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Abstract

This paper considers linear models with a spatial autoregressive error structure.

Extending Arnold and Wied (2010), who develop an improved GMM estimator for

the parameters of the disturbance process to reduce the bias of existing estimation

approaches, we establish the asymptotic normality of a new weighted version of this

improved estimator and derive the efficient weighting matrix. We also show that

this efficiently weighted GMM estimator is feasible as long as the regression matrix

of the underlying linear model is non-stochastic and illustrate the performance of

the new estimator by a Monte Carlo simulation and an application to real data.
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1. Introduction and Summary

We consider data observed on spatial units like regions or districts, where dependen-

cies between units induced by spatial closeness should be taken care of in statistical

model building. In particular, we consider linear models with a spatially autoregressive

error structure along the lines of Cliff and Ord (1973). There are two competing esti-

mation approaches for the corresponding parameters. They can either be estimated by

ML, see Anselin (1988), or, computationally more efficient, by the Kelejian and Prucha

(1999) generalized method of moments (GMM) approach. This procedure bases on a

system of three moment conditions, which can be expressed as means of quadratic forms

depending on the innovation process. To create an empirical counterpart, Kelejian and

Prucha (1999) replace the unobservable disturbances by regression residuals and optimize

a quadratic objective function in terms of both the unknown autoregressive parameter

and the unknown variance of the innovation process. The resulting estimator is consis-

tent but suffers from a considerable bias if the sample size is small. To improve upon

small-sample properties, Arnold and Wied (2010) develop a modified GMM estimator for

the spatial autoregressive parameter by formulating the theoretical moment conditions in

terms of residuals. This approach substantially improves bias and MSE in small samples,

while the large sample properties agree with Kelejian and Prucha (1999).

Arnold and Wied (2012) exploit this idea to linear panel data models with spatial error

terms of Kapoor et al. (2007) and Baltagi and Liu (2011) transfer the idea to the spatial

moving average error process in Fingleton (2008).

This paper analyzes the asymptotic properties of the Arnold and Wied (2010) estimator

and gives conditions for asymptotic normality. For the sake of generality the regressors

of our linear models are allowed to be stochastic. It is well known that the statistical

properties of GMM estimators can be improved by efficiently weighting the corresponding

moment conditions. We therefore consider a weighted version of the estimator of Arnold

and Wied (2010). The asymptotic framework of Kelejian and Prucha (2010) enables a

quite general result on asymptotic normality which covers different model classes. We

present the special form of the efficient weighting matrix as well as a consistent estimator

for it. For non-stochastic regressors, the efficiently weighted estimator is shown to be
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feasible in the sense that the unknown parameters enter the efficient weighting matrix

only as scalar factors, so that they are unnecessary to calculate the minimum. As an

additional contribution, we generalize the moment conditions of Arnold and Wied (2010)

to the case of a nonsymmetric projection matrix which maps the disturbances to the

residuals.

The rest of the paper is organized as follows: Section 2 introduces the linear model with

spatially autoregressive errors and the weighted version of the residual based GMM es-

timator. Section 3 presents the asymptotic results and the efficient weighting matrix.

We develop a consistent estimation of the weighting matrix and show that the efficiently

weighted estimator is feasible. Proofs are deferred to the appendix. Section 4 conducts a

Monte Carlo simulation to examine the small sample performance and a real world data

example is analyzed in Section 5. The paper ends with a short summary and suggestions

for further research.

2. Model and estimator

This paper considers a linear regression model with n observations units as follows:

yn = Xnβ + un, (1)

where yn denotes the (n × 1)-vector of observations on the dependent variable, Xn is

the (n × k)-matrix on the explanatory variables and β stands for the (k × 1)-vector of

regression coefficients. The (n× 1) disturbance vector un is generated as

un = %Wnun + εn (2)

with an (n × n)-matrix Wn of known constants, a scalar parameter % and an (n × 1)

innovation vector εn. We impose the following assumptions.
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Assumption 1. For the innovation process {εi,n : 1 ≤ i ≤ n, n ≥ 1}, it holds that

E(εi,n) = 0

E(ε2i,n) = σ2 with 0 ≤ σ2 ≤ b <∞

E(|εi,n|4+η) < ∞ for some η > 0.

Furthermore, ε1,n, . . . , εn,n are independent for all n ≥ 1.

Assumption 2. a) The diagonal elements of Wn are zero for all n ≥ 1. b) The row

sums of Wn are equal to one for all n ≥ 1. c) |%| < 1.

