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1 Introduction

The model by Markowitz (1952) represents a milestone in development of modern techniques concern-

ing portfolio optimization. Nevertheless, it is well known that there are some serious challenges for the

application of optimization techniques to portfolio management practice. In particular, the error-prone

estimation of the expected returns is crucial for reasonable results of the optimization (Best and Grauer,

1991, Chopra and Ziemba, 1993). The global minimum-variance portfolio approach circumvents this

problem. It determines the portfolio weights independently from expected returns. The optimization de-

pends solely on the covariance matrix which can be estimated much more reliable than expected returns

(Golosnoy et al., 2011). It leads to a minimum-variance portfolio that lies on the left-most tip of the effi-

cient frontier. Considering equity portfolios, numerous historical backtests show that minimum-variance

optimization provides higher returns and lower risk compared to capitalization-weighted portfolios (e.g.

Haugen and Baker, 1991, Jagannathan and Ma, 2003, Clarke et al., 2006, Clarke et al., 2012).

However, some crucial challenges remain by this approach. In order to compose an efficient minimum-

variance portfolio a precise estimation of the covariance matrix is essential. Surprisingly, in finance liter-

ature and practice the covariance matrix is often estimated on the basis of a constant historical (rolling)

time-window of more or less arbitrary length (e.g. Haugen and Baker (1991): 24 month; Jagannathan

and Ma (2003): 60 month and 1260 days; Pojarliev and Polasek (2003): 800 days; Clarke et al. (2006): 60

month and 250 days; DeMiguel et al. (2012): 250 and 750 days; Behr et al. (2012): 120 month), although

several studies show that variances and correlations of asset returns are not constant over time (e.g.

Longin and Solnik, 1995). To this end, this common approach may suffer from serious sampling errors.

Besides parameter estimation, the question arises when re-optimizations should be performed. In

finance literature and in practice it is common to choose a fixed re-optimization frequency (e.g. Baltutis

and Dockner (2007): weekly; Lenoir and Tuchschmid (2001) and Clarke et al. (2006): monthly; Haugen

and Baker (1991): quarterly; Chan et al. (1999) and Jagannathan and Ma (2003): annually; MSCI Mini-

mum Volatility World Index: semi-annually). Usually, previous studies fail to motivate the determination

of the frequency in detail. Surprisingly, there are just a few paper dealing with the issue of the (optimal)

timing of re-optimizations. Behr and Miebs (2008) showed that minimum-variance portfolios are highly

sensitive to revision frequencies. Baltutis and Dockner (2007) found out that under high frequency re-

vision the turnover of the portfolio increased undesirably not necessarily reducing its realized volatility

significantly. Golosnoy et al. (2011) elaborates multivariate cumulated sum control charts for sequential

monitoring the global minimum variance portfolio weights. A signal information obtained by the control

charts indicates significant changes for the optimal portfolio weights, so an investor should revise the

asset allocation. Baltutis (2009) proposed a different concept based on the idea to interpret the shifts
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in covariances as time points to re-estimate and re-balance the portfolio. In order to detect structural

changes of the covariance matrix, he used several ex-post (offline) and sequential (online) approaches.

In order to meet these challenges, we propose an approach based on the fluctuation test by Aue

et al. (2009) for a constant covariance matrix. This test detects break points in time series which al-

low a proper determination of the samples for parameter estimation and automatically induces dates

for re-optimizations. Wied et al. (2013) introduce basic concepts of combining the minimum-variance

approach with various fluctuation tests for volatility and dependence measures. Within the optimization

context, they investigated a combination of the fluctuation tests for constant volatility and for constant

correlations (Wied et al., 2012a; Wied et al., 2012b) as well as a fluctuation test for constancy of the

entire covariance matrix (Aue et al., 2009). They find out that the usage of test for constancy of the

entire covariance matrix is the most promising approach.

However, despite the demonstrated potential of this approach they point out several serious drawbacks

and challenges which have to be solved in further investigations in order to make this approach applicable

for practitioners. In this paper, we take up these points and present useful methodological adjustments in

order to develop algorithms and techniques for applications. Furthermore, we discuss the implementation

of this new approach as an automated investment system for strategic asset allocations. Our empirical

study shows that tests for structural breaks in the covariance matrix can improve the results of a global

minimum-variance optimization.

2 Portfolio Optimization

As the model by Markowitz (1952) is well known, we give only a very brief summary. It assumes the

existence of d assets with normally distributed returns. Optimal selection of the portfolio weights ω =

(ω1, · · · , ωd) is intended, where ωi is the fraction which is invested into asset i. For most applications

it is required that ωi ≥ 0, which avoids short selling, and
∑d

i=1 ωi = 1, which ensures an investor to

be fully invested. The crucial parameter for a global minimum-variance optimization is the risk of the

portfolio, which is defined by the standard deviation σP . Hence, the portfolio weights are determined

independently from expected returns and the optimization depends solely on the covariance matrix. The

resulting portfolio lies on the left-most tip of the efficient frontier. These considerations result in the

following optimization problem:

min σP

s.t.

d∑
i=1

ωi = 1, (1)
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where σP = ωΣω′ and Σ is the covariance matrix. As mentioned before, sometimes the additional

constraint ωi ≥ 0,∀i, is imposed.

