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Abstract

While the asymptotic relative efficiency (ARE) of Wilcoxoank-based tests for
location and regression with respect to their parametud&tt competitors can
be arbitrarily large, Hodges and Lehmann (1961) have shbvanhthe ARE of
the same Wilcoxon tests with respect to their van der Waeoderormal-score
counterparts is bounded from above &yr ~ 1.910, and that this bound is
sharp. We extend this result to the serial case, showingiliegn testing against
linear (ARMA) serial dependence, the ARE of the SpearmaidW#olfowitz
and Kendall rank-based autocorrelations with respectaovéim der Waerden or
normal-score ones admits a sharp upper bour{d of)? ~ 3.648.

Key words: Asymptotic relative efficiency, rank-based tests, Wilcoxest, van
der Waerden test, Spearman autocorrelations, Kendakkauwedations, linear
serial rank statistics

1. Introduction

The Pitman asymptotic relative efficiency ARE, /¢,) under densityf of a
testo; with respect to a tegt; is defined as the limit, when it exists, astends to
infinity, of the ration(n)/n; of the numbemn/(n,) of observations it takes for
the testp,, under densityf, to match the local performance of the teéstbased
onn; observations. That concept was first proposed by Pitmareinripublished
lecture notes30] he prepared for a 1948-49 course at Columbia Universitg Th
first published rigorous treatment of the subject was by Nerep7] in 1955. A
similar definition applies to point estimation; see, fortamee, Hallin (2012) for
a more precise definition. An in-depth treatment of the cphcan be found in
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Chapter 10 of Serfling33], Chapter 14 of van der Vaard{l], or in the monograph
by Nikitin [26].

The study of AREs of rank tests and R-estimators with resjpeeich other
or with respect to their classical Gaussian counterpagspnaduced a number
of interesting and sometimes quite surprising results. siaming the van der
Waerden or normal-score two-sample location rank ¢esty and its classical
normal-theory competitor, the two-sample Student ¢gst Chernoff and Savage
in 1958 established the rather striking fact that, under @aysity / satisfying
very mild regularity assumptions,

AREf(¢vaw/én) = 1, (1.1

with equality holding at the Gaussian densfty= ¢ only. That result implies that
rank-based tests based on Gaussian scores (that is, theatmue rank-based
tests for location, but also the one-sample signed-rank,amnaditionally asso-
ciated with the names of van der Waerden, Fraser, FisheesYaerry and/or
Hoeffding—for simplicity, in the sequel, we uniformly caiem van der Waerden
tests—asymptotically outperform the corresponding edayypractice Studerit
test; see]. That result readily extends to regression models witlepahdent
noise.

Another celebrated bound is the one obtained in 1956 by Hoalge: Lehmann,
who proved that, denoting by the Wilcoxon test (same location and regression
problems as above),

ARE (¢w /¢n) > 0.864, (1.2)

which implies that the price to be paid for using rank- or sigimank tests of
the Wilcoxon type (that is, logistic score-based rank Jesistead of the tradi-
tional Student ones never exceeds 13.5% of the total nunfilbbservations. That
bound moreover is sharp, being reached under the Epaneshaddnsity /. On
the other hand, the benefits of considering Wilcoxon rathan tStudent can be
arbitrarily large, as it is easily shown that the supremuer g\of ARE¢(¢w /dn)

is infinite; see 20.

Both (1.1) and (L.2) created quite a surprise in the statistical community of
the late fifties, and helped dispelling the wrong idea, bythaite widespread,
that rank-based methods, although convenient and robust oot be expected
to compete with the efficiency of traditional parametricqadures.