Assumptions 1 and 2 imply that un = (In − %WN)−1εn such that

Cov(un) = σ2(In − %Wn)−1(In − %W
′

n)−1 =: Ωu,n, (3)

where In denotes the (n × n)-identity matrix and A−1 and A
′

stand for the inverse and

the transpose of a matrix A. Feasible generalized least squares estimation of β requires

estimates of the unknown scalar parameters % and σ2.

To this end, Kelejian and Prucha (1999) suggest a GMM approach as an alternative

to (quasi) maximum likelihood estimation. The corresponding moment conditions can

be expressed as quadratic forms in the innovation vector εn. Arnold and Wied (2010)

improve the finite sample properties by explicitly taking into account the difference be-

tween unobservable disturbances and observable regression residuals ûn, where the latter

are given by

ûn = Mnun = Mnyn,

and the projection matrix Mn depends on the estimation approach for β. For example,

OLS leads toMn = In−Xn(X
′
nXn)−1X

′
n and FGLS givesMn = In−Xn(X

′
nΩ̂−1

u,nXn)−1X
′
nΩ̂−1

u,n.

The difference between unobservable disturbances and observable regression residuals can

be characterized by Mn, respectively, and Mn is always available in applications because

it depends only on the choice of estimator for β.

The main idea of Arnold and Wied (2010) is to calculate the theoretical moment condi-

tions in terms of the residuals, since the empirical counterpart has to rely on the residuals
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anyway. The resulting theoretical moment conditions can be expressed as

E


n−1ε

′
nA1,nεn

n−1ε
′
nA2,nεn

n−1ε
′
nA3,nεn

 = 0, (4)

where

A1,n = M
′

nMn − diag(M
′

nMn)

A2,n = M
′

nW
′

nWnMn − diag(M
′

nW
′

nWnMn)

A3,n = M
′

nW
′

nMn − diag(M
′

nW
′

nMn)

and diag(A) stands for a diagonal matrix with the same main diagonal elements as A.

Making use of

Mnεn = Mnun − %MnWnun and WnMnεn = WnMnun − %WnMnWnun,

the theoretical system of equations can be written as

Γn ·


%

%2

σ2

− γn = 0.

The (3× 3)-matrix Γn is given by Γn =



2
n
E
(
u

′
nM

′
nMnWnun

)
− 1
n
E
(
u

′
nW

′
nM

′
nMnWnun

)
1
n
tr
(
M

′
nMn

)
2
n
E
(
u

′
nM

′
n

[
Wn +W

′
n

]
MnWnun

)
− 1
n
E
(
u

′
nW

′
nM

′
nMnW

′
nWnMnWnun

)
1
n
tr
(
M

′
nW

′
nWnMn

)
1
n
E
(
u

′
nM

′
n

[
Wn +W

′
n

]
MnWnun

)
− 1
n
E
(
u

′
nW

′
nM

′
nWnMnWnun

)
1
n
tr
(
M

′
nWnMn

)


,
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and the (3× 1)-vector γn by

γn =

(
1

n
E
(
u

′

nM
′

nMnun

)
,

1

n
E
(
u

′

nM
′

nW
′

nWnMnun

)
,

1

n
E
(
u

′

nM
′

nWnMnun

))′

,

where tr(.) stands for the trace of a matrix. The corresponding empirical counterpart is

Hn ·


%

%2

σ2

− hn =: vn(%, σ2), (5)

where

Hn =



2
n
û

′
nMnWnûn − 1

n
û

′
nW

′
nM

′
nMnWnûn

1
n
tr
(
M

′
nMn

)
2
n
û

′
n

[
Wn +W

′
n

]
MnWnûn − 1

n
ûnW

′
nM

′
nW

′
nWnMnWnûn

1
n
tr
(
M

′
nW

′
nWnMn

)
1
n
û

′
n

[
Wn +W

′
n

]
MnWnûn − 1

n
û

′
nW

′
nM

′
nWnMnWnûn

1
n
tr
(
M

′
nWnMn

)


,

hn =

(
1

n
û

′

nûn ,
1

n
û

′

nW
′

nWnûn ,
1

n
û

′

nWnûn

)′

.

We slightly refine the moment conditions of Arnold and Wied (2010), because we allow

for a nonsymmetric projection matrix Mn such that GLS regression is covered. Now we

can formally define the weighted residual based GMM estimator for % and σ2.

