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On Quadratic Expansions of L og-Likelihoods
and a General Asymptotic Linearity Result

Marc Hallin, Ramon van den Akker, and Bas J.M. Werker

Abstract Irrespective of the statistical model under study, thevdgion of lim-
its, in the Le Cam sense, of sequences of local experimeeés[{§-[10]) often
follows along very similar lines, essentially involvingfféirentiability in quadratic
mean of square roots of (conditional) densities. This aragstablishes two ab-
stract and very general results providing sufficient andIpeecessary conditions
for (i) the existence of a quadratic expansion, and (ii) tegngptotic linearity of
local log-likelihood ratios (asymptotic linearity is nest] for instance, when un-
specified model parameters are to be replaced, in sometistatisnterest, with
some preliminary estimator). Such results have been éstebl, forlocally asymp-
totically normal (LAN) models involving independent and identically dibtrted
observations, by, e.gl[J[1], [11] arld]12]. Similar resulte provided here for mod-
els exhibiting serial dependencies which, so far, have treated on a case-by-case
basis (se€ [4] and[5] for typical examples) and, in generalger stronger regularity
assumptions. Unlike their i.i.d. counterparts, our ressektend beyond the context
of LAN experiments, so that non-stationary unit-root tinegies and cointegration
models, for instance, also can be handled (ske [6]).
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1 Main notation and some preliminary results

For eachT €N, let(Qr,.%7) be a measurable space on which two probability mea-
suresPt andPy, are defined. LergC---C JTT C JT be a sequence of increas-
ing o-fields. Still forT € N, define the I’eStI’ICtIOI’ET = PTWTT and i :=Pr| 2

of ]P’T and Pt, respectively, toJTT Using obvious notation, similarly define,
fort =0,...,T, the restriction®r; ;= ]P’ﬂyn and Rt := Pr|#,. The Lebesgue
decomposmon oPri on Pry (with respect ta%T¢) takes the form

A) = ALTtht+ﬁTt(Am Nr) A T,

whereNrt € .Fry is such that P;(Nr¢) = 0 andLt is the Radon-Nikodym derivative
of that part ofPr¢ which is absolutely continuous with respect tg P
The likelihood ratio statistit. Ry for Pr with respect to P is, by definition,
LtT. PutLRyo := Ltg, and define the conditional likelihood ratio contributioh o
observatior as
LRyt = LTt/LT, o1, t=1,....T,

with the convention 00 = 1. Then, the likelihood ratio statistidRr factorizes into

T
LRr =[ |LRrt, Pr-a.s.
i}

This factorization follows from the fact that, undef,RLt:: 0 <t < T} is a super-
martingale with respect to the filtratigiZ7r: : 0 <t < T} (which is easy to check)
by repeated application of the following Lemma wih= Lt¢, Y = Lt t—1, and
F = y‘rvtfl, andt=1,....T.

Lemma 1. Let X be a nonnegative, integrable random variable and%f -eneasurable
random variable satisfying ¥ E[X|.7]. Then, Xl ;y_q, =0a.s.

Proof. This readily follows from the fact that
0< EXI[{YZO} = EE[X|.#] ]l{yzo} < EY]l{Y:o} =0. 1

We conclude this section with two lemmas that are neededdrsélguel. The
first one is a consequence of Theorem 2.23 and Corollary 3[3].inWe refer to
Lemma 2.2 in[[2] for additional details.

Lemma2.If, for all T € N, the square-integrable procegs(ti: 1<t <T} is
adapted to the filtration.#r()o 1 and satisfiesy, E [XZ | .7t 1-1] = op(1)
as T — oo, then,

.
Zix%tZOpl and Zth EXrt | 27 t-1]) = 0p(1)

as T— oo,
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The second lemma follows by an application of a result duevorétzky (see
the proof of Theorem 2.23 in[3]).

Lemma3. If, for all T € N, the procesgXt:: 1<t < T} is adapted to the filtra-
tion (F1t)o<7 and satisfies, for ald > 0,

.
ZE[X%tﬂ{\le\>5} | F1,t-1] =0p(1)
=

as T— oo, thenmax—y,..1|Xrt|=0p(1) as T — oo.