Chernoff-Savage and Hodges-Lehmann inequalities sirerelihve been ex-
tended to a variety of more general settings. In the ellghteontext, optimal
rank-based procedures for location (one arrdample case), regression, VARMA
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models, and scatter (one andsample case) have been constructed in a series
of papers by Hallin and Paindaveing]([[9], [10], [11], and [13]), based on a
multivariate concept of signed ranks. The Gaussian congpgthere are of the
Hotelling, Fisher, correlogram-based portmanteau, DuWiatson or Lagrange
multiplier forms. For all those tests, Chernoff-Savageittesmilar to (L.1) have
been established (see alB[ 29]). Hodges-Lehmann results also have been
obtained, with bounds that, quite interestingly, dependhendimension of the
observation space: se#].[

Another type of extension is into the direction of time seiaad serial statis-
tics. Hallin [6] extended Chernoff and Savage’s resRIdj to the serial context by
showing that the serial van der Waerden rank tests alsomamiyjalominate their
Gaussian competitors (of the correlogram-based portraanf@urbin-Watson or
Lagrange multiplier forms). Similarly, Hallin and Tribel§] proved that the 0.864
upper bound inZ.5) no longer holds for the AREs of the Wilcoxon serial rank test
with respect to their Gaussian competitors, and is to beoepl by a slightly lower
0.854 one.

Bounds on AREs typically are obtained via variational teghas. More pre-
cisely, given a rank-based test, one obtains bounds on AREp;/¢.r) by mini-
mizing some integral over all densities satisfying specifament and integrabil-
ity constraints. In most cases, there exists a non degerdisdtibutionf, achiev-
ing the infimum, which therefore is a minimum and a sharp lo@ind. In the
sequel, however, we also call sharp a bound that is attainldas a supremum
or an infimum with respect to some sequence of densities.

Now, taking AREs with respect to Gaussian procedures astis is not al-
ways the best way to evaluate the asymptotic performanceeastaSuch AREs
indeed require the Gaussian procedure to be valid underthstg f under con-
sideration, a condition which places restrictions fothat may not be satisfied.
When the Gaussian tests are no longer valid, one rather nwoselto consider
AREs of the form

ARE;(¢,/¢K) (1.3)

comparing the asymptotic performances (undgrmf two rank-based tests;
andoy, based on score functionsand K, respectively. Being distribution-free,
rank-based procedures indeed do not impose any validitgitons onf, so that,
contrary to ARE (¢ /o), AREf(¢5/ ¢k ) exists for anyf (satisfying the mild re-
guirements for ARES to exist); see, for instand&] [and [18], where rank-based
inference is performed in linear models with stable errarder which Students
tests are not valid.



When studying the extrema with respectftof ARE(¢;/¢x ), however, one
is faced with a problem involving the ratio of two integra¥ghile the simpler
case of ARE(¢,/¢xr) only involves a single integral. The resulting variational
problem then often has trivial solutions, in the sense tiexkt exists no nondegen-
erate distribution at which the supremum/infimum is attdia general, though,
one can construct sequences of densifiesxder which those extremal values are
obtained as limits foi — oo. In such cases, we still call thesharp

The first result about ARESs of the forr.3) was obtained in 1961 by Hodges
and Lehmann, who ir2[1] show that

for all f in some classF of density functions satisfying weak differentiability
conditions. As anticipated, th&/7 bound is not attained. However, it is sharp in
the sense indicated above, as Hodges and Lehmann exhibé@magtaic family of
densitiest — f,(x) (with parameter ranging betweei and+oo) for which
the functiona — ARE;, (¢w/¢vaw) achieves any value in the interv@l, 6/7).

In casef has finite second-order moments, of course, one has that

ARE;(¢vaw/da7) = AREf(¢vaw/ow) X ARE;(dw/dn);

Hodges and Lehmann'ss/ 7 result” thus implies that the ARE of the van der
Waerden tests with respect to the Student ones, which by tieenGff-Savage
resultis larger than or equal to one, actually can be qugk,f@nd even arbitrarily
large.

In this paper, we discuss (Secti@p extensions of X.4) to a broader class
of densities (thereby recovering the main results fr@, [and (Section3) to
the case of serial rank statistics and alternatives of Iséelgendence, where we
show that the serial counterpart of thér ~ 1.910 bound, for the Spearman-
Wald-Wolfowitz or Kendall autocorrelation coefficientsttvirespect to the van
der Waerden ones, turns out to (og'm)? ~ 3.648.