Definition 1. In the spatial error model (1) and (2), let Ψn be a sequence of stochastic

(3 × 3) weighting matrices, which for n → ∞ converges against a positive definite de-

terministic matrix Ψ. The weighted residual based GMM estimator (%̂Ψ,n, σ̂
2
Ψ,n) is given

by

(%̂Ψ,n, σ̂
2
Ψ,n) = argmin

(%,σ2)∈[−1,1]×[0,b]

vn(%, σ2)
′
Ψnvn(%, σ2).

Definition 1 contains the estimator of Arnold and Wied (2010) as a special case for

Ψn = I3 for all n.
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3. Asymptotic results

To develop the asymptotic results, we need some further assumptions, which base on the

assumption sets of Kelejian and Prucha (2010) and Arnold and Wied (2010).

Assumption 3. a) For all n ≥ 1, with probability one, the matrix Xn of (1) is of

full column rank and the absolute entries of Xn are bounded, |xij,n| < cX < ∞. b)

Q := limn→∞ n
−1(X

′
nXn) is a finite regular matrix with probability one. c) The row and

column sums of the absolute elements of Wn, Pn := (In−%Wn)−1 and Mn are bounded by

cW , cP and cM , respectively, i.e., for i, j = 1, . . . , n, n ≥ 1, with probability one it holds

n∑
i=1

|wij,n| < cW ,

n∑
j=1

|wij,n| < cW

n∑
i=1

|pij,n| < cP ,
n∑
j=1

|pij,n| < cP

n∑
i=1

|mij,n| < cM ,
n∑
j=1

|mij,n| < cM .

Assumption 4. For all n ≥ 1, there are random vectors di,n ∼ (1, p) and ∆n ∼ (p, 1)

with E(|dij,n|2+δ) ≤ cd <∞ for some δ > 0 and
√
n‖∆n‖ = OP (1), such that

ui,n − ûi,n = di,n∆n.

Assumption 5. For each n ≥ 1, the smallest eigenvalue λmin

(
Γ

′
nΓn
)

of the matrix Γ
′
nΓn

is bounded away from zero:

0 < λz < λmin(Γ
′

nΓn).

Assumption 6. a) For the sequence Ψn of stochastic weighting matrices and the deter-

ministic matrix Ψ it holds that Ψn −Ψ = oP (1). b) The smallest and largest eigenvalues

λmin(Ψ) and λmax(Ψ) of Ψ fulfill

0 < λ∗ < λmin(Ψ) and λmax(Ψ) < λ∗ <∞.

Assumption 7. Let Dn = (d
′
1,n, . . . , d

′
n,n)

′
with di,n from Assumption 4. For each real
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matrix A with bounded row sums and column sums, it holds

1

n
D

′

nAun −
1

n
E(D

′

nAun) = oP (1).

Assumption 8. For ∆n from 4, there is a deterministic matrix Tn with |tij,n| < cT <∞,

so that
√
n∆n =

1√
n
T

′

nεn + oP (1).

These Assumptions allow for different asymptotic results. First, we consider consistency

of (%̂Ψ,n, σ̂
2
Ψ,n). Arnold and Wied (2010) show that their unweighted version (%̂RB,n, σ̂

2
RB,n)

is asymptotically equivalent to the estimator (%̂KP,n, σ̂
2
KP,n) of Kelejian and Prucha (1999),

i.e.

(%̂RB,n, σ̂
2
RB,n)

P→ (%̂KP,n, σ̂
2
KP,n).

Hence, the consistency of (%̂RB,n, σ̂
2
RB,n) follows directly from the consistency of (%̂KP,n, σ̂

2
KP,n)

(see Theorem 1 of Kelejian and Prucha (1999)). Further, the consistency remains valid if

the estimator is constructed from a weighted objective function as long as the sequence

of weighting matrices converges to a regular and deterministic matrix. Therefore, under

Assumptions 1 to 5, which essentially coincide with the assumptions of Arnold and Wied

(2010) or Kelejian and Prucha (1999), and additionally under Assumption 6, we have

(%̂Ψ,n, σ̂
2
Ψ,n)

P→ (%, σ2). (6)

A detailed proof of this result can be constructed following the arguments of the proof of

Theorem 1 of Kelejian and Prucha (2010).

