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1ECARES, Université Libre de Bruxelles and ORFE, Princeton University
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Abstract

High-dimensional time series may well be the most common type of dataset in the so-
called “big data” revolution, and have entered current practice in many areas, including
meteorology, genomics, chemometrics, connectomics, complex physics simulations, biologi-
cal and environmental research, finance and econometrics. The analysis of such datasets
poses significant challenges, both from a statistical as from a numerical point of view. The
most successful procedures so far have been based on dimension reduction techniques and,
more particularly, on high-dimensional factor models. Those models have been developed,
essentially, within time series econometrics, and deserve being better known in other ar-
eas. In this paper, we provide an original time-domain presentation of the methodological
foundations of those models (dynamic factor models usually are described via a spectral
approach), contrasting such concepts as commonality and idiosyncrasy, factors and common
shocks, dynamic and static principal components. That time-domain approach emphasizes
the fact that, contrary to the static factor models favored by practitioners, the so-called gen-
eral dynamic factor model essentially does not impose any constraints on the data-generating
process, but follows from a general representation result.

1 Introduction.

The analysis of high-dimensional data in the past few years has become one of the most active
subjects of modern statistical methodology. The reason is that information increasingly often
takes the form of T observations with values in n-dimensional real spaces, where n and T both
are quite large, often of the same magnitude, possibly with n much larger than T . It is well
known that “traditional” T -asymptotics (where T tends to infinity under fixed n) yield poor or
misleading results in such context, and that “double” (n, T )-asymptotics (where both n and T
tend to infinity) provide more sensible solutions. The literature in the area is huge, and develops
at a fast pace: even a brief account of it is impossible in the limits of this short note, and we
refer the reader to recent surveys by Bai and Ng (2008) and Stock and Watson (2011) (both
focused on static factor models—in a sense to be defined below).

∗Supported by the Sonderforschungsbereich “Statistical modelling of nonlinear dynamic processes” (SFB 823)
of the Deutsche Forschungsgemeinschaft, a Discovery Grant of the Australian Research Council, and an IAP of
the Belgian federal Government. E-mail address: <mhallin ulb.ac.be>.
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All domains of applications, basically, are affected with the developments of such high-
dimensional asymptotics: genetics, chemometrics, environmental studies, image analysis, fi-
nance, econometrics ... Some are dealing with sampling models, where observations are assumed
to be independent and identically distributed, often multivariate Gaussian. In most cases, how-
ever, serial dependence is the rule, and the time series aspects of the problem cannot be ignored.

Such situations are quite standard in econometrics, where observations often take the form
of an n×T double-indexed array {Xit; i = 1, . . . , n, t = 1, . . . , T} of observed random variables,
where i is a cross-sectional index and t stands for time. Such an array is called a panel ; each
row in the panel is a univariate time series of length T , while each column can be considered
as the observation, at time t, of a n-dimensional time series. The dimension n, in econometric
applications, is often of the order of several hundreds, even one thousand. All those series exhibit
complex (lagged) cross-correlations, a sensible parametrization of which is infeasible (even the
simplest VAR(1) model would involve n2 autoregression parameters). Traditional multivariate
time series methods for such datasets, thus, are totally helpless, and econometricians have
developed a variety of methods for coping with high-dimensionality issues. The most successful
ones are based on factor model techniques, which consist in decomposing the observation Xit

into Xit = χit + ξit, the sum of two mutually orthogonal unobserved components—the common
component χit and the idiosyncratic component ξit. Various characterizations of idiosyncrasy
lead to various factor models, exact or approximate, static or dynamic, etc.

Since their introduction some twelve years ago, factor model methods have been quite suc-
cessful in the analysis of large panels of econometric data, and have entered daily practice in most
national statistical institutes, central banks and business cycle analysis institutions. Whether
exact or approximate, static or dynamic (the terminology unfortunately is not entirely fixed;
in particular, the word “dynamic” is used quite loosely in the literature), most factor models
have the nature of statistical models, in the sense that they put restrictions on the underlying
data-generating process. As usual, those restrictions may be satisfied, or lead to good approx-
imations, in which case the model is a good model. They also may be dangerously misleading
when they do not hold. And, as a rule, they hardly can be checked from the observations.

There is, however, an important exception to that rule: the so-called general or generalized
dynamic factor model introduced in Forni et al. (2000), of which all other factor models (exact
or approximate, static or dynamic, ... ), under the assumption of second-order stationarity, are
particular cases. Beyond very mild and general structural assumptions (such as stationarity),
indeed, that “model”, as we shall see, does not place any restriction on the data-generating
process; as such, it constitutes a canonical representation of the stochastic process under study
rather than a statistical model. Our purpose here is to emphasize that fact by providing (Sec-
tion 2) a very general time-domain presentation of the concepts leading to the definition of
the general dynamic factor model and the representation result establishing its existence and
uniqueness without requiring the existence of a spectrum. Then, in Section 3, under the ad-
ditional assumption of an absolutely continuous spectral measure, we establish the connection
with Brillinger’s spectral concepts of dynamic eigenvalues and eigenvectors, and the more usual
frequency domain definition.

Let us conclude this section by pointing out that we only consider here factor models under
the assumption of stationarity of the observable process X, which entails stationarity of the
common and idiosyncratic components as well. The non-stationary cases, the I(1) case in par-
ticular has not yet been explored systematically (important papers in that direction are Bai and
Ng 2004, Bai 2004). A local stationary approach also has been taken in Motta et al. (2011).
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2 Factor models

2.1 Panel data.

An n× T panel is a finite realization

X11, X12, . . . , X1T
...

...
...

Xn1, Xn2, . . . , XnT

of a double-indexed stochastic process of the form

X := {Xit|i ∈ N, t ∈ Z},

hence, a collection of n observed time series of length T , related to n individuals or “cross-
sectional items”, or, equivalently, one single time series in dimension n. Throughout, we denote

by X
(n)
t the n-dimensional vector (X

(n)
1t , . . . ,X

(n)
nt )′, by Xt the fixed-t collection {Xit|i ∈ Z},

by X(n) the n-dimensional process {Xit|i ∈ {1, . . . , n}, t ∈ Z}, and by X the whole double-
indexed process {Xit|i ∈ N, t ∈ Z}. The following assumption will be made throughout.

Assumption A1(i). The process X is second-order time-stationary, that is, for all i, i′, i′′,
t and k, the variances Var(Xit) and covariances Cov(Xi′tXi′′,t−k) exist, are finite, and do not
depend on t.

For simplicity, we henceforth also assume that all Xit’s are centered and, in order to avoid
trivialities, nondegenerate:

Assumption A1(ii). For all i ∈ N and t ∈ Z, E[Xit] = 0 and 0 < E[X2
it].