2. Asymptotic relative efficiencies of rank-based procedwes for location and
regression

The asymptotic behavior under local alternatives of raagedl test statistics,
in general, is obtained via an application of Le Cam’s Thietrima (a method
that goes back to Hajek argldak b]; see, for instance, Chapter 13 &4). In
one- and multisample location and regression models (ibiades ANOVA etc.),
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the asymptotic distribution under error densjtpf a rank test statistic based on
the score-generating functioh (satisfying some regularity conditions) depends
on quantities of the form

K(J) ::/O J*(u)du and  K(J, f) ::/0 J(u)p s (F~(u))du

where, assuming thdt, with distribution function’, admits a weak derivativg
(differentiability in quadratic mean of'/? is the standard assumption here, see
Chapter 7 of 84]; but absolute continuity of in the traditional sense, with a.e.
derivative f’, is sufficient in the present context) and, letting := — f’/f, has
finite Fisher information for locatio(f) := fol ©7(F~(u))du. Denote byF
the class of such densities.

When testing for location, the ARE, under a dengitg F, of a rank-based
testy,;, based on the square-summable score-generating fungtwith respect
to another rank-based tegy, based on the square-summable score-generating
function J; then takes the form

(2.1)

fol Ji (U)Sﬁf(F_l(u))du> ’
I3 Jo(w)op(F=1(u))du )

provided that the scores are monotone, or the differencedeet two monotone
functions. Those ARE values readily extend to two- andample testing and R-
estimation problems, ANOVA and regression, and, in a tieres context, under
slightly more restrictive assumptions on the scores, t@trdy rank-based tests
and R-estimators considered by Koul and Sai8h énd [24].

Our first result is a sharp bound on the quantitieRifd)((these bounds include
those in the right-hand side ol.4)) wherein we exploit the simplicity of the
Wilcoxon scores/y(z) = (z — 3) which serves as a natural reference basis for
ARE comparisons. In the sequel, we writg instead of¢p,,, ¢vaw instead of

¢Jvdw, etc.

ARE; (¢, /¢1,) = Egﬂ (

Proposition 2.1. Suppose thaf € F is a symmetric probability distribution
function. LetJ be a score function which is skew-symmetric abgiton [0, 1].
If .J is differentiable atl /2 and

(i) convexon(1/2,1), then

ARE (dw/ ) < 12K(J)/(J'(1/2)) (2.2)

5



(if) concave on(1/2,1), then

ARE;(d5/dw) < (J'(1/2))*/12K(J). (2.3)

Both bounds moreover are sharp.

Proof. We haveK(Jyw) = 1/12 so that, by the symmetry assumption pn(2.1)
takes the form

B f11/2 (F~Y(u))du ’
ARE(¢;/dw) = 12K(J <f1/2 1/2 gof( Yu ))du> :

If J is concave (resp., convex) @i/2,1) thenJ(z) < J'(1/2)(z — %) (resp.,
J(z) > J(1/2)(x — 3)) for all 3 < = < 1; the result follows. To see that
those bounds are sharp, note that, although no non-degederssity/ is achiev-
ing equality in @.2) and @.3), sequenceg;, i = 1,2, ... of densities such that
ARE/,(¢4,/¢s) converges to the bound as— oo do exist : it suffices to con-
struct a sequence of symmetric distributigiis:) which put most of their weight
at roundz = 1/2 and such that withim; .., F;(x) = 1/2. An example of such
a sequence ig(z; ;) with a; > 0 andlim; ., o; = 0, wheref(z; «) denotes
the symmetriay-stable density with tail index: (see [L7, Figure 1] for several
numeric illustrations). 0J

Applying Proposition2.1to the score functions,qw(z) = ®!(x) (the van
der Waerden score function) adg,ucny (z) = sin(27(z — 3)) (the Cauchy score
function) yields the following corollary.

Corollary 2.1. For all symmetric probability densities € F,
AREC(QbW/QdeW) S 6/7T and AR§<¢CauChy/¢W) S 27T2/37 (24)

and thus
AREf(¢Cauchy/¢vdW) S 4m. (25)

Those bounds moreover are sharp.

