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Abstract

This paper is concerned with deriving the limit distributions of stopping times devised to

sequentially uncover structural breaks in the parameters of an autoregressive moving average,

ARMA, time series. The stopping rules are defined as the first time lag for which detectors,

based on CUSUMs and Page’s CUSUMs for residuals, exceed the value of a prescribed threshold

function. It is shown that the limit distributions crucially depend on a drift term induced

by the underlying ARMA parameters. The precise form of the asymptotic is determined by

an interplay between the location of the break point and the size of the change implied by

the drift. The theoretical results are accompanied by a simulation study and applications to

electroencephalography, EEG, and IBM data. The empirical results indicate a satisfactory

behavior in finite samples.
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Keywords and Phrases: CUSUM statistic; One-step ahead predictors; On-line monitoring;

Page’s CUSUM; Structural break detection

1 Introduction

Sequential change-point analysis is concerned with uncovering in an on-line fashion what is called

structural breaks, deviations from a pre-specified in-control scenario. For the case of time series,

relevant for this paper, the natural in-control scenario is the stationarity of the underlying stochas-

tic process. More traditionally, sequential change-point techniques were developed for breaks in

the mean and variance in sequences of independent observations. The corresponding literature is
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reviewed in the monographs Basseville and Nikiforov (1993), and Csörgő and Horváth (1997). A

more recent survey of both sequential and historical procedures is given in Aue and Horváth (2013).

The particular approach to sequential change-point analysis of this paper is grounded in the

work of Chu et al. (1996), who developed procedures using a training sample to estimate an initial

model and to monitor for deviations from that model as soon as new observations arrive. This

contribution, originally written with applications to econometric data in mind, has been extended

in a number of ways. Further sequential procedures covering financial time series were discussed in

Andreou and Ghysels (2006), and Aue et al. (2009). Berkes et al. (2004) introduced methodology

applicable to GARCH processes. Gombay and Serban (2009) worked with autoregressive processes,

while Gombay and Horváth (2009) considered weakly stationary time series. Refinements using

bootstrap were considered in Kirch (2008) and Hušková and Kirch (2012), while resampling schemes

were studied by Hušková et al. (2008).

The basic time series model being utilized in this paper is the class of linear autoregressive

moving average, ARMA, processes made popular through the works of Box et al. (2008). ARMA

processes find widespread applications in a number of fields as evidenced, for example, in the

recent text Shumway and Stoffer (2011). As advocated by Brown et al. (1975) in a regression

setting, the proposed monitoring procedures are based on the residuals obtained from an ARMA

model fit to the original data based on a training sample of size m for which stationarity of the

underlying process is assumed. If the process remains stationary after the monitoring starts, then

residuals of the training period and the monitoring period should possess similar properties. The

test procedures to be introduced here are based on traditional cumulative sum, CUSUM, statistics

and a modification, Page’s CUSUM statistics (see Page, 1954, 1955). The latter tend to react faster

to deviations from the in-control scenario and satisfy certain optimality criteria (see Lorden, 1971).

CUSUMs for residuals of ARMA processes were discussed in a retrospective setting in Bai (1993),

Yu (2007) and Robbins et al. (2011), and in a sequential framework in Dienes and Aue (2013).

Recent work on Page’s CUSUMs can be found in Fremdt (2012a, 2012b).

A stopping rule is then defined as a first crossing time, that is, the time lag for which either

the CUSUM or Page’s CUSUM statistic exceed a threshold value tolerable for the in-control case.

The focus of this paper is on deriving the asymptotic distributions of these stopping rules for

the situation that deviations from stationarity of the underlying process occur. The particular

deviations of interest are the classic change in mean and general changes in the second-order

dynamics, with an emphasis on changes in the variance (or scale) due to the nature of the data

examples provided in this paper. Namely, the finite-sample properties of the proposed methods

are discussed in two case studies. The first of the applications involves EEG data. Here interest is

in detecting the occurrence of an epileptic seizure (see Davis et al., 2006). The second application
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deals with closing prices of IBM stock, a classic data set that has been analyzed with historical

procedures for the presence of breaks in variance (see, for example, Tsay, 1988). Accompanying

simulation evidence indicates that the procedure works satisfactory for these two examples.

The paper is organized as follows. Section 2 details the ARMA model and states the hypotheses

to be tested. Section 3 quantifies the large-sample behavior of the delay times incurred by the

CUSUM and Page’s CUSUM procedure. Applications to EEG and IBM data are discussed in

Section 4. All proofs are given in Section 5.

2 The model

Let Z denote the set of integers. In what follows, (Yt : t ∈ Z) denotes the ARMA(p,q) process

specified by the stochastic recurrence equations

φt(B)(Yt − µt) = θt(B)εt, t ∈ Z, (2.1)

where µt are mean parameters, φt(z) = 1−φt,1z−· · ·−φt,pzp and θt(z) = 1+θt,1z+· · ·+θt,qzq denote

respectively the autoregressive and moving average polynomials, and B the backshift operator.

The innovations (εt : t ∈ Z) are assumed to be independent random variables with zero mean and

variance σ2t . As usual, it is further required that φt and θt have no common zeroes and that the

ARMA process is causal and invertible, which means

φt(z) 6= 0 and θt(z) 6= 0 for all |z| ≤ 1. (2.2)

The parametric model in (2.1) depends on the parameter vectors ξt = (µt,φt,θt, σt)
′, where φt =

(φt,1, . . . , φt,p)
′ and θt = (θt,1, . . . , θt,q)

′, with ′ denoting transposition. These vectors may be time

dependent and interest is in monitoring the constancy of the ξt in a sequential fashion. This is

important because constancy of the ξt would imply stationarity of the underlying ARMA process,

so that standard methods are available for estimation and prediction purposes. To set up the

monitoring, a training period of size m+ p is utilized for which

Y1−p, . . . , Ym are governed by ξt = ξ0 = (µ0,φ0,θ0, σ0)
′. (2.3)

As Chu et al. (1996) elaborate, this training period may be used to estimate the parameters of an

initial non-contaminated model and to express limit results in the form m→∞. In particular, let

(Xt : t ∈ Z) be the centered sequence defined by Xt = Yt−µt and define ξ̂m = (µ̂m, φ̂m, θ̂m, σ̂m)′ to

be a
√
m-consistent estimator for ξ0 obtained from the training period data. This gives the model

residuals

ε̂t = X̂t −
p∑
j=1

φ̂m,jX̂t−j −
q∑
j=1

θ̂m,j ε̂t−j ,
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with X̂t = Yt − µ̂m and initializations ε̂−q+1 = · · · = ε̂0 = 0 in case q > 0.