Let Assumption A1 hold, and denote by HX the Hilbert space spanned by X, equipped
with the L2 covariance scalar product, that is, the set of all L2-convergent linear combinations
of Xit’s and limits of L2-convergent sequences thereof. Similarly, we use the notation HX

t , HX(n)
,

and HX(n)

t for the subspaces of HX spanned by {Xis| i ∈ N, s ≤ t}, {Xis| 1 ≤ i ≤ n, t ∈ Z},
and {Xis| 1 ≤ i ≤ n, s ≤ t}, respectively.

Let η0 :=
∑∞
i=1

∑∞
s=−∞ aisXis ∈ HX. Then, ηt :=

∑∞
i=1

∑∞
s=−∞ ai,s+tXi,s+t ∈ HX for

all t ∈ Z, and we say that the process ηηη := {ηt| t ∈ Z} belongs to HX; note that the processes ηηη
and X then are costationary.

2.2 Common versus idiosyncratic.

A panel is not a “natural” object, though, but an artificial construction. The n time series
constituting the panel indeed have been put together by someone, who did it on purpose—
usually, for the reason that those series all carry, or are expected to carry, some information about
some unobservable feature or latent process of interest. That unobserved common feature, in
general, is the most relevant issue of the analysis. However, its exact relation to the observed Xit

prior to the analysis is not known, and “commonness” in general is the only way through which
that feature is identified. Examples are the business cycle, which is common to all variables
describing an economy, but remains otherwise undefined; the market liquidity, which is common
to a market-wide panel of liquidity measurements, but remains otherwise undefined; etc. As a
consequence, although that common feature is present in (almost) all individual series in the
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panel, it is not identified on the basis of any single one of them, and a large n is essential.
Variables orthogonal to all “common variables” will be called “idiosyncratic”.

Note that the cross-sectional ordering of the panel, which in principle, is arbitrary, should
play no role in the characterization of “commonness” and “idiosyncrasy” given below. Sensible
concepts and sensible statistical procedures therefore should be invariant under permutation of
cross-sectional items.

On the other hand, all individuals or cross-sectional items are exposed, in general, to the in-
fluence of the same covariables, all of which cannot be recorded. This induces complex interrela-
tions that are not statistically tractable, or that would involve uncomfortably many parameters.
Parametric methods, as a rule, are helpless or quite unrealistic.

2.3 Factor models

Factor model concepts, as we shall see, are taylor-made in this context.
When applied to a process of the form {Xit|i ∈ N, t ∈ Z}, factor model methods aim at

identifying a decomposition of Xit into two mutually orthogonal (at all leads and lags) parts

Xit = χit + ξit, here to be interpreted as “common”it + “idiosyncratic”it, i ∈ N, t ∈ Z.
(2.1)

Such decompositions are quite standard in statistics, and of course crucially depend on
what is imposed on χit in order to be “common”, on ξit in order to be “idiosyncratic”. The
terminology, moreover, is all but unified, and a large variety of definitions of a factor model can
be found in the literature, depending on the characterization of “common” and “idiosyncratic”.
If “idiosyncratic” is understood as synonym of “white noise” (as in Lam and Yao 2012), χit has
to account for all auto- and cross-correlations in the panel, and (2.1) yields a decomposition of
the “(exogenous) signal plus noise” type, which does not convey the meaning of “commonness”
it is expected to focus on. Similarly, decompositions of the type “low dimension plus negligible
error”, as in dimension reduction methods, or “reduced rank signal plus sparse residuals” as in
high-dimensional signal processing (see Fan et al. 2013 for a recent reference), fail to provide an
adequate mathematical translation of the intuitive idea of commonness, which is central to the
present context.

If latent variables are common to a subset of series in the panel, these variables should account
for the cross-correlations within that subset of series—not necessarily for their auto-correlations.
As the terminology suggests, common components thus should account for “panel-wide cross-
correlations”, induced by the panel-wide impact of unobserved latent variables or, equivalently,
their innovations, the common shocks. On the contrary, idiosyncratic components are expected
to be item-specific.

One therefore might be tempted to call idiosyncratic those processes {ζit} in HX that do
not exhibit any cross-correlation at all: ζit and ζi′,t−k mutually orthogonal for all i′ 6= i and
all k ∈ Z). Imposing such a condition leads to the so-called exact or strong factor model
considered, for instance, by Sargent and Sims (1997) and Geweke (1997). That requirement,
however, is too restrictive for most practical purpose. It is unpleasantly sensitive, in particular,
to the possible presence in the panel of two closely related series: if, for instance, X2t is of the
form X2t = a(L)X1t for some linear filter a(L), it automatically gets treated as fully “common”,
although it could be strictly orthogonal to Xit for all t and i > 2. The requirement that the
idiosyncratic components ξit be cross-sectionally strictly orthogonal to each other at all leads and
lags therefore is profitably weakened into a milder requirement of “limited cross-correlation”,
yielding an approximate or weak factor model.
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In order to introduce a more precise definition of that idea of “mild cross-correlation”, let
us consider two examples of extreme idiosyncrasy/extreme commonness. Let

Xit = φit + ψit, i ∈ N, t ∈ Z with φit = φt i.i.d. N (0, σ2
φ), ψit i.i.d. N (0, σ2

ψ)

with φt and ψt−k orthogonal for all i, t, and k. Clearly, φit = limn→∞ n−1 ∑n
j=1Xjt and

ψit = Xit − limn→∞ n−1 ∑n
j=1Xjt, where convergence holds in quadratic mean, so that the

processes {φit, i ∈ N, t ∈ Z} and {ψit, i ∈ N, t ∈ Z} both are in H. Since it has no cross-
correlations at all, {ψit} is an example of extreme idiosyncrasy, while {φit = φt, i ∈ N, t ∈ Z},
where the same φt appears in all cross-sectional items, clearly should qualify as an example of
extreme “commonness”.

Now consider arbitrary normed (i.e., with coefficients satisfying
∑n
i=1

∑∞
k=−∞(a

(n)
ik )2 = 1 for

all n) sequences of linear combinations
∑n
i=1

∑∞
k=−∞ a

(n)
ik ψi,t−k of the ψ’s: their variances are

n
∑

i=1

∞
∑

k=−∞

(a
(n)
ik )2σ2

ψ = σ2
ψ.

It follows that, for fixed n, the maximum, over all normed linear combinations, of those variances
is σ2

ψ, which remains bounded as n → ∞. It is easy to check that this behavior is not affected
if autocorrelation is introduced among the ψit’s; nor is it affected by the presence of mild cross-
correlation—letting, for instance, Cov(ψi,t, ψj,t) = cijI[i odd and j = i + 1]—only affecting
finite numbers of cross-sectional items.

