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1. Introduction

In planned experiments the choice of an efficient experimental design is a vital

question. We consider a specific situation where the experiments are conducted

at two different days. A generalized linear model is estimated on the basis of the

available data from the first day. In a second step day effects are to be added to the

model from a limited number of additional experiments and we are interested in an

optimal design of experiment for the necessary additional experimental runs. This

question arises in an application to thermal spraying where the process is highly

influenced by latent day specified effects and generalized linear models turn out to

be a suitable class of models.

Generalized linear models provide models for situations in which the response is

not necessarily normal, but follows a distribution from any exponential family where

the mean is modeled as a function of the predictor. Unlike the linear regression case,

optimal designs then may depend on the unknown parameter value as well as the

specifically chosen model components. So far, optimal designs for this situation are

rarely treated in the literature and if they are mostly with an emphasis on binary or

Poisson response variables. Khuri et al. (2006) give a very nice review of the most

common approaches to handle the so-called design dependency problem, namely lo-

cally optimal designs, sequential designs, Bayesian designs and quantile dispersion

graphs. Woods et al. (2006) develop a “compromise” design selection criterion that

takes uncertainties in the parameters as well as in the link function and the predictor

into account by averaging over a chosen parameter and model space. With regard to

this generation of “compromise” designs Dror and Steinberg (2006) present a heuris-

tic using K-means clustering over local D-optimal designs that is robust against the

mentioned uncertainties.

The design problem investigated in this paper differs from the problems discussed in

the literature in several perspectives. Firstly, the response in the thermal spraying

process is multivariate, while the literature usually discusses designs for a univariate

response. Secondly, we investigate the situation where a part of the data has been

already observed on an initial day and a design is required for collecting additional

data on any current day, which has good properties to estimate a likely day-effect,

describing the difference in the spraying between two days.
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Hence, model selection for each component of the response can be performed on the

basis of the initial design, but a compromise design has to be found for the models

corresponding to the different components of the response, which additionally ad-

dresses the problem of uncertainty with respect to the mode parameters. For the

purpose of detecting differences between days the D-optimality criterion might not

be appropriate and we also consider alternative criteria designed for model discrim-

ination.

The remaining part of the paper is organized as follows. In Section 2 we give an

introduction to the problem of thermal spraying and motivate the application of

generalized linear models (GLM) in this context. For the sake of transparency, we

concentrate on Gamma-distributed responses and avoid most of the general nota-

tion of GLM. Section 4 is devoted to optimal design problems and we discuss locally,

multi-objective or compromise designs and optimal designs for identifying an addi-

tional day effect. In Section 5 we return to the problem of designing additional

experiments for the thermal spraying problem. In particular, we demonstrate that

a reference design can be substantially improved with respect to its efficiency of

estimating all parameters while moderate improvements can be achieved for testing

for an additional day effect. Finally all optimal designs and additional material are

presented in an entire Appendix.

2. Statistical modeling of thermal spraying

Thermal spraying technology is widely used in industry to apply coatings on sur-

faces, aiming e.g. at better wear protection or durable medical instruments. How-

ever, due to uncontrollable factors thermal spraying processes are often lacking in

reproducibility, especially if the same process is repeated on different days. Fur-

thermore an immediate analysis of the coating quality is usually not feasible as it

requires time and results in destruction. A solution to this problem possibly lies in

measuring properties of particles in flight based on the assumption that they carry

the needed information of uncontrollable day effects [Tillmann et al. (2010)]

As application a HVOF (high-velocity oxygen-fuel spray) spraying process is re-

garded where WC-Co powder is melted and at high-speed applied to a surface by a
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Figure 2.1: Thermal spraying process

spraying gun. Of interest is the influence of process parameters on in-flight properties

of the coating powder. Figure 2.1 depicts the thermal spraying process. Prelimi-

nary screening experiments [Tillmann et al. (2010)] identify four relevant process

parameters: The amount of kerosine (K) in liter per hour used, the ratio lambda of

kerosine to oxygen (L) and the feeder disc velocity (FDV) as well as the stand-off-

distance (D). The last parameter describes the distance from the spraying gun to

the component which is coated and thereby also to the device measuring properties

of the particles in flight. The device measures the temperature and velocity of prop-

erties in flight as well as flame width and flame intensity. The considered process

parameters and in-flight properties are summarized in Table 2.1.

process parameters in-flight properties
stand-off-distance (D) temperature
amount of kerosine (K) velocity
ratio of kerosine to oxygen (L) flame width
feeder disc velocity (FDV ) flame intensity

Table 2.1: Process parameters and in-flight properties

Summary statistics of the in-flight measurements provide responses which have

successfully been modeled by generalized linear models with Gamma distribution

and different link functions based on central composite designs [Tillmann et al.

(2012); Rehage et al. (2012)]. To capture the effect of unobservable day specific
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influences, e.g. created by room temperature and moisture, day effects have been

added to the linear predictor of the models [Tillmann et al. (2012); Rehage et al.