3 Tests for Breaks in the Covariance Structure

Aue et al. (2009) present a nonparametric fluctuation test for a constant d-dimensional covariance matrix

of the random vectors X1, . . . , XT with Xj = (Xj,1, . . . , Xj,d). The basic idea of the procedure is to

compare the empirical covariance matrix calculated from the first observations with the one from all

observations and to reject the null hypothesis if this difference becomes too large over time. Denote

vech(·) the operator which stacks the columns on and below the diagonal of a d× d matrix into a vector

and A′ the transpose of a matrix A. Then, we consider the term

Sk =
k√
T

1

k

k∑
j=1

vech(XjX
′
j)−

1

T

T∑
j=1

vech(XjX
′
j)

 (2)

which measures the fluctuations of the estimated covariance matrices calculated by means of the first

k observations and use the maximum of the results for k = 1, · · · , T . Here, the factor k√
T

serves for

standardization; intuitively it corrects for the fact that the covariance matrices cannot be well estimated

with a small sample size. If the maximum is standardized correctly, the resulting test statistic converges

against a well know distribution and the null of a constant covariance matrix is rejected, if the test

statistic is larger than the respective critical value.

For sake of readability we will not describe the entire test statistic at this point and refer to the appendix

or Aue et al. (2009). Nevertheless, the limit distribution under the null hypothesis is the distribution of

sup
0≤t≤1

d(d+1)/2∑
l=1

B2
l (t), (3)

where (Bl(t), t ∈ [0, 1]), l = 1, . . . , d(d+ 1)/2 are independent Brownian bridges.

The test basically works under mild conditions on the time series under consideration. One does not

need to assume a particular distribution such as the normal distribution and the test allows for some serial

dependence which makes it possible to consider e.g. GARCH models. Moreover, the test is consistent

against fixed alternatives and has considerable power in finite samples. Regarding moments of the random

variables, note that the correct application of the test needs constant expectations. The asymptotic result

is derived under the assumption of zero expectation; if we had constant non-zero expectation, it would

be necessary to subtract the arithmetic mean. While this assumption is sufficiently fulfilled for daily

return series, the derivation of the asymptotic null distribution also needs the assumption of finite fourth
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moments. Theoretically, this assumption could be violated (Mandelbrot, 1962). However, in the following,

we do not further consider this potential problem as this lies beyond our scope.

4 Empirical Study

The aim of this empirical study is to compare the out-of-sample performance of a global minimum-

variance optimization combined with the test for a constant covariance matrix (hereinafter referred to

as covariance-test optimization) to various relevant asset allocation strategies. First, we decide for a

equally weighted asset allocation strategy as a natural benchmark.1 For this, we obtain market values

for each of the (sub)indices from Thomson Reuters Datastream and the portfolio weights are rebalanced

each 21/63/252 traiding days, which corresponds approximately to monthly, quarterly and yearly re-

balancings. The benchmark of most interest is the classical global minimum-variance portfolio where the

optimization is based on constant rolling time-windows for calculation of the empirical covariance matrix

(hereinafter referred to as plain optimization).

As this study is focused on strategic asset allocation, we use time series from indices or subindices

rather than from single stocks. The pros and cons of active portfolio management are extensively discussed

in numerous studies (e.g. Wermers, 2000, Jacobsen, 2011). However, we agree with Sharpe (1991) who

pointed out that the return on the average actively managed dollar will equal the return on the average

passively managed dollar. Including costs for the active management it will be even less. This statement

is underpinned by Standard & Poor’s (2012) who showed that 65% of all U.S. large cap equity funds

do not outperform the S&P 500 index over the last five years. Moreover, indices are much more robust

against unsystematic market risks and movements and can easily be replicated by means of ETFs. Note,

as we deal with indices in a strategic asset allocation environment we can avoid questions arising from

large investable sets (compare for example Michaud, 1989, Bai et al., 2009, Arnold et al., 2013).2 Hence,

we apply each of these approaches to two samples consisting of five and ten indices, respectively. In

detail, the empirical study is designed as follows:

4.1 Data

To carry out the out-of-sample study we compute log-returns from two different datasets. To avoid

undesirable effects, both datasets have to fulfill the requirements of single currency and uniform time

zone. For the first portfolio, we use daily total return quotes from five stock indices of main European

1 We also investigated cap-weighted portfolios. Nevertheless, the results of the equally wighted portfolios were slightly
better. The results for cap-weighted portfolios are available from the authors upon request.

2 Furthermore, high-dimensional portfolios can be reduced to managable sizes for example by factor analysis (Krzanowski,
2000, Hui, 2005).
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countries that are founding members of the eurozone (AEX, CAC 40, DAX 30, FTSE MIB, IBEX

35). The quotes cover a period from the introduction of the Euro at January 1, 1999 to July 31, 2012

leading to 3481 trading days. For the second portfolio, we used daily total return quotes from the ten

S&P 500 sector subindices (Consumer Discretionary, Consumer Staples, Energy, Financials, Health Care,

Industrials, Information Technology, Materials, Telecommunication Services, Utilities). This quotes cover

the total period provided by S&P starting at the initial publication on January 1, 1995 to July 31, 2012

leading to 4429 trading days. All quotes are obtained from Thomson Reuters Datastream.

