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Abstract: 

Landscape pattern has long been hypothesized to influence automobile dependency. 

Because choices about land development tend to have long-lasting impacts that span 

over decades, understanding the magnitude of this influence is critical to the design 

of policies to reduce emissions and other negative externalities associated with car 

use. Combining household survey data from Germany with satellite imagery and 

other geo-referenced data sources, we undertake an econometric analysis of the 

relation between landscape pattern and automobile dependency. Specifically, we 

employ a two-part model to investigate two dimensions of car use, the discrete 

decision to own a car and, conditional upon ownership, the continuous decision of 

how far to drive. Results indicate that landscape pattern, as captured by measures of 

both land cover (e.g. the extent of open space and landscape diversity) and land use 

(e.g. the density of regional businesses) are important predictors of car ownership 

and use. Other policy-relevant variables, such as fuel prices and public transit 

infrastructure, are also identified as correlates. Based on the magnitude of our 

estimates, we conclude that carefully considered land development and zoning 

measures – ones that encourage dense development, diverse land cover and mixed 

land use – can have beneficial impacts in reducing car dependency that extend far 

into the future.  
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1. INTRODUCTION 

The reduction of CO2 from transportation, which currently comprises nearly a 

quarter of total CO2 emissions in the European Union (EU), poses a vexing challenge 

in formulating policies to protect the climate. While CO2 emissions in the 

agricultural-, industrial- and energy sectors all fell in the EU between 1990 and 2009, 

those from transport increased substantially, rising by 27% over the same period 

(EEA 2011a). With 12% of total CO2 emissions in the EU attributed to cars alone, 

which are already subject to high fuel taxes and legal limits on the CO2 discharge of 

newly registered automobiles (Frondel et al. 2011), the question arises as to what 

additional measures can be availed to buck the trend of steadily increasing 

emissions.  

 

Urban design, and specifically the implementation of policies that combine compact 

development with the provision of public transit, is often cited as a promising 

instrument for reducing automobile dependency. Built-up land currently covers 

more than a quarter of Europe’s territory, leading to calls for denser development 

predicated on mixed land use (CEC 1990).  The European Commission has long 

designated sprawl as a priority concern, and policy bodies in Europe have 

repeatedly advocated strong urban policy to steer growth around the periphery of 

cities and ensure denser development (CEC 1999; EEA 2006a).  Nevertheless, while 

several studies from North America point to a mitigating influence of urban design 

on car ownership and use (e.g. Bento et al. 2005; Potoglou and Kanaroglou 2008; Van 

Acker and Witlox 2010), there have been relatively fewer studies that have 

investigated this linkage in the European context (some exceptions include Vance 

and Hedel 2008 and  Buehler 2011). Given that choices about land development tend 

to have long-lasting impacts that span over decades, quantification of the influence 

of landscape pattern on car use is highly significant to the formulation of 

contemporary planning strategies. 

 

Drawing on a panel of household travel data from Germany, the present paper 

contributes to this line of inquiry with an econometric analysis of the relationship 

between various dimensions of landscape pattern and automobile dependency. 

Germany provides an interesting case study of this topic for several reasons. First, 

despite having one of the highest car ownership rates in Europe, Germany has – 

unlike its neighbors – decreased greenhouse gas emissions from transport, which 

dropped by 6% between 1990 and 2009 (EEA 2011a). Second, the country has a 

highly heterogeneous landscape; while relatively dense urban agglomerations span 

across much of the west, large swaths in the east are characterized by diffuse urban 
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sprawl accompanied by population decline and economic stagnation (Schmidt 2011). 

Finally, the German government has long been committed to reversing trends in 

landscape fragmentation and sprawl (Bundesminister des Innern 1985), with several 

German cities adopting planning guidelines that promote the spatial integration of 

residential, recreational and commercial land uses to reduce automobile dependency 

(e.g. Stadtplanungsamt 2002).  