The situation is entirely different for the linear combinations

w(n) :=
n

∑

i=1

∞
∑

k=−∞

a
(n)
ik φi,t−k =

n
∑

i=1

∞
∑

k=−∞

a
(n)
ik φt−k

involving the φ’s. Choosing, for instance, a
(n)
ik = a

(n)
k (a

(n)
ik ’s that do not depend on i), w(n) has

variance

σ2
w(n) =

∞
∑

k=−∞

(
n

∑

i=1

a
(n)
ik )2σ2

φ =
∞
∑

k=−∞

(na
(n)
k )2σ2

φ = nσ2
φ.

It immediately follows that the fixed-n maximum, over all normed linear combinations, of these
variances, tends to infinity as n→ ∞. The limit in quadratic mean of w(n) thus does not exist.

However, the limit in quadratic mean limn→∞w
(n)
0 of the sequence of standardized versions

w
(n)
0 := w(n)/σw(n) = n−1/2w(n)/σφ

of the same w(n)’s is a well-behaved standard normal variable of HX. Moreover, letting

w
(n)
X :=

n
∑

i=1

∞
∑

k=−∞

a
(n)
ik Xi,t−k and w

(n)
X0 := w

(n)
X /Var1/2(w

(n)
X ),

the variance of w
(n)
X similarly explodes, while, due to the boundedness as n→ ∞ of the variance

of
∑n
i=1

∑∞
k=−∞ a

(n)
k ψi,t−k, the difference between w

(n)
X0 and w

(n)
0 goes to zero in quadratic mean.

We therefore propose the following definitions.
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Definition 2.1 A random variable ζ in HX, with variance 0 < σ2
ζ , is called common if ζ/σζ

is the limit in quadratic mean of a sequence of standardized elements of HX, of the form

w
(n)
X /(Var(w

(n)
X ))1/2, where w

(n)
X :=

∑n
i=1

∑∞
k=−∞ a

(n)
ik Xi,t−k, with

∑n
i=1

∑∞
k=−∞(a

(n)
ik )2 = 1, is

such that limn→∞ Var(w
(n)
X ) = ∞.

Definition 2.2 Define the Hilbert space HX
com spanned by the collection of all common variables

in HX and its orthogonal complement (with respect to HX) HX
idio :=

(

HX
com

)⊥
as X’s common

and idiosyncratic spaces, respectively. The process X is called purely common if HX = HX
com

(hence, HX
idio = {0}), purely idiosyncratic if HX = HX

idio (hence, HX
com = {0}).

It may be considered desirable that these definitions, and the related existence and uniqueness
results below, remain invariant under cross-sectional scale transformations (multiplying each
process {Xit} with a positive constant ci). Such invariance is achieved if Assumption (A1)(ii) is
reinforced into

Assumption A1(ii′) For all i, t ∈ Z, E[Xit] = 0, and there exist two constants 0 < C− < C+

such that, for all i, t ∈ Z, C− ≤ E[X2
it] ≤ C+.

This reinforcement has little practical impact (if any), as it does not imply any constraint on
the fixed-n dataset at hand; see the comments after Assumption A3. All results below remain
valid with A1(ii′) substituted for A1(ii).

2.4 The general dynamic factor model

The above definitions then lead to the following extremely general representation result.

Theorem 2.1 Under Assumption A1(i)-(ii), there exist two uniquely defined mutually orthog-
onal processes χχχ = {χit} and ξξξ = {ξit} in HX

com and HX
idio, respectively, such that

Xit = χit + ξit i ∈ N, t ∈ Z. (2.2)

Proof. The existence and uniqueness of decomposition (2.2) follow from the fact that HX
com

and HX
idio by definition provide a decomposition of HX into a subspace and its orthogonal

complement; χit and ξit then are easily obtained by projecting Xit onto those two subspaces.�

By construction, χχχ is purely common, ξξξ purely idiosyncratic. Our definition of the general
dynamic factor model is based on this representation (2.2) of X as the sum of a purely common
and a purely idiosyncratic part.

Definition 2.3 The decomposition (2.2) is called the general dynamic factor model represen-
tation of X—in short, a general dynamic factor model for X.

A general dynamic factor model (Forni et al. (2001) and Forni and Lippi (2000) use the
terminology generalized factor model) thus belongs to the class of “weak” or “approximate”
factor models (as first proposed, in a static form, by Chamberlain (1983) and Chamberlain
and Rothschild (1983)), as opposed to the “strong” or “exact” ones. The price to be paid
is that the decomposition (2.2) is only asymptotically identified—since the characterization of
an idiosyncratic quantity itself is of an asymptotic nature—a feature which is not uncommon
in the literature on high-dimensional data (cf the concept of sparsity). As announced in the
introduction, the existence and uniqueness of that general dynamic factor model representation
of X does not require (beyond second-order stationarity) any constraint on the data-generating
process. Therefore, it does not constitute a statistical model in the usual sense.
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2.5 Common shocks

The definition 2.3 of the general dynamic factor model is quite general and allows for extremely
weird things. For example, consider the process defined by

Xit = ut+i−1 + ξit i ∈ N, t ∈ Z

where ut is scalar white noise, and the variables ξit are i.i.d. with finite variance, with ut or-
thogonal to ξis for all t, i and s. In this case, each of the variables χit can be predicted without
error using χχχt−1. Precisely, χit = χi+1,t−1, so that the infinite-dimensional vector χχχt is purely
deterministic (Hχχχ

t = Hu for all t). An apparently less pathological case is

Xit = b(L)ut + ξit i ∈ N, t ∈ Z

where b(L) be a band-pass filter such that |b(e−iθ)| is strictly positive for |θ| < 1 and vanishes
for |θ| ≥ 1, with ut and the variables ξit as in the previous example, so that χit = b(L)ut for
all i. It follows from Kolmogorov’s formula (Theorem 5.8.1 in Brockwell and Davis (2009))
that b(L)ut also is deterministic, and hence has variance innovation zero. We believe that the
analysis of such cases is of no interest from the point of view of statistics and its applications.

Further, Definition 2.3 is not a constructive one, and its relation to the frequency-domain
approach in Forni et al. (2000) and Forni and Lippi (2001), or the static definitions in Stock and
Watson (2002a and b), Bai and Ng (2002), Forni et al. (2009) and many others, is not clear. If
that link is to be established, an additional assumption on the complexity of X’s common space
is required. Reduced rank common spaces, namely, common spaces driven by a finite number of
common shocks, will play a major role in the analysis.