For the asymptotic normality of the weighted residual based GMM estimator (%̂Ψ,n, σ̂
2
Ψ,n)

we start with some preliminary considerations. The estimator is build by replacing an

unobservable vector of quadratic forms in εn by an observable vector of quadratic forms

in ûn, i.e. we can explain vn(%, σ2) in (5) by

vn(%, σ2) =


n−1û

′
nC1,nûn

n−1û
′
nC2,nûn

n−1û
′
nC3,nûn

 (7)
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with Ci,n := 1
2
(P−1

n )
′
(Ai,n +A

′
i,n)P−1

n , i ∈ {1, 2, 3}. In a second step, (7) can be rewritten

in terms of a sum of quadratic plus linear forms in εn. Consequently, a central limit

theorem (Theorem A1 of Kelejian and Prucha (2010)) applies and yields the following

main result:

Theorem 1. Under Assumptions 1 to 8, for n→∞ it holds that

√
n

 %̂Ψ,n

σ̂2
Ψ,n

−
 %

σ2

 d→ N
(

0, (G
′

nΨGn)−1G
′

nΨSnΨGn(G
′

nΨGn)−1
)

where

Gn = Γn


1 0

2% 0

0 1



Sn = Cov

 1√
n


1
2
ε
′
n(A1,n + A

′
1,n)εn + a

′
1,nεn

1
2
ε
′
n(A2,n + A

′
2,n)εn + a

′
2,nεn

1
2
ε
′
n(A3,n + A

′
3,n)εn + a

′
3,nεn


 ,

ai,n = Tnαi,n with Tn of Assumption 8 and αi,n = 2n−1E(D
′
nCi,nun), i ∈ {1, 2, 3}.

The proof of Theorem 1 is given in the appendix. For the entries sk`,n of Sn it holds

sk`,n =
1

2n

n∑
i=1

n∑
j=1

(aij,k,n + aji,k,n)(aij,`,n + aji,`,n)σ4 +
1

n

n∑
i=1

ai,k,nai,`,nσ
2, (8)

where aij,h,n denotes the element in row i and column j of the matrix Ah,n and ai,h,n

stands for the ith entry of the vector ah,n. This result is a direct consequence of Lemma

A.1 of Kelejian and Prucha (2010).

Since the regression matrix Xn is allowed to be stochastic, Theorem 1 covers more com-

plex model classes like the SARAR(1,1) model with spatial dependencies in both the

response and error terms. On the other hand, in some applications all regressors xi,n are

deterministic. Therefore, we state a special case of Theorem 1 for spatial error models

with deterministic regressors.
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Corollary 1. Suppose that Assumptions 1 to 8 hold. Assume further that the matrix Xn

and hence the matrix Dn of Assumption 4 are non-stochastic. Then it holds that

√
n

 %̂Ψ,n

σ̂2
Ψ,n

−
 %

σ2

 d→ N
(

0, (G
′

nΨGn)−1G
′

nΨS∗nΨG(G
′

nΨGn)−1
)
,

with Gn as in Theorem 1. In this case the entries s∗kl,n of the matrix

S∗n = Cov

 1√
n


1
2
ε
′
n(A1,n + A

′
1,n)εn

1
2
ε
′
n(A2,n + A

′
2,n)εn

1
2
ε
′
n(A3,n + A

′
3,n)εn




are of the form

s∗kl,n =
1

2n

n∑
i=1

n∑
j=1

(aij,k,n + aji,k,n)(aij,`,n + aji,`,n)σ4. (9)

Corollary 1 immediately follows from Theorem 1. For deterministic regressors, S∗n equals

the covariance matrix of the original moment conditions. Furthermore, S∗n does not

depend on % but only on σ2, since the matrices Ai,n, i ∈ {1, 2, 3}, are fully known.

This reduces the complexity of S∗n and the asymptotic covariance matrix of (%̂Ψ,n, σ̂
2
Ψ,n)

considerably. Therefore, we now restrict ourselves to deterministic regression matrices

Xn and develop further results for this model class.

The covariance matrix S∗n depends on σ2 only through a scalar parameter. Consequently,

with the continuous mapping theorem we receive a consistent estimator Ŝ∗n simply by

plugging in a consistent estimator of σ2, for example σ̂RB,n. We now turn to the matrix

Gn. Consistency of (%̂Ψ,n, σ̂
2
Ψ,n) implies Hn−Γn = oP (1). Again, plugging in a consistent

estimator for % gives a consistent estimator Ĝn of Gn by

Ĝn = Hn


1 0

2%̂RB,n 0

0 1

 .

