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Abstract

GARCH- and Stochastic Volatility (SV)-models are the main workhorses for

describing unobserved volatility in asset returns. Because economic theory

behind these models is not the same and estimating SV-models is much more

difficult, discriminating between these two rival models is of interest. This

paper suggests a nonnested testing procedure going back to Davidson and

MacKinnon (1981) that does not implicitly assume that one of the models is

the correct one. We illustrate the proposed test by applying it to ten daily

stock index return series and five exchange rate return series.
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1. Introduction

Modelling conditional volatility is among the most important tasks of

financial econometrics. Two competing model classes, with a different eco-

nomic interpretation, are the main workhorses in this field, the GARCH-

models, where the conditional volatility is described by past observations

and the class of SV-models, where additional uncertainty enters via some

extra error term. These competing models look quite similar in continu-

ous time, but dissimilar in discrete time (Fleming and Kirby, 2003). While

GARCH-models are much easier to estimate, SV-models need fewer restric-

tions on conditional moments than GARCH-models. From a practitioners

point of view it would be good to know if the estimation of a much more

difficult model is worth the effort. Furthermore, GARCH- and SV-models

yield different economic interpretations. Due to the second innovation within

the framework of the SV-model, the conditional variance process is a func-

tion of latent variables, which can be interpreted as the random and uneven

flow of information (e.g. information about other assets and markets, vol-

ume of transactions or the order book). The GARCH-model in lieu thereof

assumes that the conditional variance is perfectly explained by past observa-

tions. This economic aspect as well as the practical handling raises interest

in discriminating between these both classes.

Tests to decide whether a GARCH- or a SV-model is appropriate go back to

Kim et al. (1998) and normally rely on nested hypothesis testing. Popular

examples are Kobayashi and Shi (2005) and Franses et al. (2008). One ma-
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jor disadvantage of this type of model selection technique is that these tests

implicity assume that one of the models is the true data generating process

(DGP). But models are just approximations to the true DGP. The goal of a

model selection technique should be to find a good approximation of the true

DGP. That would include that neither the specific (nested) GARCH- nor the

specific SV-model is a good approximation to the true DGP. In this paper

we circumvent this problem by applying the popular C-test of Davidson and

MacKinnon (1981) to the problem of discriminating between GARCH- and

SV-models. Using this method it is possible that both, none or just one

of the models are rejected. Because this kind of test normally suffers from

size distortion in the form of overrejection for finite samples, we use a boot-

strapped version of the test and compare the performance of the normal and

the bootstrapped test.

2. The models

Bollerslev (2008) lists more than 100 different GARCH-type models in

his glossary. This raises interest into the question of picking an appropriate

model out of the infinite universe of GARCH-models. Hansen and Lunde

(2005) compare 330 ARCH-type models and find no evidence that more so-

phisticated ARCH-models outperform the GARCH(1,1)-model, even though

the GARCH(1,1) cannot capture the asymmetric response to shocks.
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The GARCH(1,1)-model includes one lag of the conditional variance

within the standard ARCH(1)-framework

yt = εtσt (1)

σ2
t = ϕ+ αy2t−1 + βσ2

t−1. (2)

εt is an IID process with zero mean and variance of unity. In most applica-

tions εt is assumed to be NID(0,1). To ensure the existence of the conditional

variance and for avoiding the degeneration of the process ϕ > 0 and α, β ≥ 0

must hold (Carnero et al., 2004). Moreover α+β < 1 must hold for (weakly)

covariance stationarity of yt. The model can be estimated by a standard

Maximum-Likelihood (ML)-procedure.

For the class of stochastic volatility models we follow Harvey et al. (1994)

and define a (simple) SV-model as

yt = εtσt (3)

ht = ln σ2
t = γ + πht−1 + ξt, (4)

where ϵ
N∼ (0, 1) and ξt

N∼ (0, σ2
ξ ). Formula 4 can be seen as the discrete-time

approximation to the continuous-time Orstein-Uhlenbeck process used in fi-

nancial econometrics mostly for modeling short term interest rates. Because

yt is a product of two processes, both of these processes must be stationary

to ensure the stationary of yt, that is |π| < 1 for ensuring the stationarity

of ht. This simple model behaves like the GARCH(1,1). It has excess kur-
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tosis exp(σ2
ξ ). Estimation is a little bit more advanced than the estimation

of the GARCH-model due to the additional nuisance parameter. By using

a state space representation of (3)-(4) and approximate log(ε2t ) by a mix-

ture of two normally distributed random variables, one centered at zero, a

Quasi-Newton-Raphson-method can be used to maximize the resulting ML-

function.