(2012)]. These effects have to be estimated from few additional experiments on

any current day. It is therefore of high interest to determine optimal experimental

designs for this specific task.

3. Measuring information in generalized linear

models

In this section we give some background on the generalized linear models which are

used to model the thermal spraying process. As common in statistical literature, we

denote the real valued response by Y and the predictor by a q-dimensional variable

x. In the application Y presents either the temperature, velocity, flame width or

the flame intensity, while the predictor is a four-dimensional variable containing

the machine parameters stand-off-distance, amount of kerosine, ratio of kerosine to

oxygen and feeder disc velocity.

3.1. Gamma distributed responses

Let (Yi, xi), i = 1, · · · , n, be a sample of observations where xi = (x1i, · · · , xqi)
T ∈ R

q

are explanatory variables and Yi ∈ R is the response at experimental condition

xi (i = 1, . . . , n). In contrast to linear models the response modeled by a generalized

linear model may follow a distribution from the exponential family. Tillmann et al.

(2012) and Rehage et al. (2012) showed that the in-flight properties in the thermal

spraying application can be adequately modeled by generalized linear models with

Gamma distributed response. These models are defined by the density

f(y|x, β) = 1

Γ(ν)

(
ν

μ

)ν

yν−1e−
ν
μ
y, y ≥ 0,

and mean

μ = E(Y |x) = g−1
(
zTβ

)
(1)
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where g(·) is an appropriate (known) link function, z = z(x) ∈ R
p is a vector

of regression functions depending on the explanatory variables x, β ∈ R
p denotes

an unknown parameter vector and μ > 0 and ν > 0 denote the mean and shape

parameter, respectively [Fahrmeir and Tutz (2001)]. Common link functions for the

Gamma distribution include the identity g(μ) = μ, the canonical link g(μ) = −1/μ

and the log link g(μ) = log(μ). For the first two link functions restrictions regarding

β have to be made such that the conditional expectation μ is non-negative.

If n independent observations at experimental conditions x1, . . . , xn are available and

the inverse of the link function g−1 is twice continuously differentiable, it follows by

a straightforward calculation that the Fisher information matrix for the parameter

β is given by

I(β) = ν2

n∑
i=1

w(zTi β)ziz
T
i , (2)

where the weight function is defined by

w(μ) = ((log g−1(μ))′)2 =
1

(g′(g−1(μ))g−1(μ))2
.

The covariance matrix of the maximum likelihood estimate for the parameter β can

be approximated by the inverse of the information matrix I(β). Note that for the

different link functions the corresponding information matrices differ only with re-

spect to the weight w(μ), and the weights corresponding to the Gamma distribution

for the named link functions are shown in Table 3.1.

Link function g(·) weight in (2)
g(μ) = μ 1/(zTi β)

2

g(μ) = 1/μ 1/(zTi β)
2

g(μ) = log(μ) 1

Table 3.1: Weights in the information matrix (2) for the Gamma distribution with
identity, canonical and log link

In each case the information matrix depends on the sample size n, the link func-

tion g, the vector of regression functions z(x) and especially on the parameter β.

Throughout this paper we consider a quadratic response function for g(E[Y |x]), that
is

zTβ = β0 +

q∑
i=1

βixi +

q∑
i=1

q∑
j=q+1

βijxixj. (3)
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4. Optimal designs for generalized linear models

Optimal designs maximize a functional, say Φ, of the Fisher information matrix with

respect to the choice of the experimental conditions x1, . . . , xn, and numerous crite-

ria have been proposed in the literature to discriminate between competing designs

[see Pukelsheim (2006)]. The commonly used optimality criteria (such as the D-, A-

or E-optimality criterion) are positively homogenous, that is Φ(λI(β)) = λΦ(I(β))

whenever λ ≥ 0 [see Pukelsheim (2006)]. Consequently, an optimal design maximiz-

ing a functional of the Fisher information matrix will not depend on the parameter

ν, but it will depend on the parameter β. Therefore these designs are called locally

optimal designs and were at first discussed by Chernoff (1953). Since this funda-

mental paper numerous authors have worked in the construction of locally optimal

designs. We refer to some recent work in this direction by Yang and Stufken (2009),

Yang (2010) and Dette and Melas (2011), who discuss admissible classes of locally

optimal designs for nonlinear regression models with a one-dimensional predictor.

In situations where preliminary knowledge regarding the unknown parameters of a

generalized linear model is available, the application of locally optimal designs is

well justified. A typical example are phase II dose finding trials, where some useful

information is already available from phase I [see Dette et al. (2008)]. A further sit-

uation was described in the introduction. Here a couple of experiments were already

performed on the basis of a central composite design, and 8 new experiments have

to be planned for further investigations. On the basis of the available observations

parameter estimates and standard deviations are available, which can be used in the

corresponding local optimality criteria. Locally D-optimal designs will be discussed

in Section 4.1.