We now combine these results with the help of the continuous mapping theorem and
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Slutzky’s theorem to yield a consistent estimator for the asymptotic covariance matrix

given in Corollary 1.

Lemma 1. In the spatial error model 1 and 2 with a deterministic regression matrix Xn

and known weighting matrix Ψ, it holds under Assumptions 1 to 8 that

(Ĝ
′

nΨĜn)−1Ĝ
′

nΨŜ∗nΨĜn(Ĝ
′

nΨĜn)−1 p→ (G
′

nΨGn)−1G
′

nΨS∗nΨGn(G
′

nΨGn)−1. (10)

Next we consider the weighting matrix Ψ. An efficient choice of weighting matrix improves

the statistical properties of GMM estimators. The optimal weighting matrix is the inverse

of S∗n so that we define the efficiently weighted residual based GMM estimator as

(%̂eff,n, σ̂
2
eff,n) = argmin

(%,σ2)∈[−1,1]×[0,b]

vn(%, σ2)
′
(S∗n)−1vn(%, σ2).

The estimator is not operational for applications because (S∗n)−1 depends on σ2. However,

we can first estimate σ2 and S∗n and then use this estimates for the weighting matrix in

a second step. This leads to the following two-stage estimation procedure:

1. Estimate % and σ2 with the unweighted estimator (%̂RB,n, σ̂
2
RB,n) of Arnold and Wied

(2010), i.e. set Ψn = I.

2. Use σ̂2
RB,n to consistently estimate S∗n and finally calculate the weighted estimator

(%̂RBW,n, σ̂
2
RBW,n) by

(%̂RBW,n, σ̂
2
RBW,n) = argmin

(%,σ2)∈[−1,1]×[0,b]

vn(%, σ2)
′
(
Ŝ∗n

)−1

vn(%, σ2).

Note that any procedure that leads to a consistent estimation of σ2 could be used in

the first step. We still recommend the estimator of Arnold and Wied (2010) for the

sake bias reduction. This two-stage estimator leads to an operational alternative to the

efficiently weighted estimator. For the case of non-stochastic regressors, this two-step

procedure is superfluous since the unknown parameter enters S∗n only as a scalar factor

such that the efficient GMM estimator (%̂eff,n, σ̂
2
eff,n) is feasible. This remarkable property

of (%̂RBW,n, σ̂
2
RBW,n) and (%̂eff,n, σ̂

2
eff,n) is formulated in the next theorem.
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Theorem 2. In the spatial error model (1) and (2) with a non-stochastic regression

matrix Xn, the efficiently weighted residual based GMM estimator (%̂eff,n, σ̂
2
eff,n) is feasible

in the sense that it equals any estimator weighted by the inverse of a consistent estimation

Ŝ∗n of S∗n, i.e.

argmin
(%,σ2)∈[−1,1]×[0,b]

vn(%, σ2)
′
(S∗n)−1vn(%, σ2) = argmin

(%,σ2)∈[−1,1]×[0,b]

vn(%, σ2)
′
(Ŝ∗n)−1vn(%, σ2).

The proof is straightforward since both objective functions are quadratic forms with

regular weighting matrices that differ only with regard to a scalar parameter (σ4 for the

elements of S∗n, σ̂4 for the elements of Ŝ∗n, compare (9)). Because this parameter does not

influence the minima of the objective functions, both minima are equal.

4. Monte Carlo Simulation

The weighted version (%̂RBW,n, σ̂
2
RBW,n) improves the estimator of Arnold and Wied (2010),

which itself has been developed to improve the estimator of Kelejian and Prucha (1999) in

the first place. We investigate the small sample properties with the help of a Monte Carlo

simulation. Our specifications follow those of Arnold and Wied (2010), i.e. we consider

the model yn = Xnβ+un with un = %Wnun+ εn for n = 20, 100, 400, % = −0.5, 0, 0.5 and

σ2 = 1. The matrix Wn relates every ui,n to the three elements immediately preceding

and succeeding it, each with the value 1
6
. The matrix Xn contains an intercept and two

binary regressors and we simulate 10,000 observations of εn with εi,n ∼ i.i.d. N(0, 1). We

compare our new weighted estimator (%̂RBW,n, σ̂
2
RBW,n) with the two unweighted versions

(%̂RB,n, σ̂
2
RB,n) and (%̂KP,n, σ̂

2
KP,n) with respect to the bias and the MSE. Table 1 shows the

results.