2 Quadratic expansions of log likelihood ratios

The following proposition provides a general sufficientdibion for the existence of
a quadratic expansion of local log likelihood ratios. Athlts, op, andOp quantities
are to be understood ds— .

Proposition 1. Suppose that, for some&kN, there exist, for each E N, .Z7¢-
measurable mappings s Qr — Rkand Ry: Qr — R, t=1,...,T, such that the
conditional likelihood ratio contribution LIR can be written as

1 2
LRyt = (1+§( /TSn+Rn)) : 1)

where

(a) hr is a bounded (deterministic) sequencéify

(b) foreach TeN, {Sry: 1 <t < T}is aPr-square integrable martingale difference
array with respect to the filtratiod %1 : 0 <t < T}, satisfying the conditional
Lindeberg condition and with tight squared conditional nemts, i.e., such that,
underPr,

EP‘r[STI|yT,t71]:Oa t:].,...,T, (2)

.
3 En (M Sr)* 1 s,y | F7 1] =0p() forall 5>0,  (3)

and ;
Jri= ZlEpT [SriSre | #7111 = Op(2),
t=

(c) the remainder terms-Rand the null-sets N from the Lebesgue decomposition
of Pr onPr are sufficiently small, i.e., undé,

.
t;EpT [Re; | 77, 1-1] = 0p(1) (4)
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and
T

t;(l —Epr [LRre | Fr t-a]) = 0p(1), (5)

(d) underPr, logLRro = 0p(1),

then, undeiPr, the log likelihood ratio admits the quadratic expansion
l 1
logLRt = hfr ZSH — éh{rJThT + Op(l). (6)
t=

Proof. Letr : 2x+— r(2x) := 2(log(1+X) —x+x?/2), and rewrite the log likeli-
hood ratio statistic as

T T
1
logLRt = 20|Og LRri = Op(l) + Zlh{rSrt — éh{F‘]T ht
t= =

T

.
+% <h/TJThT _tzi(h/TSTt)2> +tzi(RTt —Epr [Rrt | F1,1-1])

1 T 1 T . T ) /
_ ZI;R% - Et;hTSTtRTt+ <tziEPT [Rrt | Fr.1-1] + ZhTJThT>
T

+ 3 1 (frSr+ R, ()

where we used Condition (d) to neglect the first termLBg. To establish[{6), we
show that the six remainder terms on the right-hand sidg)cdl{Zonverge to zero
in probability under p.

By Theorem 2.23 in[3], Condition (a) and (2)}(1) we have

T

zi( /TSTt)Z —htJdrhr = 0p(1), (8)

t=

which shows that the first remainder term is indeg(lL).

Since(Ltt)o<t<T is a Pr-supermartingale, we havesH Rry < 1. SinceSyy is
also R--square integrable, it follows frorhl(1) thB§: is Pr-square integrable. From
Lemmd2 and{4), we now immediately obtain

T T
Z(RTt —Ep; [Rrt | Z7,t-1]) = 0op(1) and Z\R%t =op(1), 9)
=

t=

i.e. the second and third remainder terms also are negdigibl

Next we show that the remainder teftty2) 51, h; Sr¢Rrt vanishes asymptoti-
cally. First note that Condition (aL(1) arid (8) jointly itgs [, (W Srt)? = Op(2).
Combined with[(P), an application of the Cauchy-Schwargirsdity thus yields the
convergence of the fourth remainder term.
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To prove the negligibility of the fifth remainder term [ (Bhserve tha{{1)[{2),
@, @), combined with the Cauchy-Schwarz inequality agantail

T T T
Z(EH LRt | F1,1-1] 1) = Z\EPT [N Srt | P, 1] + ZEPT [Rrt | 1 1-1]
t= t= t=

170 / 2 o 1 a
H32 B [(PrSr)? | .14 +3 2 Eer [Rie| 710
14 /
+5 3 Eer [(MSre) Rre | 77, 14]
t=
T 1

= ZlEpT [Rrt| #1 t-1]+ Zh’TJThT +0p(1).
=

Now, the second part dfl(4) implies

T
1

Z\EPT [RTt | y‘r, tfl] + thrJT hr = Op(l). (10)

t=

Thus, the fifth remainder term inl(7) also is negligible.
Turning to the sixth and last remainder term, let us first stimat