Definition 2.4 Let ζζζ := {ζit} denote a double-indexed process in H. That process is said to
have dynamic dimension d ≥ 1 if there exists a purely non deterministic d-dimensional vector
process {Yt := (Y1t, . . . , Ydt)

′| t ∈ Z} with full-rank d-dimensional innovation such that H ζζζ
t =

HY
t for all t. We say that ζζζ has dynamic dimension d = 0 if ζit = 0 a.s. for all i and t; if no

d ∈ N exists such that ζζζ has dynamic dimension d, we say that ζζζ’s dynamic dimension is infinity.

A common component process χχχ with infinite dynamic dimension is possible, though. Here
is an (unavoidably, pathological) example. Consider a partition of N into an infinite number of
infinite subsets. More precisely, let Nk ⊂ N, k ∈ N be a collection of subsets of N such that
(a) #Nk is infinite for all k, (b) Nk∩Nh = ∅ for all h 6= k, and (c) N0∪N1∪ . . . = N. Such parti-
tions exist: take, for instance, Nj := {n(n/1)/2|n ≥ j}, yielding N0 = {1, 3, 6, 10, 15, 21, 28, . . .},
N1 = {2, 4, 7, 11, 16, 22, 29, . . .}, N2 = {5, 8, 12, 17, 23, 30, 38, . . .}, etc. Define

aik :=

{

1 if i ∈ Nk

0 if i /∈ Nk

From part (b) of the definition of the sets Nk,

n
∑

i=1

aikaih = 0, for all n and h 6= k, (2.3)

while (a) implies

n
∑

i=1

a2
ik =

n
∑

i=1

aik = #
(

Nk ∩ {1, 2, . . . n}
)

→ ∞ for all k, as n→ ∞. (2.4)
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Next, define

Xit :=
∞
∑

k=1

aikukt + ξit

where {u1t}, {u2t}, . . . and {ξ1t}, {ξ2t}, . . . all are mutually independent i.i.d. N (0, 1) white
noises, so that, in view of the definitions of aik and the sets Nk, Var(Xit) = 2 for all i and t.
Consider the normalized linear combination

(

n
∑

i=1

aik
)−1/2 n

∑

i=1

aikXit =
(

n
∑

i=1

aik
)−1/2( n

∑

i=1

aikukt +
n

∑

i=1

aikξit
)

(2.5)

=
(

n
∑

i=1

aik
)1/2

ukt +
(

n
∑

i=1

aik
)−1/2 n

∑

i=1

aikξit

(in view of (2.3)), with variance
∑n
i=1 aik + 1 tending to infinity due to (2.4). Therefore, the

standardized version of the same linear combination (2.5) takes the form

(

n
∑

i=1

aik/
(

n
∑

i=1

aik + 1
)

)1/2
ukt +

n
∑

i=1

aikξit
(

n
∑

i=1

aik
(

n
∑

i=1

aik + 1
)

)−1/2
= w

(n)
1 + w

(n)
2 , say.

Still in view of (2.4), we have that w
(n)
1 tends to ukt and w

(n)
2 to zero in quadratic mean,

as n→ ∞. Hence, the standardized version of (2.5) also converges in mean square to utk. Since
this holds for any k ∈ N, the dynamic dimension of the common space in this example is not
finite.

In order to avoid this, we make the following assumption.

Assumption A2. The common component process χχχ has finite dynamic dimension q ∈ N (q
otherwise unspecified).

Assumption A2 essentially rules out the“weird” cases described above, while ensuring, as the
following result shows, the existence of a finite number of common shocks. Ruling out such cases
is all but unreasonable. The objective, indeed, when considering n-asymptotics, is not to provide
the description of a non-observed “cross-sectional future” associated with growing values of n.
The objective, by letting n tend to infinity, is to provide a good and hopefully simple asymptotic
approximation to the observed, finite-n situation at hand. A common component with infinite
dynamic dimension corresponds means a situation where new common shocks, orthogonal to
the previous ones, keep on “entering” the space of the common component as n grows. This
way of adding new common shocks, that have no impact on the actual finite-n observation,
but hypothetically would pop up “someday”, in the “cross-sectional future”, under a growing-n
scenario, is quite unlikely to provide a good approximation for the finite-n dataset at hand.
Ruling out the q = ∞ “catastrophe scenario” thus does not really restrict the applicability of
general dynamic factor methods.

Under Assumption A2, Theorem 2.1 can be reinforced as follows.

Theorem 2.2 Under Assumptions A1 and A2, there exist a q-tuple {Ut} = {(U1t, . . . , Uqt)
′}

of mutually orthogonal white noises (namely, Var(Ujt) = 1 and Cov(Ujt, Uj′t′) = 0 unless j′ = j
and t′ = t), and a collection of one-sided square-summable filters Bij(L), i ∈ N, j = 1, . . . , q
such that

χit =
q

∑

j=1

Bij(L)Ujt i ∈ N, t ∈ Z (2.6)
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and HU
t = Hχχχ

t for all t ∈ Z.

Proof. If Assumption A2 holds, there exists a purely nondeterministic q-dimensional vector
process {Yt} in HX, with full-rank q-dimensional innovation {Vt}, such that Hχχχ

t = HY
t . Denote

by ΣΣΣV the full-rank covariance of {Vt}. Since {χit} is purely non-deterministic, HV
t = Hχχχ

t .
Denoting by {Ut} := {(ΣΣΣV)−1/2Vit} the standardized version of the innovation {Vt}, the
components {Ujt}, j = 1, . . . , q of {Ut} constitute a q-tuple of mutually orthogonal white noises
such that HU

t = HV
t , hence HU

t = Hχχχ
t , and (2.6) is component i of χχχt’s Wold decomposition

(not to be mistaken for χit’s Wold decomposition). �

Although no factors appear in the representation (2.2) of X, the q white noises {Ujt},
j = 1, . . . , q in (2.6) can be interpreted as common shocks, loaded, with lags, by Xit via the
one-sided filters Bij(L), ∈ N, j = 1, . . . , q. These common shocks remain largely undetermined,
but the space they are spanning at time t is uniquely characterized as the innovation space of
the common component χχχ.

Theorem 3.2, however, still is a purely theoretical existence result, which does not provide
much constructive information on the common and idiosyncratic components {χit} and {ξit}
of a given process {Xit}. No relation is provided with the more familiar frequency-domain
definitions of Forni et al. (2000) and Forni and Lippi (2001). Nor does Theorem 3.2 point at any
statistical way of consistently reconstructing the common and idiosyncratic components from a
finitely observed {Xit}. More insight into this will be provided in the next section, via a link to
Brillinger’s theory of dynamic principal components.