 

Two dimensions of dependency are considered in the present paper, the discrete 

choice to own a car and, conditional on ownership, the continuous choice of how far 

to drive. The application of a two-part model, which couples a probit and an OLS 

estimator, allows for an integrated treatment of these choices. A distinguishing 

feature of the analysis is the linkage of the survey data with satellite imagery, which 

affords the opportunity to construct land cover pattern metrics whose variation are 

hypothesized to cue varying degrees of household-level car use. Following the work 

of Cervero and Kockelman (1997), we are particularly interested in exploring the 

influence of the “3 Ds,” density, diversity, and design, and to this end construct 

explanatory variables measuring the extent of open space, landscape diversity, and 

landscape fragmentation in the area of the household’s location. Beyond this, our 

analysis includes several other correlates of car use that control for important aspects 

of urban design and socioeconomic context, including the density of local 

businesses, public transit provision, and locally prevailing fuel prices.  

 

The remainder of the paper begins with a description of the data assembly and 

hypothesized effects of the explanatory variables. Section 3 discusses the modeling 

framework while Section 4 presents and interprets the econometric estimates. The 

closing section summarizes and concludes with a discussion of the benefits of 

expanded spatial coverage and incorporation of diverse geographic information to 

transportation models.  

  

2. DATA ASSEMBLY AND HYPOTHESIZED EFFECTS 

The main data source used in this research is drawn from the German Mobility Panel 

(MOP), an ongoing travel survey financed by the German Federal Ministry of 

Transport, Building and Housing. Participating households are surveyed for a 

period of one week over three consecutive years. Each year, a share of households 

exits the panel and is replaced by a new cohort which is in turn surveyed for three 

years, with the cycle continually repeating itself in overlapping waves. The 

information collected in the MOP includes both individual attributes such as age, 

gender, employment status, and mode-specific travel as well as household attributes 



6 

such as income, car ownership, fuel prices, proximity to the nearest transit stop, and 

other neighborhood features. The dependent variable is derived from the survey 

data and is comprised of two parts, a binary indicator of whether the household 

owns at least one car, and a continuous variable measuring the distance driven by 

the household conditional on car ownership. 

 

The data spans 14 years, from 1996 to 2009, and is limited to the car travel 

undertaken by households over the 5-day work week. Of these, 2,612 participated in 

all three years of the survey, 1,471 participated in two years, and 1,890 participated 

in one year, yielding a total of 12,668 observations on which the model is estimated. 

To correct for the non-independence of repeat observations over multiple time 

points in the data, the regression disturbance terms are clustered at the level of the 

household, and the presented measures of statistical significance are robust to this 

survey design feature (Deaton 1997).  

 

The MOP has two variables that can be used to approximate the household’s 

location, a 3-digit zip code and a county identifier, referred to in German as a Kreis.  

The average size of a 3-digit zip code, of which there are 671 units, is 532 square 

kilometers. There are 439 Kreise having an average size of 814 square kilometers. 

Although either of these variables could be used individually to locate the 

household, we found that greater spatial accuracy could be achieved by combining 

them. Specifically, we employed a Geographic Information System (GIS) to overlay 

two maps of the zip code and Kreis boundaries on top on one another, and used the 

polygons created by this overlay to identify the household’s location. This process 

created a layer having a total of 1413 polygons across Germany with an average size 

of 253 square kilometers.   

 

We used this map to merge in several other data sources with the MOP, two of 

which are available for download from the web site of the European Environmental 

Agency (EEA 2012a, EEA 2012b). The first of these is a European-wide coverage of 

satellite imagery that distinguishes 26 land cover classes and is available for the 

years 2000 and 2006.1 The Corine Land Cover imagery data (COordinate 

INformation on the Environment) is Landsat MSS raster data collected at a 

resolution of 100 x 100 meter pixel size. ArcGIS was used to calculate four variables 

from the imagery, each measured at the level of the polygon in which the household 

                                            

1
 An assessment undertaken by the European Environmental Agency (EEA 2006b) of the 2000 

imagery found its thematic accuracy to be 87%, thereby exceeding the target threshold of 85%. 
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is situated: the share of open space, the share of area covered by mines, dumps and 

construction sites, the degree of landscape fragmentation, and the degree of 

landscape diversity.  