N
max_|h;Sr¢+Rre| =op(1) and zi]h/TSn + Rn\3 =op(l). (11)
t=1,....T t=

As (@) and[(#) yield, fo’ > 0,
- 2
ZEH |:(h£I'STt + RTt) IL{|h£|—ST[+RT1|>6} | y‘r’ t71i|
t=

< T
2
§4t;EPr [(h’TSn) Il{|h/TSn|>6/2} | yT,tfl} +4tziEpT [R$t | 77 1]
= op(1),

the first part of [(Il1) follows as an application of Lemia 3. Ereond part is ob-
tained from the latter by taking out the maximum (which tetalzero) and by
observing that the remaining quadratic term is bounded abaiility. In view of
the first part of[(Il1), indeed, it is sufficient to study the &eébr of the final re-
mainder term on the evetith; Sry + Rr¢| < 1}. On this set, this remainder term is
bounded: using the fact that

1, 2, 1
— — < — < —
log(1+x) —x+ 5% | < 3X for x| < 5

indeed, we obtain
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T

Zlf (hrSre+Rrt)

t=

gi 5Tt+RTt

Convergence to zero is now obtained from the second pdrfhf This completes
the proof of the proposition. O

3 Asymptotic linearity: general result

This section provides a sufficient condition for the asyrtiptiinearity of a fairly

general class of statistics, extending and generalizing@&ition A.10 in[[11] to the

case of serially dependent observations under possibRLAdhIimit experiments.
All limits are taken ag’ — oo.

Proposition 2. Let, foreach Te N, {Z1¢: 1<t <T}and{Z;: 1<t < T} beaPr-
square integrable martingale difference array, anégsquare integrable martin-
gale difference array, respectively. Suppose that Camkitia)-(d) in Propositiof]1
hold, as well as the following Conditions (e)-(h):

(e) (th:lsn,JT) converges in distribution, undé¥r, to a limit (A, J) that satisfies,
foralla € R¥, Eexp(a'A — 3a'Ja) = 1;

°
(f ZEPT [(ZrvTRT = Z1)? | #r, 1] = 0p(1) underPr;

(9) ZLEPT ZTt | JTt 1} Op( ) underPT and ZLEPT ZTt | JTt 1} Op(l)

underPr; B _
(h) the conditional Lindeberg condition holds fdZr: : 1 <t < T} under Py,

T
namely, for alld > 0, ZlEf;T {Z%t]l{lznlw} | T, t,l} = op(1) underPr.
t=

T T
Then, lettingT := 217“ = ZlEpT [(WrSrt)Zrt | 1, -1], we have, undePr,
=

t=

T T
t;ZTt = t;ZTt — fT + Op(l). (12)

Proof. The proof decomposes into four parts. In Part 1, we show [i#tHolds if,
under R,

T
t;ZTt (1— vV LRTt) + %I} = Op(l). (13)

In Part 2, we show thaf (13) holds provided that, still undgr P
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T ~ ~
> Zn(h Sro) — i = oel(L). (14)
t=

In Part 3, we introduce a new sequence of probability measi#e) and show
that it is contiguous tdPr). In Part 4, we establish thdf{14) holds under the new
sequencéPr ). In view of contiguity, it also holds und€Pr), which concludes the

proof. 3
Note that Lemmé&]1, Condition (e), and Le Cam'’s first lemma intpht (Pr)

and (Pr) are contiguous. It follows thaip's and Op’s under(Pr) and (Py) coin-
cide; therefore, in the sequel, we safely can wageand Op without specifying

whether(Pr) or (Pr) is the underlying sequence of probability measures.
Part 1.Recalling thait := S, Tt := 31 Ep; [(0;:Srt)Z7t | Fr. 1), we have

T T
~ ~ ~ 1~
t;{Zn —Zri 411t = t;ZTt (1-VLRm) + Sl
T
+ ZL{ZTtV LRr¢ — Zrt — Ep; [Z1evLRrt | F7, 1] }
=
T . 1.
+ ZL{EPT [ZreVIRre | F7 1-1] + E’Tt};
=
hence,[(IB) implies (12) in case
T
ZL{ZTW LRr¢ — Zrt— Ep; [ZriVLRre | 1 1-1) } = 0p(1) (15)
t=

and

T

tZL{EpT [ZTt\/ LRt | 3‘\T) tfl} + %TTt} = Op(l). (16)