3 Principal components

3.1 Static principal components and static factor models

The most common way of turning a decomposition of the form (2.2) into a statistically tractable
model (also satisfying the assumptions of Theorem 3.2) consists in imposing on the common
component χit a simple linear structure, such as

{

χit = bi1F1t + . . .+ birFrt

Ft := (F1t, . . . , Frt)
′ = A1Ft−1 + . . .+ ApFt−p + RUt i ∈ N, t ∈ Z

(3.1)

where Ut := (U1t, . . . , Uqt)
′ is a q-tuple of white noises, the r × r matrices A1, . . . ,Ap define

some stationary VAR, and the r × q matrix R has rank q. Here, Xit depends in a static way
(instantaneous dependence: loading constants instead of loading filters) on the unobserved r-
dimensional latent process {Ft}: the VAR(p) dynamics of the r factors (F1t, . . . , Frt), driven by
the q-dimensional common shocks Ut (r ≥ q), are to account for the dynamics of the common
components throughout the whole panel. Clearly, not everything is identifiable in (3.1), and
there is room for a variety of identification constraints; without those, in particular, only the
space spanned by the factors is identified.

Denote by

ΛΛΛ(n)
r :=









λ
(n)
1 . . . 0

. . .

0 . . . λ
(n)
r









and P(n)
r :=









p
(n)′
1
...

p
(n)′
r









:=









p
(n)
11 . . . p

(n)
1n

...
. . .

...

p
(n)
r1 . . . p

(n)
rn








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the r × r diagonal matrix containing the r largest eigenvalues of the n × n covariance ma-

trix E[X
(n)
t X

(n)′
t ] and the corresponding r×nmatrix of row eigenvectors. Then

(

ΛΛΛ(n)
r

)−1/2
P

(n)
r X

(n)
t

is the standardized projection of X
(n)
t onto the r-dimensional space spanned by X

(n)
t ’s r first

principal components. It can be shown, under very general assumptions (see Bai and Ng (2002)
or Stock and Watson (2002a and b)), that those projections converge, as both n and T tend to
infinity, to the space spanned by Ft, the only identified feature of the factors in equation (3.1).
That consistency property of static principal components is the basis for many methods that
have been proposed in the literature (same references as above, and many others, as Forni et
al. (2009) and . Other methods, such as Gaussian quasi-maximum likelihood (pretending that
the idiosyncratic components are i.i.d. Gaussian), or Kalman filtering also have been considered:
see Bai and Li (2012), De Mol et al. (2008), Doz et al. (2011, 2012), Fan et al. (2013).

Model (3.1) is the most refined of static factor models for time series in high dimension—
the word static here does not mean that there is no dynamics in the common component, but
that all common dynamics features are loaded in a static way from a finite number of factors.
Similarly, the concept of principal components used in tis context is the classic, static concept,

based on the spectral factorization of the instantaneous covariance matrix E[X
(n)
t X

(n)′
t ]. This is

fine, since loadings are instantaneous, hence reflected in E[X
(n)
t X

(n)′
t ]. Contrary to the general

dynamic factor model (2.2)-(2.6), (3.1) is a statistical model, putting severe restrictions on the
data-generating process. Those restrictions at first sight may look quite innocuous, but they are
not. Consider, for instance, the very simple case under which q = 1 (one single common shock
in (2.6)) and the common component χit satisfies the elementary AR(1) loading scheme

χit = ρiχi,t−1 + U1t t ∈ Z, ρi ∈ (−1, 1), i ∈ N.

This very simple case does not admit a finite-r static representation of the form (3.1), as each lag
of U1t has to be counted as one distinct factor. And the static principal component projections
would not consistently reconstruct the (infinite-dimensional) space spanned by the common
factors. Static factor models have an indisputable advantage of conceptual simplicity, which
explains their success among practitioners. But, just as classical principal components, with
which they are associated, are not the adequate principal component concept, static factor
models are not the adequate factor model concept in a time series context.

3.2 Brillinger’s concept of dynamic principal components

Going back to the definition of a common process, the maximal variance normalized linear
combinations involved there have a a strong flavor of principal components—with, however,
an essential difference: the linear combinations

∑n
i=1

∑∞
k=−∞ aikζi,t−k taken into consideration

are running over all leads and lags, whereas traditional principal components would maximize
instantaneous cross-sectional linear combinations of the form

∑n
i=1 aiζi,t. That difference, as we

now explain, parallels the difference between dynamic principal components and the traditional
static ones. While static principal components are perfectly adapted to the analysis of i.i.d.
data, the dynamic ones are much more relevant in a time series context.

The problem with traditional (static) principal components in a time series context is that
serial dependencies are overlooked. A static principal component

∑n
i=1 aiζi,t associated with a

small static eigenvalue may have a negligible instantaneous impact on ζζζt. But the same linear
combination may have a high covariance with ζζζt+1, hence a high predictive value: discarding it
then results in a significant loss of information. As a result, static principal components in general
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do not provide any reasonable solution to the dimension reduction problem in the presence of
serial dependence. Besides this conceptual failure, static principal components, when computed
from serially dependent observations, also run into technical problems: while cross-sectionally
uncorrelated at fixed time t, they typically still exhibit lagged cross-correlations. Therefore,
unlike in the i.i.d. case, static principal components cannot be analyzed componentwise, and
still need to be treated as vector time series.

The concept of dynamic principal component was introduced by Brillinger (1981), where we
refer to for details, in order to overcome these weaknesses of the classical concept.

Dynamic principal components are based on a factorization of spectral density matrices.
Therefore, let us make the additional assumption that all {Xt, t ∈ Z} processes in the panel admit
spectral densities. More precisely, we assume the following (see pages 19-20 of Rozanov (1967)).

Assumption A3. For all n ∈ N, the spectral measure of {X
(n)
t , t ∈ Z} is absolutely contin-

uous with respect to the Lebesgue measure on [−π, π], that is, {X
(n)
t } has a spectral density

matrix ΣΣΣ(n)(θ), with entries (σij(θ)), θ ∈ [−π, π].

Note that the matrices ΣΣΣ(n)(θ) are nested for all θ (so that σij(θ) needs no n superscript),
Hermitian and positive semidefinite. Also, spectral densities always are defined up to a set of
θ values with Lebesgue measure zero; rather than functions, we are dealing with equivalence
classes of a.e. equal functions, thus. By ΣΣΣ(n)(θ), in the sequel, we tacitly mean a representative
of such a class; the same comment applies to ΣΣΣ(n)(θ)’s eigenvalues and eigenvectors.