4.2 Parameter Estimation

The optimization of a global minimum-variance portfolio based solely on the covariance matrix. Conse-

quently, the performance differences between plain optimizations and covariance-test optimizations are

due to the varying length of time-windows for parameter estimation. For the plain optimizations we define

constant rolling time-windows of 250, 500 and 1000 trading days. The time-window of the covariance-test

optimization is determined by following procedure:

1. Initialize i = 1 and k = 1000.

2. Apply the test of a constant covariance matrix to the data {xi, . . . , xk}.

3. If the test rejects the null, set p = k, otherwise set p = i.

4. Adjust the time-window by i = min{p, k − 126 + 1} in case of the five-dimensional portfolio or

i = min{p, k − 252 + 1} in case of the ten-dimensional portfolio.

5. Use the data {xi, . . . , xk} for estimating the empirical covariance matrix.

6. Set k = k + n, where n is the number of trading days between two tests and optimizations and go

back to step 2.

Note, a reliable estimation of the covariance matrix requires a sufficient sample size. To this end, the

modifications i = min{p, k − 126 + 1} and i = min{p, k − 252 + 1} ensure that the estimation is based

on data of the last (half) year, depending on the dimensionality of the portfolio. As before, we choose

n = 21, 63 and 252.

The determination of critical values is a crucial issue for the application of the test for a constant

covariance matrix. Aue et al. (2009) approximated critical values by simulating Brownian bridges on a

fine grid. Wied et al. (2013) showed that this approximation does not perform well if the sample size is

small. In this case, the critical values are overestimated and hence lead to low numbers of rejections. We

take up this point and propose an alternative approach which is suitable for a practical application of

the test. To this end, we generate d-dimensional standard normal distributed random variables. Then,

we apply the test for a constant covariance matrix to the sample. This procedure is carried out 10000
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times. After that, we determine the (1−α)-quantile of the resulting test statistics as the critical value. In

line with Wied et al. (2013), we compute the critical values for α = 1% and α = 5%. Depending on the

chosen length of the sample, the critical value varies within a relatively wide range. Therefore, regarding

the five-dimensional (ten-dimensional) portfolio, we estimate critical values for 18 (12) different sample

sizes which are congruent to time-windows of 126 (250) to 1400 trading days (Table 1).

- Insert Table 1 about here -

Using these critical values as grid points, we compute critical values for time-windows of any required

length by linear interpolation. Although it seems only to be a small modification, it leads to a much more

realistic determination of the dates where structural breaks in the covariance matrix occur. Moreover,

it allows us to establish an automated investment strategy, which automatically determines dates for

re-optimizations.

As we have just mentioned, the more precise estimation technique for critical values allows us to

employ an automated investment system, where the test is performed on a daily basis and the opti-

mization is conducted only if the test rejects the null. Hence, an investor does not need to decide for

a particular time-window in order to estimate the covariance matrix and re-optimization interval. Only

the significance level has to be determined in advance. In more detail, we set n = 1 and modify the last

step of the previous procedure as follows:

6. If the test rejects the null, set k = k + 63, otherwise set k = k + 1. Then go back to step 2.

By conducting the fluctuation test at each day, clustered rejections are very likely due to the small

changes in the sample. The condition k = k + 63 in case of a null rejection assures that the sample for

the subsequent test includes an adequate amount of new data.

4.3 Optimization Setup

The portfolio performance is strongly affected by the frequency of re-optimizations. In line with the test

intervals of the previous section, we optimize every 21, 63, and 252 traiding days in the first setting.

In this case, the asset weights are re-optimized after each test, regardless whether the null is rejected

or not. Because of the identical intervals, this procedure allows for a direct comparison between the

plain optimization and the covariance test optimization. In contrast to that, if the constancy of the

covariance is tested on a daily basis, optimizations will be conducted only when a structural break is

detected. Besides, we consider two different constraints concerning the portfolio weights. First, we assume

0 ≤ wi ≤ 1,∀i, which in particular excludes short selling (hereinafter referred to as long portfolios). In
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addition to that, we assume |wi| ≤ 1,∀i, throughout the second run (hereinafter referred to as short

portfolios). The optimizations are performed by using the fmincon-function of MATLAB R2012a. To

minimize the risk of detecting local minima, we use an adequate number of different starting points for

the optimization. These starting points include the defined weighting boundaries as well as the equal

weighted portfolio and random weights.

4.4 Performance Measurement

The portfolio performance is analyzed from various perspectives. First of all, the measurement of the

risk in terms of volatility takes a prominent part of the evaluation, as portfolio variances are optimized.

Nevertheless, we investigate the impact on the resulting returns and the relationship between risk and

return in terms of the Sharpe-ratio, too. For its computation we assume 1.1% as risk free return which

corresponds to the average return of German goverment bonds with less than 3 years to maturity in

2011.

Re-optimization (and re-balancing) of portfolio asset weights naturally leads to increasing trading

volume. Hence, we measure this turnover in absolute and relative Terms. Following DeMiguel et al.