In the following, two sets of hypotheses will be considered. First, the focus will be on the

arguably most studied case for which only mean breaks are permitted. The sequential testing

problem then becomes

H0 : Ym+1, Ym+2, . . . have mean µ0;

Hµ
A : Ym+1, . . . , Ym+k∗−1 have mean µ0,but Ym+k∗ , Ym+k∗+1, . . . have mean µA 6= µ0,

where here the constancy of the remaining model ARMA parameters is required, so that changes

may only affect the mean. It may sometimes be of greater importance to test for changes in the

underlying second-order dynamics. This can be done via testing the general sequential hypotheses

H0 : Ym+1, Ym+2, . . . are governed by ξ0;

Hξ
A : Ym+1, . . . , Ym+k∗−1 are governed by ξ0, but Ym+k∗ , Ym+k∗+1, . . . are governed by ξA 6= ξ0.

Under Hξ
A the decomposition ξA = ξ0 + δξm will be utilized, where δξm = (δµm, δ

φ
m, δ

θ
m, δ

σ
m)′ denotes

the difference in parameter values.

For both sets of hypotheses, one can now proceed as follows. If the respective null scenarios

hold, then the residuals ε̂t should roughly resemble the corresponding innovations εt and suitably

constructed statistics should therefore behave similarly on the training period and after monitoring

commences. Under the alternatives this should not be the case. This approach will be detailed in

the next section.

3 Monitoring schemes and their large-sample properties

3.1 CUSUM and Page’s CUSUM procedures under the null

Testing procedures for the set of hypotheses introduced in the previous section are commonly defined

as stopping times that reject the null if a detector crosses the boundary prescribed by a threshold

function. Popular choices for the detector are based on cumulative sum, CUSUM, statistics and on

its variant, called Page’s CUSUM. Let N denote the positive integers. To introduce the CUSUM

of (squared) residual procedures, define for k ∈ N the detectors

D̂µ(m, k) =

m+k∑
t=m+1

ε̂t −
k

m

m∑
t=1

ε̂t and D̂ξ(m, k) =

m+k∑
t=m+1

ε̂2t −
k

m

m∑
t=1

ε̂2t . (3.1)

The detector D̂µ(m, k) is built from the residuals ε̂t and used to test H0 against Hµ
A, while the

detector D̂ξ is built from the squared residuals ε̂2t and used to test H0 against Hξ
A. Using the class
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of weight functions

gγ(m, k) =
√
m

(
1 +

k

m

)(
k

m+ k

)γ
, (3.2)

indexed by a sensitivity parameter γ ∈ [0, 1/2), a stopping time corresponding to the detector

D̂µ(m, k) can be defined by

τµ(m) = min
{
k ∈ N : |D̂µ(m, k)| ≥ cασ̂mgγ(m, k)

}
, (3.3)

where cα = cα(γ) is a critical constant, derived from the limit distribution of the detector under

H0 (see Theorem 3.1 below), ensuring that P (τµ(m) <∞) = α for a given level α ∈ (0, 1).

The stopping time τξ(m) for the detector D̂ξ(m, k) is defined analogously: Let η̂2m denote a

weakly consistent estimator of the quantity η2 = E [(ε21 − σ2)2]. Then τξ(m) is given by replacing

D̂µ(m, k) and σ̂m with D̂ξ(m, k) and η̂m, respectively.

Page’s CUSUM procedure is a modification of the CUSUM detectors in (3.1) based on the

adjusted detectors

D̂P
µ (m, k) = max

0≤k′≤k

∣∣D̂µ(m, k)− D̂µ(m, k′)
∣∣ and D̂P

ξ (m, k) = max
0≤k′≤k

∣∣D̂ξ(m, k)− D̂ξ(m, k′)
∣∣,

(3.4)

setting D̂µ(m, 0) = D̂ξ(m, 0) = 0. Utilizing the same class of weight functions in (3.2) as before

gives rise to the Page-type stopping time

τPµ (m) = min{k ∈ N : D̂P
µ (m, k) ≥ cPα σ̂mgγ(m, k)}, (3.5)

where cPα = cPα (γ) controls again the level of the sequential procedure. The stopping time τPξ (m)

is defined in a similar fashion. These sequential testing procedures were introduced in the seminal

papers Page (1954, 1955).

All procedures are based on residuals instead of directly on the observations. This has the

advantage that the notoriously difficult estimation of long-run variances of the dependent observa-

tions can be completely avoided. Better size and power properties are expected from this approach

as pointed out in Robbins et al. (2011), who confirmed these statements in an extensive simulation

study.

The large-sample behavior under the null hypotheses for the four detectors is quantified in the

following two theorems, the first one of which states the results for the mean only procedures.

Theorem 3.1. Let (Yt : t ∈ Z) follow the ARMA equations (2.1) and assume that E [|ε1|ν ] < ∞
for some ν > 2. Then it holds under H0 and for all real c that

(a) lim
m→∞

P

(
1

σ̂m
sup
k≥1

|D̂µ(m, k)|
gγ(m, k)

≤ c

)
= P

(
sup

0<x<1

|W (x)|
xγ

≤ c
)
,
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(b) lim
m→∞

P

(
1

σ̂m
sup
k≥1

D̂P
µ (m, k)

gγ(m, k)
≤ c

)
= P

(
sup

0<x<1
sup

0≤y≤x

1

xγ

∣∣∣∣W (x)− 1− x
1− y

W (y)

∣∣∣∣ ≤ c),
where (W (x) : x ∈ [0, 1]) denotes a standard Brownian motion.

Theorem 3.2. Let (Yt : t ∈ Z) follow the ARMA equations (2.1) and assume that E [|ε1|ν ] < ∞
for some ν > 4. Then, under H0 and for all real c, the limit results of Theorem 3.1 are retained if

D̂µ(m, k), D̂P
µ (m, k) and σ̂m are replaced with the respective objects D̂ξ(m, k), D̂P

ξ (m, k) and η̂m.

The proofs of the theorems follow from the results in Dienes and Aue (2013) for the CUSUM

procedure, and from a combination of the latter with the proofs in Fremdt (2012b) for Page’s

CUSUM procedure. Tables containing simulated critical values for a selection of sensitivity param-

eters γ and test levels α can be found in Horváth et al. (2004) for the limit in Theorem 3.1, part

(a) and in Fremdt (2012b) for the limit in part (b).