Our new weighted residual based estimator for the autoregressive parameter % reduces

the bias up to 98% as compared to the estimator of Kelejian and Prucha (1999) and up

to 92% when compared to the unweighted version of Arnold and Wied (2010) for n = 20.

Especially for this small sample size, the MSE of our estimator rises up to 60% compared

to the unweighted version, but it still deceeds the MSE of the Kelejian and Prucha (1999)

estimator. The rising variance might result from the higher complexity of the two-stage

estimation procedure. The results for the estimators of σ2 show essentially the same
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n % Bias MSE Bias MSE
20 -0.5 %̂RBW -0.0127 0.8031 σ̂2

RBW -0.0583 0.1426
20 -0.5 %̂RB -0.1428 0.5677 σ̂2

RB -0.0926 0.1353
20 -0.5 %̂KP -0.5996 1.0271 σ̂2

KP -0.2751 0.1556
20 0 %̂RBW -0.0173 0.9288 σ̂2

RBW -0.0630 0.1332
20 0 %̂RB -0.1519 0.5796 σ̂2

RB -0.0923 0.1258
20 0 %̂KP -0.6610 1.0921 σ̂2

KP -0.2667 0.1494
20 0.5 %̂RBW -0.0148 0.8683 σ̂2

RBW -0.0527 0.1400
20 0.5 %̂RB -0.1621 0.5471 σ̂2

RB -0.0803 0.1264
20 0.5 %̂KP -0.6667 0.9960 σ̂2

KP -0.2334 0.1384
100 -0.5 %̂RBW 0.0018 0.0455 σ̂2

RBW -0.0135 0.0222
100 -0.5 %̂RB -0.0281 0.0524 σ̂2

RB -0.0184 0.0225
100 -0.5 %̂KP -0.0991 0.0630 σ̂2

KP -0.0591 0.0241
100 0 %̂RBW -0.0096 0.0359 σ̂2

RBW -0.0154 0.0202
100 0 %̂RB -0.0285 0.0390 σ̂2

RB -0.0167 0.0202
100 0 %̂KP -0.0934 0.0493 σ̂2

KP -0.0498 0.0211
100 0.5 %̂RBW -0.0192 0.0203 σ̂2

RBW -0.0092 0.0213
100 0.5 %̂RB -0.0262 0.0192 σ̂2

RB -0.0090 0.0214
100 0.5 %̂KP -0.0730 0.0252 σ̂2

KP -0.0315 0.0211
400 -0.5 %̂RBW -0.0007 0.0103 σ̂2

RBW -0.0040 0.0053
400 -0.5 %̂RB -0.0074 0.0116 σ̂2

RB -0.0050 0.0054
400 -0.5 %̂KP -0.0249 0.0124 σ̂2

KP -0.0154 0.0055
400 0 %̂RBW -0.0036 0.0078 σ̂2

RBW -0.0048 0.0051
400 0 %̂RB -0.0076 0.0081 σ̂2

RB -0.0049 0.0051
400 0 %̂KP -0.0228 0.0087 σ̂2

KP -0.0128 0.0052
400 0.5 %̂RBW -0.0048 0.0035 σ̂2

RBW -0.0024 0.0052
400 0.5 %̂RB -0.0057 0.0035 σ̂2

RB -0.0023 0.0052
400 0.5 %̂KP -0.0158 0.0038 σ̂2

KP -0.0076 0.0052

Table 1: Results of Monte Carlo simulation
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estimate standard error
intercept 59.96 5.77
income -0.92 0.35

housing value -0.31 0.09
ρ 0.59 0.16
σ2 104.59 7.07

Table 2: Estimation results and estimated standard errors

expansion, but to a lower degree. For larger sample sizes, the bias of our new estimator

still considerably deceeds the bias of the two competitors, while the MSE’s of the three

estimators hardly differ for growing sample sizes.

5. Application to Columbus

As a real data example, we consider the Columbus data of Cliff and Ord (1973), which is

often used in spatial econometrics. It contains observations on 49 districts of Columbus,

Ohio, for the variables CRIME (residential burglaries and vehicle thefts per thousand

households), INC (household income in $1000) and HOVAL (housing value in $1000).

A spatial weighting matrix is also available. Cliff and Ord (1973) suggest the following

regression relationship

CRIME = β0 + β1INC + β2HOVAL + u

The disturbance vector u is assumed to follow a spatial autoregressive process, i.e., u =

%Wu+ ε.

We estimate the regression coefficients by feasible generalized least squares, where we

plug in the weighted GMM estimates into the disturbance covariance matrix (3).