(2009), we define the sum of absolute changes in the weights as

Turnover(A) =

RD−1∑
i=1

d∑
j=1

|ai+1,j − ai+,j |, (4)

where RD is the number of the re-optimization (re-balancing) days and d the number of assets. The

portfolio weight of asset j before a re-balancing or re-optimization at time i + 1 is defined as ai+,j .

Besides, we call Turnover(R) the average amount of changes at each RD, that means Turnover(R) =

1
RD−1 · Turnover(A).

In order to attribute a financial impact to the trading volume, we transform turnover to transaction

costs and analyzes the effects. In line with Wied et al. (2013) we compute adjusted returns and Sharpe-

ratios by subtracting transaction costs from the return R. These costs are defined by Turnover(A) · sc2
where the constant relative bid-ask spread sc represents the bid-ask spread divided by bid-ask midpoint.

We quantify the spread on the basis of the average relative bid-ask spread of the stocks listed on the

European indices (5 asset portfolio) and stocks listed on the S&P 500 (10 asset portfolio) for the time-

span August 1, 2011 to July 31, 2012. The spread of the analyzed stocks amounts to about 0.15%

(European indices) and about 0.05% (S&P 500). Moreover, we refine this methodology used in Wied

et al. (2013) and introduce critical relative bid-ask spreads. To this end, consider two portfolio selection

methods where a superior method outperforms an inferior method in terms of Sharpe-ratio (excluding
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transaction costs) and the absolute turnovers are different. Then, the critical relative bid-ask spread is

defined as the spread at which for both portfolios the Sharpe-ratios adjusted by transaction costs are

equal. In this context, we use the average Sharpe-ratio of the equally weighted portfolios as benchmark

in order to calculate critical spreads for optimized portfolios.

5 Results

In the following, we present the results of the out-of-sample study.

5.1 European Stock Indices Portfolio

We start with the dataset including the five European stock indices. The results of the equally weighted

portfolios are presented in Table 2. Volatilities, returns, and Sharpe-ratios remain in a narrow range and

show only small variations due to the re-balancing interval. On average, an annualized return of 3.73%

and an annualized volatility of 22.67% results to a Sharpe-ratio of 0.1161. The low turnover leads to

neglectable transaction costs.

- Insert Table 2 about here -

As expected, the volatility of the plain optimization portfolios (Table 3) is reduced significantly

by averaged 1.08% for the long portfolios. Furthermore, the portfolio return is improved by 0.61% on

average. Nevertheless, the re-optimizations generate a much higher trading volume and the related

transaction costs decrease the returns by 0.02% to 0.15%. The allowance for short selling reduces

volatilities even more. However, compared to the long portfolios, the returns and Sharpe-ratios tend to

be lower and do not even achieve the level of the equally-weighted portfolios on average. Furthermore,

the turnover increased by more than two times. Consequently, the average critical spread is negative.

On average, the choice of the time-window length has a bigger impact to returns and Sharpe-ratios

than the choice of the re-optimization interval. Conversely, the volatility is slightly more affected by the

choice of the re-optimization interval.

- Insert Table 3 about here -

From a theoretical point of view the allowance for short selling should lead to lower volatilities because

it implies less stringent constraints for the optimization. As shown by Table 3 for example, applying the
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optimization to financial market data, a loosening of constraints could lead to a less efficient portfolio in

some cases. This finding is in line with the empirical study of Jagannathan and Ma (2003) who argue

that constraints for portfolio weights increase specification error, but can also reduce sampling error. The

trade-off between both error types determines the gain or loss in efficiency.

The results of the covariance-test optimizations are presented in Table 4. Considering the long

(short) portfolios, the returns increase by 1.07% (0.72%) while the volatility decrease by 0.34% (0.76%)

on average compared to the plain optimization portfolios. This leads to an improvement of the average

Sharpe-ratio by 0.0531 (0.0393). For both, long and short portfolios, the application of the tests for

structural breaks leads to almost a doubling of the average turnover. Nevertheless, the average critical

spreads are higher compared to the plain optimization. The significance level of 1% leads to superior

returns, whereas the impact of the significance level on the volatility is inconsistent.

- Insert Table 4 about here -

Table 5 shows the results for the covariance-test optimizations where the test is performed on a daily

basis. It is remarkable that the significance level of 5% leads to much better results compared to a level

of 1%. Using 5%, long portfolios are comparable to the corresponding covariance-test optimizations.

With respect to the short portfolio, this applies also for the volatility, whereas returns and Sharpe-ratios

are worse.

- Insert Table 5 about here -

5.2 S&P500 Subindices Portfolio

Below, we continue with the results for the portfolio consisting of ten Standard & Poor’s 500 subindices.

The results of the equally weighted portfolios are presented in Table 6. On average, a annualized return

of 4.99% and an annualized volatility of 20.15% results to a Sharpe-ratio of 0.1933. As before, the low

turnover leads to neglectable transaction costs.

- Insert Table 6 about here -
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As before, the application of the plain optimization improves the performance measures significantly

(Table 7). Compared to the equally weighted portfolio, the volatility of the long-portfolio decreases by

4.83% whereas the return increases by 1.03% on average. Transaction costs vary between 0.007% and

0.035%. In contrast to the European indices portfolio, the allowance for short selling for the S&P500

portfolio leads to considerable improvements on the long portfolio with respect to volatility, return, and

Sharpe-ratio. This goes along with a rise in averaged relative turnover from 0.21 to 0.56. The critical

spreads reach considerably high values.