3.2 Limiting delay times for mean breaks

The quality of monitoring procedures is often quantified via the mean delay time which measures

how long, on average, one has to wait before the structural break in the underlying processes is

detected. For example, certain optimality criteria for Page’s CUSUM were developed in Lorden

(1971). The monograph by Basseville and Nikiforov (1993) gives an account of the subsequent

contributions in this area. The main theoretical contribution of this paper is the derivation of the

complete limit distribution of the stopping times under consideration. Taking the mean of this

distribution, one obtains in particular also the information on the average delay time. Related

results in the literature are Aue and Horváth (2004), Aue et al. (2009) and Fremdt (2012a). To

account for the ARMA time series character, modifications of the methodology in these papers

become necessary. These will be developed in the following.

It is subsequently assumed that Hµ
A holds and that thus changes in the second-order structure

of the ARMA process do not occur. Notice that assumption (2.2) implies that the reciprocals of

φt(z) and θt(z) admit, for |z| ≤ 1, the power series expansions

1

φt(z)
=

∞∑
`=0

π`(φt)z
` and

1

θt(z)
=

∞∑
`=0

ψ`(θt)z
`. (3.6)

Denoting the training period estimates of the autoregressive and moving average polynomials by

φ̂m(z) and θ̂m(z), for large enough m, one finds analogously power series expansions for their

reciprocals. These will be written as

1

φ̂m(z)
=

∞∑
`=0

π`(φ̂m)z` and
1

θ̂m(z)
=

∞∑
`=0

ψ`(θ̂m)z`. (3.7)
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Under Hµ
A, the asymptotic behavior of the delay time will depend on the size of the mean change

δµm = µA − µ0 which in turn induces the drift term

∆µ
m = δµm

(
1−

p∑
j=1

φ0,j

) ∞∑
`=0

ψ`(θ0) = δµm
φ0(1)

θ0(1)
. (3.8)

Note that the difference of pre-mean and post-mean is allowed to depend on m, so that one could

more explicitly write µA,m. The precise limit distribution will crucially depend on the interplay

between the behavior of the drift term ∆µ
m and the location of the mean change k∗. This leads

to the following set of assumptions which, in view of the theorems to come, are formulated for a

general sequence ∆m and not directly for ∆µ
m. Superscripts, such as µ here, will indicate which

drift term is being used.

Assumption 3.1. It is required that

(a) there exists a θ > 0 such that k∗ = bθmβc with β ∈ [0, 1), where b·c denotes integer part;

(b)
√
m|∆m| → ∞;

(c) |∆m| = O (1).

Part (a) of Assumption 3.1 specifies the order of the change-point k∗ as a power of m. It

is a standard assumption in the change-point literature. However, it should be noted that the

expression k∗ = bθmβc is not unique for fixed m and k∗, and different specifications of θ and β

may lead to different limit distributions. A discussion of this matter can be found in Section 3 of

Fremdt (2012a). Note also that parts (b) and (c) implicitly allow for the decay of the sequence

|∆m|. The proofs show that the form of the limit distribution of the stopping times depends then

on the asymptotic behavior of the sequence |∆m|mγ−1/2k∗1−γ of scaled drift terms. Due to part (a)

of Assumption 3.1 which allows for the re-expression of k∗ in terms of m, they depend consequently

on the asymptotic behavior of the scaled terms

∆̃m = |∆m|mβ(1−γ)−1/2+γ ,

which do not explicitly contain k∗ anymore. We distinguish between the three cases

(i) ∆̃m → 0, (ii) ∆̃m → C̃1 ∈ (0,∞), (iii) ∆̃m →∞.

In case (ii), it follows from part (a) of Assumption 3.1 that |∆m|mγ−1/2k∗1−γ → θ1−γC̃1 = C1 ∈
(0,∞). For this scenario and any real c define d1 = d1(c) to be the unique solution of

d1 = 1− c

C1
d1−γ1 . (3.9)
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In order to exhibit the asymptotic distribution of the stopping times, introduce first the case-

dependent distribution function Ψ by setting, for all real arguments u,

Ψ(u) =



Φ(u), in case (i),

P

(
sup

d1<x<1
W (x) ≤ u

)
, in case (ii),

P

(
sup

0<x<1
W (x) ≤ u

)
=

0, u < 0,

2Φ(u)− 1, u ≥ 0,
in case (iii),

where Φ denotes the standard normal distribution function. The next theorem gives the large-

sample behavior of τµ(m) and τPµ (m).

Theorem 3.3. Let (Yt : t ∈ Z) follow the ARMA equations (2.1) so that (2.2) and (2.3) hold, and

suppose that Assumption 3.1 is satisfied for ∆m = ∆µ
m. Then it holds under Hµ

A for all real u that

(a) lim
m→∞

P

(
τPµ (m)− am(cPα )

bm(cPα )
≤ u

)
= 1−Ψ(−u).

Additionally,

(b) lim
m→∞

P

(
τµ(m)− am(cα)

bm(cα)
≤ u

)
= Φ(u),

where am(c) is the unique positive solution of

am(c) =

(
cm1/2−γ

|∆µ
m|

+
k∗

(am(c))γ

)1/(1−γ)

(3.10)

and

bm(c) =
σ
√
am(c)

|∆µ
m|

(
1− γ

(
1− k∗

am(c)

))−1
.

The proof of Theorem 3.3 is in Section 5.2. Note that the uniqueness of am(c) follows from a

rewriting of equation (3.10) to

am(c) =
cm1/2−γ

|∆µ
m|

(am(c))γ + k∗.

Now it can be seen that am(c) solves an equation of the form x = axγ + b for appropriately chosen

a > 0, b > 0 and γ ∈ [0, 1/2). Since am(c) > 0, it is unique as the intersection of the identity with

a transformed power function whose exponent is smaller than one.
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A similar result can be obtained for the squared-residual procedures τξ(m) and τPξ (m) after

appropriate modification. The proof of the following Theorem may also be found in Section 5.2

below.

Theorem 3.4. Let (Yt : t ∈ Z) follow the ARMA equations (2.1) so that (2.2) and (2.3) hold, and

suppose that Assumption 3.1 is satisfied for ∆m = (∆µ
m)2. Then, under Hµ

A for all real u, the limit

results of Theorem 3.3 are retained if τµ(m), τPµ (m) and σ are replaced with the respective objects

τξ(m), τPξ (m) and η.