On the other hand, locally optimal designs are often used as benchmarks for com-

monly proposed designs (see also the discussion in Section 5). Moreover, they are the

basis for more sophisticated design strategies, which require less precise knowledge

about the model parameters, such as sequential, Bayesian or standardized maximin

optimality criteria [see Pronzato and Walter (1985), Chaloner and Verdinelli (1995)

and Dette (1997) among others]. Optimal designs with respect to the latter criteria

are called robust designs and will be discussed in Section 4.2.
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4.1. Locally D-Optimal designs

As Myers et al. (2002) point out, the D-optimality criterion is a commonly used de-

sign selection criterion especially for industrial experiments. To be precise, consider

a link function g and a regression model of the form (3) defined with corresponding

vector z = z(x) and parameter β. We collect the model information in the vector

s = (g, z, β). In order to reflect the dependency of the Fisher information matrix

in (2) on a particular model specified by the link function g and corresponding

parameter β we introduce the notation

I(X, s) =
n∑

i=1

w(zi, β)ziz
′
i (4)

for the Fisher information matrix, where X = (x1, · · · , xn) denotes the design and

zi = z(xi) (i = 1, . . . , n). Following Chernoff (1953) we call a design X∗
s locally

D-optimal if it maximizes the determinant of the Fisher information matrix

ΦD(X, s) = |I(X, s)| . (5)

Note that the locally D-optimal design depends on the link function g, the model z

and the corresponding unknown parameter vector β, which justifies our notation X∗
s

(s = (g, z, β)). Since this fundamental paper numerous authors have worked in the

construction of locally D-optimal designs, where it is usually assumed that informa-

tion regarding the unknown parameter in a specific fixed model is available [see for

example Ford et al. (1992), Biedermann et al. (2006b), Fang and Hedayat (2008),

Dette et al. (2010) among many others]. The locally D-criterion (and other optimal

designs with respect to locally optimality criteria) have been criticized because of

its dependences on the specific choice of the parameter β. However, there are nu-

merous situations where preliminary knowledge regarding the unknown parameters

is available, such that the application of locally optimal designs is well justified (see

the discussion at the beginning of this section). A further common criticism of the

criterion (5) is that it requires the specification of the model and the link function

and there are several situations where a design for specific model is not efficient for

an alternative competing model [see Dette et al. (2008)]. In the following sections we
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briefly discuss different approaches to find D-optimal designs which are less sensitive

with respect to a misspecification of link, model and the parameter vector β.

4.2. Multi-objective designs

The problem of addressing model uncertainty (with respect to the form of the re-

gression function or prior information regarding the unknown parameter) has a long

history. Läuter (1974a) proposed a criterion which is based on a product of the

determinants of the information matrices in the various models under consideration

and yields designs which are efficient for a class of given models. Lau and Stud-

den (1985) and Dette (1990) explicitly determined optimal designs with respect to

Läuter’s criterion for a class of trigonometric and polynomial regression models, re-

spectively. In the case where the form of the model is fixed and there is uncertainty

about the non-linear parameter Läuter (1974b) and Chaloner and Larntz (1989)

proposed a Bayesian D-optimality criterion which maximizes an expected value of

the D-optimality criterion with respect to a prior distribution for the unknown pa-

rameter [see also Pronzato and Walter (1985), who called the corresponding designs

robust designs, or Chaloner and Verdinelli (1995) for comprehensive reviews of this

approach]. Since its introduction Bayesian optimal designs have found considerable

attention in the literature [see Haines (1995), Mukhopadhyaya and Haines (1995),

Dette and Neugebauer (1997), Han and Chaloner (2004) among others]. Bieder-

mann et al. (2006a) determined efficient designs for binary response models, when

there is uncertainty about the form of the link function (e.g. Probit or Logit model)

and the parameters. Recently, Woods et al. (2006) used this approach for finding

D-optimal designs in the case of uncertainty concerning the parameter vector β as

well as the linear predictor η = z
′
β and the link function g(·). For this purpose

these authors proposed a multi-objective criterion [see Cook and Wong (1994)] for

the selection of a design. Most of the optimality criteria in these references are

based on the expected value of a given optimality criterion Φ(X|s) (such as the

D-optimality criterion) over the space M of the possible models, which takes the

model uncertainty into account. In the present context the elements of the set M
are of the form s = (g, z, β) corresponding to uncertainty with respect to the link

function g, the regression function z = z(x) and the parameter β. To be precise,
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let G denote a class of possible link functions. For each g ∈ G let Ng denote a class

of vector-valued functions z(x) and finally define for each pair (g, z) with z ∈ Ng a

parameter space Bg,z. With M = {(g, z, β) : g ∈ G, z ∈ Ng, β ∈ Bg,z} the criterion

is given by

ΦB(X,M) =

∫
M
eff(X|s)dh1(β|g, z)dh2(z|g)dh3(g), (6)

where the efficiency is defined by

eff(X|s) =
( ΦD(X|s)
ΦD(X∗

s|s)
)1/p(s)

, (7)

X∗
s is the locally D-optimal design for model s ∈ M, p(s) denotes the number of

parameters in model s and h1, h2 and h3 represent cumulative distribution functions

reflecting the importance of the particular constellation (g, z, β).