 

The share of open space, whose spatial distribution is shown in the left panel of 

Figure 1, is calculated by adding up the areas classified in the imagery as forest, 

natural vegetation, and agricultural land cover and dividing this by the area of the 

polygon. Contrasting with other commonly used measures of density employed in 

the literature, such as population per square kilometer and measures of accessibility 

to jobs and shops, this measure directly captures the physical configuration of land 

cover, a feature over which policy-makers are likely to have more direct leverage 

through, for example, zoning regulations. We hypothesize that households located 

in areas characterized by a larger share of open space are more dependent on the 

automobile because of the longer travel distances separating origin from destination 

for standard activities like shopping, recreation and work (Ewing et al 2011).  

 

FIGURE 1: Landscape pattern in Germany 

 

 
Another form of landscape configuration that is repeatedly implicated as a 

determinant of car use is sprawl. Travisi and colleagues (2010) investigate the 

relationship between sprawl and commuting using data from Italy, but otherwise 

little evidence on this issue exists from the European context. Recognizing that the 
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meaning of sprawl is notoriously difficult to define, much less formally quantify, we 

employ a measure of landscape fragmentation used in ecology that can serve as a 

proxy for sprawl (Turner 1996). Specifically, fragmentation is measured as the 

inverse of the effective mesh size, a metric based on the probability that two points 

chosen randomly in a region are connected (EEA 2011b): 





n

i

i

total

A
A

sizemesheffective
1

21
  . The subscript i indexes each contiguous patch of 

land having a particular land cover classification and iA measures the area of the 

patch. totalA  gives the area of the polygon in which the household is situated. As 

described further in Jaeger (2000, 2002), the effective mesh size provides a 

quantitative expression of landscape connectivity, one that has been widely 

implemented by various European countries as an indicator for environmental 

monitoring (EEA 2011b). We hypothesize that this variable is positively associated 

with car travel, given that highly fragmented landscapes typically necessitate longer 

travel distances over circuitous routes. 

 

In developing the measure of diversity, whose distribution is presented in the right 

panel of Figure 1, the aim was to simultaneously account for both the variety and 

prevalence of different land covers in the region that could influence mobility.  

Following the work of Cervero (1989) and others (e.g. Waddell 2002; Stead and 

Marshall 2001; Ewing et al 2001, 2011), we draw on an entropy-metric commonly 

employed in the biological sciences, referred to as Shannon’s diversity index, which 

is based on information theory (Shannon and Weaver 1949).  The index is defined as: 


Q

j

jj ppdiversity ln , where Q is the total number of land covers in the polygon 

and pj is the share belonging to the jth land cover class. To the extent that a diverse 

landscape is one characterized by mixed uses that reduce the need for car travel 

through an increased array of services and amenities, we hypothesize a negative 

effect of this variable.  

 

The fourth measure obtained from the satellite imagery, the share of area covered by 

mines, dumps and construction sites, is calculated by summing the area under these 

three covers and dividing by the area of the polygon. As such sites fragment the land 

and are a disamenity that would discourage non-motorized travel, we expect their 

prevalence to increase car use. 

 

The influence of commercial activity is captured by a measure of business incidence 

obtained from the data provider infas GEOdaten for the year 2001. This data set 
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includes a count of the total number of businesses in a zip code across sectors, 

including retail, entertainment, and service establishments. We expect this variable 

to be associated with lower car use as close proximity to businesses would limit the 

need to travel long distances.   

 

The costs of fuel, as well as the availability of alternative travel modes, are other 

potentially important determinants of car dependency that may be correlated with 

land use and whose omission from the model could consequently bias the results. It 

is plausible, for example, that fuel costs vary systematically between densely settled 

and rural areas. Three variables obtained directly from the MOP survey are included 

to capture these influences: the walking minutes from the home to the nearest transit 

stop, which is self-reported, a dummy variable indicating whether this stop is 

serviced by rail transit, and the real price paid for petrol. This latter variable, which 

is deflated using a consumer price index for the year 2000, is surveyed for every 

household and for each year of the data, so that it varies over both time and space 

(see Frondel and Vance 2011 for a detailed description of the construction of this 

variable). Increased walking distance to the transit stop is expected to increase car 

use while rail service is expected to decrease it owing to the greater speed and 

comfort associated with this mode. Higher fuel prices, to the extent they increase 

operation costs, are expected to reduce car use. 