3. Testing nonnested hypotheses

This chapter focus on hypotheses testing when the considered hypotheses

are nonnested. In the following we will introduce the C-test proposed by

Davidson and MacKinnon (1981) for discriminating between two rival (non-

linear) models and we will make use of this test for selecting a GARCH- or

SV-model from section 2. Suppose a researcher wants to find out if economic

theory behind these models is supported by empirical data. Using (1)-(2)

and (3)-(4) one may want to test if one of the following hypotheses holds

H0 : yt = ft(θ1) + η1t (5)

H1 : yt = gt(θ2) + η2t, (6)

where θ1 and θ2 describe the parameter vector of the proposed models. By

forming the (possibly) nonlinear regression

yt = ft(θ̂1) + αgt(θ̂2) + ηt (7)
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with both θ̂1 and θ̂2 the estimated parameter vectors, one can test H0. α

is estimated conditional on these estimates using a standard least squares

procedure and the test statistic then reads Ĉ = α̂
sd(α̂)

. It would also be possi-

ble to estimate θ2 and α jointly, but the proposed procedure is preferred for

nonlinear models (Davidson and MacKinnon, 1981).

Under H1, α̂
p→ 1. But to test H1 one needs to carry out a second regression,

substituting H0 and H1. This is needed, because the test for H0 is not valid

for testing H1 (Davidson and MacKinnon, 1981). Because of this sequential

testing, it is possible that both models are rejected, neither is rejected or

that one but not the other is rejected.

This accounts for the possible outcome that neither the proposed GARCH-

nor the SV-model is a good approximation to the true data generating pro-

cess, or that the true DGP is sufficiently close to both models.

3.1. Bootstrapped based testing

The test often overrejects in finite samples and the extent of this over-

rejection depends on the level of significance (Davidson and MacKinnon,

2002). One way to deal with this problem is to using a bootstrapped test

statistic. By doing so, the finite sample performance of the tests can be

enhanced dramatically (Fan and Li, 1995; Davidson and MacKinnon, 2002;

Godfrey, 1998). To deal with autocorrelation we use the moving block boot-

strap with a block length of T
1
4 for the simulation based testing (Hall et al.,

1995). For the empirical application we combine the ideas of the wild- and

blockbootstrap to account for dependent and heteroskedastic data. An al-
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ternative for an appropriate bootstrap procedure robust to underlying het-

eroskedasticity would be the pairs bootstrap, but Flachaire (2003) compares

different heteroskedasticity-robust bootstrap procedures and finds that the

wild bootstrap of Davidson and Flachaire (2008) outperforms other wild and

pairs bootstrap methods. The bootstrap procedure accounting for both het-

eroskedastic and autocorrelated observations looks like this:

1.) Estimate both models and calculate the test statistic Ĉ.

2.) Estimation of the model under H0 yields unbiased parameter estimates

and thus provides the bootstrap data-generating process (DGP).

y∗t = ft(θ1) + η∗t ξt at, (8)

where at =
√

n
n−k

and ξt =


1, with probability 0.5

−1, with probability 0.5

. After the

rescaling is done, the residuals are blocked using the moving block

procedure mentioned above with a block length of T 1/4.

3.) B bootstrap samples are drawn from 8. B needs to be chosen such that

the level of significance times (B + 1) is an integer.

4.) For each B, the bootstrapped test statistic C∗ is computed similar to

the original test statistic.
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5.) The bootstrap p-value is computed by

p∗(Ĉ) =
1

B

B∑
j=1

1(C∗
j ≥Ĉ), (9)

where 1(.) is an indicator function.