Some discussion is in order. First, the limit distributions for Page’s CUSUM and the traditional

CUSUM coincide for the early change scenario (i). Therefore, all procedures work similar in a large-

sample setting. The critical values for the traditional CUSUM are somewhat smaller than those for

Page’s CUSUM (comparing the tables in Horváth et al. (2004) with those of Fremdt (2012b)), giving

it a slight edge for this case. However, limiting distributions are different for the intermediate and

late change scenarios (ii) and (iii), respectively. Here, Page’s CUSUM outperforms the traditional

CUSUM. This can be explained by the fact that, unlike Page’s CUSUM, the traditional CUSUM

is not resetting and so becomes less sensitive to a change the later it occurs after the onset of

monitoring.

Second, in view of the last paragraph, Page’s CUSUM is generally preferred for applications

unless the changes happen early. For the early change scenario (i) both procedures perform alike

in finite samples (based on simulations not reported in the paper), but as the theoretical results

indicate, the performance of the traditional CUSUM decays noticeably for (ii) and (iii). In fact,

this stopping rule often exhibits significant non-zero probabilities of non-detection in intermediate

and late changes scenarios if the monitoring period is not sufficiently long.

Third, the sensitivity of the test can be adjusted by the statistician through the choice of γ. For

example, it has been pointed out by Aue and Horváth (2004) that the term am(c) can be interpreted

as the average delay time E[τ ], where τ stands for any of the stopping times under consideration.

For the early change scenario (i), it follows then that E[τ ] ≈ (c/|∆m|)1/(1−γ)m1−2γ/[2(1−γ)]. This

quantity becomes small if γ is chosen close to 1/2, thus ensuring a quicker detection. However,

there is an obvious trade-off between detection time and false alarm rates, with the latter increasing

with increasing γ. Similar computations can be obtained for cases (ii) and (iii) as well.

3.3 Limiting delay times for scale breaks

In view of the applications, for which only changes in the scale are considered, presentation in this

section is focused on the case of a break in the scale parameter σ only. All other parameters are

assumed to remain the same before and after the change occurs. The section closes with remarks
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for the general case, but a more in-depth analysis is beyond the scope of the present paper. The

special case of the general alternative Hξ
A, for which only the scale parameter is subject to change,

will be called Hσ
A in the following. A change of scale will induce the drift term

∆σ
m = (δσm)2 + 2σ0δ

σ
m

into the squared-residual procedures. If this drift term satisfies the regularity conditions imposed

through Assumption 3.1, then the asymptotic delay time distribution can be quantified accordingly.

Theorem 3.5. Let (Yt : t ∈ Z) follow the ARMA equations (2.1) so that (2.2) and (2.3) hold, and

suppose that Assumption 3.1 is satisfied for ∆m = ∆σ
m 6= 0 and δσm = O(1). Then the results of

Theorem 3.4 remain valid under Hσ
A.

The proof of Theorem 3.5 is given in Section 5.3. The general case is much more difficult to

handle. The induced drift term will be a complicated function of the pre-break parameters ξ0 and

post-break parameters ξA. In principle, the arguments developed in order to verify the theorems

of Sections 3.2 and 3.3 could be adjusted to this case. However, one has to keep track of additional

terms, the number of which may be growing exponentially in the number of parameters. Given the

complexity of the proofs, we refrain from pursuing this direction further for this paper.

4 Applications

In order to demonstrate the proposed methodology in the finite sample setting, two case studies

are provided in this section. The first involves an EEG data set considered in Davis et al. (2006),

the second is a classic data set on IBM stock given in Box et al. (2008), previously analyzed for

breaks in variance with retrospective methods.

4.1 EEG data

In this section, the proposed methodology is applied to two snapshots of a longer series of 32,768

EEG measurements observed from a female patient diagnosed with left temporal lobe epilepsy.1

This is the “T3 channel” data of Davis et al. (2006). Measurements were taken at a sampling rate of

100 Hz (that is, 100 observations per second), so that the recording took place over a time period

of 5 minutes and 28 seconds. As explained in Davis et al. (2006), expert analysis suggests the

onset of an epileptic seizure at observation 18,500. Their (retrospective) segmentation procedure

estimates the seizure onset at observation 18,580. A similar analysis is reported in Ombao et al.

1We thank Dr. Beth Malow (formerly Department of Neurology, University of Michigan) for providing the data.
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(2001). Particular interest here is in two segments of the original data focusing on the interval

16,000–19,000 before and immediately after the suspected seizure onset. These observations are

plotted in Figure 1. A visual inspection of the time series plot indicates that the level of the

observations remains roughly the same. There is, however, an apparent increase in the amplitude

around time 18,500, perhaps indicating a scale break.

16000 16500 17000 17500 18000 18500 19000

−
30

0
−

20
0

−
10

0
0

Figure 1: EEG data set.

To test for this possibility, the following two scenarios for the training period, both of size

m = 1000, were considered:

(TP1) Observations 16,001–17,000,

(TP2) Observations 17,001–18,000.

The training periods predate the epileptic seizure, with (TP1) implying a longer monitoring period

before the break occurrence than (TP2). The choices of training periods enable to examine the

effect of the change-point location on the monitoring procedures. In each case, model selection

procedures suggest nearly identical AR(4) models. Table 1 contains estimated parameter values for

both training cases as well as the monitoring observations immediately following the change-point

suggested by the experts. To be precise, the post-change period is

(PC) Observations 18,501–18,580.

All models were fit conditionally on four additional observations in the respective windows. (For

example, in the case of (TP1), the m + p = 1004 observations 15,997–17,000 were used for the

estimation.) The tabulated estimates suggest the primary change occurs in the innovation variance,

while the dynamics of the series remains largely intact.

The proposed testing procedures were applied to the two training sets at the α = 0.05 level.

Critical values for the CUSUM procedure were obtained from Horváth et al. (2004) and critical
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values for Page’s CUSUM procedure from Fremdt (2012a). No changes were found by the mean-

only procedures τµ(m) and τPµ (m) given in (3.3) and (3.5) when truncating the tests at monitoring

time point 10m. The results for the general procedures τξ(m) and τPξ (m) are summarized for

three choices of γ in the column labeled “Stopping Times” of Table 2. For (TP1), both procedures

terminate within two seconds after the suspected onset of the change, for (TP2) within one second.

Stopping times for (TP1) generally lag behind stopping times for (TP2). Page’s CUSUM detector

displays faster detection for both training periods.