 

A final measure of geographical influence is defined by a dummy variable that 

equals one if the household is located in the east on the territory of the former 

German Democratic Republic. We ascribe no a priori expectation to this variable, but 

use it to explore the variation in car use owing to differences in development 

patterns between the west and the east.  

 

Socioeconomic influences are captured by a suite of variables that measure 

household demographic composition and wealth. Household size is measured using 

four size dummies that distinguish between two, three, four, and five or more 

person households, with single-person households set as the base case. Employment 

status and the presence of children are measured by two dummies: one indicating 

homes with no working members and the other homes in which children under 10 

years of age are present. The model also includes the household’s monthly net 

income, as well as two dummies indicating households with two cars and with three 

or more cars. With the exception of the dummy for non-working households, the 

socioeconomic variables can be seen as demand shifters that increase car use  
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The specification is completed with the inclusion of year dummies to capture macro-

level influences that affect the sample as a whole. 

 

Table 1 presents the descriptive statistics of the dependent- and explanatory 

variables included in the model, including the units of measurement and the years 

over which the variable is observed. The descriptive statistics are presented in two 

columns to distinguish households sampled from the west and east of the country, 

which serves to illustrate the rather pronounced differences in landscape and socio-

demographic features prevailing on both sides of this former political boundary. The 

final column presents a t-test of a difference in the means. These differences are seen 

to be statistically significant for all of the variables. Perhaps most striking in this 

regard is that, notwithstanding a slightly lower incidence of car ownership, the 

mileage of households in the east is, at 270 kilometers per week, 8% higher than the 

mileage in the west. This may partly owe to the east’s lower density of development, 

as evidenced by the higher share of open space and the substantially lower degree of 

business density. The relatively depressed state of the economy in the east is also 

evident from the figures. Household income is some 13% lower and the share of 

households with no working members is six percentage points higher at 42%, 

compared with 36% in the west. 
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Table 1: Descriptive statistics 

 

* The presented means for these variables are based on the subsample of car-owning households. 

 

Variable Units Years observed West East t-test, difference 

in the means 

Dependent variables      

 Car ownership Binary 1996-2009 0.841 0.802 4.49 

 Mileage* Kilometers 1996-2009 250.935 270.641 -2.81 

Explanatory variables      

 Openspace Percent 2000, 2006 71.892 81.869 -18.20 

 Fragmentation Dimensionless 2000, 2006 0.120 0.045 29.96 

 Diversity Dimensionless 2000, 2006 1.429 1.361 10.01 

 Mines, dumps, construction sites Percent 2000, 2006 0.447 0.708 -10.38 

 Business density Businesses/km2 2001 118.092 48.582 14.30 

 Minutes to transit Minutes 1996-2009 5.595 6.106 -4.60 

 Rail service Binary 1996-2009 0.128 0.090 4.99 

 Fuel price € /liter 1996-2009 1.019 1.050 -11.37 

 2-person house Binary 1996-2009 0.362 0.410 -4.27 

 3-person house Binary 1996-2009 0.141 0.175 -4.01 

 4-person house Binary 1996-2009 0.151 0.106 5.61 

 5-person house Binary 1996-2009 0.048 0.024 4.91 

 Children under 10 Binary 1996-2009 0.169 0.103 7.77 

 Non-working household Binary 1996-2009 0.360 0.421 -5.38 

 Income 1000s € 1996-2009 2.246 1.983 13.46 

 2 Car* Binary 1996-2009 0.267 0.243 2.31 

 3+ Car* Binary 1996-2009 0.041 0.055 -2.97 

Number of observations   10441 2227  

8
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3. MODELING APPROACH 

As seen in Table 2, roughly 16% of the households in the west and 20% in the east do 

not own a car and for whom the observation on distance driven is consequently 

recorded as zero.  This feature of the data suggests conceptualizing car use as a two-

stage decision process comprising whether to own a car and, conditional on 

ownership, how far to drive. To model this process, we employ a procedure called 

the two-part model (2PM) that orders observations into two regimes defined by 

whether the household owns a car.  The first stage, referred to as the selector 

equation, defines a dichotomous variable indicating the regime into which the 

observation falls: 