Proof. The van der Waerden score is convex and skew-symmetric aliywith

K(Juaw) =1 and  Jygy(u) = v2r exp((@}(u))?/2),



so thatJ!,(1/2) = v2m. The Cauchy score is concave and skew-symmetric
about 1/2, with

K(Jcaneny) = 1/2  and Jéauchy(u) = 27 cos(2m(u — 1/2)),
so thatJg,, a4,y (1/2) = 2. The conclusion follows. O
Both Propositior2.1 and its Corollary3.1 are already available in Gastwirth

[3]; Gastwirth’s s proof, however, relies on the following asgtion.

ASSUMPTIONA. The score functiory and the density are weakly differentiable
and such that
lim J(F(x))f(x)=0.

|z|—o00

That assumption is not required for the derivation of the ARRunds 2.2)
and @.3); however, it guarantees that integration by parts is pechin @2.1),
from which we immediately obtain the neat formula

K(J) (E[(Jio F)Y(X)]\?
K(J1) (E[(J2 oF)’(X)]) ' (2.6)

Introducing the constants (which may be infinite)

kP, f) = sgp(J oF)(z) and k™ (J, f):= irxlf(Jo F)(x),

ARE; (¢4,/05,) =

one then immediately obtains fror.6) the double inequality

k™ (J1, f) - K(J1) kT (J1, f)

K’—’_(J%f) N IC(JQ) K’_(J%f)‘

Remarkably the bounds contained Bx4) are optimal in many cases. (For
instance, 2.7) contains the bounds given in Propositidri.) More importantly,
equation 2.7) provides insight onto how one can easily construct ARE uragig

ties by restrictingf to subclasses of densities over which the constentsatisfy
some adequate conditions. For example, fr@mi)( we get

12'%_((1)_17 f) < AREf (¢JvdW/¢JW) < 12K+((I)_17 f)

so that, considering the class of densitfefor which k= (®~!, f) > ¢ for some
constant: > 0, we get the new ARE bound

ARE; (¢paw /ow) > 12¢.

ARE; (¢, /d,) < (2.7)
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Note that the condition~(®~!, f) > ¢ > 0 is crucial for obtaining convergence
in Mallows distance of normalized sums of independent pieX with den-
sity f towards the Gaussian, sex?].

Finally we mention several other extensions that are ofréste Denoting
by GG; andG, the distribution functions associated with the symmeteiegitiesy;
and go, let J;(u) = ¢, (G (u)) and Jy(v) = ¢,, (G5 (u)). Restrictions on
the convexity/concavity of the functiom — G;'o F(u) can clearly be used to
obtain better bounds on ARK¢,, /¢,,). More generally, stochastic ordering
considerations (involving, ¢g;, andg,) will lead to restricted ARE bounds as in,
for instance, 25 and [1].

3. Extending Hodges and Lehmann’s “6# result” to the serial case

Until the early eighties, and despite some forerunning tsmees applications
such as (as early as 1943) Wald and WolfowR5|[ rank-based methods have
been essentially limited to statistical models involvimivariate independent ob-
servations. Therefore, traditional ARE bounds (Hodgeslasttmann 0, 21],
Chernoff-SavageZ] or Gastwirth B]), as well as classical monographs (Hajek
andSidak ], Randles and Wolfe32], Puri and Sen31]) mainly deal with uni-
variate location and single-output linear models with eledent observations.
The situation since then has changed, and rank-based piresedbwadays have
been proposed for a much broader class of statistical modelsding time se-
ries problems, where serial dependencies are the mairrésatnder study. It is
therefore of interest to reconsider classical results o ARunds in that serial
dependence context.