It should be noted that a sequential procedure does not provide an estimator for the time of

change. In general, it is a difficult problem to estimate the change-point after a sequential procedure

has terminated because the post-change sample is typically (much) smaller than the pre-change

sample. In the literature, Srivastava and Wu (1999) and Wu (2005) have discussed options for this

problem. It would be worthwhile to follow up on their work elsewhere in the future.

Case φ̂m,1 φ̂m,2 φ̂m,3 φ̂m,4 µ̂m σ̂2m

(TP1) 1.66 (0.03) -0.79 (0.06) -0.12 (0.06) 0.20 (0.03) -207.2 (3.85) 63.1

(TP2) 1.64 (0.03) -0.74 (0.06) -0.13 (0.06) 0.18 (0.03) -206.6 (4.90) 61.9

(PC) 1.46 (0.15) -0.61 (0.27) 0.20 (0.27) -0.18 (0.16) -194.8 (12.53) 227.9

Table 1: Summary of EEG modeling. Standard errors in parenthesis.

Simulated Empirical Values

Stopping Times 95% Upper Limits Medians FRR

Case γ Page CUSUM Page CUSUM Page CUSUM Page CUSUM

(TP1)

0 18637 18676 18728 18808 18623 18643 0.0240 0.0200

0.25 18609 18661 18718 18798 18614 18634 0.0580 0.0484

0.49 18673 18691 18768 18830 18641 18650 0.1344 0.1296

(TP2)

0 18580 18581 18648 18674 18576 18588 0.0036 0.0028

0.25 18580 18580 18626 18657 18561 18573 0.0288 0.0228

0.49 18580 18580 18633 18660 18563 18569 0.1140 0.1104

Table 2: Summary of EEG stopping times and empirical values based on simulations from the estimated

model with 2500 iterations.

Motivated by the EEG data, several simulations were conducted to further elaborate on the

distribution of the stopping times when a change occurs only in the innovation variance. The

simulations utilized an AR(4) model with µ = −207 and φ = (1.65,−0.75,−0.12, 0.18)′. The
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innovations were distributed Laplace(0, b0 = 5.6) since this closely described the behavior of the

residuals from the EEG training models. Mimicking the two cases from the EEG application,

we used training sizes of m = 1000 and induced changes in the variance by adjusting the scale

parameter to bA = 10.7 at time point 18,500 (i.e. monitoring time points 500 and 1500 for (TP1)

and (TP2), respectively). The choice of scale parameters imply the difference δσ = 7.21. Table 2

provides simulated empirical confidence limits, empirical median rejection times and false rejection

rates (FRR). The reported values have been adjusted to fit the time locations observed in the EEG

example. The reported stopping times for the EEG example all fall within the empirical upper

bounds from the simulation study. The large false rejection rates for γ = 0.49 display the delay in

convergence to the asymptotic levels suggested by Horváth et al. (2004) and Fremdt (2012b) when

the sensitivity parameter is close to the upper boundary.

4.2 IBM data

The second application is a study of a classic retrospective data set which has been previously

studied for changes in the variance, albeit in a retrospective setting. The observations are on the

IBM common stock daily closing prices from May 17, 1961 to November 2, 1962. This is Series B

as reported in Box et al. (2008). The data set contains 369 observations and has been examined in

several retrospective studies which focused primarily on changes in the variance. Several authors

have detected two change-points. Inclán and Tiao (1994) detected change-points at observations

235 and 279 using their ICSS algorithm, Baufays and Rasson (1985) proposed 235 and 280, Wichern

et al. (1976) gave 180 and 235, while Tsay (1988) reported only one change at observation 237. As

previously suggested in order to stabilize the variance, the first difference of the log transformed

series will be analyzed. Figure 2 displays the corresponding time series plot. It can be seen that

fluctuations appear to be around a constant level, while amplitudes are larger for roughly the last

third of the observations.

To estimate an initial model, the training period is selected to consist of the first m = 200

observations. Two competing models were identified based on AIC and model selection diagnostic

plots. The competing fits are the ARMA(2,2) and AR(4) estimated models summarized in Table

3, with the AIC value being slightly smaller for the ARMA(2,2) model.

The proposed procedures were applied at the α = 0.05 level, utilizing both model fits. Moni-

toring commences at observation 201. The mean-only procedures τµ(m) and τPµ (m) do not detect

deviations from a constant level. Table 4 provides the observed values for the general stopping

rules τξ(m) and τPξ (m). Depending on the choice of γ, both procedures report a change has oc-

curred at or near observation 238. For comparison purposes, a simulation study was conducted
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Figure 2: Plot of transformed IBM data set.

and is also summarized in Table 4. The simulations generated training data from the observed

ARMA(2, 2) model. A change was induced at time point 235 to reflect the observed instability in

the IBM example. Based on observations 235–279 (retrospective studies suggest stability over this

period), the best fitting model was a white noise process with innovation variance given by 0.00135.

The empirical measures from the simulation study are similar when assuming the correct ARMA

model orders, as well as when the AR(4) is assumed. This highlights an important feature. Models

with nearly identical MA(∞) representations exhibit similar behavior with respect to our proposed

methodology. For our observed ARMA(2, 2) and AR(4) models, Figure 3 displays the differences

in the initial MA(∞) coefficients.

Model AIC φ̂m,1 φ̂m,2 φ̂m,3 φ̂m,4 θ̂m,1 θ̂m,2 σ̂2m

ARMA(2, 2) -1296 -.40 (.13) -.68 (.11) – – .67 (.12) .76 (.10) 8.5e-05

AR(4) -1292 .26 (.07) -.12 (.07) -.10 (.07) .16 (.07) – – 8.7e-05

Table 3: Summary of IBM modeling. Standard errors in parenthesis.
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Simulated Empirical Values

Stopping Times 95% Upper Limits Medians FRR

Model γ Page CUSUM Page CUSUM Page CUSUM Page CUSUM

ARMA(2, 2)

0 238 239 244 244 238 238 0.0024 0.0024

0.25 238 238 242 242 237 237 0.0228 0.0216

0.49 238 238 241 242 236 237 0.1008 0.1072

AR(4)

0 239 242 244 244 238 239 0.0004 0.0004

0.25 238 238 242 243 237 237 0.0120 0.0100

0.49 238 238 241 242 237 237 0.0848 0.0904

Table 4: Summary of IBM stopping times and empirical values based on simulations from the estimated

model with 2500 iterations.
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Figure 3: Comparing MA(∞) coefficients from the observed ARMA(2, 2) (filled) and AR(4) (opened)

models

5 Proofs

5.1 Preliminaries

The following auxiliary result will be used frequently. It establishes the behavior of the coefficients