 

1

*   XS  (1) 

1S  if 0* S  and 0S  if 0* S  (2) 

  

where *S  is a latent variable indicating the utility from car ownership, S is an 

indicator for car ownership status, the X  denote the determinants of this status,  is 

a vector of associated parameter estimates, and 1  is an error term having a standard 

normal distribution.  After estimating  using the probit maximum likelihood 

method, the second stage, referred to as the outcome equation, involves estimating 

an OLS regression of distance traveled conditional on S = 1:  

 

XXYEXXSYE '],0|['),1|( 2    (3) 

  

whereY is the dependent variable, measured here as the total kilometers driven by 

the household for all trip purposes over a 5-day week, and 2 is the error term, again 

assumed to be normally distributed.   

 

Because the distribution of Y has a long tail resembling that of the log-normal, we 

follow other authors (e.g. Axisa, Scott, and Newbold, 2012) in transforming it as a 

natural log. The prediction of this dependent variable then consists of two parts. The 

first part results from the probit model, )()0( XYP   , where   denotes the 

cumulative density function. The second part is the unconditional expectation, ][YE , 

which, when Y is logged, is given by: 

 

)5.'exp()(][ 2  XXYE  (4) 
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where 2  is the mean squared error of the second stage OLS regression. 

 

The 2PM is one of several limited dependent variable models that have been availed 

in the literature on mobility decisions, others of which include the Tobit model 

(Golob and Van Wissen 1989; Johansson-Stenman 2002; Schwanen and Mokhtarian 

2005) and Heckman’s sample selection model (Kayser 2000; Vance and Iovanna 

2007). Our selection of the 2PM was guided by three considerations. First, as noted 

by Maddala (1992: 341), the Tobit model is applicable only in cases where the 

underlying dependent variable can, in principle, take on negative values that are 

unobserved owing to censoring. This case clearly does not apply in the present 

example as the distance driven cannot be negative. Second, like the Heckman but 

unlike the Tobit, the 2PM allows different variables to affect both the discrete and 

continuous decisions pertaining to car ownership and use, and additionally allows 

the sign on variables included in both stages to differ. Finally, compared with 

Heckman model, the 2PM has less onerous identification requirements. Specifically, 

the 2PM does not require the specification of so-called exclusion restrictions, 

explanatory variables that are theoretically supported to determine the first-stage 

probit model of car use but not the second-stage OLS model of distance traveled.   

 

With respect to the interpretation of the estimates from the 2PM, which will be 

presented here as elasticities, some clarifications are warranted.  First, unlike in 

linear models, the elasticities cannot be directly derived from the coefficients 

themselves but rather must be calculated by differentiating equation (4), yielding a 

unique elasticity for every observation in the data.  For cases when the dependent 

variable is logged and the continuous variables are measured in levels, this 

differentiation is given by (Dow and Norton 2003): 

 

 
  kkk

k

k

X
X

X

YE

X

X

YE


















)(

)(




  

(5) 

  

where   denotes the density function from the standard normal distribution. If the 

variable is a dummy, kD  , it instead makes sense to take the difference in the 

expected value function when the dummy is set to 1 and 0, thereby capturing the 

discrete change in Y. Referring to equation (4), this yields: 

 

      YEDYEDYE kk /0|1|   (6) 
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The statistical significance of the elasticities is calculated using the Delta method, 

which yields an estimate of the standard error corresponding to the elasticity of each 

observation in the data. 

 

4. RESULTS AND INTERPRETATION 

Table 2 presents the results from the selector and outcome equations of the two-part 

model of car use. Columns 1 and 3 contain the coefficient estimates, whereas 

columns 2 and 4 contain the associated elasticities as calculated from Equations 5 

and 6, averaged across all the observations used in the model of distance driven.2 In 

discussing the results, the focus is on the latter effects because they are more readily 

interpreted.  