In this section, we focus on the linear rank statistics ofséeal type involv-
ing two square-integrable score functions. Those stesigtnjoy optimality prop-
erties in the context of linear time series (ARMA models; b8 for details).
Once adequately standardized, those statistics yieldotvaltedrank-based au-

tocorrelation coefficientsDenote byRi”), . R™ the ranks in a triangular ar-
ray Xl(”), ce X of observationsRank autocorrelationgwith lag k) are linear

serial rank statistics of the form

(n) LN R R, ) T (um) y-1
£J1J2§k = [(n a k) t—;l Jl(n + ]_>J2<n _|_ 1) - mJ1J2i| (SJ1J2) )

whereJ; and.J; are (square-integrable) score functions, wheﬁ@%2 andsfﬁ?]2 =

(n) (n)
sf}j?,%k denote the exact mean df(fjrl)b <IZ:1’“> and the exact standard error
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n+1 n+1
changeablé%ﬁ")’s), respectively; we refer to pages 186 and 18716f for explicit
formulas.Signed-rank autocorrelation coefficiergse defined similarly; sed §|
or [16].
Rank and signed-rank autocorrelations are measures af dependence of-
fering rank-based alternatives to the usual autocorogiaefficients, of the form

= Y XX/ Y X,
t=1

t=k+1

_igen R(™ Y, - ()
of (n—k) 2Zt:k+1‘]1<t—> J2< . ") under the assumption of i.i.d;"’s (ex-

which consitute the Gaussian reference benchmark in tmtegb Of particular
interest are

(i) thevan der Waerden autocorrelatiof$4]

= 7 35 00 (D)o () - o

~vdW;k
vdW; e n—+1 n—+1

(i) the Wilcoxon autocorrelationgl4]

RY 1 R .
(n) ._ -1 t 1 t—k _ (n)i| (n)y—1
Do = [(n k) t:zk:-l—l <n +1 2) log ( _ Rt(ﬁ)]) M (SW ) ’

(i) the Laplace autocorrelationfl4]

ey = =07t Sosion( 7 - 5)
t=k+1
R" AN TRY 1 R" N (R, 1
<o) -los(2-2, )| > 5 )
X[log<2n+1)l[n+l_2} KA Gy Al P

n n)\ —1
_ml(_ )} (Sﬁ )) 7
(iv) the Wald-Wolfowitzor Spearman autocorrelatiorfS5]

n _ - n n n n -1
O - [(n—k) "SRR, —mév)vw} (sSm)

~SWW:E
t=k+1



(v) and theKendall autocorrelation$4] (where explicit values O;fn(K”) ands(K”)
are provided)
4D _
m . [1_ k _ (n)} (n)y 1
L (n—k)n—k—1) mg” | (sk”)
with D,i") denoting the number of discordances atAathat is, the number
of pairs(R™, R™,) and(R{", R'™, ) that satisfy either

R™ < R™ and R™ >R™  or R™>R"™ and R", <R"™,;

more specificallyD{" .= >, S, (R < R, R, > R"™,).

Van der Waerden, Wilcoxon and Laplace autocorrelationsoptanal—in the
sense that they allow fdocally optimalrank tests in the case of ARMA models
with normal, logistic and double-exponential densitiespectively. The Spear-
man and Kendall autocorrelations are serial versions o&®pa&n’srho and Ken-
dall's tau, respectively, and are asymptotically equivalent undemthll hypoth-
esis of independence; although they are never optimal usdedensity, they
achieve excellent overall performance. Signed rank auteladions are defined
in a similar way.

Denote byF, the subclass of densitigs € F having finite moments of or-
der two. LetJ;, i = 1,...,4 denote four square-summable score functions, and
assume that they are monotone increasing, or the diffeflesiveeen two mono-
tone increasing functions (that assumption tacitly willhbade in the sequel each
time AREs are to be computed). The asymptotic relative efiicy, under in-
novation densityf € J5, of the rank-based testg, ;, involving the score func-
tions.J; and.J; (thatis, the autocorrelationgfg?h.k) with respect to the rank-based

testsy”;, ;. involving the score functiong; and.J, (the autocorrelations f}"?} s
i ~J3Ja;

ARE; (¢, 1,/",1,)

K (f @ F )oK (o )P @)do)’
KO\ iy Js(@)pp(F-1(v)dv ) K(J2) \ [ Ju(v) F1(v)dv

= Cf(Jl, Jg) Df(JQ, J4) (31)