As an alternative to the Bayesian criterion Dette (1997) proposed a standardized D-

maximin optimality, which determines a design maximizing the worst efficiency over

a certain range for the parameter β [see also Müller and Pázman (1998)]. Since its

introduction this criterion has found considerable attention in the literature. To be

precise, assume that M is a set of possible values s = (g, z, β) for the link function,

model and parameter vector and recall the definition of the relative efficiency of the

design X with respect to the locally optimal design X∗
s defined by (7). The stan-

dardized maximin optimal design X∗ is defined as the solution of the optimization

problem

max
X

min
s∈M

eff (X|s) .

Therefore this design maximizes the minimal relative efficiency calculated over the

set M, and it can be expected that such a design has reasonable efficiency for any

choice of the parameter s ∈ M.

Standardized maximin optimal designs are extremely difficult to find and for this

reason we will mainly consider optimal designs with respect to the Bayesian-type

criterion (6). Some explicit results for models with a one-dimensional predictor can

be found in Imhof (2001), Dette et al. (2007).
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4.3. Design criteria for estimating an additional day-effect

Recall the motivating example discussed at the end of Section 2, where observations

are taken at two different days. In order to address this situation in the generalized

linear model we replace the regression model z(x) and the parameter β in (1) by

the vectors

z∗(x, t) = (z(x)T , t)T ; β∗ = (βT , γ)T

respectively, where the parameter t can attain the values 0 and 1 corresponding to

different experimental conditions caused by a possible day effect. Thus the expected

response at a particular experimental condition satisfies

g(E[Y |x]) =
⎧⎨
⎩

zT (x)β if t = 0

γ + zT (x)β if t = 1.
(8)

We assume that n observations are taken at the initial day at experimental con-

ditions x1, . . . , xn. This corresponds to the choice t = 0 and a generalized lin-

ear model without the day effect γ is fitted to the data. Additional experiments

can be made at any further day at experimental conditions xn+1, . . . , xn+m which

corresponds to the choice t = 1. Note that in the matrix X = (X(1),X(2)) =

(x1, . . . , xn, xn+1, . . . , xn+m) the elements in the matrix X(1) = (x1, . . . , xn) are fixed

(because they correspond to observations from the initial day) and the criteria are

optimized with respect to the experimental conditions X(2) = (xn+1, . . . , xn+m) for

the experiments at a different day. We reflect this fact by the notation

ΦD(X
(2), s) = ΦD((X

(1),X(2))) (9)

ΦB(X
(2),M) = ΦB((X

(1),X(2)),M) (10)

eff(X(2),M) (11)

for the criteria (5), (6) and the efficiency (7). The corresponding locally optimal

designs are denoted by X∗
s
(2). Now the question of interest is if the parameter γ

vanishes, i.e. if there exists an additional day effect. For this purpose a likelihood

ratio test for the hypothesis

H0 : γ = 0 (12)
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on the basis of all n + m observations is performed. The Fisher information for

a specific model, weight function (corresponding the generalized linear model) and

parameter is then given by

I(X, s) =
n+m∑
i=1

w(z∗i
Tβ∗)z∗i z

∗
i
T ∈ R

p+1×p+1 (13)

where z∗i = z(xi, ti) denotes the vector of regression functions corresponding to the

i-th observation (i = 1, . . . , n+m) and the weight function is defined by

1(
z∗i

Tβ∗
)2 ,

1(
z∗i

Tβ∗
)2 , 1

for the identity, inverse and log-link, respectively. Standard results on the asymp-

totic properties of the likelihood ratio test show that the power of the test for the

hypothesis (12) in model s = (g, z, β) is an increasing function of the quantity

ΦD1(X
(2), s) = (eTp+1I

−1(X, s)ep+1)
−1 (14)

where X = (X(1),X(2)), X(1) = (x1, . . . , xn), X(2) = (xn+1, . . . , xn+m) and ep+1 =

(0, . . . , 0, 1)T denotes the (p + 1)-th unit vector in R
p+1 [see Dette et al. (2008)].

Consequently, an optimal design for investigating the existence of a day effect

if a particular model s = (g, z, β) is used for the data analysis maximizes the

function ΦD1(X
(2), s) with respect to the choice of the experimental conditions

X(2) = (xn+1, . . . , xn+m) for the m observations taken at any further day. The

criterion defined by (14) ist called D1-optimality criterion in the literature. D1-

optimal designs have been studied by several authors in the context of linear and

nonlinear regression models [see Studden (1980), Dette et al. (2005) or Dette et al.