- Insert Table 7 about here -

As presented in Table 8, the application of the test for a constant covariance matrix yields to superior

results on average. The long portfolio shows only slight improvements of the return whereas the return

of the short portfolio increases by 0.52% on average. Moreover, the volatility decreases by 0.29% for

the long and 0.25% for the short portfolio. Although the average trading volume rises by more than

40% compared to the plain optimizations, the improvements of the results are not offset by a loss of

return due to transaction costs. However, the critical spreads are somewhat lower compared to the plain

optimizations. The choice of the significance level has no substantial impact to both return and volatility.

- Insert Table 8 about here -

Table 9 shows the results for the covariance-test optimizations where the test is performed on a

daily basis and the optimization is conducted only if the test rejects the null. On average, the results of

this approach improve even on the covariance-test optimizations with a fixed test and re-optimization

interval. Furthermore, the turnover is reduced considerably. In contrast to the first sample, the signifi-

cance level has a minor impact on the results. Nevertheless, a level of 5% results in slightly superior results.

- Insert Table 9 about here -

6 Conclusion

Our empirical study shows that minimum-variance optimization significantly improves return, volatility,

and Sharpe-ratio compared to equally weighted portfolios. Although the optimizations lead to consid-

erably increased trading volumes, the turnover in connection with relatively low bid-ask spreads for

11



heavily traded blue chips causes modest transaction costs. Furthermore, the computation of critical rel-

ative bid-ask spreads suggests that an optimization is preferable even under much higher transaction

costs. However, the study also reveals the sore point of the optimization setup: The results are very

sensitive to the chosen historical time-window and to the re-optimization interval.

To overcome the issue of determining appropriate time-windows, we use the test of Aue et al. (2009)

for a constant covariance matrix to detect structural breaks which set the starting point of a sample. We

implement a consistent and essential advancement of the promising approach introduced by Wied et al.

(2013) and apply the optimizations in combination with the test in two different ways. First, we conduct

the test and the optimization after a fixed interval where the rejection of the null sets a new beginning

point for the time-window. In line with the plain optimizations, the interval for re-optimizations is fixed.

Considering the European indices dataset, Figure 1 presents the dates at which the test for a constant

covariance matrix rejects the null in connection with a trend of variances and covariances.

- Insert Figure 1 about here -

The table illustrates that significant changes of variances and covariances are due to points in time at

which the test rejects the null. Consequently, this procedure leads to considerably improved results with

respect to volatility, return, and Sharpe-ratio compared to the optimizations with a fixed historical

time-window. Figure 2 shows the portfolio values of an equally weighted portfolio, a plain optimization

portfolio, and a covariance-test optimization portfolio in connection with the dates at which the test for

a constant covariance matrix rejects the null.

- Insert Figure 2 about here -

The chart reveals that the covariance-test optimization outperforms the equally weighted portfolio and/or

the plain optimization throughout most of the time. In particular during the late phase of the bull

market 2006/2007 and the European sovereign-debt crisis beginning in the fall 2009, this new method

outperforms the remaining portfolio selection approaches.

The results of the covariance-test optimization indicate that they are quite sensitive to the choice of

the test and re-optimization interval, whereas the selected significance level plays only a minor role. This

finding leads to a second step, where we apply the test on a daily basis and conduct a re-optimization only

if the test rejects the null. That means, that this procedure determines the length of the time-windows

as well as the point in time where the portfolio is re-optimized. However, the results of this procedure

are more difficult to interpret. The application to the Standard & Poor’s 500 dataset yields better results
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compared to a fixed test and re-optimization interval. But the inclusion of the European indices dataset

leads to decent results only if the significance level is set to 5%.

Finally, we can conclude that minimum-variance optimizations in combination with the test for

a constant covariance matrix provides a usable approach to replace an arbitrary sample selection for

parameter estimation by a procedure which is statistically justified. Therefore, it can be used as an

automated investment system for strategic asset allocations. Besides, there are some more remarkable

benefits. First, the system is completely automated and no expensive funds managers and analysts

are required. Hence, costs could be decreased significantly. Moreover, the out-of-sample study shows

that there is a good chance to outperform an equally distributed portfolio over longer periods of time.

Consequently, the approach seems to be an appropriate alternative for a usage in practice and in order

to overcome the already mentioned weak points of actively managed portfolios.