The bootstrap p-value converges faster to the true p-value than the asymp-

totic p-value does, given that the bootstrap test statistic’s distribution con-

verges to the true distribution as sample size is increasing and thus the

bootstrap test statistic is asymptotic pivotal (Beran, 1988). As shown by

Davidson and MacKinnon (2002), the test statistic for the standard linear

regression model is asymptotically pivotal except one special case (θ1 = 0).

Therefore we assume for the time being that this property holds for this

(more complicated) model, too.

3.2. Finite sample properties

This section compares the performance of the test with its bootstrapped

counterpart. We use both models as data generating processes with the fol-

lowing parameterizations that are typical for returns of stock indices:

GARCH: ϕ = 0.0001, α = 0.09, β = 0.9

SV: γ = −0.005, ϕ = 0.98, σξ = 0.01.

Table 1 and 2 report the results of a Monte Carlo Simulation with 1000 repli-

cations for the empirical size. The corresponding null hypothesis for table 1

is H0 : GARCH and H0 : SV for table 2. As mentioned above, it is often

assumed that the test statistic follows a tn−k−1 distribution even though it is
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well known that the distribution can be quite different. Because the sample

size is really big (T=1000 up to 5000) the corresponding t-distribution is

(almost) similar to the N(0,1)-distribution and we assume that Ĉ ∼ N(0, 1).

The sample sizes were chosen to reflect typical sample sizes of empirical stud-

ies, because the proposed models are normally calibrated to daily data of at

least three years. The purpose of the simulation is to test whether the the

assumed distribution of the test statistic is viable and if by using a boot-

strapped based test statistic the empirical size bias can be reduced.

Table 1 shows that the test almost always keeps its theoretical level of sig-

nificance for all sample sizes. The bias seems to diminish as sample size

increases. The bootstrapped version of the test enhances the performance

to some extent given that the performance was already good. Especially

the overrejection of the small sample sizes for a level of significance of 0.1 is

reduced within the bootstrap framework (see table 3). Things change if we

exchange the model under H0 from GARCH to SV. If the DGP is the SV-

model, the test overrejects for all levels of significance and all sample sizes.

Using the bootstrapped version of the test the performance is enhanced dra-

matically. The empirical size meets the theoretical level of significance and

thus the bootstrapped version of the test is able to discriminate between the

proposed models.
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Table 1: Empirical size of the C-test (DGP=GARCH-model)

T
Level of significance 1000 2000 3000 4000 5000

0.01 0.009 0.006 0.009 0.008 0.012

0.05 0.050 0.053 0.045 0.048 0.049

0.10 0.107 0.115 0.094 0.094 0.098

Table 2: Empirical size of the C-test (DGP=SV-model)

T
Level of significance 1000 2000 3000 4000 5000

0.01 0.025 0.023 0.018 0.020 0.022

0.05 0.090 0.085 0.097 0.084 0.088

0.10 0.168 0.169 0.154 0.155 0.149

Table 5 and 6 reports the empirical power of the bootstrapped version

of the test. The power of the test is evaluated for different values of α and

the difference from 0 of the true parameter value is displayed by ∆ α. The

power results are very encouraging especially for the empirically most crucial

sample sizes. If the sample size is increased, the power increases too in a

rapid fashion. By increasing ∆ α, the test is able to detect the false null

hypothesis much faster.

4. Empirical application

This section uses the proposed test to discriminate between GARCH and

SV-models for modeling return series of economic quantities. We apply the

test to stock index return series and to exchange rate return series. From a
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Table 3: Empirical size of the bootstrapped C-test (DGP=GARCH-model)

T
Level of significance 1000 2000 3000 4000 5000

0.01 0.010 0.008 0.013 0.012 0.008

0.05 0.045 0.049 0.039 0.045 0.046

0.10 0.097 0.098 0.089 0.106 0.095

Table 4: Empirical size of the bootstrapped C-test (DGP=SV-model)

T
Level of significance 1000 2000 3000 4000 5000

0.01 0.010 0.008 0.012 0.013 0.007

0.05 0.049 0.044 0.055 0.051 0.050

0.10 0.104 0.098 0.095 0.093 0.106

Table 5: Empirical power of the bootstrapped C-test (DGP=SV-model)