(2010) among others], but less work can be found for generalized linear models.

In order to address uncertainty with respect to the model assumptions we denote

by X
∗(2)
s the locally D1-optimal design maximizing the criterion defined in (14) and

define the D1-efficiency of a design X in model s = (g, z, β) by

eff1(X
(2)|s) = ΦD1(X

(2)|s)
ΦD1(X

∗(2)
s |s)

. (15)
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The Bayesian D1-optimality criterion is finally defined by

ΦB1(X
(2),M) =

∫
M
eff1(X

(2)|s)dh1(β|g, z)dh2(z|g)dh3(g) (16)

where h1, h2 and h3 represent again cumulative distribution functions reflecting the

importance of the particular constellation (g, z, β). Criteria of this type have been

discussed by several authors in the case of linear regression models [see Dette (1994),

Dette and Haller (1998)].

Temperature Velocity Flame Width Flame Intensity
Main effects L,K,D L,K,D, FDV L,K,D, FDV L,K,D, FDV

Squared effects K2 K2 K2 L2,K2, FDV 2

Interaction terms – L ·K – D · FDV
Link identity logistic inverse identity
BIC 245.744 196.979 99.749 106.148

Table 4.1: The generalized linear models chosen by the BIC-criterion for the four
responses observed in the thermal spraying process.

5. Optimal designs for thermal spraying

Recall the problem of designing additional experiments for the thermal spraying

described in Section 2. In the application 30 observations have already been made

on the basis of a central composite design X
(1)
R (see Table B.1 in Appendix B) while

eight additional experiments are conducted for the investigation of an additional day

effect. For each response (temperature, velocity, flame width, flame intensity) the

data from the first day has been used to identify a generalized linear model in the

class of all models with the three link functions specified in Section 3 and different

forms for the vector z on the basis of the BIC-criterion. The corresponding results

are listed in Table 4.1. For each response the parameter estimates corresponding to

the model chosen by the BIC criterion are shown in Tables A.1 - A.4 in Appendix

A. For example, for the temperature the BIC criterion selects the generalized linear

model with gamma distribution and identity link where the linear part of the model

is given by

zT (x)β = β0 + β1L+ β2K + β3D + β4K
2.
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Temperature Velocity Flame Width Flame Intensity
0.6947 0.558 0.5272 0.4508
0.7019 0.5770 0.5904 0.5269
0.6955 0.5741 0.5971 0.5359

Table 5.1: First row: D-efficiencies of the reference design. Second row: D-
efficiencies of the reference design XR with respect to the design X∗

B maximizing
the multi objective criterion (10), where γ has been fixed. Third row: D-efficiencies
of the reference design XR with respect to the design X∗

B maximizing the multi ob-
jective criterion (10), where uncertainty with respect to the parameter γ has been
addressed.

The values of the parameters (β0, . . . , β4) can be obtained from Table A.1. For the

investigation of an additive day effect a reference design X
(2)
R = (x31, . . . , x38) for

the eight additional experiments was proposed, which is shown in Table B.2. In

order to investigate the efficiency of this design we have calculated the best locally

D-optimal designs for the models which were identified by the BIC for modeling the

four responses with an additional day effect. These designs require the specification

of the unknown parameters and we used the available information from the first 30

experiments of the first day to estimate β (see Tables A.1 - A.4) while the parameter

γ for the additional day effect was chosen as γ = −16, γ = 0.01, γ = 0.002 and

γ = 0.09 in the models for temperature, velocity, flame width and flame intensity,

respectively.

5.1. D-optimal designs

The corresponding locally D-optimal designs are shown in the Tables B.3 - B.4 in

Appendix B, while the corresponding D-efficiencies

eff(XR|s) =
( |(XR, s)|
|(X∗

s, s)|
)1/(p(s)+1)

for the designs XR = (X
(1)
C ,X

(2)
R ) and X∗

s = (X
(1)
C ,X

∗(2)
s ) are depicted in the first row

of Table 5.1 (here p(s) + 1 denotes the number of parameters in the corresponding

model where p(s) parameters appear in regression function zTβ). We observe that for

each type of response the locally D-optimal design yields a substantial improvement

of the reference design. The efficiency of the reference design varies between 45% -

70%. Recall that all responses are observed simultaneously. Because the main goal
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Temperature Velocity Flame Width Flame Intensity
1.3050 2.2772 1.4284 3.6028
1.3312 1.3534 1.2054 5.4944
1.3121 1.3504 1.2447 5.2482

Table 5.2: First row: Efficiencies of the reference design with respect to the locally
D-optimal designs for estimating the parameter γ (see formula (17)). Second row:
Efficiencies of the reference design XR with respect to the design X∗

B maximizing
the multi objective D-criterion (10), where γ has been fixed. Third row: Efficiencies
of the reference design XR with respect to the design X∗

B maximizing the multi
objective D-criterion (10), where uncertainty with respect to the parameter γ has
been addressed.

of the experiment is to answer the question of additional day effects we display in

Table 5.2 the efficiencies

effD1(XR,X
∗
s) =

ΦD1(X
(2)
R |s)

ΦD1(X
∗(2)
s |s)

(17)

of the reference design with respect to the locally D-optimal design for estimating

the parameter γ. The efficiency of the locally D-optimal designs are always larger

than 100% compared to the reference design. That means that the locally D-optimal

design does not yield an improvement of the reference design when the goal of the

experiment is a most precise estimation of the additional day effect. Therefore we

also calculate locally D1-optimal designs in Section 5.2 in order to test for a day

effect.