Acknowledgement: Financial support by Deutsche Forschungsgemeinschaft (SFB 823, project A1) is

gratefully acknowledged.
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7 Tables

Sample five-dimensional ten-dimensional
Size Portfolio Portfolio

α = 5% α = 1% α = 5% α = 1%

126 4.25 4.63 - -
138 4.39 4.80 - -
150 4.54 4.96 - -
175 4.74 5.19 - -
200 4.92 5.45 - -
225 5.11 5.65 - -
250 5.24 5.84 8.60 8.94
275 5.37 6.01 8.97 9.35
300 5.48 6.10 9.36 9.77
350 5.69 6.41 10.01 10.48
400 5.89 6.68 10.60 11.18
500 6.11 6.99 11.49 12.12
600 6.31 7.25 12.28 13.05
700 6.47 7.41 12.88 13.83
800 6.57 7.52 13.41 14.35
1000 6.76 7.76 14.26 15.27
1200 6.86 7.90 14.95 16.07
1400 6.99 8.12 15.47 16.61

Table 1: Estimated critical values for the five and the ten dimensional portfolio.
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Interval Sharpe Ratio Return Volatility Turnover
p.a. p.a. (R) (A)

21 0.1164 (0.1158) 3.74% (3.73%) 22.70% 0.02 1.83
63 0.1162 (0.1159) 3.74% (3.73%) 22.69% 0.03 1.06
252 0.1155 (0.1154) 3.71% (3.71%) 22.61% 0.04 0.39

Average 0.1161 (0.1157) 3.73% (3.72%) 22.67% 0.03 1.09

Table 2: Results for the equally weighted portfolios consisting of five European stock indices. The interval
refers to the frequency at which a re-balancing is conducted. Values in parentheses refer to Sharpe-ratios
and returns adjusted by transaction costs.

ωi # Data Interval Sharpe Ratio Return Volatility Turnover Critical
p.a. p.a. (R) (A) Spread

0
<
ω
i
<

1

250
21 0.1687 (0.1615) 4.66% (4.51%) 21.11% 0.17 19.86 1.16%
63 0.1958 (0.1901) 5.27% (5.15%) 21.30% 0.41 15.96 2.24%
252 0.1437 (0.1404) 4.27% (4.20%) 22.09% 1.05 9.41 1.44%

500
21 0.1505 (0.1465) 4.29% (4.20%) 21.18% 0.09 11.19 1.41%
63 0.1664 (0.1633) 4.65% (4.58%) 21.34% 0.22 8.71 2.75%
252 0.1663 (0.1643) 4.70% (4.66%) 21.68% 0.61 5.48 4.82%

1000
21 0.1192 (0.1170) 3.69% (3.64%) 21.71% 0.05 6.19 0.26%
63 0.1168 (0.1151) 3.65% (3.61%) 21.80% 0.12 4.73 0.09%
252 0.1261 (0.1251) 3.88% (3.86%) 22.07% 0.33 2.98 2.28%

Average 0.1504 (0.1470) 4.34% (4.27%) 21.59% 0.34 9.39 1.83%

|ω
i|
<

1

250
21 0.0603 (0.0443) 2.33% (2.00%) 20.37% 0.36 42.67 -0.54%
63 0.0766 (0.0647) 2.69% (2.44%) 20.74% 0.83 32.38 -0.51%
252 0.1468 (0.1399) 4.30% (4.15%) 21.79% 2.17 19.54 0.71%

500
21 0.1315 (0.1217) 3.85% (3.65%) 20.92% 0.23 26.98 0.25%
63 0.1399 (0.1325) 4.07% (3.91%) 21.24% 0.53 20.75 0.51%
252 0.1839 (0.1792) 5.11% (5.01%) 21.80% 1.49 13.40 2.36%

1000
21 0.0570 (0.0515) 2.33% (2.21%) 21.51% 0.13 15.38 -1.74%
63 0.0616 (0.0572) 2.44% (2.35%) 21.81% 0.32 12.41 -2.06%
252 0.0870 (0.0841) 3.05% (2.98%) 22.42% 0.96 8.65 -1.69%

Average 0.1050 (0.0972) 3.35% (3.19%) 21.40% 0.78 21.35 -0.30%

Table 3: Results for plain optimizations of the portfolio consisting of five European stock indices. The
interval refers to the frequency at which the optimization is conducted. Values in parentheses refer to
Sharpe-ratios and returns adjusted by transaction costs.
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ωi α Interval Sharpe Ratio Return Volatility Turnover Critical
p.a. p.a. (R) (A) Spread

0
<
ω
i
<

1 5%
21 0.2127 (0.2028) 5.52% (5.32%) 20.79% 0.23 26.83 1.53%
63 0.2447 (0.2378) 6.23% (6.08%) 20.94% 0.49 19.10 2.93%
252 0.1315 (0.1275) 4.01% (3.92%) 22.13% 1.27 11.47 0.65%

1%
21 0.2167 (0.2074) 5.63% (5.44%) 20.91% 0.21 25.34 1.70%
63 0.2601 (0.2534) 6.59% (6.45%) 21.12% 0.48 18.63 3.40%
252 0.1555 (0.1522) 4.46% (4.39%) 21.63% 1.03 9.31 2.03%

Average 0.2035 (0.1969) 5.41% (5.27%) 21.25% 0.62 18.45 2.04%

|ω
i|
<

1

5%
21 0.1466 (0.1226) 4.03% (3.55%) 20.00% 0.53 62.86 0.19%
63 0.1337 (0.1167) 3.83% (3.49%) 20.45% 1.17 45.64 0.16%
252 0.1360 (0.1284) 4.07% (3.91%) 21.87% 2.40 21.57 0.42%

1%
21 0.1634 (0.1405) 4.37% (3.91%) 20.02% 0.51 59.90 0.32%
63 0.1363 (0.1210) 3.88% (3.56%) 20.36% 1.05 40.82 0.20%
252 0.1497 (0.1436) 4.26% (4.13%) 21.11% 1.88 16.94 0.88%

Average 0.1443 (0.1288) 4.07% (3.76%) 20.64% 1.26 41.29 0.36%

Table 4: Results for the portfolio consisting of five European stock indices using the optimization in
combination with the test for a constant covariance matrix. The interval refers to the frequency at which
the test and the optimization are conducted. Values in parentheses refer to Sharpe-ratios and returns
adjusted by transaction costs.