The ratioC(J;, J3) has already been studied in Sect®yrand the same conclu-
sions apply here. As for the ratio,(.J;, J4), we can use similar tools to obtain an
extension of PropositioR.1to the serial case. Denote BY,,, ¢y, - - . the tests

based o™ | r(™ etc.
~vdW;k ~W;k
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Proposition 3.1. Suppose thaf € F, is a symmetric probability distribution
function. If, furthermore/; and.J, are skew-symmetric abouif2 on [0, 1] and

(i) convexon(1/2,1), then

r r o r r IC('Jl)IC(JQ) .
ARE (d5ww /@7, 1,) = ARE (0 /07, 5,) < 144(J{(1/2))2(J£(1/2))2’

(if) concave on(1/2,1), then

ARE(6%,5,/S5une) = AREY(010/5,) < 117 o

Proof. Consider the ARE expressioB.0) with J; = J; = Jw, with Jw the
Wilcoxon score function. Clearly(';(J;, Jw) then coincides with the nonserial
ARE((¢;/¢w) studied in the previous section and the results obtainae tie
rectly apply. As forD(J,, Jw), the same arguments on the convexity (resp., con-
cavity) of J as in the proof of Propositio®.1 entail thatD,(.J;, Jw) > J'(1/2)
(resp.,D¢(Js, Jw) < J'(1/2)); the claim follows. O

In particular, we deduce from Propositi8rithe following extension of Hodges
and Lehmann’'s6/r result”.

Corollary 3.1. For all symmetric probability densities € 7,

ARE; (¢5ww/Pvaw) = ARE (0 /Plqw) < (6/77)27 (3.2)
and this bound is sharp.

Proof. The value(6/7)? as an upper bound immediately follows from the previ-
ous discussion, and all that remains to show is that it igshéere the arguments
provided in Sectio2 no longer apply due to the fact that heavy-tailed distritrusi
do not belong taF;. A little exploration, however, leads to a family of densgi
with finite second-order moments for which the bound3ir2) constitutes a supre-
mum: denoting byf,, the Weibull probability density function with scale one and
shape parameter, it is easily shown that

lim Cfa(Jw, Jvdw) = lim Dfa(Jw, JvdW) = 6/7T ]

a— 00
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We conclude with a discussion of the properties of rdtig./,, .J,) for more
general score functiong, and J;. Note that the integration by parts argument
yielding the general ARE boun@(7) in general no longer applies: in particu-
lar the score functions (appearing in the rank-based atrglation coefficients
of Section 3) of the formv — J,(x) = F~!(x) do not vanish at the edges of
their supports. It is nevertheless possible to obtain merat general bounds as
follows. First, from Cauchy-Schwartz,

( /0 1 Jg(u)F_l(u)du>2 < /0 1(J2(u))2du /0 1(F_1(u))2du — K(Js) Var;(X)

where Vay(X) is the variance o under densityf. Second, since the mappings
u — Jy(u) andu — F~(u) both are non-decreasing ovér, 1),

1 1 1 1
/ Jo(u)F~ (u)du > 2/ J4(u)du/ F~(u)du = / Jy(u)du Ef| X |,
1/2 1/2 1/2 1/2

via inequality (2.8) of 8]. This yields
K(J2) Vary (X)
([ Ta(u)du)” (Ep|X1)*

Because the functiom — F~1(u) is typically unbounded ag — 1, it is not
possible, in general, to obtain bounds in the spiritd¥Y for Dy(.J,, J,) without
imposing restrictions on the class of reference densjtieés in the non-serial
case (see the discussion at the end of Se@jgsuch restrictions provide an alter-
native source of interesting ARE bounds. For instancetictisiy to densitiesf
(with distribution functionF’) for which

Dy(Js, Jy) < (3.3)

Jyo F(x) > Jyo F(x)(resp..Joo F(x) < Jy0 F(x)) forallz e R*, (3.4)

we geth(JQ,J4) > IC(J4)/IC(J2) (resp.,Df(Jg,J4) < IC(J4)/IC(J2)) Obvi-
ously, if J, = Jw (the Wilcoxon score), a condition such &s4) holds uniformly
over all distribution functiong” with density f € F, as soon as/, is convex
(resp., concave). More generally, ordering considerat(between/, and.J,), as
in Loh (1984), clearly lead to new families of ARE inequalgi
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