Note that the selected models for the four responses differ and it is not clear if

a locally D-optimal design for a particular model (for example the model used for

temperature) has good properties in the models used for the other responses. In

order to address this problem we have used the multi-objective criterion (10) to find

a design X(2) for the observations on a different day with good efficiencies in all

models. We begin considering only uncertainty with respect to the model in the

criterion (7), while all the parameters (and link functions) are fixed. We used equal

weights for all four models as prior distribution and the resulting design is given in

the left part of Table 5.3.

The corresponding efficiencies

eff(XR,X
∗
B) =

( |(XR, s)|
|(X∗

B, s)|
)1/(p(s)+1)

(18)
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Run L K D FDV L K D FDV
1 2 -2 -2 -2 2 -2 2 -2
2 2 -2 2 -2 2 -0.15 -2 2
3 2 0.25 2 2 2 0.19 -2 -2
4 2 2 -2 -0.53 2 2 2 2
5 -2 -2 -2 2 -2 -2 -2 -2
6 -2 -2 2 2 -2 -2 2 -0.46
7 -2 0.05 -2 2 -2 0.09 2 2
8 -2 0.2 2 -2 -2 2 -2 2

Table 5.3: Bayesian D-optimal designs for the four response models. Left part:
parameter of the day effect is fixed; right part: three values for the parameter of the
day effect, γ, γ ± 10%.

effD1(XR,X
∗
B) =

ΦD1(X
(2)
R , s)

ΦD1(X
∗(2)
B , s)

(19)

of the reference design XR with respect to the design X∗
B = (X

(1)
C ,X

∗(2)
B ) are pre-

sented in the second line of Table 5.1 and 5.2, respectively. We observe a similar

improvement as obtained by the locally D-optimal designs for the D-efficiencies.

From this table we can easily calculate the D-efficiencies of the design X∗
B
(2), which

are given by 0.9856, 0.9076, 0.8102, 0.8757 in the models for the temperature,

velocity, flame width and flame intensity, respectively. Similarly, the efficiencies

effD1(X
∗
B,X

∗
s) of the design X∗

B
(2) with respect to the locally D-optimal designs for

estimating the paramameter γ are obtained as 0.9803, 1.6825, 1.1850, 0.6557.

While rather precise information is available for the parameter β from the first 30

observations, the designs and its properties might be sensitive with respect to the

specification of the parameter γ for the additional day effect. In order to construct

designs, which address this uncertainty we can also use the criterion (7), where we

now also allow for uncertainty with respect to the parameter γ in the criterion. More

precisely, for each of the four models we consider 3 possible values for γ, namely

the value used in the locally D-optimality criterion and 90% and 110% of this value

(for example for the temperature model we used 14.4, 16, and 17.6 as possible val-

ues of γ). The resulting criterion (7) therefore consists of a sum of 12 terms and

the maximizing design is depicted in the right part of Table 5.3. The structure of

the two Bayesian D-optimal designs is very similar, since both designs put most of

the design points in the edges of the design space. The D- and D1-efficiencies are
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Temperature Velocity Flame Width Flame Intensity
0.9933 0.9912 0.9274 0.92598
0.9933 0.9919 0.9323 0.9349
0.9936 0.9946 0.9464 0.9367

Table 5.4: First row: D1-efficiencies of the reference design. Second row:Efficiencies
of the reference design XR with respect to the design X∗

B1
maximizing the multi

objective criterion (16), where γ has been fixed. Third row: Efficiencies of the
reference design XR with respect to the design X∗

B1
maximizing the multi objective

criterion (16), where uncertainty with respect to the parameter γ has been addressed.

presented in the third rows of Table 5.1 and 5.2. Because of the similarity of the

two Bayesian D- optimal designs the efficiences have nearly the same values.

These investigations show that the D-optimal designs yield a substantial improve-

ment of the reference design if all parameters in the model (8) have to be estimated.

On the other hand, if the only interest of the experiment is the estimation of a day

effect, the reference design yields a more precise estimate of the parameter γ than

optimal designs based on D-optimality criteria.