Table 2 shows the results. Household income and housing values both affect crime rates

negatively. There is pronounced spatial dependence within the disturbances, and The-

orem 1 allows for asymptotic standard errors of ρ̂. The corresponding asymptotic 95%

confidence interval for ρ is [0.27, 0.91] so that the amount of spatial dependence is signif-

icantly different from zero.
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6. Summary and conclusions

This article analyzes the asymptotic and finite properties of a residual based GMM es-

timator which simultaneously estimates the autoregressive parameter and the unknown

error variance in linear models with spatially autoregressive error terms. For the sake

of generality, the regression matrix Xn is assumed to be stochastic. A weighted version

of an improved estimator of Arnold and Wied (2010). is shown to be consistent and

asymptotically normal. The limit distribution provides the special form of the efficient

weighting matrix, i.e the inverse of the covariance matrix. For deterministic regressors

this matrix has a very simple form. It does not depend on the autoregressive parameter

and the unknown error variance enters the matrix only as a scalar parameter. Therefore,

it can easily be estimated. Moreover, in this case the efficiently weighted GMM estima-

tor is even feasible. Additionally, a Monte-Carlo simulation shows that the small sample

performance of our new efficiently weighted GMM estimator dominates the performance

of both the unweighted version and the GMM estimator of Kelejian and Prucha (1999)

concerning the bias and the MSE. Based on the asymptotic results we can additionally

construct confidence sets and calculate standard errors for our estimator which is applied

to the Columbus data.

Up till now, we have not transferred our results to the task of testing for spatial de-

pendence. Simple tests can be derived from our asymptotic results given in this paper.

Further research concerning this aspect is recommended.
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7. Appendix section

Proof of Theorem 1

We consider the objective function

Qn(%, σ2) := vn(%, σ2)
′
Ψnvn(%, σ2)
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of (%̂Ψ,n, σ̂
2
Ψ,n). From the consistency it follows

(
∂vn(%̂Ψ,n, σ̂

2
Ψ,n)

∂(%, σ2)′

)′

Ψnvn(%̂Ψ,n, σ̂
2
Ψ,n) = 0. (11)

As a function of % and σ2 vn(%, σ2) maps from R2 to R3 and thus is vector valued.

Therefore, we need to apply a multivariate mean value theorem to develop a linear ap-

proximation of vn(%, σ2) (see Magnus and Neudecker (1999)). Let %̄n and σ̄2
n lie on the

real lines between % and %̂Ψ,n and between σ2 and σ̂2
Ψ,n respectively. Then it holds

vn(%̂Ψ,n, σ̂
2
Ψ,n) = vn(%, σ2) +

∂vn(%̄n, σ̄
2
n)

∂(%, σ2)′

 %̂Ψ,n

σ̂2
Ψ,n

−
 %

σ2

 . (12)

Plugging (12) in (11) yields

(
∂vn(%̂Ψ,n, σ̂

2
Ψ,n)

∂(%, σ2)′

)′

Ψn
∂vn(%̄n, σ̄

2
n)

∂(%, σ2)′

√
n

 %̂Ψ,n

σ̂2
Ψ,n

−
 %

σ2


= −

(
∂vn(%̂Ψ,n, σ̂

2
Ψ,n)

∂(%, σ2)′

)′

Ψn

√
nvn(%, σ2). (13)

To eliminate the quadratic form on the left-hand side of equation (13) we first consider

the form of the Jacobian matrix. It holds

∂vn(%̂Ψ,n, σ̂
2
Ψ,n)

∂(%, σ2)′ = Hn


1 0

2%̂Ψ,n 0

0 1

 ,

which leads to

(
∂vn(%̂Ψ,n, σ̂

2
Ψ,n)

∂(%, σ2)′

)′

Ψn
∂vn(%̄n, σ̄

2
n)

∂(%, σ2)′ =


1 0

2%̂Ψ,n 0

0 1


′

H
′

nΨnHn


1 0

2%̄n 0

0 1

 =: Φ̂n
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The theoretical counterpart Φn of Φ̂n is given by

Φn :=


1 0

2% 0

0 1


′

Γ
′

nΨΓn


1 0

2% 0

0 1

 .