 

Three of the four land cover variables derived from the imagery – open space, 

diversity, and mines – have statistically significant elasticities whose magnitude 

suggest economically relevant associations with driving behavior. Consistent with 

expectations, a one percent increase in open space is associated with a 0.20% higher 

probability of owning a car and a roughly 0.42% increase in the distance driven over 

a five-day week. The elasticity of diversity is negative but statistically significant 

only in the outcome equation. A one percent increase in diversity is associated with a 

0.19% decrease in driving, suggesting that landscapes characterized by mixed 

coverage lower automobile dependency. As expected, the share of mines, dumps, 

and construction sites has a positive effect but is also only statistically significant in 

the outcome equation, with a relatively smaller elasticity of about 0.015%.  

 

In appraising these results, it should be borne in mind that they represent mean 

effects that potentially mask substantial heterogeneity across the individual 

observations. An impression for the degree of this heterogeneity can be gleaned by 

plotting the magnitude of the individual elasticities, as is illustrated in the top three 

panels of Figure 2. These panels show the scatter of elasticities for the variables open 

space, landscape diversity, and mines over the horizontal axis and their associated 

Z-statistic on the vertical axis. The dotted horizontal lines indicate Z statistics of 1.96 

and -1.96; points that fall beyond these bounds are statistically significant at the 5% 

level or higher. Below each plot, a histogram is additionally included to indicate the 

density distribution of the estimates. For all three variables, the range in statistically 

                                            

2
 The code used for calculating the elasticities, written using the Stata software, is available from the 

authors upon request. 
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significant estimates is seen to vary considerably, spanning 0.1 to 1.87 for open 

space, –0.01 to –0.56 for diversity, and 0 to 0.42 for mines, dumps and construction 

sites. These patterns highlight how the estimated elasticities for each of the 

considered variables are fundamentally dependent on the values assumed by the 

other explanatory variables in the model. 
 

Turning to the land use variables, business density has the expected negative 

influence, decreasing both the likelihood of owing a car and the distance driven 

contingent on ownership. The two measures of public transit service, captured by 

the walking minutes from the household to the transit stop and the availability of 

rail service, also have the expected signs. Walking time has a statistically significant 

positive elasticity only in the ownership model, supporting the view that proximity 

to transit service be regarded as a fixed cost that only bears on the decision to own a 

car but not how far it is driven. The dummy indicating whether the nearest stop is 

serviced by rail is statistically significant only in the model of distance driven. As 

expected, the estimated effect is negative: households serviced by nearby rail drive 

12% less than those with only bus service. Evaluated at the mean driving distance of 

254 kilometers per week, this corresponds to a reduced distance driven of roughly 30 

kilometers. As with the land cover variables, the lower panels of Figure 2 illustrate a 

high degree of heterogeneity in the individual estimates of the elasticities of the 

public transit variables. In the case of minutes to transit, for example, the elasticities 

vary from a minimum close to 0 to a maximum of just under 0.6%. 

 

The dummy capturing residence in the east has opposite signs in the selection and 

outcome models, decreasing the probability of car ownership while increasing the 

distance traveled. Although in the latter case the mean elasticity is not statistically 

significant, the bottom right panel of Figure 2 reveals a sizeable share of 

observations, about 42%, whose Z-statistic crosses the threshold of 1.96. That these 

households drive roughly 5% more kilometers per week than those in the West may 

partially reflect the higher concentration of employment centers in the more sparsely 

populated east and correspondingly longer commutes, one of the legacies of 

centralized planning prior to reunification of the country. The lower likelihood of 

easterners to own a car is more difficult to explain, particularly given that the model 

controls for the effects of household income and landscape features. One possibility 

is that there are higher fixed costs of owning a car in the east because of a higher 

incidence of crime, including car theft, with correspondingly higher insurance 

premiums.  
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TABLE 2: Results from Two–Part Model 

 Probit: Car ownership (1, 0)  OLS: Distance driven 

     Coefficient Elasticity  Coefficient Elasticity 
  
Openspace 0.012** 0.204** 0.004** 0.420** 

(0.001) (0.021)  (0.001) (0.066) 