T
∆ α 1000 2000 3000 4000 5000

0.01 0.27 0.44 0.48 0.58 0.63

0.02 0.50 0.73 0.82 0.86 0.95

0.03 0.72 0.91 0.94 0.96 1.00

0.04 0.84 0.99 0.99 0.99 1.00

0.05 0.92 0.99 0.99 1.00 1.00
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Table 6: Empirical power of the bootstrapped C-test (DGP=GARCH-model)

T
∆ α 1000 2000 3000 4000 5000

0.01 0.45 0.76 0.92 0.98 0.99

0.02 0.52 0.86 0.97 0.99 1.00

0.03 0.66 0.95 0.99 1.00 1.00

0.04 0.72 0.96 0.99 1.00 1.00

0.05 0.77 0.98 1.00 1.00 1.00

theoretical point of view, one could argue that for stock index return series

the additional nuisance parameter in the SV-model can be used to reproduce

the more pronounced uncertainty in emerging markets compared to the G8-

countries. Hence we want to shed light on the question whether our proposed

test confirm these theoretical considerations. We use ten years of daily data

ranging from 11/27/2002 to 11/27/2012 for the following countries: USA,

Germany, France, Great Britian, Japan, Russia, Brasil, China, Taiwan and

South Korea. The first five countries are considered to be one of the most

developed countries in the world, the latter five have the highest weighting

within the MSCI Emerging Markets index. Figure 1 shows four selected stock

index return series. For all return series the typical volatility clusters are ob-

servable, with the most pronounced clustering for the Russian stock index.

Furthermore the volatility for the emerging countries is more pronounced

than for the developed countries. Because the sample size for all ten time

series is roughly 2500, we use a blocklength of 7 for the bootstrap. For each

index we run our proposed test two times substituting the null hypothesis
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H01 : GARCH to H02 : SV for the second run.

Figure 2 shows exemplarily the distribution of the bootstrapped test statis-

tic for the HANGSENG return series. The left hand side corresponds to

H01 : SV and the right hand side corresponds to H02 : GARCH. The added

lines reflect appropriate density functions of a normal distribution for both

null hypotheses.

Table 7 summarizes the results for both null hypotheses. It turns out that

for H01 : GARCH, the null is rejected for all ten stock index return series,

indicating that the GARCH(1,1)-model seems not to be a good model for

describing the returns of the last ten years. Four out of ten times the SV-

model is also rejected. The level of industrialization seems not to matter

as both models are rejected for two more developed countries and also for

two emergent countries. But for three among the four asian countries both

models are rejected, indicating that one needs special care for modeling these

return series.

On the one hand the results are an indication that the pretty simple model

specifications we used here are not able to mimic the behavior of the return

series observed in the real world and more sophisticated model specifications

should be used. On the other hand one could interpret the results as the need

for an additional error term during turbulent times at the financial markets

as the sample includes the financial crisis from 2007 up to today.

Another field of application of the proposed models are exchange rate re-

turns. We apply the test to five different exchange rate return series: US-

Dollar to Euro, British Pound to Euro, Yen to Euro, British Pound to US-
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Table 7: Test statistics for selected stock index returns

Stock Index H0 : GARCH H0 : SV

DOWJONES 6.30∗∗∗ −0.60

DAX 4.36∗∗∗ 1.80

CAC 4.06∗∗∗ −6.18∗∗∗

FTSE 3.26∗∗∗ 1.18

NIKKEI 2.73∗∗ 4.43∗∗∗

BOV ESPA 4.43∗∗∗ 0.17

HANGSENG 6.36∗∗∗ −2.24∗∗

KOSPI 5.19∗∗∗ −0.02

RTS 4.93∗∗∗ 1.48

TAIEX 5.40∗∗∗ 4.30∗∗∗

Notes. Level of significance: *:10%; **:5%; ***:1%

Dollar and Swiss Franc to Euro. Figure 3 shows the corresponding time se-

ries. For all time series the typical volatility clustering is observable. Worth

noting is the peak of the Swiss Franc to Euro series at 09/06/2011. On this

day, the Swiss central bank introduced a minimum level for the exchange

rate of Swiss Franc to Euro of 1.20 and the exchange rate on 09/05/2011

was 1.1122. Due to the announcement the exchange rate climbed up to the

minimum level and resulted in an artificially high one-day return. Table 8

shows the results for the incorporated exchange rates. As for the stock index

returns it stands out that the GARCH-model is always rejected in presence

of the SV-model. For the Japanese Yen to Euro and Swiss Franc to Euro

time series both models are rejected. This results are in line with the previ-
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Table 8: Test statistics for selected exchange rate returns