πj(v) and ψj(u) in (3.6) if instead of the true parameter vectors φ and θ, generic elements v ∈ Rp

and u ∈ Rq in their vincinity are used for the respective power series expansions. Let | · | denote

the maximum norm of vectors.
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Proposition 5.1. Let (Yt : t ∈ Z) follow the ARMA equations (2.1) so that (2.2) holds. Let v ∈ Rp

and u,u1,u2 ∈ Rq. Then there are ε > 0, c ∈ (0, 1) and K > 0 such that, for all j ≥ 0,

(a) |πj(v)| ≤ Kcj , if |v − φ| ≤ ε;

(b) |ψj(u)| ≤ Kcj , if |u− θ| ≤ ε;

(c) |ψj(u1)− ψj(u2)| ≤ K|u1 − u2|jcj−1, if |u1 − θ| ≤ ε and |u2 − θ| ≤ ε.

Proof. The proof of these statements can be found in Bai (1993).

Throughout the proofs, let λt denote the difference between the residuals ε̂t and the innovations

εt if the null hypothesis H0 is valid. Since none of the parameters is subject to change, it holds

then that

λt = λt

(√
m[θ̂m − θ0],

√
m[φ̂m − φ0],

√
m[µ̂m − µ0]

)
, (5.1)

where

λt(u,v, w) = ζt(u) +
βt(u,v)√

m
+
ρt(u,v, w)√

m
.

To define the quantities on the right-hand side of the latter equality, let first u∗ = θ + u/
√
m and

v∗ = φ+ v/
√
m, and set u∗0 = 0. Then

ζt(u) = −
q∑
j=1

(
j∑
`=1

ψt−1+`(u
∗)u∗j−`

)
ε1−j ,

βt(u,v) = −
p∑
j=1

vj

t−1∑
`=0

ψ`(u
∗)Xt−j−` −

q∑
j=1

uj

t−1∑
`=0

ψ`(u
∗)εt−j−`,

ρt(u,v, w) = −

(
1−

p∑
j=1

v∗j

)
w

t−1∑
`=0

ψ`(u
∗).

This is the decomposition given in Yu (2007), which is useful to derive the limit distributions of

the various test procedures under the null hypotheses as given in Theorems 3.1 and 3.2. This was

done for the CUSUM-type procedure in Dienes and Aue (2013), but the same approach works also

for the procedure based on Page’s CUSUM using the work of Fremdt (2012a, 2012b).

To prove the new results on the asymptotic delay time distribution of the stopping times one

may modify methodology developed in Aue and Horváth (2004): It is subsequently shown that

sequences N = N(m,x) can be found such that, for the stopping time τ with corresponding

detector D(m, k), it holds that

P (τ > N) = P

(
max

1≤k≤N

D̂(m, k)

gγ(m, k)
≤ c

)
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converges to the appropriate limit distribution. The standardizations for τ in the various theorems

are then implied by the definition of N . The next section contains the verification for the mean

break case.

5.2 Proofs of the results in Section 3.2

For the mean break case, changes in the second order parameters φ, θ and σ2 are precluded. To

determine the effect of the mean break on the differences ε̂t − εt, one consequently needs to check

only the terms including the µt−j . It can be seen from (5.1) that these terms only enter through

ρt. To determine the drift induced by the change in mean under Hµ
A, a similar decomposition to

(5.1) is needed. Following equation (14) in Yu (2007), it follows that

ε̂t − εt = ζ̃t(θ̂m) +
β̃t(θ̂m, φ̂m)√

m
−

t−1∑
`=0

ψ`(θ̂m)

[
(µ̂m − µt−k)−

p∑
j=1

φ̂m,j(µ̂m − µt−j−`)
]
, (5.2)

where ζ̃t(θ̂m) = ζt(
√
m[θ̂m−θ0]) and β̃t(θ̂m, φ̂m) = βt(

√
m[θ̂m−θ0],

√
m[φ̂m−φ0]) are respectively

the terms of initialization effects and the partial sums of centered observations and innovations.

To derive (5.2), one uses the recursiveness of the difference ε̂t − εt and the invertibility of the

underlying ARMA process. Now, as under Hµ
A a change occurs only in µt for t ≥ m+k∗, it suffices

to investigate the term

−
t−1∑
`=0

ψ`(θ̂m)

[
(µ̂m − µt−k)−

p∑
j=1

φ̂m,j(µ̂m − µt−j−`)
]

= −
(

1−
p∑
j=1

φ̂m,j

)
(µ̂m − µ0)

t−1∑
`=0

ψ`(θ̂m) + δµm

t−1∑
`=0

ψ`(θ̂m)

[
It,0,` −

p∑
j=1

φ̂m,jIt,j,`

]

=
ρ̃t(θ̂m, φ̂m, µ̂m)√

m
+ Λµt−m−k∗ ,

where ρ̃t(θ̂m, φ̂m, µ̂m) = ρt(
√
m[θ̂m − θ0],

√
m[φ̂m − φ0],

√
m[µ̂m − µ0]) and It,j,` is short for

I{t−j−`≥k∗+m}(t, j, `). Here, IA denotes the indicator function of a set A. Letting t ≥ m + k∗

and s = t−m− k∗, the drift term can be written as

Λµs = δµm

t−1∑
`=0

ψ`(θ̂m)

[
It,0,` −

p∑
j=1

φ̂m,jIt,j,`

]
(5.3)
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=



0, s < 0,

δµm

s∑
`=0

ψs−`(θ̂m)

(
1−

∑̀
j=1

φ̂m,j

)
, 0 ≤ s < p,

δµm

[(
1−

p∑
j=1

φ̂m,j

) s−p∑
`=0

ψ`(θ̂m) +

p−1∑
`=0

ψs−`(θ̂m)

(
1−

∑̀
j=1

φ̂m,j

)]
, s ≥ p.

Note that the drift has been rescaled, so that s < 0 indicates that the change has not yet occurred.

The further distinction into the cases 0 ≤ s < p and s ≥ p takes into account the autoregressive

order. It follows that

ε̂t − εt = λt + Λµt−m−k∗ , (5.4)

with λt from (5.1). To prove the theorems of Section 3.2, it remains to analyze partial sums of the

ε̂t − εt and compare them to the growth of the threshold gγ(m, k).