5.2. Optimal designs for testing for a day effect

If the main interest of the experiment is the existence of an additional day effect the

design can be constructed such that the test for the hypothesis H0 : γ = 0 is most

powerful, which is reflected by the criterion ΦD1 defined in (14). The corresponding

multi-objective criterion addressing uncertainty with respect to the regression model,

link function and parameters is given by (16). The locally D1-optimal designs for

the four models in Table 4.1 are presented in right parts of Table B.5 and B.6 in

Appendix B, while the efficiency of the reference designsXR are given in the first row

of Table 5.4. For the temperature and velocity the D1-efficiencies of the reference

design are about 99%. On the other hand an improvement of the reference designs

can be observed for the flame width and flame intensity (here the efficiencies are

92.7% and 92.5%, respectively).

As in the previous section we construct a robust design for testing for an additional

day effect by maximizing the multi objective criterion (16), where all parameters

have been fixed (β is obtained from Tables A.1 - A.4, while information from other

experiments was used for the parameter γ, that is γ = −16, γ = 0.01, γ = 0.002 and
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Run L K D FDV L K D FDV
1 -1.94 0.68 -1.71 2.00 -1.92 0.49 -1.10 2.00
2 -1.16 0.63 1.75 1.27 -1.57 0.19 -0.82 -1.78
3 -0.41 -2.00 0.68 -0.79 0.54 0.13 1.69 -0.25
4 0.16 -0.98 1.86 -0.64 0.22 -2.00 1.06 -0.58
5 0.77 0.10 1.16 -0.52 0.38 -0.73 -1.41 -0.23
6 0.87 0.32 -0.14 -0.50 0.59 0.24 1.54 -0.20
7 1.03 0.54 -1.98 -0.50 0.73 0.52 0.56 -0.02
8 1.03 0.50 -1.45 -0.50 1.17 1.10 -1.41 0.14

Table 5.5: Bayesian D1-optimal designs for the four response models. Left part:
parameter of the day effect is fixed; right part: three values for the parameter of the
day effect, γ, γ ± 10%

γ = 0.09 in the models for temperature, velocity, flame width and flame intensity,

respectively). The resulting design is shown in the left part of Table 5.5 and its

efficiencies are presented in the second row of Table 5.4. We observe a similar

improvement of the reference designs as obtained by the locally D1-optimal designs.

Finally, we consider designs addressing the fact that the parameter γ cannot be

estimated from the data of the initial day. If we address the uncertainty about this

parameter in the same way as described in the previous section we obtain the design

presented in the right part of Table 5.5. The efficiencies of the reference designs XR

with respect to this design are shown in the third row of Table 5.4.

Both Bayesian D1-optimal designs are very similar but differ substantially from

the two Bayesian D-optimal designs in Table 5.3. The D1-optimal designs put

more observations in the interior of the design space [−2, 2]4. Nevertheless their

effiencies are very similar and range between 93% and 99%. Whereas the reference

design performs nearly as well as the two Bayesian D1-optimal designs in the cases

of temperature and velocity, in the cases of flame width and flame intensity the

Bayesian D1-optimal yields more precise estimates as to the reference designs.
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A. Parameters estimates in the identified models

In this section we display the parameter estimates in the models identified by the BIC

criterion for the four responses. The values are obtained from the 30 observations

of the first day and are used in the local optimality criteria to construct the optimal

design for the additional eight runs on the next day.

Estimate Std. Error t value Pr(> |t|)
(Intercept) 1523.263 2.672 570.036 5.955e-53

L -17.742 2.314 -7.669 5.035e-08
K 19.658 2.294 8.570 6.554e-09
D -13.818 2.314 -5.973 3.092e-06
K2 -9.990 2.081 -4.800 6.259e-05

Table A.1: Parameter estimates of the model for temperature chosen by the BIC
criterion (for this model the link function is the identity function).

Estimate Std. Error t value Pr(> |t|)
(Intercept) 6.565e+00 1.564e-03 4198.393 3.510e-69

L 1.361e-02 1.354e-03 10.050 6.962e-10
K 5.161e-02 1.354e-03 38.112 2.732e-22
D -1.711e-02 1.354e-03 -12.634 7.860e-12

FDV -7.809e-03 1.354e-03 -5.767 7.112e-06
L ·K -3.067e-03 1.659e-03 -1.849 7.733e-02
K2 -9.169e-03 1.236e-03 -7.417 1.531e-07

Table A.2: Parameter estimates of the model for velocity chosen by the BIC criterion
(for this model the link function is the logistic function).