Exchange Rate H0 : GARCH H0 : SV

US Dollar to Euro −38.10∗∗∗ −1.42

British Pound to Euro −36.63∗∗∗ −1.16

Japanese Y en to Euro −31.62∗∗∗ −2.88∗∗∗

British Pound to US Dollar −37.62∗∗∗ −6.27∗∗∗

Swiss Franc to Euro −32.15∗∗∗ 0.11

Notes. Level of significance: *:10%; **:5%; ***:1%

ous results as both models were rejected for the stock index return series of

selected Asian countries (TAIEX, HANGSENG, NIKKEI), indicating that

the pretty simple models used for the empirical application are not capable

of describing the dynamics of Asian financial markets. In lieu thereof the

SV-model adequately describes the dynamics of three out of five exchange

rate returns.

It is possible that the turbolent last years increase the need for more sophis-

ticated models also for exchange rate returns.

As for the stock index return application, figure 4 shows exemplarily the

distribution of the bootstrapped test statistic for the Swiss Franc to Euro

series. As before, the left hand side corresponds to H01 : SV and the right

hand side corresponds to H02 : GARCH and the shape of the bootstrapped

distribution is close to that of the normal distribution.
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5. Possible extensions

Using empirical data it is not clear which null hypothesis is the natural

one. From a practitioners point of view there is a continuum of competing

models that need to be tested to pick an appropriate one. One possible exten-

sion for testing M different models at once that are all capable of explaining

some (economic) variable y, y = fm(θm) + um ∀ m ∈ M := {1, ...,M}, and is

robust to the sequential testing problem, is the MJ-test introduced by Hage-

mann (2012). The general procedure works like this:

1.) For each model, run regression

y =

(
1−

∑
l∈M\{m}

al,m

)
fm(θm) +

∑
l∈M\{m}

al,m fl(θl) + µ

and compute the test statistic Cn,m. Let Ξn := {Cn,m ∀ m ∈ M} and

MCn := min Ξn.

2.) Test H0 : m∗ ∈ M against H1 : m∗ ̸∈ M and reject the hypothesis, if

MCn > χ2
M−1,1−α, where m∗ stands for the correct model.

This type of test is an intersection-union test of Berger (1982). It tries to

find out if m∗ ∈ M and if this hypothesis is not rejected, m̄ = argmin Ξn is

the natural candidate due to the fact that only the model with the smallest

test statistic can possibly be the correct model.

Using this idea, we can compare in a fairly simple way more than just two

different competing SV/GARCH-models at the same time.
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6. Conclusion

This paper has proposed a simple test for discriminating between nonnested

GARCH- and SV-models. Within this framework it is possible to reject or

accept both model types and thus the test does not implicitly assume that

one of the models has to be the correct one. This respects the fact that all

models are just approximations to the unknown true data generating process.

Applying the test to exchange rate and stock index returns, the SV-model is

preferred to the GARCH-model. But for some time series both models are

rejected, indicating that these rather simple models may not be adequate for

describing the turbulent last years reasonably well.

Extending the proposed test to compare more than just two models out of the

infinite universe of GARCH- and SV-models is a topic for further research.
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Figure 1: Returns of selected stock indices from 11/2002 - 11/2012

21



Bootstrapped teststatistic

D
en

si
ty

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

Bootstrapped teststatistic

D
en

si
ty

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

Figure 2: Distribution of the bootstrapped test statistic for the HANGSENG return series
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Figure 3: Returns of selected exchange rates from 05/2003 - 05/2013
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Figure 4: Distribution of the bootstrapped test statistic for the Swiss Franc to Euro return
series
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