As (18) is implied by Condition (f) and Lemri& 2 (recall that EZ1¢ | #7 +—1] =0),
we only need to show thdi{lL6) holds in order to complete Paielhave

T T
t;EPT {Zn\/ﬁn | Z1, tfl] :t;EpT [Zn(l— VLRy) | Z1. tfl}
T
+ ZEH [(ZTt\/LRTt —Zr)(1-VLRry) | F1.1 1
=
T ~
+ ZlEpT [ZriLRre | F1 ¢ 1]
t=
1~ 1w, @,.0
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with
FT = ZlEﬁ [Z1Rrt | F7 11
P = ZE [ (ZrevLRrt — Zrt)(1— VLRm) | 7, tfl} , and
43) :t;EPT [ZriLRrt | 7, 1-1] -

Starting withr%l),

2
.
|I’_(r1)|2 < <Zl\/EpT [Z'Iz't | T, tfl] \/EpT [R—zrt | T, t1}>
t=
T T
< I;EPT (22, | 1. 14] I;EPT [R&: | 7, 1-1],

so that [[#) and Condition (g) imply(Tl) = 0p(1). In the same way[{1)[14) and
Condition (f) yieldr(T2> =o0p(1). As forr@, since B, [Zmﬁ‘t t-1] =0, we obtain,
using [4) and Condition (g) again,

2

-

|r(T3>|2 _ ZEﬁT [ZTtIanIfT,t—l]
t=

T
Zl 1 EpT LRt | y‘r t— 1]) Op(l).

t
1 T - 1 T N T
=5 leTtRTt =3\ ziz%t ZR%t
t= t= t=

Now, by (9),5{_, R%, = op(1) and, by Conditions (g) and (h) and an application of
[3, Theorem 2.23]y/_, 72, = Op(1). Hence, [(IB) follows froni{14).

Part 3. For all T € N, define the new sequence of probability meaSlQFé@)thl
on %y, absolutely continuous with respect tg; Pwith density

—

< ZlE ZTt|r/Tt 1
=

Part 2. We have

leTt (1—-vLRy) + ZLZTt

AP 5 e
rﬁ_t = g LRrsCrs
with, fors=1,...,T, ¢t := Ep, [VLRrs| Z1s-1]. Note that the probability that

all cTs are stnctly positive tends to one, sinEé (4) implies
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T
'[I'i£>nooPT [(3se{1,....T}:cri=0] < lim Py [Zl(l—EH[LRTtlfT,tl]) >1| =0.

—00

In the sequel, we thus safely can ignore the evegige {1,...,T}: ¢;i = 0}.
Defining B := P, note that R, is the restriction of P to .%7;. Because of{?2), we
havecrs = 1+ 3Ep; [Rrt | Fr,1_1]. This yields, using an expansion of Idg+ x),

@), and[ID),

Zlog cTt = hTJT ht +op(1).

and thus also
max. |cre — 1] = op(1). 17)

Inserting [6) and recalling that ladRto = op(1), we obtain, under,

dP. 14 l . L 1, -
Iogﬁ = EtzilogLRTt—t;IogcTt +op(1) = Et;hTsTt_ éhT|ThT+Op(1).

Condition (e) and Le Cam’s first lemma entail that the seqes(i® ) and(Pr) are

mutually contiguous. This completes Part 3 of the proof.
Part 4.Let us show that, under the measu(esg),

N
ZEPT [Zri(hSre) | Fr, 1] = i1 +0p(1) (18)
=

and

T T 5
t;ZTt(h/TSTt) = t;EP’T [Zre(hrSr) | F7t-1] +0p(D). (19)

Sinceop(1)’s under(P;) areop(1)’s under the contiguoudr ) too, a combination
of these two results yieldE{lL4) and concludes the proof.
Starting with [I8), we have

T T
ZlEpT [Zre(hrSre) | 1 1-1] = ZCTtEPT [ZTt\/ﬁTt(h/TSTt) | F1, tfl}
t= t=

=T+ Z cre— 1)Ep; [Zre(h5Sr) | P, 11

+ ZCTtEPT [(th\/ﬁTt —Z7t) (W Smy) | T, tfl} :
t=
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Condition (f) and [(1I7) imply [[18) sincg_, Ep, [(W;Sre)? | . 1-1] = Op(1)
(seel@)) ang " Ep; [22, | Fr,1-1] = Op(1) (see Condition (g)).