      Fragmentation –0.039 –0.002  0.117 0.011 

(0.220) (0.009)  (0.115) (0.014) 

      Diversity –0.113 –0.045  –0.111* –0.189* 

(0.088) (0.035)  (0.049) (0.080) 

      Mines, dumps, construction sites 0.006 0.001  0.030** 0.015* 

(0.021) (0.003)  (0.010) (0.006) 

      Business density –0.0003* –0.020*  –0.0002* –0.028* 

(0.0001) (0.009)  (0.0001) (0.011) 

      East –0.158* –0.048*  0.080* 0.049 

(0.066) (0.021)  (0.034) (0.041) 

      Minutes to transit 0.020** 0.029**  0.002 0.032* 

(0.006) (0.008)  (0.002) (0.016) 

      Rail service –0.150* –0.045*  –0.100** –0.124** 

(0.067) (0.021)  (0.036) (0.038) 

      Fuel price –0.794* –0.237*  –0.390* –0.558* 

(0.335) (0.101)  (0.180) (0.211) 

      2–person house 0.529** 0.142**  –0.060 0.044 

(0.058) (0.015)  (0.036) (0.043) 

      3–person house 0.678** 0.149**  –0.040 0.070 

(0.101) (0.017)  (0.049) (0.059) 

      4–person house 0.940** 0.180**  –0.062 0.075 

(0.168) (0.020)  (0.052) (0.067) 

      5–person house 1.037** 0.182**  –0.119 0.016 

(0.340) (0.031)  (0.069) (0.087) 

      Children under 10 –0.231* –0.073  0.075* 0.027 

(0.115) (0.040)  (0.036) (0.050) 

      Non–working household –0.288** –0.082**  –0.427** –0.470** 

(0.051) (0.014)  (0.030) (0.034) 

      Income   0.826** 0.334**  0.210** 0.755** 

(0.046) (0.018)  (0.019) (0.065) 

      2 Car    0.596** 0.699** 

   (0.030) (0.042) 

      3+ Car    0.851** 1.302** 

   (0.054) (0.122) 

      Constant –0.665   4.762**  

(0.393)   (0.208)  

      Year dummies χ2(12) 55.76**   22.41*  

      Log likelihood –3,685     

R²    0.24  

      Number of observations 12,668   10,559  

Robust standard errors in parentheses; ** and * denotes significance at the 0.01 and 0.05 levels. 
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Household driving behavior is also clearly responsive to fuel prices, as evidenced by 

the magnitude and statistical significance of the fuel price variable. The price 

elasticity, at -0.56, is of roughly the same magnitude as that obtained by Frondel and 

colleagues (2008, 2012, 2013) in a series of studies from Germany using panel 

methods,3 but considerably higher than the estimates drawn from U.S. based studies, 

which typically range between less than 0.1 and 0.3 (e.g. Small and Van Dender 2007; 

Hughes, Knittel and Sperling 2008). One explanation for this discrepancy may be the 

greater array of transport alternatives and shorter trip distances in Germany than in 

the US, which gives German motorists greater flexibility in coping with high fuel 

prices. We additionally estimated models that included interaction terms to allow for 

differential effects of the fuel price by landscape features and socioeconomic 

attributes. It is plausible, for example, that households living in dense areas or those 

serviced by rail transit would exhibit greater sensitivity to fuel prices than remote 

households. The coefficients on the various interactions tested, not presented here, 

were uniformly statistically insignificant. This contrasts with work by Wadud 

Graham and Noland (2010), who find using U.S. data that the magnitude of the fuel 

price elasticity varies by the household’s location, income, and number of vehicles 

owned. The absence of such differential effects in the present study has relevance for 

fuel taxation policy, suggesting that the distributional effects of fuel price changes in 

Germany are likely to be relatively uniform across income levels and geography. 

 

The dummies for household size have the expected positive influence but are 

statistically significant only in the probit model of car ownership, while the 

hypothesized negative effect of non-working households is confirmed for both parts 

of the model. Referencing the final column, nonworking households are seen to 

drive about 47% less per week than households with at least one working member.  