Since Ψn
p→ Ψ by Assumption 6 and Hn

p→ Γn, it follows from the continuous mapping

theorem, that Φ̂n
p→ Φn. In the next step, we consider the inverse Φ−1

n of Φn and the

generalized inverse Φ̂+
n of Φ̂n. As explained by Kelejian and Prucha (2010), we use the

generalized inverse of Φ̂n to include the case that (%̂Ψ,n, σ̂
2
Ψ,n) does not lie within the

parameter space. Because of the consistency, this only occurs on a set with measure zero.

With Lemma F1 of Poetscher and Prucha (1997) it follows Φ̂+
n

p→ Φ−1
n , which leads to

√
n

 %̂Ψ,n

σ̂2
Ψ,n

−
 %

σ2

 = −Φ̂+
n

(
∂vn(%̂Ψ,n, σ̂

2
Ψ,n)

∂(%, σ2)′

)′

Ψn

√
nvn(%, σ2) + oP (1). (14)

For the first part of the right-hand side of equation (14) we have

Φ̂+
n

(
∂vn(%̂Ψ,n, σ̂

2
Ψ,n)

∂(%, σ2)′

)′

Ψn − Φ−1
n


1 0

2% 0

0 1

Γ
′

nΦ = oP (1). (15)

For the second part we use the asymptotic theory developed by Kelejian and Prucha

(2010) again. With the alternative characterization of the empirical moment conditions

given in (7) and Lemma C.1 of Kelejian and Prucha (2010) it holds

√
nvn(%, σ2) =

1√
n


û

′
nC1,nûn

û
′
nC2,nûn

û
′
nC3,nûn

 =
1√
n


u

′
nC1,nun

u
′
nC2,nun

u
′
nC3,nun

+


α

′
1,n

√
n∆n

α
′
2,n

√
n∆n

α
′
3,n

√
n∆n

+ oP (1),

where αi,n = 2n−1E(D
′
nCi,nun), i ∈ {1, 2, 3}. To get a representation depending on εn,
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we replace un by Pnεn. Further, we make use of Assumption 8, which leads to

√
nvn(%, σ2) =

1√
n


1
2
ε
′
n(A1,n + A

′
1,n)εn + a

′
1,nεn

1
2
ε
′
n(A2,n + A

′
2,n)εn + a

′
2,nεn

1
2
ε
′
n(A3,n + A

′
3,n)εn + a

′
3,nεn

+ oP (1) (16)

with ai,n = Tnαi,n, i ∈ {1, 2, 3}. The quadratic forms in (16) coincide with the original

moment conditions and the linear forms are used to model the difference in distribution

between ûn and un. In the next step we consider the expectation and the covariance

matrix of the right-hand side of equation (15). From E(εn) = 0 and tr(Ai,n) = 0 it

follows

E

(
1

2
ε
′

n(Ai,n + A
′

i,n)εn + a
′

i,nεn

)
= 0 , i ∈ {1, 2, 3}.

Further we define

Sn := Cov

 1√
n


1
2
ε
′
n(A1,n + A

′
1,n)εn + a

′
1,nεn

1
2
ε
′
n(A2,n + A

′
2,n)εn + a

′
2,nεn

1
2
ε
′
n(A3,n + A

′
3,n)εn + a

′
3,nεn




with entries given in (8). To finally develop the asymptotic distribution of (%̂Ψ,n, σ̂
2
Ψ,n), we

use the central limit theorem (Theorem A.1 of Kelejian and Prucha (2010)) for a vector

of quadratic forms and linear forms. Assuming that λmin(Sn) ≥ cS > 0, it leads to

ζn := −S−1/2
n

1√
n


1
2
ε
′
n(A1,n + A

′
1,n)εn + a

′
1,nεn

1
2
ε
′
n(A2,n + A

′
2,n)εn + a

′
2,nεn

1
2
ε
′
n(A3,n + A

′
3,n)εn + a

′
3,nεn

 d→ N(0, I3).

Putting −S1/2
n ζn and (15) into (14) yields

√
n

 %̂Ψ,n

σ̂2
Ψ,n

−
 %

σ2

 = Φ−1


1 0

2% 0

0 1


′

Γ
′

nΨS1/2
n ζn + oP (1).
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Finally, let the matrix Gn be defined as

Gn :=
∂

∂(%, σ2)′ Γn


%

%2

σ2

 = Γn


1 0

2% 0

0 1

 ,

which leads to Φn = G
′
nΨGn and

√
n

 %̂Ψ,n

σ̂2
Ψ,n

−
 %

σ2

 = (G
′

nΨGn)−1GnΨS1/2
n ζn + oP (1),

which completes the proof. �
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