Estimate Std. Error t value Pr(> |t|)
(Intercept) 8.630e-02 1.808e-03 47.727 2.673e-25

L 5.296e-03 1.524e-03 3.476 1.956e-03
K -4.439e-03 1.612e-03 -2.754 1.106e-02
D 2.867e-03 1.525e-03 1.880 7.236e-02

FDV -1.231e-02 1.508e-03 -8.162 2.208e-08
K2 3.904e-03 1.542e-03 2.532 1.832e-02

Table A.3: Parameter estimates of the model for flame width chosen by the BIC
criterion (for this model the link function is the inverse function).
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Estimate Std. Error t value Pr(> |t|)
(Intercept) 19.478 0.336 57.905 1.188e-24

L -0.889 0.190 -4.675 1.296e-04
K 0.865 0.186 4.641 1.405e-04
D -0.371 0.197 -1.883 7.360e-02

FDV 2.166 0.204 10.606 6.851e-10
L2 -0.310 0.176 -1.759 9.311e-02
K2 -0.561 0.170 -3.306 3.365e-03

FDV 2 0.509 0.192 2.646 1.512e-02
D · FDV 0.410 0.238 1.722 9.976e-02

Table A.4: Parameter estimates of the model for flame intensity chosen by the BIC
criterion (for this model the link function is the identity function).

B. Appendix: Standard and optimal designs
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Run L K D FDV
1 1 -1 1 -1
2 1 1 1 1
3 -1 -1 1 -1
4 -1 -1 -1 1
5 0 0 0 0
6 0 0 0 0
7 -1 1 1 -1
8 -1 1 -1 1
9 1 1 -1 1
10 1 -1 -1 -1
11 0 0 0 0
12 -1 1 -1 -1
13 1 1 -1 -1
14 -1 1 1 1
15 1 -1 1 1
16 -1 -1 1 1
17 -1 -1 -1 -1
18 1 1 1 -1
19 0 0 0 0
20 1 -1 -1 1
21 0 0 0 0
22 0 0 -2 0
23 -2 0 0 0
24 2 0 0 0
25 0 0 0 0
26 0 0 0 -2
27 0 0 2 0
28 0 2 0 0
29 0 0 0 2
30 0 -2 0 0

Table B.1: Central Composite Design used for the first 30 observations

Run L K D FDV
1 1 1 -1 -1
2 1 -1 -1 1
3 -1 -1 -1 -1
4 -1 -1 1 1
5 -1 1 1 -1
6 1 1 1 1
7 1 -1 1 -1
8 -1 1 -1 1

Table B.2: The reference design for XR
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Temperature Velocity
Run L K D L K D FDV

1 -2 -2 2 2 -2 -2 -2
2 -2 -2 2 - 2 -2 2 2
3 -2 0 -2 2 2 2 2
4 -2 2 2 2 2 -2 -2
5 2 -2 -2 -2 -2 -2 -2
6 2 -0.1 -2 2 -0.22 2 -2
7 2 0 2 -2 2 2 -2
8 2 2 2 -2 2 -2 2

Table B.3: Locally D-optimal designs for the responses temperature (left part) and
velocity (right part)

Flame Width Flame Intensity
Run L K D FDV L K D FDV

1 -2 -2 -2 2 2 2 2 -2
2 2 0.49 -2 2 2 -2 2 -0.46
3 -2 0.14 -2 2 2 -2 2 2
4 -2 0.31 -2 -2 0.33 -0.31 2 -2
5 -2 2 -2 2 -2 -2 2 -2
6 -2 2 2 2 1.35 -2 -2 2
7 2 -2 2 2 2 -2 2 -2
8 -2 0.17 2 2 2 -2 -2 -2

Table B.4: Locally D-optimal designs for the responses flame width (left part) and
flame intensity (right part)

Run L K D L K D FDV
1 0.11 -0.12 0.55 0.70 0.25 -1.20 -0.07
2 -1.75 -1.11 -1.32 -0.79 -1.88 0.06 0.19
3 0.67 0.08 1.60 1.80 0.35 0.77 -1.05
4 0.39 0.41 1.20 -0.98 0.94 -1.18 1.13
5 -0.36 1.35 -1.02 -0.47 -0.06 1.54 -1.25
6 0.34 0.04 -1.18 0.13 -0.46 -0.36 1.11
7 0.67 -1.72 -0.61 -0.94 1.20 -0.71 1.67
8 0.29 0.66 1.04 0.55 -0.34 1.04 -1.72

Table B.5: Locally D1-optimal designs for the responses temperature (left part) and
velocity (right part)
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Run L K D FDV L K D FDV
1 1.33 0.16 -0.36 -1.76 0.44 -1.24 0.84 -1.98
2 -1.11 0.40 -1.75 1.83 -1.33 0.00 0.38 -0.42
3 1.63 -1.28 0.24 1.92 0.70 0.45 -0.35 -0.40
4 -1.43 1.05 1.21 -0.59 0.32 -1.53 -.077 0.41
5 -1.54 -0.93 0.09 0.81 -0.62 -0.97 1.63 0.29
6 1.86 0.81 -1.78 -0.92 1.34 0.11 0.17 -0.22
7 -1.53 0.95 1.71 1.53 1.21 0.79 -1.66 -0.20
8 0.78 0.03 -0.99 -1.85 -0.91 1.36 0.95 0.27

Table B.6: Locally D1-optimal designs for the responses flame width (left part) and
flame intensity (right part)
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