Since each ΣΣΣ(n)(θ) is Hermitian positive semidefinite, it has n nonnegative eigenvalues, as-
sociated with n eigenvectors

λ
(n)
1 (θ) ≥ λ

(n)
2 (θ) ≥ . . . ≥ λ(n)

n (θ) and p
(n)
1 (θ),p

(n)
2 (θ), . . . ,p(n)

n (θ);

call them the dynamic eigenvalues and eigenvectors of {X
(n)
t }, respectively. As eigenvectors,

the p
(n)
j (θ)’s are subject to the usual sign indeterminacy: −p

(n)
j (θ) qualifies as an eigenvector as

well as p
(n)
j (θ). Talking about “the” dynamic eigenvector p

(n)
j (θ) is thus an abuse of language

and notation, since an arbitrary sign can be selected for each value of θ. Adequate choices can
be made (see Forni and Lippi, 2001, Section 2) so that the measurability claim in Part (d) of
Proposition 3.1 holds.

From their definition as eigenvalues and eigenvectors, dynamic eigenvalues and eigenvec-
tors, for all θ ∈ [−π, π], enjoy the following elementary properties. Write P∗ for the adjoint
(transposed convex conjugate) of any complex-valued matrix or vector P.

Proposition 3.1 With the above notation,

(a) ΣΣΣ(n)(θ)p
(n)
j (θ) = λ

(n)
j (θ)p

(n)
j (θ), j = 1, . . . , n, θ ∈ (−π, π);

(b) ‖p
(n)
j (θ)‖2 = p

(n)∗
j (θ)p

(n)
j (θ) = 1, j = 1, . . . , n, and p

(n)∗
j (θ)p

(n)
j′ (θ) = 0 for j 6= j′

= 1, . . . , n and θ ∈ (−π, π), so that the n× n matrix P(n)(θ) :=
(

p
(n)
1 (θ), . . . ,p

(n)
n (θ)

)

is a

unitary matrix (P(n)∗(θ)P(n)(θ) = In = P(n)(θ)P(n)∗(θ));

(c) λ
(n)
j (θ) = maxp p∗ΣΣΣ(n)(θ)p, where the maximum is taken over p ∈ C

n such that ‖p‖ = 1

for j = 1, such that p∗p
(n)
j′ (θ) = 0, j′ ∈ {1, . . . , j − 1} for j ≥ 2, θ ∈ (−π, π);
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(d) for all j and θ, λ
(n)
j (θ) is monotone nondecreasing in n;

(e) θ 7→ λ
(n)
j (θ) are measurable functions on [−π, π]; θ 7→ p

(n)
j (θ) are measurable (see above)

and, being bounded, integrable with respect to the Lebesgue measure over [−π, π].

We refer to Section 2.2 of Forni and Lippi (2001) for details and further properties.
Any matrix or vector M(θ) with square-integrable θ-measurable elements defined over [−π, π]

can be expanded (componentwise) into a Fourier series

M(θ) =
1

2π

∞
∑

k=−∞

[

∫ π

−π
M(θ)eikθdθ

]

e−ikθ

where the right-hand side converges in quadratic mean. That expansion creates a correspondence
between the square-integrable matrix-valued function M(θ) and the square-summable filter

M(L) :=
1

2π

∞
∑

k=−∞

[∫ π

−π
M(θ)eikθ dθ

]

Lk

(L, as usual, stands for the lag operator); note that M(θ) = M(e−iθ). In view of Proposi-

tion 2.1(d), the dynamic eigenvectors θ 7→ p
(n)
j (θ), in particular, can be expanded into the

Fourier series

p
(n)
j (θ) =

1

2π

∞
∑

k=−∞

[

∫ π

−π
p

(n)
j (θ)eikθdθ

]

e−ikθ,

defining square-summable filters of the form

p(n)
j

(L) =
1

2π

∞
∑

k=−∞

[∫ π

−π
p

(n)
j (θ)eikθdθ

]

Lk

such that p
(n)
j (θ) = p

(n)
j (e−iθ).

The (m×n)-dimensional function θ 7→ M(θ) and the filter M(L) moreover are strongly con-

nected by the fact that, if the n-dimensional process {X
(n)
t } has spectral density matrix ΣΣΣ(n)(θ),

then the m-variate stochastic process {M(L)X
(n)
t } has spectral density matrix

M(θ)ΣΣΣ(n)(θ)M∗(θ) = M(e−iθ)ΣΣΣ(n)(θ)M′(eiθ).

It follows that the univariate process {W
(n)
jt | t ∈ Z}, where W

(n)
jt := p

(n)′
j (L)X

(n)
t , has spectral

density p
(n)′
j (θ)ΣΣΣ(n)(θ)p̄

(n)
j (θ) = λ

(n)
j (θ).

Definition 3.1 The univariate process {W
(n)
jt := p

(n)′
j (L)X

(n)
t | t ∈ Z} is called X(n)’s jth

dynamic principal component (j = 1, . . . , n).

As eigenvectors, the p
(n)
j (θ)’s are subject to the usual sign indeterminacy: −p

(n)
j (θ) qualifies

as an eigenvector as well as p
(n)
j (θ). Talking about “the” dynamic eigenvector p

(n)
j (θ) is thus an

abuse of language and notation, since an arbitrary sign can be selected for each value of θ. The
same remark holds for the dynamic principal components. That multiplicity is not a problem,

however, in the present context, as the Hilbert space spanned by {W
(n)
j } (or any collection

of {W
(n)
j }’s) is well defined irrespective of the selection of signs.
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The properties of X(n)’s dynamic principal components extend to the time-series context
the standard properties of traditional principal components associated with the eigenvalues and
eigenvectors of X(n)’s covariance matrix E[X(n)X(n)′]. Here are some of them.

Proposition 3.2 (a) The n-dimensional process {W
(n)
t := (W

(n)
1t , . . . ,W

(n)
nt )′} has diagonal

spectral density matrix, with diagonal elements λ
(n)
1 (θ), . . . , λ

(n)
n (θ); hence, the univariate pro-

cess {W
(n)
jt } has spectral density λ

(n)
j (θ), while {W

(n)
jt } and {W

(n)
j′t }, j 6= j′, are mutually orthog-

onal (at all leads and lags);

(b) W
(n)
1t , . . . ,W

(n)
nt therefore constitute an orthogonal basis of HX(n)

;

(c) the variance of W
(n)
jt is λ

(n)
j :=

∫ π

−π
λ

(n)
j (θ)dθ, and

λ
(n)
j =























max{

a
(n)
ik

|
∑

n

i=1

∑∞

k=−∞
(a

(n)
ik

)2=1
}Var

(

∑n
i=1

∑∞
k=−∞ aikXi,t−k

)

, j = 1

max{

a
(n)
ik

|
∑

n

i=1

∑∞

k=−∞
(a

(n)
ik

)2=1
}Var

(

∑n
i=1

∑∞
k=−∞ aikXi,t−k

)

, j = 2, . . . , n.

subject to
∑n
i=1

∑∞
k=−∞ aikXi,t−k orthogonal to W

(n)
1t , . . . ,W

(n)
j−1,t

It readily follows from Part (c) of Proposition 3.2 that a strong relation exists between
idiosyncrasy, the asymptotic behavior of dynamic eigenvalues, and the dynamic principal com-
ponents of a process.

