)] = lim
n→∞

(E[fn,x(Xn
0 )fn,y(Xn

0 )]− E[fn,x(Xn
0 )]E[fn,y(Xn

0 )])

= lim
n→∞

E[fn,x(Xn
0 )fn,y(Xn

0 )] = lim
n→∞

bn/lnc
ln
n
U(x ∨ y) = U(x ∨ y),

since n/ln →∞ follows from b < 1 and kn = n∆n →∞. Also,

lim sup
n→∞

E[F 2
n(Xn

0 )] ≤ lim sup
n→∞

bn/lnc(ln/n)U(1/k) = U(1/k) <∞

and
lim
n→∞

E[F 2
n(Xn

0 )1{Fn(Xn
0 )>ε
√
bn/lnc}

] ≤ lim
n→∞

E[F 2
n(Xn

0 )]1{k−1/2
n >εc] = 0.

Finally, the convergence

ρ2
n(x, y) = E[|fn,x(Xn

0 )− fn,y(Xn
0 )|2]

→ |U(x)− 2U(x ∨ y) + U(y)|2 = |U(x)− U(y)|2 = ρ2(x, y)

holds uniformly on Tk which proves the final condition for an application of Theorem 11.20
in Kosorok (2008). 2

Remark 3.5 There are several valid choices for a and b such that (3.3) is satisfied. We
propose one for which the finite sample bias due to all of these is roughly of the same
order. To this end, note that (3.3) is satisfied whenever√

kn

(
∆ηa/2
n + ∆η(b−a)

n + ∆η(1−b)
n

)
→ 0

for some 0 < η < 1. All three exponents are the same for a = 1/2 and b = 3/4. In this
case, Theorem 3.4 holds, if there exists some 0 < η < 1 such that

kn∆η/2
n = n∆1+η/2

n → 0 (3.5)

is satisfied. 2

Remark 3.6 A key result in the work of Bücher and Vetter (2013) was

αn(y) =
√
kn
(
UXn (y)− U(y)

) w−→ B(y)

in (B∞(0,∞], d), where B is (in distribution) the same Gaussian process as the one in
Theorem 3.4. Therefore, the asymptotic behaviour of UZn (y) is the same as in the case
of non-noisy observations. This is remarkable compared with the diffusion case where
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already the optimal rate of convergence is of a larger order than the one without noise.
See e.g. Gloter and Jacod (2001). What changes to the setting without noise, however,
are the assumptions on the choice of n and ∆n. Whereas in Bücher and Vetter (2013)
the crucial condition besides ∆n → 0 and n∆n → ∞ was

√
kn∆n =

√
n∆3

n → 0, the
precedingly obtained assumption in (3.5) is much tighter. 2

Remark 3.7 A natural alternative to the estimator UZn (y) is to use

ÛZn (y) =
1

knln

n−ln∑
i=0

1{Z̃n
iln
≥y},

for which all pre-averaging statistics are used and not only independent ones computed over
non-overlapping intervals. This makes a proof of weak convergence much more involved,
and, more importantly, even though we are convinced that such a claim holds, no gain
in terms of a lower variance is to be expected, since the limiting process in Theorem 3.4
already takes the same form as the one in the absence of noise. This intuition is supported
by some tedious computations involving blocking techniques which prove that the finite
dimensional distributions of

α̂n(y) =
√
kn

(
ÛZn (y)− U(y)

)
convergence to the same ones as the corresponding ones of αn(y). 2
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