ωi α Interval Sharpe Ratio Return Volatility Turnover Critical
p.a. p.a. (R) (A) Spread

0
<
ω
i
<

1 5% 1 0.1946 (0.1882) 5.21% (5.07%) 21.10% 0.69 17.82 1.94%

1% 1 0.1301 (0.1261) 3.95% (3.86%) 21.91% 0.66 11.30 0.59%

Average 0.1623 (0.1572) 4.58% (4.47%) 21.51% 0.68 14.56 1.27%

|ω
i|
<

1 5% 1 0.0928 (0.0793) 3.01% (2.73%) 20.55% 1.40 36.40 -0.27%

1% 1 -0.0192 -(0.0295) 0.67% (0.45%) 22.16% 1.76 29.95 -2.04%

Average 0.0368 (0.0249) 1.84% (1.59%) 21.35% 1.58 33.17 -1.15%

Table 5: Results for the portfolio consisting of five European stock indices using the optimization in
combination with the test for a constant covariance matrix. The test is performed on a daily basis while
an optimization is conducted only if the test rejects the null. Values in parentheses refer to Sharpe-ratios
and returns adjusted by transaction costs.
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Interval Sharpe Ratio Return Volatility Turnover
p.a. p.a. (R) (A)

21 0.1916 (0.1912) 4.99% (4.98%) 20.29% 0.03 4.75
63 0.1953 (0.1950) 5.04% (5.03%) 20.16% 0.05 2.89
252 0.1929 (0.1928) 4.96% (4.96%) 20.01% 0.11 1.37

Average 0.1933 (0.1930) 4.99% (4.99%) 20.15% 0.06 3.00

Table 6: Results for the equally weighted portfolios consisting of the Standard & Poor’s 500 subindices.
The interval refers to the frequency at which a re-balancing is conducted. Values in parentheses refer to
Sharpe-ratios and returns adjusted by transaction costs.

ωi # Data Interval Sharpe Ratio Return Volatility Turnover Critical
p.a. p.a. (R) (A) Spread

0
<
ω
i
<

1

250
21 0.3037 (0.3013) 5.63% (5.60%) 14.93% 0.12 19.11 2.66%
63 0.3219 (0.3204) 5.93% (5.91%) 15.00% 0.22 11.71 5.53%
252 0.3694 (0.3686) 6.71% (6.70%) 15.19% 0.55 7.15 14.87%

500
21 0.3082 (0.3069) 5.75% (5.73%) 15.09% 0.07 11.42 5.15%
63 0.3138 (0.3128) 5.87% (5.86%) 15.20% 0.15 7.89 8.85%
252 0.3459 (0.3452) 6.46% (6.45%) 15.49% 0.40 5.22 22.09%

1000
21 0.2935 (0.2927) 5.65% (5.64%) 15.51% 0.04 6.65 9.75%
63 0.3050 (0.3044) 5.86% (5.85%) 15.61% 0.09 4.84 18.81%
252 0.3299 (0.3295) 6.34% (6.33%) 15.88% 0.29 3.75 42.64%

Average 0.3213 (0.3202) 6.02% (6.01%) 15.32% 0.21 8.64 14.48%

|ω
i|
<

1

250
21 0.4034 (0.3967) 6.83% (6.73%) 14.20% 0.32 51.84 1.63%
63 0.4186 (0.4145) 7.15% (7.09%) 14.45% 0.60 32.32 2.94%
252 0.4960 (0.4935) 8.44% (8.40%) 14.79% 1.53 19.95 6.86%

500
21 0.3952 (0.3911) 6.75% (6.70%) 14.31% 0.20 31.84 2.64%
63 0.3996 (0.3969) 6.92% (6.88%) 14.56% 0.39 21.13 4.31%
252 0.4569 (0.4552) 8.01% (7.99%) 15.13% 1.06 13.75 9.44%

1000
21 0.2944 (0.2921) 5.44% (5.41%) 14.74% 0.11 18.37 2.51%
63 0.3228 (0.3213) 5.92% (5.90%) 14.93% 0.22 11.85 5.46%
252 0.3614 (0.3603) 6.67% (6.66%) 15.42% 0.65 8.45 11.44%

Average 0.3942 (0.3913) 6.90% (6.86%) 14.73% 0.56 23.28 5.25%

Table 7: Results for plain optimizations of the portfolio consisting of the Standard & Poor’s 500
subindices. The interval refers to the frequency at which the optimization is conducted. Values in paren-
theses refer to Sharpe-ratios and returns adjusted by transaction costs.
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ωi α Interval Sharpe Ratio Return Volatility Turnover Critical
p.a. p.a. (R) (A) Spread