Theorem 3.1 A process {ζit} is purely idiosyncratic if and only if all its dynamic eigenvalues
are (equivalently, its first dynamic eigenvalue is) θ-a.e. bounded as n→ ∞.

This establishes the equivalence, under Assumption A3, of the time-domain definition of a
purely idiosyncratic process we are giving in Section 2 and the frequency-domain definition of
Forni and Lippi (2001).

3.3 Dynamic principal components and dynamic factor models

Throughout this section, we assume that Assumptions A1 and A3 hold. In view of Theorem 3.1,

if λ
(n)
1 , hence all the dynamic eigenvalues λ

(n)
j of X(n), are θ-a.e. bounded as n→ ∞, then X is a

purely idiosyncratic panel; Assumption A2 holds, but with q = 0. The orthogonal complement
of the idiosyncratic space HX

idio then reduces to HX
com = {0}, and the factor model decomposi-

tion (2.2) to a trivial one Xit = 0 +Xit. Such panels are of little interest, as they do not carry
any “common information”, hence are missing their objective: putting them together does not
bring any essential improvement to the analysis and prediction of any of the individual series in
the cross-section.

More generally, Assumption A2 holds with q > 0. Theorem 2.2 then tells us that the common
components are driven by a q-tuple of white noises, and that (2.6) holds. In practice, q is not
specified, and consistent identification methods have been proposed in the literature: Hallin
and Lǐska (2007) and, in the static case, Amengual and Watson (2007) and Alessi et al. (2010),
improving over the pioneering result by Bai and Ng (2002).

Assumption A2, however, has even stronger consequences on the asymptotic behavior of the

dynamic eigenvalues λ
(n)
1 , . . . , λ

(n)
q , when they exist, and their relation to (2.6).
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Proposition 3.3 Let Assumptions A1, A2, and A3 hold. Then,

(i) the q first dynamic eigenvalues of {χχχ
(n)
t } diverge to ∞, and all other ones are equal to

zero, θ-a.e. in [−π, π], as n→ ∞;

(ii) the q first dynamic eigenvalues of {X
(n)
t } diverge to ∞, and all other ones are bounded,

θ-a.e. in [−π, π], as n→ ∞.

Proof. Theorem 2.1 implies that q mutually orthogonal white noises {Ujt} are spanning the
common space. It follows from the definition of the common space that each of those white

noises is the limit in quadratic mean of a sequence U
(n)
X;jt := Var−1/2(u

(n)
X;jt)u

(n)
X;jt of standardized

versions of normalized linear combinations of the present, past, and future observations Xit, of
the form

u
(n)
X;jt :=

n
∑

i=1

∞
∑

k=−∞

a
(n)
j;ikXi,t−k := a

(n)′
j (L)X

(n)
t ,

where

a
(n)′
j (L) :=

(

∞
∑

k=−∞

a
(n)
j;1kL

k, . . . ,
∞
∑

k=−∞

a
(n)
j;nkL

k
)

,
n

∑

i=1

∞
∑

k=−∞

(a
(n)
j;ik)

2 = 1,

and limn→∞ Var(u
(n)
X;jt) = ∞. Owing to the fact that the white noises {Ujt} are mutually

orthogonal, those q normalized linear combinations, for n large enough, are linearly independent.

Since {ξit} is purely idiosyncratic,
∑n
i=1

∑∞
k=−∞ a

(n)
j;ikξi,t−k has bounded variance. Hence, Ujt

is also the limit in quadratic mean of U
(n)
jt := Var−1/2(u

(n)
jt )u

(n)
jt , with

u
(n)
jt :=

n
∑

i=1

∞
∑

k=−∞

a
(n)
j;ikχi,t−k = a

(n)′
j (L)χχχ

(n)
t ,

where ς
(n)
j := Var1/2(u

(n)
jt ) also explodes as n→ ∞.

Let U
(n)
t := (U

(n)
1t , . . . , U

(n)
qt )′, u

(n)
t := (u

(n)
1t , . . . , u

(n)
qt )′, a(n)(L) := (a

(n)
1 (L), . . . ,a

(n)
q (L))′:

then, u
(n)
t = a(n)(L)χχχ

(n)
t . Denote by ΣΣΣ

(n)
U (θ), ΣΣΣ(n)

u (θ), and ΣΣΣ(n)
χχχ (θ) the spectral density matrices

associated with U
(n)
t , u

(n)
t , and χχχ

(n)
t , respectively, and let ςςς(n) := diag(ς

(n)
1 , . . . , ς

(n)
q ) be the

diagonal matrix with jth diagonal entry ς
(n)
j . Quadratic mean convergence of a sequence of

variables implies L1 (with respect to Lebesgue on [−π, π]) componentwise convergence of their
spectral densities to the spectral density of the limiting variable. That L1 convergence in turn
implies a.e. convergence of a subsequence (see, for instance, pp. 297-298 of [3]). Therefore, θ-a.e.

in [−π, π], the spectral density matrices ΣΣΣ
(n)
U (θ) of the U

(n)
t ’s are converging to that, Iq/2π,

of q-dimensional white noise:

ΣΣΣ
(n)
U (θ) = Iq/2π + o(1) as n→ ∞ (3.1)

(the o(1) term may depend on θ).
On the other hand, we have

ΣΣΣ
(n)
U (θ) =

(

ςςς(n))−1
ΣΣΣ(n)

u (θ)
(

ςςς(n))−1
=

(

ςςς(n))−1
a(n)(e−iθ)ΣΣΣ(n)

χχχ (θ)a(n)′(eiθ)
(

ςςς(n))−1

=
(

ςςς(n))−1
a(n)(e−iθ)P

(n)′
χχχ (θ)ΛΛΛ(n)

χχχ (θ)P̄
(n)
χχχ (θ)a(n)′(eiθ)

(

ςςς(n))−1

=:
(

ςςς(n))−1
b(n)(e−iθ)ΛΛΛ(n)

χχχ (θ)b(n)′(eiθ)
(

ςςς(n))−1
, say, (3.2)
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where P
(n)′
χχχ (θ)ΛΛΛ(n)

χχχ (θ)P̄
(n)
χχχ (θ) is ΣΣΣ(n)

χχχ (θ)’s spectral decomposition. The n × n matrix P
(n)
χχχ (θ)

is a unitary matrix (P
(n)
χχχ (θ)P

(n)∗
χχχ (θ) = In = P

(n)∗
χχχ (θ)P

(n)
χχχ (θ)); since χχχ

(n)
t , being driven by q

white noises, has reduced rank q, ΛΛΛ(n)
χχχ (θ) is of the form diag(λ

(n)
χχχ;1(θ), . . . , λ

(n)
χχχ;q(θ), 0, . . . , 0), and

the last (n − q) columns of P
(n)
χχχ (θ) are largely indeterminate—an indetermination that carries

over to b(n)(e−iθ) but has no impact on this proof. Because P
(n)
χχχ (θ) is unitary, it preserves the

norm, and, denoting by b
(n)
j (e−iθ) = P

(n)
χχχ (θ)a

(n)
j (e−iθ) the jth column of b(n)′(e−iθ), we have,

for j = 1, . . . , q,

b
(n)′
j (e−iθ)b

(n)
j (eiθ) = ‖b

(n)
j (e−iθ)‖2 = ‖a

(n)
j (e−iθ)‖2.