 

As with the dummy for residence in the east, the coefficients on the dummy for the 

presence of children under 10 have opposite signs in the two stages of the model, 

decreasing the probability of car ownership while increasing distance driven. The 

former effect is unexpected, but could be indicative of a life-cycle pattern by which 

young families forgo ownership of a car. The corresponding elasticities on this 

variable are in any case relatively small and statistically insignificant in both stages 

of the model.  

                                            

3
 The data analyzed by these authors is drawn from a different sub-set of the MOP data that focuses 

specifically on car travel, which is recorded over a six week period during which time motorists 

record their mileage and the fuel price with every trip to the gas station. 
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Among the wealth indicators, income has the expected positive effect, with a 1% 

increase in income corresponding to a 0.76% increase in the distance driven over the 

week. Finally, the dummies for two- and three-car households have positive, 

statistically significant, and very large effects on car mileage. Relative to one-car 

households, the ownership of two cars results in a roughly 70% increase in distance 

traveled. For three-car households the elasticity nearly doubles to 130%. 

 

5. CONCLUSION  

Satellite imagery provides a rich source of information on landscape patterns and 

their evolution over time, but one that has been rarely exploited for investigating 

how such patterns affect transportation behavior. The use of satellite imagery in 

transportation research affords several advantages, among them being extensive 

spatial coverage at a fine grain of resolution as well as a high degree of flexibility 

with respect to the construction of spatial metrics and the scale of their 

measurement. As Ewing and colleagues (2001, 2011) note in their discussion of 

sampling and construct validity, landscape characteristics and boundaries are often 

defined by individual regions and countries that lack sufficient spatial coverage, and 

therefore may not precisely align in cross-regional analyses. One solution to these 

validity issues is improved spatial coverage by data from satellite imagery, where 

the land-cover classes are not already predefined per region. Additionally, 

researchers can combine the imagery with other GIS data sources in transportation 

models to move beyond the typical focus on uni-variate measures (such as distance 

to road or transit center) to also explore landscape pattern measures such as open 

space and fragmentation (Cervero 2003; Ewing and Cervero 2010).  

 

This paper has demonstrated some of these advantages by linking satellite imagery 

with household survey data from Germany to explore the relationship of landscape 

pattern with automobile ownership and use. Based on results from a two-part 

model, we find that both the extent of open space and the diversity of the landscape 

have strong and statistically significant associations with driving behavior. 

Households located in regions where density is low drive more; our results suggests 

that a one percent increase in the share of open space increases driving by an 

average of 0.42% over a 5-day week. For a household that drives 254 kilometers per 

week, the average of the sample, this corresponds to an additional 55 kilometers 

over the course of a year. Conversely, households located in regions characterized by 

a highly diverse landscape pattern drive less. As measured by Shannon’s diversity 
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index, a one percent increase in this metric reduces driving by 0.19%, or roughly 25 

kilometers over a year. Taken together, these results suggest that urban planning 

decisions be made with an eye toward encouraging high density development in 

urban and residential zones that combine a mixture of land uses and maintenance of 

diverse land cover. In this regard, planners can harness the momentum of ongoing 

urbanization of German society through, for example, policies offering preferential 

tax rates on property ownership in downtown areas. According to one recent 

estimate in a study commissioned by the government, the share of households living 

in urban areas will increase on average by 1.1% per year through to 2030 (IER, RWI, 

ZEW, 2010), suggesting the existence of an autonomous demand for high density 

residential locations.  

 

Looking ahead, there are several possible avenues to extend on the research reported 

here, one of which would be to explore the robustness of the results to the scale of 

measurement. This could be facilitated by creating buffers of different sizes 

surrounding the centroid of the polygon in which the household is situated, rather 

than constructing the spatial variables based on the polygon, itself, as was done in 

the current analysis. Beyond scale, there may also be pockets of heterogeneity in the 

effect of the landscape variables that were undetected owing to the constraints 

imposed by the functional form of the econometric model. It is conceivable, for 

example, that the impact of density is moderated by household demographic 

composition and residence in the east, a possibility that could be readily tested by 

additional exploration using interaction terms.  
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