Proof of Theorem 3.3. Let k ≥ k∗ and M = k− k∗. Utilizing λt from (5.1) and display (5.4), it

follows that

m+k∑
t=m+1

(ε̂t − εt) =

m+k∑
t=m+1

(λt + Λµt−m−k∗) =

m+k∑
t=m+1

λt +

M∑
s=0

Λµs .

The first term on the right-hand side can be treated as under the null hypothesis, see Dienes and

Aue (2013). The drift of the cumulative sum procedure can be determined as follows. First, for

M < p, (5.3) implies directly that

M∑
s=0

Λµs = δµm

M∑
s=0

s∑
`=0

ψs−`(θ̂m)

(
1−

∑̀
j=1

φ̂m,j

)
.

Second, for M ≥ p, another application of (5.3) using the cases for 0 ≤ s < p and p ≤ s ≤M to split

up the sum and subsequently combining the terms involving the incomplete sums 1−
∑`

j=1 φ̂m,j of

estimated autoregressive coefficients, yields

M∑
s=0

Λµs = δµm

[(
1−

p∑
j=1

φ̂m,j

)M−p∑
`=0

ψ`(θ̂m)
[
(M − p+ 1)− `

]
+

p−1∑
s=0

(
1−

s∑
j=1

φ̂m,j

)M−s∑
`=0

ψ`(θ̂m)

]

= ∆̂µ
m(M − p+ 1) + δµm [A1(M)−A2(M) +A3(M)] ,

where ∆̂µ
m = δµmφ̂m(1)/θ̂m(1) with φ̂m(1) = 1− φ̂m,1z − . . .− φ̂m,pzp and θ̂m(1) = 1 + θ̂m,1z + . . .+

θ̂m,qz
q, and

A1(M) = (M − p+ 1)

(
1−

p∑
j=1

φ̂m,j

) ∞∑
`=M−p+1

ψ`(θ̂m),

18



A2(M) =

(
1−

p∑
j=1

φ̂m,j

)M−p∑
`=0

`ψ`(θ̂m),

A3(M) =

p−1∑
s=0

(
1−

s∑
j=1

φ̂m,j

)M−s∑
`=0

ψ`(θ̂m).

It is clear that ∆̂µ
m will be close to its deterministic equivalent ∆µ

m if m is large. The terms A1(M),

A2(M) and A3(M) are stochastically bounded, so that Proposition 5.1 implies that, as m→∞,(
N

m

)γ−1/2
max

k∗≤k≤N

δµmAi(k − k∗)
gγ(m, k)

= oP (1), i = 1, 2, 3.

if the sequence N = N(m,x) given in Fremdt (2012a) is used as the upper bound for the maximum.

The rest of the proof of part (a) of the theorem follows now analogously to the proof of Theorem

2.2 in Fremdt (2012a).

Part (b) can be verified by an extension of the proof in Aue and Horváth (2004), relaxing their

assumption on the order of the change-point to the requirement of part (a) in Assumption 3.1. This

can be done with the sharper estimates developed Fremdt (2012a). Further details are omitted to

conserve space.

Proof of Theorem 3.4. To investigate the behavior of the general detectors under Hµ
A, the previ-

ous proof needs to be adjusted for the squared residuals. From (5.4) it follows that, for t ≥ m+k∗,

ε̂2t − ε2t = λ2t + 2λtεt + (Λµt−m−k∗)
2 + 2Λµt−m−k∗(εt + λt). (5.5)

The first two terms on the right-hand side can again be treated as under the null hypothesis. The

relevant drift term for the sequential procedures consists then of the partial sums of (Λµt−m−k∗)
2

and 2Λµt−m−k∗(εt+λt), of which the latter will be negligible. To verify this claim, observe first that

max
k∗≤k<∞

1

k

k∑
t=0

|εt| = OP (1).

since, on account of the strong law of large numbers, 1
k

∑k
t=0 |εt| converges almost surely as k →∞.

Because

max
k∗≤k≤N

(
N

m

)γ−1/2 k

gγ(m, k)
= o (1) (m→∞),

it follows from Proposition 5.1 that(
N

m

)γ−1/2
max

k∗≤k≤N

m+k∑
t=m+k∗

Λµt−m−k∗εt

gγ(m, k)
= oP (1) (m→∞).
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Utilizing the definition of Λµs in (5.3) and another application of Proposition 5.1 in combination

with Lemmas 6.1–6.3 of Dienes and Aue (2013) yield also that(
N

m

)γ−1/2
max

k∗≤k≤N

m+k∑
t=m+k∗

Λµt−m−k∗λt

gγ(m, k)
= oP (1) (m→∞).

It therefore remains to extract the dominating term from the partial sums of (Λµt−m−k∗)
2. To

facilitate notation, the abbreviations ψ` = ψ`(θ̂m), φ̂
(`)
m (z) = 1−φ̂m,1z−. . .−φ̂m,`z`, ` = 1, . . . , p−1,

and k′ = k∗ +m+ p are used. Then,

m+k∑
t=k′

(
Λµt−m−k∗

)2
= (δµm)2

[
φ̂2m(1)

m+k∑
t=k′

( t−k′∑
`=0

ψ`

)2

+
m+k∑
t=k′

( p−1∑
`=0

φ̂(`)m (1)ψt−m−k∗−`

)2

− 2φ̂2m(1)

m+k∑
t=k′

( t−k′∑
`=0

ψ`

)( p−1∑
`′=0

φ̂(`
′)

m (1)ψt−m−k∗−`′

)]
.

Similar arguments to those used in the proof of Theorem 3.3 yield that only the first term needs

to be investigated. Since

t∑
s=0

( s∑
`=0

ψ`

)2

=(t+ 1)

( ∞∑
`=0

ψ`

)2

− 2

( ∞∑
`=0

ψ`

) t∑
s=0

( ∞∑
`=s+1

ψ`

)
+

t∑
s=0

( ∞∑
`=s+1

ψ`

)2

=(t+ 1)

( ∞∑
`=0

ψ`

)2

− 2

( ∞∑
`=0

ψ`

)[ t∑
s=1

sψs + (t+ 1)
∞∑

s=t+1

ψs

]
+

t∑
s=0

( ∞∑
`=s+1

ψ`

)2

,

following the arguments of the proof of Theorem 3.3 implies that (t + 1)θ̂−2m (1) is the dominating

term in this expression. The rest follows analogously to the proof of Theorem 2.2 in Fremdt

(2012a).