Turning to [I9), first note thay_; (h;Srt)? = Op(1) andy{ ; Z2, = Op(1) by
an application of{[8, Theorem 2.23] arid (3} (1), Conditigh &nd Condition (h),
respectively. Hence,

T T 3
zi|ZTt||h/T5rt| =0p(1) and tEiEPT[lZTtllh’TSrtl | F1.1-1] = Op(1).

t=

Let £,0 > 0. In view of the previous remarks, we can fidand T; such that,
forT > Ty,
Pr(ari) < 5/6

with
T
,szfa(ﬂ — {tzi}(h’TSn)ZTt — EpT [(h’TSn)ZTt | F1. t,l]‘ > B} )

Settingn := min{1,v/3£(108B+2)) %/?} and

o= {lzrd <n f O {IMesl <n},

decompose
<5 e 3 L@, 0
ZZTt(h%&t) - ZiEpT [Zre(hrSte) | Fri-1] =7 — PY + Py,
t= =
with
L.«
pri= Y Zn(rSrolae,,

—

5
»
= M= ]

Ep

2 [ZTt(h{rSTt)]er’c,n | 71, t—1} , and

w

.
p(T) = Z\ZTt(h'TSn)llgy,%Tt - ZEVT {ZTt(herTt)]l‘ofnrn | 71, tfl} -
t= t=

Let us show that there exists such that, for all > T*, P; (|p¥>| > 8/3) <9/3,

which, ase > 0 andd > 0 can be taken arbitrarily small, yields{19). Applying
Theorem 2.23 in[3][{1)[{3), Condition (g) and Condition, (ive obtain

T " T
> ZEiZn| > n}+ 3 (S [MhSn| > 1} = op(2).
t= t=

This yields, using[{]1) and Condition (g) again,
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T -
|p%—1>| < \/t;(hfrsn)zlﬂh{rSTd - n}\/tzlz%t
T T -
' \/tzi(h/TSTt)z\/tziz%tlﬂsz >N} =o0p(1).

From [3), [1), Condition (g) and Condition (h), we also obtai

T T
| < V 3 Ghier [Z0012n > n} | F1.1 \/ 3 Eer [(0:Sr)? | 77,
t= t=

T T
+ \/Z‘LC'lz'tEﬁ’T [Z%t | 1, Ifl] \/ZLEF’T [(WrSre)21{|N; Sre| > n} | Pt 4]
= =
= Op(l).

Hence, there exisf such that, for all > T, P (|p(Tj)| > 8/3) <9/3forj=1,2.
Next, define the martingales

t
{ATt = Zl{ZTt(h'TSTt)llgf,ﬂt —Ep [Zrt(hrSrt) L 1, | yT,sfl]} 1<t < T},
S=

the stopping times”(T) := inf {t € N| y._, |AAr¢ > B}, and the processes

{[Mro=Apm 1<t <T},

namely, the stopped versions of the martingdkes : 1 <t < T }—which thus also
are martingales. Note thidAr¢| < 2n2. We obtain

T (M
Ep Mfr = ZEP’T (Mre—Mr ¢-1)? < Epr [ 21 (AATt)Z]
t= t=

7(T)
< 2n°Ep, [ Zl IAAnI] <2n?*(B+2n?).
t=

So, forT > Ty, we have

Pr (177] > £/3) = P (|ArT| > £/3) < Pr (Mr # Arr) + P (Mr| > £/3)

<Pr(#M <T)+Pr(Mrr| > ¢/3)

5 18n2(B+2)

5
<Pr(efy ) +Pr(MrT| > /3 < o+ == < 2.

Letting T* := max{T;, T} completes the proof. O
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