It follows that

1

2π

∫ π

−π
‖b

(n)
j (e−iθ)‖2dθ =

1

2π

∫ π

−π
‖a

(n)
j (e−iθ)‖2dθ =

n
∑

i=1

∞
∑

k=−∞

(a
(n)
j;ik)

2 = 1, (3.3)

so that the set of θ values such that lim supn→∞ ‖b
(n)
j (e−iθ)‖ = ∞ has Lebesgue measure zero.

Putting (3.1) and (3.2) together, we obtain that, θ-a.e. and, possibly, along a subsequence,
(

ςςς(n))−1
b(n)′(e−iθ)ΛΛΛ(n)

χχχ (θ)b(n)(eiθ)
(

ςςς(n))−1
= Iq/2π + o(1) as n→ ∞. (3.4)

Now, the columns b
(n)
j (e−iθ) of b(n)(e−iθ), for n large enough, are linearly independent, and, in

view of (3.3), have θ-a.e. bounded modulus. Since
(

ςςς(n)
)−1

is a q× q diagonal matrix converging

to zero, (3.4), at given θ, is possible only if the q nonzero diagonal elements λ
(n)
χχχ;1(θ), . . . , λ

(n)
χχχ;q(θ)

of ΛΛΛ(n)
χχχ (θ) all tend to infinity. Although (3.4), hence also this divergence of λ

(n)
χχχ;q(θ), may be

restricted to a subsequence, the fact that a dynamic eigenvalue λ
(n)
χχχ;j(θ) tends to infinity along a

subsequence implies that it tends to infinity in the plain sense, as it is monotonically increasing
with n. This takes care of Part (i) of the proposition.

Turning to Part (ii), it is obvious from mutual orthogonality of the common and idiosyncratic

components that the spectral density of X(n) decomposes into ΣΣΣ(n)(θ) = ΣΣΣ(n)
χχχ (θ) +ΣΣΣ

(n)
ξξξ (θ). The

claim then readily follows from Weyl’s classical inequality, which here takes the form

λ
(n)
χχχ;j(θ) + λ

(n)
ξξξ;n(θ) ≤ λ

(n)
j (θ) ≤ λ

(n)
χχχ;j(θ) + λ

(n)
ξξξ;1 (θ). �

This Proposition establishes a time-domain alternative to the usual frequency-domain defi-
nition of dynamic factors. The main result of Forni and Lippi (2001) indeed can be formulated
as follows.

Theorem 3.2 (Forni and Lippi 2001). Under Assumptions A1 and A3, the following state-
ments are equivalent.

(a) The components Xit of the panel X admit a unique decomposition

Xit = χit + ξit i ∈ N, t ∈ Z (3.5)

where {χit} and {ξit} are mutually orthogonal at all leads and lags, {ξit} only has θ-a.e.
bounded dynamic eigenvalues, and {χit} is driven by a q-tuple of white noises, that is,
is of the form (2.6) for some q-tuple {Ut = (U1t, . . . , Uqt)

′} of mutually orthogonal white
noises, and some collection of bilateral square-summable filters Bij(L), i ∈ N, j = 1, . . . , q.

Moreover, denoting by λ
(n)
χχχ;q(θ) the qth dynamic eigenvalue of {χχχ

(n)
t }, λ

(n)
χχχ;q(θ) → ∞ a.e.

in [−π, π] as n→ ∞.
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(b) The q first dynamic eigenvalues of {X
(n)
t } diverge to ∞, and all other ones are bounded,

θ-a.e. in [−π, π], as n→ ∞.

The statement in Part (a) of this claim constitutes what Forni and Lippi (2001), Forni et
al. (2000) and their subsequent papers take as a definition of the general(ized) dynamic factor
model, while the statement in Part (b) of course coincides with that of Part (ii) of Proposition 3.3.

The fact that Assumptions A1, A2, and A3 jointly imply the more classical assumptions on
the divergence of dynamic eigenvalues thus brings to our time-domain approach all the benefits
of the statistical results that have been obtained under Assumptions A1, A3 and (a), in the
spectral approach. In particular, the results that have been established in Forni et al. (2000)
still hold, among which the following constructive characterization of the common component.

Denote by χ
(n)
it the projection of Xit onto the space spanned by the first q dynamic compo-

nents W
(n)
1t , . . . ,W

(n)
qt . That projection takes the form χ

(n)
it := K

(n)
i (L)X

(n)
t , where

K
(n)
i (θ) := p

(n)∗
1,i (θ)p

(n)′
1 (θ) + . . .+ p

(n)∗
q,i (θ)p(n)′

q (θ) θ ∈ [−π, π].

Theorem 3.3 (Forni, Hallin, Lippi, and Reichlin 2000). Under Assumptions A1, A3 and (a),
hence also (b), of Theorem 3.2, and, therefore, also under Assumptions A1, A2, and A3 of
Proposition 3.3,

χit = χ
(n)
it + oP(1) as n→ ∞, i ∈ N, t ∈ N. (3.6)

This fundamental convergence result, which serves as the basis of all statistical applications
of the general dynamic factor model, now holds for the time-domain definition provided here.
Note, however, that Assumptions A1-A3, which imply one-sided representations of the common
components in terms of common shocks, are more restrictive than Assumptions A1, A3 and (a),
which only guarantee the existence of possibly two-sided representations (on this last issue, see
Forni and Lippi (2011)).

4 Conclusions

In this paper, we provide a unified time-domain presentation of the methodological foundations of
general dynamic factor models for high-dimensional time series, emphasizing the generality of the
approach which, contrary to its static counterparts, relies on a canonical representation result,
hence only imposes very general constraints on the data-generating process. All factor models
in the literature, whether dynamic or static, under the assumption of second-order stationarity,
can be obtained by imposing further modeling assumptions on that canonical representation,
justifying the terminology general dynamic factor model.
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