0
<
ω
i
<

1 5%
21 0.3027 (0.3003) 5.62% (5.58%) 14.93% 0.12 19.13 2.63%
63 0.3349 (0.3336) 6.12% (6.10%) 15.00% 0.21 11.13 6.50%
252 0.3696 (0.3687) 6.71% (6.70%) 15.19% 0.55 7.10 15.06%

1%
21 0.3088 (0.3066) 5.71% (5.68%) 14.93% 0.11 17.89 2.99%
63 0.3262 (0.3249) 5.99% (5.97%) 14.99% 0.20 10.93 6.23%
252 0.3655 (0.3647) 6.64% (6.63%) 15.16% 0.51 6.69 16.01%

Average 0.3346 (0.3331) 6.13% (6.11%) 15.03% 0.28 12.14 8.24%

|ω
i|
<

1

5%
21 0.4045 (0.3978) 6.84% (6.75%) 14.20% 0.31 51.26 1.66%
63 0.4169 (0.4130) 7.12% (7.07%) 14.45% 0.57 30.68 3.08%
252 0.4953 (0.4929) 8.43% (8.40%) 14.80% 1.54 19.96 6.85%

1%
21 0.3968 (0.3906) 6.74% (6.65%) 14.20% 0.30 48.26 1.70%
63 0.3989 (0.3951) 6.87% (6.81%) 14.46% 0.56 30.16 2.89%
252 0.5013 (0.4989) 8.51% (8.48%) 14.79% 1.47 19.06 7.35%

Average 0.4356 (0.4314) 7.42% (7.36%) 14.48% 0.79 33.23 3.92%

Table 8: Results for the portfolio consisting of the Standard & Poor’s 500 subindices using the optimiza-
tion in combination with the test for a constant covariance matrix. The interval refers to the frequency
at which the test and the optimization are conducted. Values in parentheses refer to Sharpe-ratios and
returns adjusted by transaction costs.

ωi α Interval Sharpe Ratio Return Volatility Turnover Critical
p.a. p.a. (R) (A) Spread

0
<
ω
i
<

1 5% 1 0.3519 (0.3506) 6.33% (6.32%) 14.88% 0.24 10.16 8.08%

1% 1 0.3667 (0.3657) 6.63% (6.61%) 15.07% 0.30 8.75 10.93%

Average 0.3593 (0.3581) 6.48% (6.46%) 14.98% 0.27 9.45 9.51%

|ω
i|
<

1 5% 1 0.4763 (0.4727) 7.83% (7.78%) 14.14% 0.67 28.19 4.17%

1% 1 0.4580 (0.4547) 7.70% (7.65%) 14.40% 0.88 25.44 4.45%

Average 0.4672 (0.4637) 7.76% (7.72%) 14.27% 0.77 26.82 4.31%

Table 9: Results for the portfolio consisting of the Standard & Poor’s 500 subindices using the optimiza-
tion in combination with the test for a constant covariance matrix. The test is performed on a daily
basis while an optimization is conducted only if the test rejects the null. Values in parentheses refer to
Sharpe-ratios and returns adjusted by transaction costs.
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8 Figures

Fig. 1: The Figure shows the trend of the sum of variances and covariances for the European indices
dataset over the time span November 26, 2002 to July 31, 2012 (2481 trading days). For each trading
day, the sum results by adding up the entries on and below the diagonal of a covariance matrix. The
matrix is computed on the basis of a rolling 500 trading day time-window. In addition, the points in
time at which the test for a constant covariance matrix rejects the null are marked by vertical bars. The
tests are conducted under a setup of a 63 trading days test interval and a 1% significance level.
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Fig. 2: The Figure shows the portfolio values for the European indices dataset over the time span
November 26, 2002 to July 31, 2012 (2481 trading days). The portfolio values are based on a re-balancing,
re-optimization, and test interval of 63 trading days and a 500 trading day time-window with respect to
the plain optimization. In addition, the points in time at which the test for a constant covariance matrix
rejects the null are marked by vertical bars. The tests are conducted under a setup of a 63 trading days
test interval and a 1% significance level.
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9 Appendixs

For l = 0, . . . , [log(T )], let σl,1 and σl,2 be matrices with d(d + 1)/2 columns and T − l rows such

that the columns contain certain products (component by component) of the one-dimensional marginal

time series. Concretely, if the entries on and below the diagonal of a d × d matrix are numbered from

c = 1, . . . , d(d+ 1)/2 such that c corresponds to one pair (i, j), 1 ≤ i, j ≤ d, it holds that the c-th column

of σl,1 is equal to the vector

(Xl+1,i ·Xl+1,j , . . . , XT,i ·XT,j)

and that the c-th column of σl,2 is equal to the vector

(X1,i ·X1,j , . . . , XT−l,i ·XT−l,j) .

Define Σ̂l as the empirical covariance matrix of σl,1 and σl,2. Then, we introduce the quantity

Σ̂ = Σ̂0 + 2

[log(T )]∑
l=1

(
1− l

[log(T )]

)
Σ̂l

which is an estimator for the covariance matrix of Sk that captures fluctuations in higher moments and

serial dependence and thus also serves for standardization. The test statistic is then the maximum over

quadratic forms, i.e.

ΛT = max
1≤k≤T

S′kΣ̂
−1Sk.
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