5.3 Proofs of the results in Section 3.3

Denote by (zt : t ∈ Z) the sequence of independent, identically distributed and standardized random

variables given by the requirement εt = σtzt for all t ∈ Z. Therefore changes in scale do not affect

the zt’s. In the following, the subscript 0 in the quantities y0,t, x0,t and ε0,t will indicate that the

corresponding random variables are generated according to the null parameter vector ξ0.

Precluding a break in the mean, autoregressive and moving average parameters and only allow-

ing breaks in the scale parameter, leads to the decomposition

ε̂2t − ε20,t = λ2t + 2λtε0,t + (Λσt−m−k∗)
2 + 2Λσt−m−k∗(ε0,t + λt), (5.6)

for t ≥ m+ k∗, which is analogous to (5.5). Now Λσt−m−k∗ can be further decomposed into

Λσt−m−k∗ = δσm(zt +Bt).
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Using that, for t ≥ m+ k∗,

xt − x0,t = δσm

(
t−m−k∗∑
k=0

πk(φA)

[
zt−k +

min(q,t−m−k∗−k)∑
j=1

θ0,jzt−j−k

])
,

and setting again s = t−m− k∗ gives

Bt =

q∑
j=1

(θ0,j − θ̂m,j)
s−q∑
k=0

ψkzt−j−k +

q−1∑
k=1

k∑
j=1

ψs−k(θ0,j − θ̂m,j)zm+k∗−j+k

+

p∑
j=1

(φ0,j − φ̂m,j)
s−j∑
k=0

ψk

s−j−k∑
n=0

πn(φ0)zt−j−k−n

+

p∑
j=1

(φ0,j − φ̂m,j)
q∑
`=1

θ0,j

s−j∑
k=0

s−j−k−q∑
n=0

ψkπn(φ0)zt−j−k−`−n

+

p∑
j=1

(φ0,j − φ̂m,j)
s−j∑
k=0

ψk

q−1∑
n=1

πs−j−k−n(φ0)

n∑
`=1

θ0,`zm+k∗+n−`

= B1,t + · · ·+B5,t,

where ψk = πk(φ0) = 0 for k < 0. The following lemma identifies the dominating term in the

partial sums of ε̂2t − ε20,t.

Lemma 5.1. Under the assumptions of Theorem 3.5,(
N

m

)γ−1/2
max

k∗≤k≤N

1

gγ(m, k)

∣∣∣∣∣
m+k∑

t=m+k∗

(ε̂2t − ε20,t)−∆σ
m

m+k∑
t=m+k∗

z2t

∣∣∣∣∣ = oP (1)

as m→∞.

Proof. It suffices to examine the quantities on the right-hand side of (5.6). Notice first that

λ2t + 2∆tε0,t contains only terms related to the behavior under the null hypothesis. For the next

two terms on the right-hand side of (5.6), write

(Λσs )2 + 2Λσs (ε0,t + λt) = [(δσm)2 + 2σ0δ
σ
m]z2t + 2δσm(δσm + σ0)ztBt + (δσm)2B2

t + 2λtΛ
σ
s . (5.7)

The first term is the dominating term. Since ∆σ
m = (δσm)2 + 2σ0δ

2
m, the assertion of the lemma will

follow if the remaining terms can be shown to be negligible. For the second term notice that(
N

m

)γ−1/2
max

k∗≤k≤N

m+k∑
t=m+k∗

ztBt
gγ(m, k)

≤
(
N

m

)γ−1/2 m+N∑
t=m+k∗

|zt||Bt|
gγ(m, k∗)

= oP (1),

21



since zt and Bt are independent and
√
mE[Bt] < ∞, following the arguments used in Dienes and

Aue (2013). For the third term in (5.6), observe that(
N

m

)γ−1/2
max

k∗≤k≤N

m+k∑
t=m+k∗

B2
t

gγ(m, k)
≤
(
N

m

)γ−1/2 m+k∑
t=m+k∗

5∑
`=1

B2
`,t

gγ(m, k∗)
.

The proof is only detailed for ` = 1, since all other terms can be handled in a similar fashion. For

this case, (
N

m

)γ−1/2 1

gγ(m, k∗)

m+N∑
t=m+k∗

(
q∑
j=1

(θ0,j − θ̂m,j)
s−q∑
k=0

ψkzt−j−k

)2

≤
(
N

m

)γ−1/2 q

gγ(m, k∗)

m+N∑
t=m+k∗

q∑
j=1

(θ0,j − θ̂m,j)2
(
s−q∑
k=0

ψkzt−j−k

)2

.

Now the arguments of Lemma 5.2 in Dienes and Aue (2013) apply and yield the oP (1) rate. For

the last term in (5.6) there is nothing to show, since

Λσsλt = δσm(λtzt + λtBt) ≤ δσm(λtzt + λ2t +B2
t )

and all these terms have already been shown to be negligible. The proof is complete.

Proof of Theorem 3.5. The relevant drift term has been identified in Lemma 5.1. Noticing that

the law of the iterated logarithm implies that, for all δ ∈ (0, 1/2) and as m→∞,(
N

m

)γ−1/2
max

k∗≤k≤N

1

gγ(m, k)

m+k∑
t=m+k∗

(z2t − 1) = OP (1)
m1−γ

N1/2−γ max
1≤k≤N−k∗

k1/2−γ+δ

(m+ k∗ +m)1−γ
= oP (1),

the assertion of the theorem follows.
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[12] Csörgő, M. and Horváth, L. (1997). Limit Theorems in Change-Point Analysis. Wiley, Chichester.

[13] Davis, R.A., Lee, T.C.M. and Rodriguez-Yam, G.A. (2006). Structural break estimation for nonstation-

ary time series models. Journal of the American Statistical Association 101, 223–239.

[14] Dienes, C. and Aue, A. (2013). On-line monitoring of pollution concentrations with autoregressive

moving average time series. Preprint, University of California at Davis.

Available at www.stat.ucdavis.edu/~alexaue/research.html

[15] Fremdt, S. (2012a). Asymptotic distribution of the delay time in Page’s sequential procedure. Preprint,

University of Cologne. Available at www.mi.uni-koeln.de/~sfremdt/publications.html

[16] Fremdt, S. (2012b). Page’s sequential procedure for change-point detection in time series regression.

Preprint, University of Cologne. Available at www.mi.uni-koeln.de/~sfremdt/publications.html
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